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CONSTANT SYMPLECTIC 2-GROUPOIDS

RAJAN AMIT MEHTA AND XIANG TANG

Abstract. We propose a definition of symplectic 2-groupoid which includes

integrations of Courant algebroids that have been recently constructed. We

study in detail the simple but illustrative case of constant symplectic 2-groupoids.
We show that the constant symplectic 2-groupoids are, up to equivalence, in

one-to-one correspondence with a simple class of Courant algebroids that we

call constant Courant algebroids. Furthermore, we find a correspondence be-
tween certain Dirac structures and Lagrangian sub-2-groupoids.

1. Introduction

In [10], Liu, Weinstein, and Xu introduced the notion of a Courant algebroid,
axiomatizing the brackets studied by Courant and Weinstein [2, 3] and Dorfman [4].
Recognizing the similarities and relationships between Lie algebroids and Courant
algebroids, they asked whether there is a groupoid-like object that can be viewed
as the “integration” of a Courant algebroid.

In [15], Ševera outlined a construction by which, given a Courant algebroid, one
could formally produce a 2-groupoid as a moduli space of maps of dg-manifolds.
The space of 2-simplices of this 2-groupoid possesses a symplectic form, suggesting
that the integration of a Courant algebroid should be called a symplectic 2-groupoid.
In the case of an exact Courant algebroid, the symplectic 2-groupoid arising from
Ševera’s construction (the Liu-Weinstein-Xu 2-groupoid) was explicitly described
and shown to be smooth in [11].

In all but the most trivial cases, the 2-groupoids arising from Ševera’s construc-
tion are infinite-dimensional, so it is reasonable to look for finite-dimensional mod-
els. In different (but overlapping) special cases, such models were independently
found in [9, 12, 16], each with its own shortcoming. In [16], there is no 2-form con-
structed on the integration. In [9], the integration has a symplectic structure but is
only defined locally1. The construction in [12] is global, but the 2-form constructed
there is degenerate.

Based on the class of examples discovered there, the authors in [12] suggested a
definition of symplectic 2-groupoid where the 2-form is allowed to be degenerate,
but where the degeneracy is controlled in a certain way by the simplicial struc-
ture. However, the definition given there fails to serve as a good general definition.
Specifically, [12, Definition 6.7] implies that when the 2-form is genuinely nondegen-
erate at a point x of the unit space X0, the tangent space of X1 at x is isomorphic
to the tangent space of X0 at x, which forces X1 to have the same dimension of
X0. This excludes too many interesting examples, including the case of constant

2010 Mathematics Subject Classification. 53D17, 58H05.
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1Recently, Ševera and Širaň [17] described a general construction for local integration and

showed that the local integrations can be glued together up to coherent homotopy.
1



2 RAJAN AMIT MEHTA AND XIANG TANG

symplectic 2-groupoids to be presented in this paper. This observation suggests
that the definition requires revision.

In Definition 2.7, we give a new definition of symplectic 2-groupoid which still
includes the examples constructed in [12] (see Section 2.4). This definition is partly
inspired by the notion of a shifted symplectic structure [13], and we are particularly
indebted to Getzler [6], who recast many of those ideas in the concrete language
of simplicial manifolds. However, we stress that our definition is in several ways
more strict than the one coming from [13]. Specifically, our definition only includes
a 2-form on the space of 2-simplices X2, and we require this 2-form to be closed on
the nose. Additionally, our nondegeneracy requirement is more strict.

The strictness of our definition reflects the fact that the solution to the integra-
tion problem will not be Morita invariant. For example, the notion of symplectic
groupoid [1] is not Morita invariant, and this strictness is necessary in order to
obtain a Lie-theoretic correspondence with Poisson manifolds. On the other hand,
the notion of 1-shifted symplectic structure agrees with Xu’s [18] weaker notion of
quasi-symplectic groupoid.

In the second half of this article, we consider the case of constant symplectic 2-
groupoids, i.e. symplectic 2-groupoids with a linear structure with respect to which
the 2-form is constant. Besides being a basic test case for the definition, con-
stant symplectic 2-groupoids should be useful for understanding the general case
since they appear as first-order approximations of arbitrary symplectic 2-groupoids.
Specifically, given a symplectic 2-groupoid (X•, ω) and a point x ∈ X0, the “tangent
space at x” (T |xX•, ωx) is a constant symplectic 2-groupoid. In this sense, constant
symplectic 2-groupoids play the same role in the study of symplectic 2-groupoids
as symplectic vector spaces play in the study of symplectic manifolds.

We find that there is a relationship between constant symplectic 2-groupoids
and a certain class of Courant algebroids that we call constant Courant algebroids.
Specifically, the main results are as follows:

(1) (Theorem 4.3) There is a one-to-one correspondence between constant Courant
algebroids and equivalence classes of constant symplectic 2-groupoids.

(2) (Theorem 5.6) Under the above correspondence, constant Dirac structures
are in one-to-one correspondence with wide linear Lagrangian sub-2-groupoids.

In other words, constant Courant algebroids integrate to constant symplectic 2-
groupoids, and constant Dirac structures integrate to certain Lagrangian sub-2-
groupoids. These results provide evidence in support of our definition of symplectic
2-groupoids as being the correct answer to the question posed by Liu, Weinstein,
and Xu.

Organization of the paper. In Section 2, we define symplectic 2-groupoids and
show that the class of examples from [12] satisfies the definition. In Section 3, we
study constant symplectic 2-groupoids and find a minimal description of them in
terms of linear algebra data. In Section 4, we similarly study constant Courant
algebroids and show that they are in correspondence with constant symplectic 2-
groupoids. Finally, in Section 5, we consider linear Lagrangian sub-2-groupoids and
describe the correspondence with constant Dirac structures.

Acknowledgments. We would like to thank Ezra Getzler for inspiring discussions
and explanations about symplectic structures on differentiable n-stacks. We would
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like to thank Damien Calaque for a discussion about the relation between integra-
tion of Courant algebroids and derived symplectic geometry. The research of the
second author is partially supported by NSF grant DMS 1363250.

2. Symplectic 2-groupoids

2.1. Lie n-groupoids and differential forms. We start by recalling the defini-
tion of a Lie n-groupoid (see [5, 8, 19]).

Definition 2.1. A simplicial manifold is a sequence X• = {Xq}, q ≥ 0, of
manifolds equipped with surjective submersions fqi : Xq → Xq−1 (called face
maps), i = 0, . . . , q, and embeddings σqi : Xq → Xq+1 (called degeneracy maps),
i = 0, . . . , q, such that

fq−1
i fqj = fq−1

j−1 f
q
i , i < j,(2.1)

σq+1
i σqj = σq+1

j+1σ
q
i , i < j,(2.2)

fq+1
i σqj =


σq−1
j−1f

q
i , i < j,

id, i = j, j + 1,

σq−1
j fqi−1, i > j + 1.

