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RESEARCH

Automatic Hierarchy Expansion for Improved Structure 
and Chord Evaluation
Katherine M. Kinnaird* and Brian McFee†

Partitioning a recording into non-overlapping time intervals comes in many forms. There is the structural 
segmentation task which labels structures either syntactically as A and B, or structurally as verse or 
chorus. The chord annotation task is similar, labeling segments by their chords. While many of these 
annotations are flat, this article extends the method by McFee and Kinnaird (2019) for automatically 
enhancing structural annotations by inferring (and expanding) hierarchical information from the segment 
labels. One of our extensions adds new rules that allow for structural labels with a wider vocabulary than 
the syntactical ones in the SALAMI dataset. Using this first extension, we compare annotations from the 
Beatles-TUT and Isophonics datasets to investigate similarities between these annotations. Our second 
extension creates a multi-level annotation for chords that addresses a number of current challenges in 
chord evaluation. Using a large collection of chord annotations (manually and automatically generated), 
we investigate how and where the multi-level hierarchies can enhance (or detract from) comparing chord 
annotations.

Keywords: Structure segmentation; chord recognition; hierarchy; evaluation

1. Introduction
In the music information retrieval (MIR) literature, the 
issue of partitioning recordings into labeled segments is 
well studied. Whether those labels are chord annotations 
or structural annotations (such as verse and chorus), 
musical structure analysis broadly concerns methods for 
automatically inferring relationships between moments 
in time within a piece (Dannenberg and Goto, 2008; 
Paulus et al., 2010). Much of the computational work in 
this area models musical structure as having exactly one 
partition of the recording. The resulting segments of these 
flat annotations are neither merged nor subdivided to 
form larger or smaller structures.

This restrictive view on partitioning a piece can lead to a 
number of challenges in both structural segmentation and 
chord annotations. In both tasks, there can be differences 
due to levels of expertise. For example in the structural 
segmentation task, expert annotators may encode latent 
hierarchical information by using variation markers 
in their segment labels, e.g., A, …, A′ or verse, …, verse_
(instrumental) (Smith et al., 2011; Paulus and Klapuri, 
2006). Similar issues of ambiguity and subjectivity exist in 
the chord annotation task that can be further complicated 
due to differing chord vocabularies (Pauwels et al., 2019). 
These variation markers or increasingly complicated chord 

grammars may be clearly informative, but these nuances 
are often overlooked by standard comparison methods. 
McFee and Kinnaird (2019) created an automatic 
hierarchy expansion that sought to leverage the inherent 
yet latent hierarchical structure in these annotations. 
This automatic hierarchy expansion is built on the 
recent trend of developing datasets (Smith et al., 2011; 
Nieto and Bello, 2016), computational methods (Ullrich 
et al., 2014), representations (McGuirl et al., 2018), and 
evaluation criteria (McFee et al., 2017) for hierarchically 
structured music segmentations. This article continues 
in this tradition, by extending the automatic hierarchy 
expansion by McFee and Kinnaird (2019) to further 
examples in segmentation.

1.1 Our contributions
In this work, we apply the idea of automatic hierarchy 
expansion from McFee and Kinnaird (2019) to segmentation 
problems where the labels convey not only syntactic, but 
“semantic” information as well. Specifically, we develop 
methods for inferring latent hierarchical structure from 
segmentation annotations (such as verse, chorus, bridge, 
etc.), and from chord annotations, exposing hierarchical 
relations among related chords (e.g., C:maj and C:7). 
For the structure example, we compare two collections 
of human-generated annotations of the Beatles dataset: 
Beatles-TUT (Paulus, 2010) and the Isophonics structural 
segmentations (Harte, 2010). For this example, we follow 
the procedure from McFee and Kinnaird (2019) for 
creating the automatic hierarchy expansions, with minor 
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edits due to differences in the segmentation vocabulary 
when compared to the vocabulary in SALAMI (Smith et al., 
2011).

For the chord annotations, we develop an automatic 
hierarchy construction scheme based on iterative 
simplification of chords in Section 3.2. This progressive 
simplifying of the chord annotations combined with the 
original annotation creates a hierarchical annotation, 
which can then be compared to other hierarchies 
using existing techniques. This application of hierarchy 
expansion results in a new approach for comparing chord 
annotations which accounts for similarity between the 
internal structure of the annotations. To demonstrate the 
method, we compare the resulting structural similarity 
derived from automatically induced chord hierarchies 
to standard chord recognition evaluation metrics over a 
large corpus of previous published annotations.

2. Related work
This paper concerns two issues: 1) adding flexibility to the 
automatic hierarchy expansion for use on structural labels 
in the structural segmentation task, and 2) extending the 
automatic hierarchy expansion for the chord annotation 
task. In both cases, we are concerned with hierarchical 
evaluation methods. In the latter case, we seek to address 
a number of challenges in the chord annotation task.