(2.3)

For q ≥ 1 and 0 ≤ k ≤ q, recall that a (q, k)-horn of X• consists of a q-
tuple (x0, . . . , xk−1, xk+1, . . . xq), where xi ∈ Xq−1, satisfying the horn compatibility
equations

(2.4) fq−1
i xj = fq−1

j−1 xi

for i < j. The space of all (q, k)-horns is denoted Λq,kX.
The natural horn maps λq,k : Xq → Λq,kX are defined as

λq,k(x) = (fq0x, . . . , f̂
q
kx, . . . f

q
q x)

for x ∈ Xq. It is immediate from (2.1) that λq,k(x) satisfies the horn compatibil-
ity equations (2.4); in fact, the purpose of the horn compatibility equations is to
axiomatize the properties satisfied by λq,k(x).

Definition 2.2. A Lie n-groupoid is a simplicial manifold such that the horn maps
λq,k are

(1) surjective submersions for all q ≥ 1, and
(2) diffeomorphisms for all q > n.

Given a simplicial manifold X•, we consider the bigraded space of differential
forms Ω•(X•). There are two natural commuting differentials on Ω•(X•). One is
the de Rham differential d : Ωp(Xq) → Ωp+1(Xq), and the other is the simplicial

coboundary operator δ : Ωp(Xq)→ Ωp(Xq+1), given by δα =
∑q+1
i=0 (−1)i(fq+1

i )∗α.

Definition 2.3. A form α ∈ Ωp(Xq) is multiplicative if δα = 0. A form α ∈ Ωp(Xq)
is normalized if (σiq−1)∗α = 0 for all i = 0, . . . , q − 1.

We note that the normalization condition holds vacuously in the case q = 0.
The space of normalized forms is denoted Ω•ν(X•). It is not hard to check that

Ω•ν(X•) is closed under d and δ.
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2.2. The tangent complex. Let X• be a simplicial manifold. For each q > 0, let
σq : X0 → Xq be defined as σq = σq−1

0 · · ·σ0
0 . We can think of the image of σq as

being the “unit space” in Xq.
For x ∈ X0 let Tx,qX denote the tangent space Tσq(x)Xq. There is a natural

simplicial structure on Tx,•X where the face and degeneracy maps are restrictions
of the differentials of fqi and σqi . We note that Tx,•X is a simplicial vector space,
in the sense that each Tx,qX is a vector space and all of the face and degeneracy
maps are linear.

There is a natural boundary map ∂q : Tx,qX → Tx,q−1X, given by

∂q(v) =

q∑
i=0

(−1)i(fqi )∗v.

It follows from (2.1) that ∂2 = 0.

The Dold-Kan correspondence, c.f. [7], associates a chain complex T̂x,•X to the
simplicial vector space Tx,•X. This chain complex can be explicitly described as

follows. The normalized tangent space T̂x,qX is defined to be the quotient of Tx,qX
by the sum of the degenerate subspaces:

T̂x,qX := Tx,qX

/
q−1∑
i=0

(σq−1
i )∗Tx,q−1X .

In particular, T̂x,0 = Tx,0.
The boundary map ∂ descends to the normalized tangent spaces, so we have a

chain complex

· · · → T̂x,qX
∂−→ T̂x,q−1X

∂−→ · · · ∂−→ T̂x,1X
∂−→ T̂x,0X,

which is called the tangent complex of the simplicial manifold X• at x ∈ X0. Taken
together, the tangent complexes at every x ∈ X0 form a complex of vector bundles
over X0, called the tangent complex of X•.

Proposition 2.4. If X• is a Lie n-groupoid, then T̂x,q is trivial for q > n.

In this paper, we will only make use of Proposition 2.4 in the case n = 2. A
proof in this case is essentially contained in Section 3.1; in particular, see Remark
3.1. We leave the general case to the reader.

Example 2.5. In the case where X• is the nerve of a Lie groupoid G ⇒ M , then

the tangent complex can be identified with the 2-term complex A
ρ−→ TM , where

A is the Lie algebroid of G and ρ is the anchor map.

2.3. Forms on Lie 2-groupoids. We will now restrict our attention to the case
of Lie 2-groupoids. From Proposition 2.4, we know that the tangent complex of a
Lie 2-groupoid X• is a 3-term complex

T̂2X
∂−→ T̂1X

∂−→ T0X.

Given a normalized 2-form ω ∈ Ω2
ν(X2), we can obtain the following bilinear pair-

ings on the tangent complex at any x ∈ X0 (we learned of these from Getzler
[6]):

(1) For v ∈ Tx,0X and w ∈ Tx,2X, let

(2.5) Ãω(v, w) := ω(σ2
∗v, w).
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It follows from the assumption that ω is normalized that Ãω descends to a
well-defined bilinear pairing Aω between Tx,0X and T̂x,2X.

(2) For θ, η ∈ Tx,1X, let

(2.6) B̃ω(θ, η) := ω
(
(σ1

1)∗θ, (σ
1
0)∗η

)
+ ω

(
(σ1

1)∗η, (σ
1
0)∗θ

)
.

It follows from the assumption that ω is normalized that B̃ω descends to a
well-defined symmetric bilinear form Bω on T̂x,1X.

Definition 2.6. A normalized 2-form ω ∈ Ω2
ν(X2) is called simplicially nondegen-

erate if the induced pairings Aω and Bω are nondegenerate at all x ∈ X0.

Definition 2.7. A symplectic 2-groupoid is a Lie 2-groupoid X• equipped with
a closed, multiplicative, normalized, and simplicially nondegenerate 2-form ω ∈
Ω2
ν(X2).

Definition 2.8. Two closed, multiplicative, normalized, and simplicially nondegen-
erate 2-forms ω, ω′ ∈ Ω2

ν(X2) are equivalent if there exists a closed and normalized
2-form α ∈ Ω2

ν(X1) such that ω′ − ω = δα and Aδα = Bδα = 0.

Remark 2.9. By a straightforward calculation using (2.5) and (2.3), one can see
that Aδα = 0 if and only if

(2.7) α
(
(σ0

0)∗v, ∂w
)

= 0

for all v ∈ Tx,0X and w ∈ Tx,2X. Similarly, Bδα = 0 if and only if

(2.8) α
(
θ, (σ0

0)∗∂η
)

+ α
(
η, (σ0

0)∗∂θ
)

= 0

for all θ, η ∈ Tx,1X.