2.1 Hierarchical evaluation
Recent work by McFee and Kinnaird (2019) created an 
automatic hierarchy expansion on flat (i.e., single-level) 
structure annotations for simple form structure labels, 
such as A, B, A′, etc. These hierarchies allowed for a more 
nuanced comparison between annotations by exploiting 
the latent structure inherent in variation markers such 
as a section labeled with A′ compared to an A section 
versus comparing a section with the label A′ to another 
labeled as B. The contribution of a multi-level evaluation 
for segmentation is an important one, but McFee and 
Kinnaird (2019) did not address structural labels such 
as verse or chorus. The first contribution of this article 
extends the automatic hierarchy expansion to structural 
labels.

For the sake of consistency, we adopt the notation and 
conventions of McFee and Kinnaird (2019). That is for a 
signal of duration T, we define a (flat) segmentation as a 
function S : [0, T] → V where V denotes a set of segment 
labels, e.g., V = {A, B, …}. A multi-level segmentation (or 
hierarchy) is defined as a sequence of segmentations 
H  =  (S0, S1, …), where S0 maps to a single label, and 
subsequent segmentations Si are ordered from coarse 
to fine. We assume that each segmentation Si maps to a 
distinct vocabulary.

Like McFee and Kinnaird (2019), the approach taken in 
this work is based on the L-measure method for multi-
level segmentation comparison (McFee et al., 2017). 
Specifically, given two hierarchies HR (the reference) 
and HE (the estimate), we compare them by using the 
L-Measure, which is the harmonic mean of L-precision and 
L-recall. Both the precision and recall scores are defined 
by comparing two collections of time instant triplet 

sets A(HE) and A(HR). The time instance triplets encode 
t, u, v such that the depth that instances t and u share 
is deeper than the depth that t and v share. Specifically, 
if two time instants t and u are both contained in the 
same segment, while another time instant v lies outside 
that segment, then (t, u, v) would constitute an element 
of the set derived from the segmentation. Similarity 
between segmentations—and by extension, multi-level 
segmentations—is derived by counting the proportions of 
triplets shared between the derived sets. Specifically, the 
precision score is defined as:
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Recall is defined analogously by reversing the roles of 
reference and estimate. Typically, the terms reference 
and estimate distinguish between annotations derived 
from the method’s use in comparing algorithm outputs 
to manual annotations. Using the L-measure instead of 
either L-precision or L-recall removes the need to confer 
privileged status to one of two different annotations.1

2.2 Chord evaluation
Automatic chord estimation is a long-standing problem in 
music information retrieval. The recent survey by Pauwels 
et al. (2019) provides a comprehensive overview of the 
topic, and highlights several outstanding challenges for 
chord recognition research. The first three challenges—1. 
finding an appropriate feature representation; 2. 
describing what a chord looks like in the feature space; 
and 3. the mismatch between [audio] processing rate and 
chord rate—relate primarily to signal processing, and are 
beyond the scope of the present work. The remaining four, 
however, all relate in one way or another to structural 
aspects of chords: 4. achieving long-term consistency in 
chord sequences; 5. exploiting relationships with related 
musical concepts; 6. handling ambiguity and subjectivity; 
and 7. chord vocabulary and associated balance problems. 
Our investigation of hierarchical structure analysis for 
chord evaluation aims to address (to varying extents) 
each of these challenges. By directly comparing the 
repetition structure of reference and estimated chord 
annotations, we provide a way to compare internal 
consistency of annotations over the entire track. The 
hierarchy construction we propose incorporates both the 
(implied) key of the piece encoded in the chord labels and 
bass (inversions) in a unified scheme, thereby exploiting 
similarity between hierarchically related chord labels. By 
comparing simultaneously across multiple simplifications 
of the chord annotation, we provide a metric which is robust 
to particular kinds of ambiguity and subjectivity, such  
as tuning disagreements. Finally, exploiting the grammar 
of chord labels to construct a hierarchical representation 
does not directly address class imbalance problems, but 
as noted by McFee and Bello (2017), it does simplify the 
problem of selecting a chord vocabulary, as any chord 
label which validates under the formal grammar of Harte 
et al. (2005) can be directly incorporated in the evaluation.
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The standard chord evaluation metrics provided by 
mir_eval (Raffel et al., 2014)—itself based on the 
MIREX 2013 chord metrics (Bay et al., 2010) —provide 
ways to compare two chord annotations at varying degrees 
of specificity. Following the work of Pauwels and Peeters 
(2013), mir_eval provides, among others, the following 
evaluations:

roots	� Requires enharmonic agreement only 
at the root of the chord, ignoring qual-
ity or bass.