Remark 2.10. It is known [1] that any multiplicative 2-form on a Lie groupoid
is automatically normalized; thus the normalization condition does not explicitly
appear in the definition of symplectic groupoid. However, in the case of Lie 2-
groupoids, normalization does not automatically follow from multiplicativity. For
example, for any manifold M , let Xk = M for all k, with all the face and degeneracy
maps being the identity. It is immediate that any nonzero 2-form ω on X2 = M is
multiplicative but not normalized.

2.4. Example: an integration of A⊕ A∗. In [10], Liu, Weinstein, and Xu con-
structed a Courant algebroid A⊕A∗ associated to any Lie bialgebroid (A,A∗). This
construction leads to a large and important class of Courant algebroids. In [12], the
authors described a method of integrating Courant algebroids of the form A⊕A∗ by
first integrating (if possible) the Lie bialgebroid (A,A∗) to a symplectic double Lie
groupoid D and then applying the bar functor to obtain a Lie 2-groupoid WND
equipped with a closed 2-form. The fact that this 2-form is degenerate was the first
clue that the correct notion of symplectic 2-groupoid should allow for 2-forms that
have some degeneracy.

We will now prove that the integration of the standard Courant algebroid2 TM⊕
T ∗M in [12] satisfies Definition 2.7.

2The extension of the proof to the general case WND, where D is a symplectic double Lie
groupoid, is similar.
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We first recall the Lie 2-groupoid obtained in [12] as integration of TM ⊕ T ∗M .
For any k ≥ 1, let T ∗(k)M denote the direct sum of k copies of T ∗M . For each q ≥ 0,

define Xq as

Xq = M × T ∗M × · · · × T ∗(q)M.

Let τ qi : T ∗(q)M → T ∗M be the projection onto the i-th component, let pq : T ∗(q)M →
M denote the bundle projection map, and let ιq : M → T ∗(q)M be the zero section

map. We will omit the index q in pq and ιq when q = 1. Finally, for i = 1, 2, let
ι2i : T ∗M → T ∗(2)M be defined as

ι21(ξ) =
(
ξ, ι(p(ξ))

)
, ι22(ξ) =

(
ι(p(ξ)), ξ

)
.

The face and degeneracy maps between X0 = M and X1 = M×T ∗M are defined
as

σ0
0(x) = (x, ι(x)), f1

0 (x, ξ) = x, f1
1 (x, ξ) = p(ξ),

for x ∈M and ξ ∈ T ∗M . The degeneracy maps σ1
i : X1 → X2 are defined as

σ1
0(x, ξ) = (x, ξ, ι21(ξ)), σ1

1(x, ξ) = (x, ι(x), ι22(ξ)),

and the face maps f2
i : X2 → X1 are defined as

f2
0 (x, ξ, ξ2) := (x, ξ),

f2
1 (x, ξ, ξ2) := (x, τ2

1 (ξ2) + τ2
2 (ξ2)),

f2
2 (x, ξ, ξ2) := (p(ξ), τ2

2 (ξ2)),

for x ∈M , ξ ∈ T ∗M , and ξ2 ∈ T ∗(2)M .

As we will only need the structure maps up to level 2, we stop here and refer the
reader to [12] for the general definitions of the simplicial structure maps.

There is a natural map d : X2 = M × T ∗M × T ∗(2)M → T ∗M × T ∗M given by

d(m, ξ, ξ2) := (ξ, τ2
1 (ξ2)).

Let ω0 be the canonical symplectic form on T ∗M . Then the 2-form ω ∈ Ω2(X2) is
defined as the pullback by d of (ω0,−ω0). It is clear that ω is closed, we proved in
[12, Proposition 6.2] that ω is multiplicative, and it can be easily checked that ω is
normalized.

Proposition 2.11. The 2-form ω on X2 = M × T ∗M × T ∗(2)M is simplicially

nondegenerate. Therefore, (X•, ω) is a symplectic 2-groupoid.

Proof. We start by describing the tangent spaces Tx,qX. We observe that Tx,0X =
TxM , that Tx,1X can be identified with TxM ⊕ TxM ⊕ T ∗xM , and that Tx,2X can
be similarly identified with TxM⊕TxM⊕T ∗xM⊕TxM⊕T ∗xM⊕T ∗xM . Using these
identifications, we can describe the degeneracy maps (σ0

0)∗ : Tx,0X → Tx,1X and
(σ1
i )∗ : Tx,1X → Tx,2X as

(σ0
0)∗(v) = (v, v, 0),

(σ1
0)∗(v1, v2, ξ) = (v1, v2, ξ, v2, ξ, 0), (σ1

1)∗(v1, v2, ξ) = (v1, v1, 0, v2, 0, ξ),

for v, v1, v2 ∈ TxM and ξ ∈ T ∗xM .
At σ2(x), the 2-form ω is given in terms of the above identifications by

ω
((
v1, v2, ξ1, v3, ξ2, ξ3

)
,
(
v′1, v

′
2, ξ
′
1, v
′
3, ξ
′
2, ξ
′
3

))
= ξ′1(v2)− ξ1(v′2)− ξ′2(v3) + ξ2(v′3).
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From this, we can compute the pairing Ãω between Tx,0X and Tx,2X to be

Ãω

(
v,
(
v1, v2, ξ1, v3, ξ2, ξ3

))
:= ξ1(v)− ξ2(v)

and the pairing B̃ω on Tx,1 to be

B̃ω

(
(v1, v2, ξ), (v

′
1, v
′
2, ξ
′)
)

:= ξ′(v1 − v2) + ξ(v′1 − v′2).

One can now see that the kernels of Ãω and B̃ω consist of sums of vectors in the
images of (σqi )∗. Thus the induced pairing Aω between Tx,0X and T̂x,2X and the

induced bilinear form Bω on T̂x,1X are both nondegenerate. �

Remark 2.12. The fact that T̂x,2X pairs nondegenerately with Tx,0X = TxM means

that T̂x,2X is isomorphic to T ∗xM . The isomorphism is explicitly given by composing

the map T ∗xM → Tx,2X, ξ 7→ (0, 0, ξ, 0, 0, 0) with the quotient map Tx,2X → T̂x,2X.

Similarly, T̂x,1X is isomorphic to TxM ⊕ T ∗xM , with the isomorphism given by
the map TxM ⊕ T ∗xM → Tx,1X, (v, ξ) 7→ (v, 0, ξ). Under this isomorphism, the
pairing Bω agrees with the standard symmetric pairing on TM ⊕ T ∗M , which is
an important part of the Courant algebroid structure.

3. Constant symplectic 2-groupoids

A constant symplectic 2-groupoid is a symplectic 2-groupoid (V•, ω) where V•
is a simplicial vector space and ω ∈ Ω2

ν(V2) is constant. In this section, we will
study constant symplectic 2-groupoids and obtain a fairly simple description of
them. We will later see that there is a correspondence between constant symplectic
2-groupoids and a certain class of Courant algebroids that we call constant Courant
algebroids.