	 Example: C♯:min ≡ D♭:maj ≢ C:min.
thirds	� Requires agreement only at the root 

and the third scale degree, ignoring 
other pitch classes.

	 Example: C:maj ≡ C:aug ≢ C:min.
triads	� As above, but including the fifth, and 

ignoring additional pitch classes.
	 Example: C:maj ≡ C:7 ≢ C:aug.
sevenths	� Compares the root, third, fifth, and sev-

enth, ignoring above-octave extensions.2

	 Example: C:9 ≡ C:7 ≢ C:maj7.
tetrads	� Compares all 12 pitch classes (including 

the root).

Although these evaluations follow a clear hierarchical 
pattern of increasing specificity, they are calculated, 
normalized, and reported separately. While this is 
beneficial from the perspective of inspecting behavior 
and failure modes of an individual estimator, the lack 
of a unified metric presents a challenge for succinctly 
comparing different estimators, or getting a holistic 
measure of similarity between two annotations.

Finally, the chord segmentation metrics of Mauch (2010) 
and Harte (2010) are similar in spirit to the structural 
annotation approach we take here, but differ in a few 
critical ways. The chord segmentation metrics operate 
by computing the directional Hamming distance to 
determine the amount of over- or under-segmentation of 
the estimated chord annotation relative to the reference 
(and vice versa). However, this is performed purely based 
on the time interval data, and does not depend on the 
chord segment labels. The approach we take here has a 
similar inspiration, but inducing a hierarchical structure 
by simplifying chord labels provides a more detailed view 
of the segmentation problem. In effect, the proposed 
hierarchical approach can measure the extent to which it 
is possible to automatically simplify one chord annotation 
to match another, e.g., by discarding inversions or 
simplifying upper extensions.

2.3 Learning from hierarchical labels
Many MIR tasks involve taxonomies or otherwise 
hierarchically structured labels. Most of the published 
research on these topics simplifies classification problems 
to flat 1-of-K formulations, which facilitates modeling by 
standard machine learning algorithms. However, there is a 
relatively small collection of works which build hierarchical 
structure directly into the learning problem (e.g., by 

modifying the training objective, model architecture, or 
both), such as for tagging or genre classification (Burred 
and Lerch, 2004); instrument recognition (Essid et al., 
2005); and chord estimation (McFee and Bello, 2017; 
Carsault et al., 2018). Specifically in the case of chord 
estimation, it has been demonstrated that representing 
chord labels in a way that exposes structure—e.g., root 
and pitch classes (McFee and Bello, 2017), or hieararchical 
relations between qualities (Carsault et al., 2018)—can 
improve accuracy over unstructured token representations 
used by general-purpose classification methods. While 
these approaches exploit structure between labels during 
training, this is distinct from our focus in this work on 
evaluation.

3. Methods
This work proposes two extensions to the automatic 
hierarchy expansion by McFee and Kinnaird (2019). The 
first extends the application of the automatic hierarchy 
expansion for the structural segmentation task to include 
structural labels such as verse and coda, instead of just 
syntactical ones (such as A, A′, and B) which the original 
automatic hierarchy expansion restricted itself to.

The second extension of the automatic hierarchy 
expansion concerns chord annotations, expanding 
flat chord annotations into a hierarchy that contains 
progressively coarser chord information. The resulting 
expansion seeks to address four of the challenges 
identified by Pauwels et al. (2019) of chord recognition, as 
noted in the previous section.

3.1 Automatic Hierarchy Expansion for Structure 
Annotations
Building on the automatic hierarchical expansion for 
any ‘flat’ annotations proposed by McFee and Kinnaird 
(2019), our method still expands a flat annotation into 
a hierarchy with three levels but includes updates 
to accommodate the vocabularies in the Beatles-TUT 
(Paulus, 2010) and Isophonics (Harte, 2010) datasets. As 
defined by McFee and Kinnaird (2019), the first level is a 
contraction of variation markers, such as removing the ‘A’ 
from a label ‘VerseA.’ The second level is the original flat 
annotation. The third level is a refinement of the labels by 
making each instance of a label from the contraction level 
unique by adding counters to the label (either as numbers 
for syntactical labels or using repeated ′ for structural 
ones. Our extension of the automatic hierarchy expansion 
will demonstrate that one can apply these methods to 
structural labels.

For concrete examples, consider the two examples in 
Figure 1. Each shows a flat annotation on the left side, 
which is then repeated on the right side of the panel as 
the middle level of the resulting automatic hierarchy 
expansion. The contraction level, shown in green, 
removed the variation markers of the A repetition in the 
left panel, and in the right panel, it removed the variation 
markers of the verse label. In both cases, the result is that 
the contraction part of the hierarchy has two kinds of 
repetitions instead of three; A and B for the left example, 
and verse and chorus for the right example.
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The refined level of the hierarchy for structure 
annotations, shown in blue, has at most one block per 
line. This refinement level is created directly from the 
contraction level of the hierarchy. For each instance of 
a syntactical label in the contraction level, we append 
a counter (starting with 0) to form a new label. For the 
structural labels (such as verse and chorus), we append a 
counter using the prime symbol (′) to form each new label. 
If instead we had conducted this refinement starting at the 
middle level, we would have ended up with the annotation 
labels {A0,A′0,B0,B1,B2} instead of {A0,A1,B0,B1,B2}. 
Similarly, in our second example with the structural 
labels, we have {chorus, chorus′, intro, verse, verse′, verse″} 
instead of {chorus, chorus′, intro, verseA, verseA′, verseB}. 
Creating the refined level from either the contraction level 
or from the original flat annotations produces equivalent 
results, but the former is easier to interpret. What is more, 
given the broader range of variations in structure labels 
for the Beatles-TUT and Isophonics datasets, building from 
the contraction level provides more constrained labels in 
the refined level than from the flat level.

We note that although many label contraction rules 
can be automatically defined (such as stripping variation 
markers), the general problem is non-trivial due to the 
unrestricted vocabularies used by annotators for structural 
segmentation. In this work, we employed a combination 
of automatic rules defined by regular expressions with 
manual corrections specific to each collection.3

3.2 Automatic Hierarchy Expansion for Chords
In this section, we apply the idea of automatic hierarchical 
expansion (McFee and Kinnaird, 2019) to ‘flat’ chord 
annotations. Like the case for structure, each level of 
our chord hierarchy is a contraction of the following 
one. This means that the original chord labels are at the 
deepest level of the hierarchy and that the levels above the 
original chord labels correspond to successive contractions 
(or simplifications) of the labels derived by discarding 
details. We will describe this succession using the concrete 
example shown in Figure 2. The lowest part of the image 
shows the original chord annotation, which is iteratively 
contracted to form the higher levels of the hierarchy. The 
first simplification normalizes enharmonic equivalences 
across keys to use only sharps (so D♭ becomes C♯). The 

second simplification discards inversions, suppressed 
notes, and above-octave extensions. The third, fourth, and 
fifth simplifications discard the seventh, fifth, and third 
scale degrees (respectively). The result is a 6-layer hierarchy, 
where the top layer consists of only chord roots, and the 
bottom layer contains the original labels in full detail.

To support out-of-gamut chords, we deviate slightly 
from the notation of Harte et al. (2005), which encodes all 
out-of-gamut chords as the symbol X. This would discard 
root information, resulting in a premature merging of 
segments in the middle of the hierarchy. For example, 
at the triads level, C:sus4 and G:sus4 are both out 
of vocabulary, and would map to X, losing their root 
information. Instead, we retain root information for out-
of-gamut chords, mapping instead to, e.g., C:X or G:X. 
This allows us to preserve root information and retain a 
well-formed hierarchy.

Additionally, we propose a pruned version of the above 
hierarchy. Effectively in the pruned version, we start with 
the first level (the roots level) but only add the subsequent 
levels if they are distinct from the previous one. This 
means that the pruned version of these hierarchies may 

Figure 1: Two examples of automatic hierarchy expansion. In both examples, the contraction level (green, top) 
removes variation markers, while the refinement level (blue, bottom) adds counters to each instance of a segment 
label. The center level (orange) preserves the original annotation. The left example is a flat segmentation with seg-
ments (A, B, A′, B, B) expanded into a three-level hierarchy. The right example has a flat segmentation with structural 
labels (Intro, VerseA, Chorus, VerseA, VerseB, Chorus).

Figure 2: An example of automatic hierarchy expansion 
applied to chord annotations. The original (full detail) 
labels form the bottom layer of the hierarchy, and each 
successive layer represents simplification: key normaliza-
tion, extension elimination, then simplification to triads, 
thirds, and finally the roots at the top of the hierarchy.
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have less than six levels. If we had pruned the hierarchy 
shown in Figure 2, then the triad level would have not 
been included as it is not distinct from the thirds level. 
However, this pruning still guarantees that we will have 
the original annotations. We note that this specific 
scheme for hierarchical expansion is one among many 
possibilities, and is intended to align with existing chord 
evaluation metrics. Alternative schemes are possible, 
such as not merging triads at the thirds level (to keep 
diminished distinct from minor), but this is not pursued 
in the present work. We also note that the number of 
levels in a hierarchy is not important to the L-measure, as 
it is concerned with proportions of time instant triplets 
as defined by the first two sharing a common level that is 
deeper than the third time instant. Neither the depth of 
the difference nor what the levels correspond to (such as 
tetrads) is taken into account in the L-measure.