3.1. Linear 2-groupoids. A linear 2-groupoid is a Lie 2-groupoid V• such that
each Vq is a vector space, and where the face and degeneracy maps are all linear.
Linear 2-groupoids are known to be equivalent, via the Dold-Kan correspondence,
to 3-term chain complexes of vector spaces. Since there are different possible choices
of convention and we will require explicit formulas, we will give a brief description
of this correspondence.

Suppose that V• is a linear 2-groupoid. A 3-term chain complex (W•, ∂) is
constructed as follows.

First, we set W0 := V0. Next, we observe that f1
0 : V1 →W0 is a surjection with

right inverse σ0
0 . Thus we have a split short exact sequence

(3.1) W1
// V1

f1
0

// W0

σ0
0uu

,

where W1 := ker f1
0 , giving us the natural decomposition V1 = W1⊕W0. Using this

decomposition, we define a linear map ∂1 : W1 →W0 given by ∂1w1 = −f1
1 (w1, 0).

(The sign is chosen to agree with the tangent complex; see Remark 3.1.) We then
have the following formulas for the face and degeneracy maps between V1 and V0:

f1
0 (w1, w0) = w0, f1

1 (w1, w0) = w0 − ∂1w1, σ0
0(w0) = (0, w0).

Now consider the horn space Λ2,2V , consisting of pairs (v1, v
′
1) ∈ V1×V1 such that

f1
0 (v1) = f1

0 (v′1). Given such a pair, we may use the decomposition V1 = W1 ⊕W0
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to write v1 = (w1, w0), v′1 = (w′1, w0). This allows us to make the identification
Λ2,2V = W1 ⊕W1 ⊕W0, where the pair (v1, v

′
1) is identified with (w1, w

′
1, w0).

Let Φ2 : Λ2,2V → V2 be defined by

(3.2) Φ2(v1, v
′
1) = σ1

0v1 + σ1
1(v′1 − v1).

One can see that Φ2 is a right inverse of the horn map λ2,2, so we have a split
short exact sequence

(3.3) W2
// V2

λ2,2

// Λ2,2V

Φ2
tt

,

where W2 := kerλ2,2, giving us a natural decomposition V2 = W2 ⊕ Λ2,2V =
W2 ⊕W1 ⊕W1 ⊕W0. Under this decomposition, we have by construction that

f2
0 (w2, w1, w

′
1, w0) = (w1, w0),

f2
1 (w2, w1, w

′
1, w0) = (w′1, w0).

Using (3.2), we also see that

σ1
0(w1, w0) = Φ2(w1, w1, w0) = (0, w1, w1, w0),(3.4)

σ1
1(w1, w0) = Φ2(0, w1, w0) = (0, 0, w1, w0).(3.5)

To obtain a formula for f2
2 , we first define a map ∂2 : W2 →W1, given by

(3.6) f2
2 (w2, 0, 0, 0) = (∂2w2, 0).

Note that (3.6) well-defines ∂2, since f1
0 f

2
2 (w2, 0, 0, 0) = f1

1 f
2
0 (w2, 0, 0, 0) = 0. We

then make the following calculation:

f2
2 (0, w1, w

′
1, w0) = f2

2 Φ2(w1, w
′
1, w0)

= f2
2σ

1
0(w1, w0) + f2

2σ
1
1(w′1 − w1, 0)

= σ0
0f

1
1 (w1, w0) + (w′1 − w1, 0)

= (w′1 − w1, w0 − ∂1w1).

(3.7)

Putting (3.6) and (3.7) together, we have

f2
2 (w2, w1, w

′
1, w0) = (∂2w2 + w′1 − w1, w0 − ∂1w1).

We observe that ∂1∂2w2 = −f1
1 f

2
2 (w2, 0, 0, 0) = −f1

1 f
2
1 (w2, 0, 0, 0) = 0, so

W2
∂2−→W1

∂1−→W0

is a 3-term chain complex.
Now consider the horn space Λ3,3V , consisting of triples (v2, v

′
2, v
′′
2 ) ∈ V2 ×

V2 × V2 such that f2
0 v2 = f2

0 v
′
2, f2

1 v2 = f2
0 v
′′
2 , and f2

1 v
′
2 = f2

1 v
′′
2 . In terms of the

decomposition V2 = W2⊕W1⊕W1⊕W0, we may write v2 = (w2, w1, w
′
1, w0), v′2 =

(w′2, w1, w
′′
1 , w0), v′′2 = (w′′2 , w

′
1, w

′′
1 , w0). This allows us to make the identification

Λ3,3V = W2⊕W2⊕W2⊕W1⊕W1⊕W1⊕W0, where (v2, v
′
2, v
′′
2 ) is identified with

(w2, w
′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0).

Let Φ3 : Λ3,3V → V3 be given by

Φ3(v2, v
′
2, v
′′
2 ) = σ2

0v2 + σ2
1(v′2 − v2) + σ2

2(v′′2 − v′2 + v2 − σ1
0f

2
1 v2).
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One can see that Φ3 inverts the horn map λ3,3, which is assumed to be an isomor-
phism since V• is a Lie 2-groupoid. Implicitly using Φ3 to identify V3 with Λ3,3V ,
we then obtain the following formulas for the face maps:

f3
0 (w2, w

′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0) =v2 = (w2, w1, w

′
1, w0),(3.8)

f3
1 (w2, w

′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0) =v′2 = (w′2, w1, w

′′
1 , w0),(3.9)

f3
2 (w2, w

′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0) =v′′2 = (w′′2 , w

′
1, w

′′
1 , w0),(3.10)

f3
3 (w2, w

′
2, w

′′
2 , w1, w

′
1, w

′′
1 , w0) =(w′′2 − w′2 + w2, ∂2w2 + w′1 − w1,

∂2w
′
2 + w′′1 − w1, w0 − ∂1w1).

(3.11)

We have seen that, given a linear 2-groupoid V•, we can obtain a 3-term chain
complex (W•, ∂). Conversely, given a 3-term chain complex, one can construct a
linear 2-groupoid by setting V0 = W0, V1 = W1 ⊕ W0, etc., with the face and
degeneracy maps given in low degrees by the above formulas. As V• is a Lie 2-
groupoid, the higher simplicial maps are completely determined by the data in low
degrees.

Remark 3.1. From the short exact sequences (3.1) and (3.3), we can see that the
3-term chain complex (W•, ∂) is naturally isomorphic to the tangent complex of V•.
As a result, we obtain an alternative description of the tangent complex of a Lie
2-groupoid X•, where T̂x,2X = ker(λ2

2)∗ ⊆ Tx,2X, T̂x,1X = ker(λ1
1)∗ = ker(f1

0 )∗ ⊆
Tx,1X, and where the boundary map is ∂q = (−1)q(fqq )∗.