These automatic chord hierarchies differ from the 
automatic hierarchy expansion for structure annotations 
in several ways. First, there are at most three levels in the 
automatic hierarchy expansion for structure annotations, 
while there can be six levels in the automatic chord 
hierarchies. Second, the automatic chord hierarchies do 
not have to contend with variation markers like those 
present in structure annotations. While variation markers 
add nuance to structure annotations in a similar way to 
increasing complex chord grammars, variation markers are 
more subjective than chord annotations. The challenges 
in comparing structure annotations introduced by this 
subjectivity is partially addressed by the automatic 
hierarchy expansion with the contraction and refinement 
levels (McFee and Kinnaird, 2019). In contrast, flat chord 
annotations, while less subjective, are more reliant on 
expertise to hear increasingly complex chords and to be 
consistent in their annotations. To address this curse of 
expertise, the automatic chord hierarchies iteratively 
coarsen the original chord annotations from the bottom 
up, but do not introduce any refinements.

4. Experiments
We apply our two extensions of the automatic hierarchy 
expansion to two examples. The first experiment concerns 
the structural segmentation task with semantic labels 
instead of just syntactical ones. The second experiment 
uses our chord extension of the automatic hierarchy 
expansion.4

4.1 Comparing Beatles-TUT and Isophonics
Our first experiment investigates the differences between 
two collections of structural annotations: Beatles-TUT 
(Paulus, 2010) and Isophonics (Harte, 2010). There are 
174 tracks that are in both datasets and can be matched.5 
Both sets of annotations were derived from human 
annotators, which raises the question of how much 
agreement there is between the two. In each collection, 
annotators applied slightly different conventions and 
vocabulary to describing sections. Changes in vocabulary 
are not intrinsically problematic, but there are also 
differences in how variation markers are applied, and how 
specifically sections are annotated. Our goal in applying 

automatic hierarchy expansion here is to obtain a more 
robust assessment of how closely these two collections of 
annotations agree.

Figure 3 compares the L-measure scores derived 
from comparing the two collections of flat annotations 
(horizontal axis) to the scores derived after applying 
automatic hierarchy expansion (vertical axis). The flat 
annotations achieve a relatively high mean agreement score 
of 0.85 ± 0.14. We expect high agreement here because both 
collections were created by human annotators operating 
on similar principles and drawing on common prior work 
(Pollack, 2000).

After expanding the annotations into hierarchies, the 
L-measure exhibits a modest increase to 0.89 ± 0.10. 
While the average change is relatively small, there are a 
few cases where the change is substantial: the minimum 
agreement increases from 0.13 (flat) to 0.53 (expanded), 
and in general, the distribution of scores is more tightly 
concentrated as illustrated by the marginal histograms in 
Figure 3. This indicates that hierarchy expansion indeed 
exposes common latent structure between these two 
collections of annotations.

Figures 4 and 5 illustrate two extreme cases where 
automatic hierarchy expansion dramatically changes 
the L-measure between the annotations in the Beatles-
TUT and Isophonics dataset. In the first case, “Dig It” 
(Figure 4) improves from 0.131 to 0.726, because the 
contraction of the Isophonics annotation (i.e. removing 
the additional nuances around refrain) agrees most 
closely with the TUT annotation (that only has one kind 
of refrain), and the refinement of the TUT annotation (i.e. 
adding nuances to the repeated refrains) matches more 
closely with the Isophonics annotation. As such, these 
two annotations are effectively very similar, with the 
majority of their differences due to the use of variation 
markers and small deviations in boundary placement.  

Figure 3: A comparison of structure agreement between 
the TUT and Isophonics examples using the L-measure 
before automatic hierarchy expansion (horizontal axis) 
and after expansion (vertical axis).
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The second case, “Michelle” (Figure 5) decreased from 
0.903 to 0.786 after expansion. This is explained by the 
annotation from Isophonics that uses two labels that contain 
conflicting structural labels: outro_verse_(instrumental) 

and outro_bridge. The first simplifies to “verse” in the 
contraction level (shown in green level on the top right 
of Figure 5) and the second simplifies to “bridge.” This 
results in the contraction level (shown as the green level 
on the bottom right of Figure 5) having six instances of a 
verse, four instances of the bridge, and no segment labeled 
as the outro. In the Beatles-TUT annotation the time-steps 
within these labels are simply marked as outro. This results 
in the contraction level (shown as the green level on the 
top right of Figure 5) having five instances of a verse, three 
instances of the bridge, and one segment representing the 
outro (labeled as ‘out’ in the contraction level).