3.2. Constant multiplicative 2-forms. Let V• be a linear 2-groupoid. In this
subsection, we will obtain a description of constant multiplicative 2-forms ω ∈
Ω2
ν(V2) in terms of data on the associated 3-term complex (W•, ∂).
Recall from Section 3.1 that V2 can be naturally decomposed as W2⊕W1⊕W1⊕

W0. With respect to this decomposition, we may write any constant ω ∈ Ω2(V2)
as a sum of bilinear forms C11 ∈ ∧2W ∗2 , C12, C13 ∈ W ∗2 ⊗W ∗1 , C14 ∈ W ∗2 ⊗W ∗0 ,
C22, C33 ∈ ∧2W ∗1 , C23 ∈ W ∗1 ⊗W ∗1 , C24, C34 ∈ W ∗1 ⊗W ∗0 , and C44 ∈ ∧2W ∗0 . Then
we can write ω in the form of a block matrix

ω =


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

 ,
where Cij(w,w

′) = −Cji(w′, w).
Now suppose that ω is normalized. From (3.5), we immediately see that C33,

C34, and C44 vanish. From (3.4), we then see that C24 = 0, since

0 = ω((0, w1, w1, w0), (0, 0, 0, w′0)) = C24(w1, w
′
0)

for all w1 ∈W1 and w0, w
′
0 ∈W0, and that

0 = ω((0, w1, w1, 0), (0, w′1, w
′
1, 0)) = C22(w1, w

′
1) + C23(w1, w

′
1) + C32(w1, w

′
1)

for all w1, w
′
1 ∈W1. Thus, ω is of the form

(3.12) ω =


C11 C12 C13 C14

C21 C22 C23 0
C31 C32 0 0
C41 0 0 0

 ,
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where

(3.13) C22 + C23 + C32 = 0.

Conversely, it is straightforward to check that, if ω is of the form (3.12) and satisfies
(3.13), then ω is normalized.

Now suppose that ω is normalized and multiplicative. In the following series of
lemmas, we find further relations that hold between the bilinear forms Cij . The
proofs utilize the decomposition V3 = W2 ⊕ W2 ⊕ W2 ⊕ W1 ⊕ W1 ⊕ W1 ⊕ W0

constructed in Section 3.1, as well as the formulas (3.8)–(3.11) for the face maps
f3
i .

Lemma 3.2. C13(w2, w1) = C32(w1, ∂w2) for all w2 ∈W2 and w1 ∈W1.

Proof. Let u, v ∈ V3 be defined as u = (w2, 0, 0, 0, 0, 0, 0) and v = (0, 0, 0, 0, 0, w1, 0).
Then

0 = δω(u, v) =

3∑
i=0

(−1)iω(f3
i u, f

3
i v)

= −ω
(
(w2, ∂w2, 0, 0), (0, 0, w1, 0)

)
= −C13(w2, w1)− C23(∂w2, w1)

= −C13(w2, w1) + C32(w1, ∂w2). �

Lemma 3.3. C12(w2, w1) = C32(∂w2, w1) for all w2 ∈W2, w1 ∈W1.

Proof. Let u, v ∈ V3 be defined as u = (0, w2, 0, 0, 0, 0, 0) and v = (0, 0, 0, 0, w1, 0, 0).
Then

0 = δω(u, v) = −ω
(
(−w2, 0, ∂w2, 0), (0, w1, 0, 0)

)
= C12(w2, w1)− C32(∂w2, w1). �

Lemma 3.4. C11(w2, w
′
2) = −C32(∂w2, ∂w

′
2) for all w2, w

′
2 ∈W2.

Proof. Let u, v ∈ V3 be defined as u = (0, 0, w2, 0, 0, 0, 0) and v = (w′2, 0, 0, 0, 0, 0, 0).
Then

0 = δω(u, v) = −ω
(
(w2, 0, 0, 0), (w′2, ∂w

′
2, 0, 0)

)
= −C11(w2, w

′
2)− C12(w2, ∂w

′
2).

By Lemma 3.3, we see that C11(w2, w
′
2) = −C12(w2, ∂w

′
2) = −C32(∂w2, ∂w

′
2). �

Lemmas 3.2–3.4, together with (3.13), show that ω is completely determined by
C41 and C32.

Theorem 3.5. Let V• be a linear 2-groupoid with associated 3-term chain complex
(W•, ∂). There is a one-to-one correspondence between constant multiplicative 2-
forms ω ∈ Ω2

ν(V2) and pairs (C41, C32), where C41 is a bilinear pairing of W0 with
W2 and C32 is a bilinear form on W1, such that

(3.14) C41(∂w1, w2) = C32(∂w2, w1) + C32(w1, ∂w2)

for all w2 ∈W2 and w1 ∈W1.
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Proof. In the discussion above, we have already seen how to obtain C41 and C32

from ω. To see that (3.14) holds, let u, v ∈ V3 be defined as u = (0, 0, 0, w1, 0, 0, 0)
and v = (0, 0, w2, 0, 0, 0, 0). Then

0 = δω(u, v) = −ω
(
(0,−w1,−w1,−∂w1), (w2, 0, 0, 0)

)
= −C12(w2, w1)− C13(w2, w1) + C41(∂w1, w2).

(3.15)

Equation (3.14) then follows from Lemmas 3.3 and 3.4.
In the other direction, given C41 and C32 satisfying (3.14), we can construct ω

of the form (3.12), with the other components given by (3.13) and Lemmas 3.2–
3.4. The skew-symmetry of C22 follows from (3.13), and the skew-symmetry of C11

follows from Lemma 3.4 and (3.14). We have already observed that such an ω will
be normalized. It is long but straightforward to check that ω is multiplicative. �

3.3. Simplicial nondegeneracy. Let V• be a linear 2-groupoid equipped with a
constant 2-form ω ∈ Ω2

ν(V2). We will now describe the pairings Aω and Bω from
Section 2.3 in terms of the components in (3.12).

Recall from Remark 3.1 that the 3-term complex (W,∂) associated to V• is
isomorphic to the tangent complex of V•. Thus we can view Aω and Bω as the
restrictions of (2.5) and (2.6), respectively, to Wi. Therefore

Aω(w0, w2) = ω
(
(0, 0, 0, w0), (w2, 0, 0, 0)

)
= C41(w0, w2),

Bω(w1, w
′
1) = ω

(
(0, 0, w1, 0), (0, w′1, w

′
1, 0)

)
+ ω

(
(0, 0, w′1, 0), (0, w1, w1, 0)

)
= C32(w1, w

′
1) + C32(w′1, w1),

for w0 ∈W0, w1, w
′
1 ∈W1, and w2 ∈W2. The following result is immediate.