Summarizing the results of this investigation, the 
original TUT and Isophonics annotations do broadly 
agree with each other, though there are some notable 
cases where annotations superficially disagree. Automatic 
hierarchy expansion is able to infer latent semantic 
structure encoded in the segment labels, and exposing 
this structure reveals more agreement than was initially 
detectable. We note that the expansion method used here 
is relatively naive, consisting of a handful of manually 
constructed string substitution rules. The rules we have 
implemented do in some cases lead to a decrease in 

Figure 4: Extreme example “Dig It” where hierarchy 
expansion increases the L-measure from flat annotations 
by +0.595. Top left: Flat annotation in Beatles-TUT; Top 
right: Automatic hierarchy expansion for Beatles-TUT 
annotation; Bottom left: Flat annotation in Isophonics; 
Bottom right: Automatic hierarchy expansion for Iso-
phonics annotation.

Figure 5: Extreme example “Michelle” where hierarchy expansion decreases by –0.118 the L-measure from flat annota-
tions. Top left: Flat annotation in Beatles-TUT; Top right: Automatic hierarchy expansion for Beatles-TUT annotation; 
Bottom left: Flat annotation in Isophonics; Bottom right: Automatic hierarchy expansion for Isophonics annotation.
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agreement (e.g., Figure 5), but overall, the method 
appears to be relatively robust.

4.2 Expansion on Chord Annotations
We evaluated the impact of the automatic chord expansion 
using the collection of 1217 annotated recordings from 
Humphrey and Bello (2015) (the reference) and the 
predictions given by the model of McFee and Bello (2017) 
(the estimate). For each track, we selected one reference 
annotation and compared it to the estimate annotation 
using first the standard chord metrics provided by 
mir_eval (version 0.5) (Raffel et al., 2014), and then 
with the L-measure applied to the automatically expanded 
chord hierarchy annotations.

Figure 6 illustrates the comparisons between each of the 
standard chord evaluation metrics — roots, thirds, triads, 
tetrads — and the L-precision, L-recall, and L-measure 
applied to the automatically generated hierarchies derived 
from both reference and estimated chord annotations. For 
illustrative purposes, a robust linear regression (Huber-T 
weighted (Huber, 1981) to reduce the influence of 
outliers) is performed for each pair of metrics using the 
Python statsmodels package (Seabold and Perktold, 
2010). The 95% confidence intervals on the regression are 
provided by bootstrap-sampling (n = 100 trials). Figure 7 
reports the (Spearman) correlation between each pair of 
chord evaluation metrics.6

The first thing to observe in Figure 6 is that the precision 
and recall scores exhibit similar trends. Low precision is 
generally interpreted as “over-predicting”, which in this 
context would mean that the estimate contains more 

(deeper) structure than the reference, and conversely for 
low recall. However, in this context, both annotations 
are automatically derived by the same process, and 
should therefore be expected to have comparable depth 
when the underlying chord annotations use similarly 
complex vocabulary. In this dataset, the L-precision and 

Figure 6: Basic chord metrics (roots, thirds, triads, sevenths, tetrads) are compared to hierarchy expansion metrics on 
the collection of 1217 songs. The solid line (and shaded region) indicates the linear regression between each combina-
tion of metrics (and 95% confidence interval).

Figure 7: The Spearman correlation between each pair of 
chord metrics on the 1217 dataset. In addition to the 
basic metrics (roots, thirds, triads, sevenths, tetrads), 
we include the directional Hamming distance metrics 
(underseg, overseg, and seg).
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L-recall scores exhibit a Spearman correlation of +0.92 
(Figure 7), indicating that the depth of the hierarchy 
is generally consistent between the references and 
estimates. To simplify the discussion for the remainder 
of this experiment, we will therefore focus on the single 
“L-measure” score derived from the harmonic mean of 
precision and recall.

Overall, Figure 6 demonstrates that the automatic 
hierarchy expansion metric (L-measure) generally agrees 
with the standard chord-based metrics, though the 
correlation decreases as the chord metrics become more 
specific (going from roots to tetrads). This should be 
expected, since the chord structure hierarchy is derived 
from the same principles which underlie the standard 
chord metrics. From the correlation summary in Figure 7, 
we can also observe that the L-measure scores correlate 
strongly with both the basic chord metrics and the 
directional Hamming distance metrics (underseg, overseg, 
and seg). Note that the directional Hamming distance 
metrics have comparatively weak correlation with the basic 
metrics, which should be expected because these metrics 
completely ignore the semantic content of the labels.

While the hierarchy-based comparison correlates with 
each of the prior metrics, this is only on average. There 

are some notable disagreements, and investigating these 
reveals interesting behavior in the chord metrics as well as 
the quality of the data.

Figure 8 demonstrates two extreme examples of the 
comparison between the roots and L-measure metrics. In 
the first case— “Lovely Rita” by The Beatles—the estimator 
produces a similar chord progression to the reference, but 
sharp by one semitone due to a disagreement in tuning.7 
While extreme, this example is typical of tracks which 
produce low root estimation scores, which often arise from 
tuning discrepancies. Because the annotations disagree at 
the roots, all standard chord metrics produce scores near 
0. However, the L-measure is robust to this disagreement, 
as it relies on internal structural consistency between 
the annotations, rather than absolute pitch agreement. 
Conversely, the second example in Figure 8—“Jungle 
Boogie” by Kool & The Gang—shows the reverse situation, 
where the two annotations have dramatically different 
structure (and correspondingly low L-measure), but 
produce a relatively high roots score and middling-to-low 
scores on the remaining metrics.

Figure 9 illustrates three cases from the opposite end 
of the hierarchy, comparing L-measure score to the tetrads 
metric. In the first case, “The Way You Do The Things 

Figure 8: Examples of extreme disagreements between roots and hierarchy measures. Top: a high expanded L-measure, 
but a low roots score due to disagreement in tuning. Bottom: a high roots score, but a low hierarchy score due to large 
structural discrepancies.



Kinnaird and McFee: Automatic Hierarchy Expansion for Improved Structure and Chord Evaluation 89

You Do” by Rita Coolidge, the estimate is consistently 
predicting triads instead of full seventh chords, but 
the overall structure is largely preserved, resulting in a 
relatively high hierarchy score. This does not imply that 

the estimate is necessarily correct, just that it is structurally 
similar to the reference annotation.

The second example, “Last Resort” by Papa Roach, 
exhibits a similar score discrepancy, but this time arising 

Figure 9: Examples of extreme disagreements between tetrads and hierarchy measures. Top and middle: high L-meas-
ure but a low tetrads score. Bottom: high tetrads score, but low L-measure.
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from “power chord” annotations where the third scale 
degree is excluded in the reference annotations but not 
in the estimate. This issue is pervasive in chord datasets 
derived from popular rock music, and power chord 
annotations do not fit comfortably into the standard 
chord evaluation metrics, which generally assume the 
presence of the third. In this example, the standard scores 
are (arguably) artificially low, but the structure of the 
annotations is largely in agreement.8

Conversely, “Brass Monkey” by the Beastie Boys, produces 
a low hierarchy score, but relatively high scores on all 
standard metrics (including tetrads). This is explained 
by the estimate guessing “no chord” almost everywhere, 
with few brief diversions to G♯:maj. Inspection of the 
reference annotation reveals that it is a relatively extreme 
case, alternating between “N” (no-chord) and “A:1/1” 
(meaning only a root note A with no harmony). It could be 
argued that this track should be excluded from the chord 
evaluation overall as it has no harmonic content. That said, 
the two annotations do exhibit substantially different 
structure, and encode different harmonic content, so a 
low score seems reasonable in this case.

The second example in Figure 9 exposes an interesting 
aspect of mir_eval’s chord evaluation methods: scores 
are normalized according to their occurrence within the 
song. For example, if neither the reference nor annotation 
contain seventh chords, the sevenths score is assigned 
a value of 1 (0/0). This problem is not isolated to total 
absence: the example in question also results in relatively 
inflated scores for all standard metrics, compared to the 
harmonic content actually encoded in the annotations. 
While this score normalization may be correct from the 
perspective of quantifying false discovery errors, it raises 
other problems, particularly when scores are aggregated 
over an entire collection to report a statistical summary 
of algorithm performance. Specifically, this normalization 
can artificially inflate aggregated scores in non-trivial 
ways. This may in part explain the low correlation 
between the sevenths metric and others, reported in 
Figure 7. The hierarchical approach is not immune to 
this problem either: if (and only if) a chord annotation 
has trivial structure (e.g., is entirely one label), then the 
L-measure will also encounter a similar problem arising 
from interpretation of 0/0 in Equation (1). However, these 
cases are exceedingly rare in chord annotation corpora.