Proposition 3.6. ω is simplicially nondegenerate if and only if C41 and the sym-
metric part of C32 are both nondegenerate.

Remark 3.7. Proposition 3.6 allows us to clearly see the difference between simpli-
cial nondegeneracy and the ordinary notion of nondegeneracy for 2-forms. From
(3.12), it is clear that ω is nondegenerate in the ordinary sense if and only if C41 and
C32 are both nondegenerate. Thus the difference is that ordinary nondegeneracy
considers C32 in its entirety, whereas simplicial nondegeneracy only considers the
symmetric part of C32. In the case where C32 is symmetric, the two notions agree;
however, since C32 need not be symmetric in general, it is easy to find examples of
2-forms that are simplicially nondegenerate but not nondegenerate, and vice versa.

3.4. A minimal description of constant symplectic 2-groupoids. Putting
Theorem 3.5 and Proposition 3.6 together, we see that there is a one-to-one cor-
respondence between constant symplectic 2-groupoids and 3-term chain complexes
(W•, ∂) equipped with a nondegenerate bilinear pairing C41 of W0 with W2 and a
bilinear form C32 on W1 whose symmetric part is nondegenerate, satisfying (3.14).
Using the nondegeneracy of the pairings, we can further simplify the description.

Theorem 3.8. There is a one-to-one correspondence between constant symplectic
2-groupoids and tuples (W1,W0, 〈·, ·〉, ∂, r), where

• W1 and W0 are vector spaces,
• 〈·, ·〉 is a nondegenerate symmetric bilinear form on W1,
• ∂ : W1 → W0 is a linear map such that the image of ∂∗ in W ∗1

∼= W1 is
isotropic, and
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• r is an element of ∧2W ∗1 .

Proof. Given the data (W1,W0, 〈·, ·〉, ∂, r), the corresponding 3-term chain complex
is

(3.16) W ∗0
∂∗

−→W1
∂−→W0,

where we are implicitly using 〈·, ·〉 to identify W1 with W ∗1 . The equation ∂ ◦∂∗ = 0
is equivalent to the requirement that the image of ∂∗ be isotropic. We take C41

to be the canonical pairing of W ∗0 with W0, and we set C32 := 1
2 〈·, ·〉 + r. The

equation (3.14) automatically holds. One can easily check that this gives a one-to-
one correspondence. �

3.5. Equivalences. In this subsection, we will describe equivalences between con-
stant symplectic 2-groupoids in terms of the description given in Theorem 3.8.

From Definition 2.8 and Remark 2.9, we can see that any equivalence between
constant symplectic 2-groupoid structures on a linear 2-groupoid V• is given by
a 2-form α ∈ Ω2

ν(V1) satisfying (2.7) and (2.8). Since the simplicial coboundary
operator δ is linear, we may assume without loss of generality that α is constant.

Let α be a constant normalized 2-form on V1. In terms of the decomposition
V1 = W1 ⊕W0, we can write α in block form as

α =

[
B11 B12

B21 0

]
,

where B12(w1, w0) = −B21(w0, w1). The vanishing of the lower right block is a
consequence of the assumption that α is normalized. A straightforward calculation
then shows that (2.7) and (2.8) reduce in this case to the conditions

B21(w0, ∂w2) = 0,(3.17)

B21(∂w1, w
′
1) +B21(∂w′1, w1) = 0,(3.18)

for all w2 ∈W2, w1, w
′
1 ∈W0, and w0 ∈W0.

Since δα is obviously multiplicative, it has block form

δα =


A11 A12 A13 A14

A21 A22 A23 0
A31 A32 0 0
A41 0 0 0

 .
By Theorem 3.5, δα is completely determined by A41 and A32. We calculate

A41(w0, w2) = δα
(
(0, 0, 0, w0), (w2, 0, 0, 0)

)
= α

(
(0, w2), (∂w2, 0)

)
= B21(w0, ∂w2),

A32(w1, w
′
1) = δα

(
(0, 0, w1, 0), (0, w′1, 0, 0)

)
= α

(
(w1, 0), (−w′1,−∂w′1)

)
= −B11(w1, w

′
1)−B12(w1, ∂w

′
1).

From this, we see that equation (3.17) holds if and only if A41 = 0, and that (3.18)
holds if and only if A32 is skew-symmetric. Furthermore, we observe that there is
no restriction on B11, so every skew-symmetric pairing on W1 appears as A32 for
some choice of α satisfying (3.17) and (3.18).
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It is clear from the above discussion that, in terms of the data of Theorem 3.8,
equivalences between constant symplectic groupoids act transitively on r and do
not affect any of the other data. Thus we have the following result.

Theorem 3.9. There is a one-to-one correspondence between equivalence classes
of constant symplectic 2-groupoids and tuples (W1,W0, 〈·, ·〉, ∂), where

• W1 and W0 are vector spaces,
• 〈·, ·〉 is a nondegenerate symmetric bilinear form on W1, and
• ∂ : W1 → W0 is a linear map such that the image of ∂∗ in W ∗1

∼= W1 is
isotropic.

Remark 3.10. In each equivalence class of constant symplectic 2-groupoids, there
is exactly one representative for which C32 is symmetric (or equivalently, in terms
of the data of Theorem 3.8, where r = 0). In this case, we will say that the
constant symplectic 2-groupoid is symmetric. From Remark 3.7, we can see that if
(V•, ω) is a symmetric constant symplectic 2-groupoid, then ω ∈ Ω2(V2) is genuinely
nondegenerate, and therefore V2 is genuinely symplectic.

4. Integration of constant Courant algebroids

In this section, we will describe a simple class of Courant algebroids that we call
constant Courant algebroids. We will see that constant Courant algebroids are in
correspondence with equivalence classes of constant symplectic 2-groupoids.

4.1. Constant Courant algebroids. We first recall the definition of Courant
algebroid.

Definition 4.1. A Courant algebroid is a vector bundle E → M equipped with a
nondegenerate symmetric bilinear form 〈·, ·〉, a bundle map ρ : E → TM (called
the anchor), and a bracket J·, ·K (called the Courant bracket) on Γ(E) such that

(1) Je1, fe2K = ρ(e1)(f)e2 + fJe1, e2K,
(2) ρ(e1)(〈e2, e3〉) = 〈Je1, e2K, e3〉+ 〈e2, Je1, e3K〉,
(3) JJe1, e2K, e3K = Je1, Je2, e3KK− Je2, Je1, e3KK,
(4) Je1, e2K + Je2, e1K = D〈e1, e2〉,

for all f ∈ C∞(M) and ei ∈ Γ(E), where D : C∞(M)→ Γ(E) is defined by

〈Df, e〉 = ρ(e)(f).