To summarize the results of this study, it does appear 
that automatic hierarchy expansion can be used to 
holistically compare chord annotations, though some care 
should be taken in interpreting the resulting score. A low 
score (e.g., the second examples in Figures 8 and 9), does 
generally indicate significant structural disagreements 
between the annotations that cannot be automatically 
reconciled. A high score indicates structural agreement, 
and can be robust to errors arising from tuning error, 
assuming that the annotations are otherwise structurally 
similar. However, a high score does not necessarily mean 
that the annotations fundamentally agree, as it is still 
possible to have high structural similarity while missing 
critical details (Figure 9, top example). This observation 

suggests the following rubric for effective use of 
automatic hierarchy expansion in chord evaluation: 1)  if 
the hierarchy agreement is low, the annotations have 
fundamental differences; 2) if the hierarchy agreement 
is high, the annotations are structurally similar, but the 
standard metrics should be checked in fine-to-coarse 
order (tetrads to roots) to determine absolute agreement.

5. Conclusion
Several tasks compare various structural partitions of 
recordings, either to evaluate the “correctness” of various 
human or algorithmic annotations or simply to compare 
them for consistency. Examples include the chord 
recognition and structural segmentation tasks. Recent 
work by McFee and Kinnaird (2019) proposes expanding 
flat annotations (that assume the existence of a single 
“correct” segmentation of a recording) into hierarchical 
ones for use in evaluating syntactical structure labels. 
McFee and Kinnaird (2019) then assert that such multi-
level evaluations could be a robust alternative to 
evaluations on flat annotations. In this work, we extend 
the automatic hierarchy expansion method by McFee and 
Kinnaird (2019) in two ways.

Our first extension of the automatic hierarchy expansion 
method proposed (McFee and Kinnaird, 2019) concerns 
structural segment labels. We apply this extension to 
comparing segmentation annotations of Beatles recordings 
in the Isophonics and Beatles-TUT datasets. In this 
extension, we created rules to exploit latent hierarchical 
structure inherent in labels such as verse, verseA, and 
verse_instrumental before creating the automatic hierarchy 
expansion from McFee and Kinnaird (2019).

Our second investigation using hierarchical structure 
analysis addresses several existing challenges for 
chord evaluation. We are able to compare the internal 
consistency of annotations over an entire track, while 
also leveraging hierarchical relationships between chord 
labels. Additionally, by comparing across several levels 
of chord simplifications, we address issues arising from 
ambiguous and subjective annotations, such as differences 
in the spelling of root pitch classes, varying amounts of 
detail in chord labels, and ambiguities arising from tuning 
discrepancies. We also address the challenge of selecting a 
chord vocabulary noting that any chord label that is within 
the formal grammar of Harte et al. (2005) can be directly 
incorporated in this hierarchical evaluation, and we have 
provided an extension for chords that are labeled with X 
denoting being “out of grammar.” This second investigation 
showed that the automatic hierarchy expansion can be 
used to holistically compare two chord annotations, 
but that it should not be used as a singular measure 
without careful interpretation. This is especially true if 
the L-measure (which acts similarly to a weighted average 
across all simplifications) between two annotations is 
high, as this could mean that the annotations have strong 
agreement in the coarsest chord simplifications but have 
more nuanced disagreement in the finer layers.

In any segmentation task comparing two sets of 
annotations can be challenging in part due to differing 
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richness of annotation vocabularies. For example, the 
annotations within the SALAMI dataset has a very 
restrictive syntactical vocabulary labeling sections with 
letters (Smith et al., 2011; McFee and Kinnaird, 2019), 
while the structure labels in Isophonics are more semantic 
in nature including structural labels such as verse, 
bridge, and outro. In this work, we demonstrate through 
two extensions applied to two different examples that 
comparison between datasets with differing vocabularies 
is possible. This means that one can be less restrictive with 
the ‘allowable’ annotations and then create hierarchies that 
exploit the semantic structure that is latent in whatever 
resulting annotations are created during labeling.

Notes
	 1	 The L-measure can also be applied to compare flat 

segmentations. See McFee et al. (2017) for details and 
McFee and Kinnaird (2019) for a summary.

	 2	 Interestingly, the “sevenths” evaluation exactly does 
not count all categories of seventh chords, and 
excludes dim7 and hdim7.

	 3	 A Jupyter notebook with these rules can be found at: 
https://github.com/kmkinnaird/tismir2020-hierarchy.

	 4	 The associated code for this paper is available in the 
above listed GitHub repository.

	 5	 The matching process is contained in a Jupyter 
notebook in the GitHub repository listed above.

	 6	 We report the Spearman correlation here, rather than 
Pearson, because there is no reason to generally expect 
a linear relationship between bounded, normalized 
metrics. Rather, we are more interested in the rank-
ordering induced by these metrics.

	 7	 In fact, this song was originally recorded one half-step 
sharper than it appears on the record (Lewishon, 1988). 
This explains the source of the tuning discrepancy 
between the reference and estimate.

	 8	 As an aside, the use of E:maj(*3) in the reference 
annotation for this track is questionable, as the key of 
the song is E:min.
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