A well-known but important consequence of Definition 4.1 is that, for any Courant
algebroid E →M , the sequence

(4.1) T ∗M
ρ∗−→ E∗ ∼= E

ρ−→ TM

is a 3-term chain complex of vector bundles over M . One should expect that a
symplectic 2-groupoid integrating E should be such that its tangent complex is
isomorphic (or at least quasi-isomorphic) to (4.1).

Definition 4.2. A constant Courant algebroid is a Courant algebroid of the form
W1 ×W0 →W0, where W0 and W1 are vector spaces, such that

(1) the pairing 〈·, ·〉 is independent of the basepoint in W0,
(2) the anchor ρ : W1×W0 → TW0 = W0×W0 is independent of the basepoint,

and
(3) Jw1, w

′
1K = 0 for all w1, w

′
1 ∈W1, viewed as constant sections.
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Let E = W1 ×W0 → W0 be a constant Courant algebroid. The space of sec-
tions Γ(E) can be naturally identified with C∞(W0)⊗W1. Any bilinear pairing on
Γ(E) is completely determined by its restriction to constant sections, which gives
a symmetric map W1⊗W1 → C∞(W0). The requirement that the pairing be inde-
pendent of basepoint implies the image of this map consists of constant functions;
in other words, the pairing is given by a nondegenerate symmetric bilinear form
on W1. Similarly, the requirement that the anchor be independent of basepoint
implies that it is given by

(4.2) ρ(w1, w0) = (∂w1, w0)

for some linear map ∂ : W1 →W0.
The fact that ρ ◦ ρ∗ = 0 (see (4.1)) implies that ∂ ◦ ∂∗ = 0 or, equivalently, the

image of ∂∗ in W ∗1
∼= W1 is isotropic.

The vanishing of the bracket of constant sections, together with axioms (1) and
(4) in Definition 4.1, imply that the bracket is completely determined by the pairing
and anchor. Specifically,

(4.3) Jfw1, gw
′
1K = fρ(w1)(g)w′1 − gρ(w′1)(f)w1 + g〈w1, w

′
1〉Df

for f, g ∈ C∞(W0) and w1, w
′
1 ∈W1.

Theorem 4.3. There is a one-to-one correspondence between constant Courant
algebroids and equivalence classes of constant symplectic 2-groupoids.

Proof. Given a constant Courant algebroid, we have seen how to obtain the data
(W1,W0, 〈·, ·〉, ∂) for an equivalence class of constant symplectic 2-groupoids, as
described in Theorem 3.9. On the other hand, given the data (W1,W0, 〈·, ·〉, ∂),
we can construct the constant Courant algebroid E = W1 ×W0 → W0, where the
pairing on Γ(E) agrees on constant sections with the pairing on W0, and the anchor
and bracket are given by (4.2) and (4.3). It is a long but straightforward check that
the conditions of Definition 4.1 hold. (We note that, alternatively, the Courant
algebroid axioms can be checked quickly using the supergeometric formulation of
[14] in local coordinates.) �

5. Integration of constant Dirac structures

5.1. Linear sub-2-groupoids. Let V• be a linear 2-groupoid. A linear sub-2-
groupoid of V• is a simplicial subspace L• ⊆ V• that is also a 2-groupoid.

Let L• ⊆ V• be a linear sub-2-groupoid. Set U0 := L0, U1 := ker f1
0 |L1

, and
U2 := kerλ2,2|L2

. By comparing with the constructions of Section 3.1, we can see
that U• is a subcomplex of (W•, ∂). Conversely, given a subcomplex U• ⊆ (W•, ∂),
we can form a linear sub-2-groupoid L•, where L0 = U0, L1 = U1 ⊕ U0, and
L2 = U2 ⊕ U1 ⊕ U1 ⊕ U0. This gives us the following result.

Proposition 5.1. There is a one-to-one correspondence between linear sub-2-
groupoids L• ⊆ V• and subcomplexes U• ⊆ (W•, ∂).

5.2. Linear Lagrangian sub-2-groupoids. Now suppose that (V•, ω) is the sym-
metric constant symplectic 2-groupoid corresponding (via Theorem 3.9) to the data
(W1,W0, 〈·, ·〉, ∂). In this case, V2 = W ∗0 ⊕W1⊕W1⊕W0, and the block form (3.12)
is such that C41 is the natural pairing of W ∗0 with W0 and C32 is the pairing 〈·, ·〉.
It follows that ω is a genuine symplectic form on V2 (see Remark 3.10).



CONSTANT SYMPLECTIC 2-GROUPOIDS 15

If U• is a subcomplex of (W•, ∂), then we can consider the space Lω2 ⊆ V2 that is
symplectic orthogonal to L2 = U2⊕U1⊕U1⊕U0. The following gives a description
of Lω2 in terms of U•.

Lemma 5.2. Lω2 = Ann(U0)⊕ U⊥1 ⊕ U⊥1 ⊕Ann(U2).

Proof. For any w2 ∈ W ∗0 , w1, w
′
1 ∈ W1, w0 ∈ W0, and (u2, u1, u

′
1, u0) ∈ L2, we

use (3.13) and Lemmas 3.2–3.4 together with the symmetry of C32 to derive the
formulas

ω((w2, 0, 0, 0), (u2, u1, u
′
1, u0)) = C11(w2, u2) + C12(w2, u1) + C13(w2, u

′
1) + C14(w2, u0)

= C32(∂∗w2, u1 + u′1 − ∂∗u2)− C41(u0, w2)

= 〈∂∗w2, u1 + u′1 − ∂∗u2〉 − w2(u0)

= w2(∂u1 + ∂u′1 − u0),

(5.1)

ω((0, w1, 0, 0), (u2, u1, u
′
1, u0)) = C21(w1, u2) + C23(w1, u

′
1)

= −C32(∂∗u2, w1)− C32(u′1, w1)

= −〈w1, u
′
1 + ∂∗u2〉,

(5.2)

ω((0, 0, w′1, 0), (u2, u1, u
′
1, u0)) = C31(w′1, u2) + C32(w′1, u1)

= −C32(w′1, ∂
∗u2) + C32(w′1, u1)

= 〈w′1, u1 − ∂∗u2〉,
(5.3)

ω((0, 0, 0, w0), (u2, u1, u
′
1, u0)) = C41(w0, u2)

= u2(w0).
(5.4)

From (5.1)–(5.4) it is immediate that Ann(U0)⊕ U⊥1 ⊕ U⊥1 ⊕Ann(U2) ⊆ Lω2 .
Conversely, if (w2, w1, w

′
1, w0) ∈ V2 is in Lω2 , then from (5.1)–(5.4) we have

0 = ω((w2, w1, w
′
1, w0), (0, 0, 0, u0)) = −w2(u0)

for all u0 ∈ U0, so it follows that w2 is in Ann(U0). Similarly,

0 = ω((w2, w1, w
′
1, w0), (0, 0, u′1, 0)) = w2(∂u′1)− 〈w1, u

′
1〉 = −〈w1, u

′
1〉

and

0 = ω((w2, w1, w
′
1, w0), (0, u1, 0, 0)) = w2(∂u1) + 〈w′1, u1〉 = 〈w′1, u1〉

for all u1, u
′
1 ∈ U1, so it follows that w1 and w′1 are in U⊥1 . Finally,

0 = ω((w2, w1, w
′
1, w0), (u2, 0, 0, 0)) = −〈w1 + w′1, ∂

∗u2〉+ u2(w0) = u2(w0)

for all u2 ∈ U2, so it follows that w0 is in Ann(U2). �

The following is an immediate consequence of Lemma 5.2.

Corollary 5.3. (1) L2 is isotropic if and only if U0 ⊆ W0 and U2 ⊆ W ∗0 pair
to zero and U1 ⊆W1 is isotropic.

(2) L2 is coisotropic if and only if the annihilator of U2 is contained in U0, the
annihilator of U0 is contained in U2, and U

⊥
1 ⊆ U1.

(3) L2 is Lagrangian if and only if U2 = Ann(U0) and U⊥1 = U1.

We can now obtain a description of linear Lagrangian sub-2-groupoids in terms
of the data of Theorem 3.9.
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Theorem 5.4. Suppose that (V•, ω) is the symmetric constant symplectic 2-groupoid
corresponding to the data (W1,W0, 〈·, ·〉, ∂). There is a one-to-one correspondence
between linear Lagrangian sub-2-groupoids L• ⊆ V• and pairs (U1, U0), where Ui ⊆
Wi for i = 0, 1 are such that U⊥1 = U1 and ∂(U1) ⊆ U0.

Proof. It is immediate from Proposition 5.1 and Corollary 5.3 that, if L• is La-
grangian, then the corresponding subspaces Ui ⊆Wi satisfy U⊥1 = U1 and ∂(U1) ⊆
U0. In the other direction, we set U2 = Ann(U0). For any u2 ∈ U2 and u1 ∈ U1, we
have

〈∂∗u2, u1〉 = u2(∂u1) = 0

for all u1 ∈ U1, so ∂∗u2 is in U⊥1 = U1. Therefore, U• is a subcomplex, and by
Corollary 5.3 the corresponding L2 is Lagrangian. �

5.3. Constant Dirac structures. A Dirac structure in a Courant algebroid E →
M is a subbundle D →M such that D⊥ = D and Γ(D) is closed under the Courant
bracket3. The restriction of the Courant bracket J·, ·K to any Dirac structure D is
a Lie bracket, making D →M into a Lie algebroid.

Let W1 × W0 → W0 be a constant Courant algebroid. We will restrict our
attention to constant Dirac structures, i.e. Dirac structures of the form U1 ×W0,
where U1 is a subspace of W1.

Lemma 5.5. Let U1 be a subspace of W1. Then U1 × W0 is a constant Dirac
structure if and only if U⊥1 = U1.

Proof. Since the pairing on W1 × W0 → W0 is constant, it is immediate that
U⊥1 = U1 if and only if (U1 × W0)⊥ = U1 × W0. The nontrivial part of the
lemma is the observation that, in this case, closure under the Courant bracket is
a consequence of the isotropic property. To see this, suppose that U1 ⊆ W1 is
isotropic. Then, from (4.3), we have

Jfu, gu′K = fρ(u)(g)u′ − gρ(u′)(f)u+ g〈u, u′〉Df

for f, g ∈ C∞(W0) and u, u′ ∈ U1. The last term vanishes, and the other two terms
are clearly in Γ(U1 ×W0). �

Given U1 ⊆ W1 such that U⊥1 = U1, we may apply Theorem 5.4 to the pair
(U1,W0) to obtain a linear Lagrangian sub-2-groupoid L• ⊆ V• that is wide, in the
sense that L0 = V0. It is clear from the correspondence of Theorem 5.4 that every
wide linear Lagrangian sub-2-groupoid arises in this manner. Using Lemma 5.5, we
then obtain the following result.

Theorem 5.6. Suppose that (V•, ω) is the symmetric constant symplectic 2-groupoid
corresponding to the data (W1,W0, 〈·, ·〉, ∂), and let W1 ×W0 → W0 be the corre-
sponding constant Courant algebroid. There is a one-to-one correspondence between
constant Dirac structures U1 ×W0 ⊆ W1 ×W0 and wide linear Lagrangian sub-2-
groupoids L• ⊆ V•.

3We note that we are using the condition D⊥ = D in place of the usual requirement that D

be maximally isotropic. In most cases of interest, E has signature (n, n), and the two conditions
are equivalent. However, if E does not have signature (n, n), then, according to the definition we

are using, there do not exist any Dirac structures in E.
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Remarks 5.7. (1) From part (3) of Corollary 5.3, we can see that a linear La-
grangian sub-2-groupoid corresponding to the subcomplex U• ⊆ (W•, ∂) is
wide if and only if U2 = {0}. Therefore, a wide linear Lagrangian sub-2-
groupoid is actually a 1-groupoid U1 ⊕ W0 ⇒ W0. It is straightforward
to check that this is the Lie groupoid that integrates the Lie algebroid
U1 ×W0 →W0.

(2) We stress that there are many complications involved in extending the
result of Theorem 5.6 to the nonlinear situation. In particular, we expect
that a weaker definition of Lagrangian sub-2-groupoid, using some of the
ideas of derived symplectic geometry [13], will be required.
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Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, vol. 27, Hermann, Paris, 1988,

pp. 39–49.

3. T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), no. 2, 631–661.
4. I. Dorfman, Dirac structures and integrability of nonlinear evolution equations, Nonlinear

Science: Theory and Applications, John Wiley & Sons, Ltd., Chichester, 1993.

5. J. Duskin, Higher-dimensional torsors and the cohomology of topoi: the abelian theory, Ap-
plications of sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal.,

Univ. Durham, Durham, 1977), Lecture Notes in Math., vol. 753, Springer, Berlin, 1979,

pp. 255–279.
6. E. Getzler, Differential forms on stacks, 2014, Slides from minicourse at Winter School in

Mathematical Physics, Les Diablerets.
7. Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Birkhäuser, Verlag, Basel,
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