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Active-Coupling Mixing Times for a Stirred Binary Liquid

N. Easwar, J. V. Maher, D. J. Pine, and W. I. Goldburg
Department of Physics and Astvonomy, University of Pittsbuvgh, Pittsbuvgh, Pennsylvania 15260
(Received 5 July 1983)

Mixing times measured for a stirred critical binary liquid mixture are seen to vary
dramatically with Reynolds number, Prandtl number, and the initial value of the order
parameter. These variations are far too large to be explained by passive-mixing cal-
culations; they also differ in significant respects from the active-mixing predictions of

Ruiz and Nelson.

PACS numbers: 64.60.Ht, 47.25.Jn, 64.70.Ja

Ruiz and Nelson!'? have noted that interesting
effects should occur when a binary mixture is
strongly stirred near its consolute point. We
have observed one of these effects, namely, the
anomalously slow rate at which two phases of a
turbulent binary mixture mutually dissolve after
the mixture is abruptly heated into the one-phase
region. This increase in the mixing time pre-
sumably arises from the coupling of the velocity
of the fluid and the order parameter, which in
our case is the local composition. This coupling
short circuits the cascade of the composition
fluctuations at a relatively small value of wave
number k2 =k*, As a result, the maximum disso-
lution rate of such fluctuations is retarded, under
the assumption that the limiting step is the in-
verse diffusive relaxation time Dk*?, Here D is
the composition diffusion coefficient, whichis
known to vanish at the critical point (see below).

We observe the increase in mixing time, 7,
considered by Ruiz and Nelson (RN) and find it to
be orders of magnitude larger than their theory
leads one to expect. In the RN approach the force
density term in the Navier-Stokes equation that is
responsible for the slow down in mixing near the
critical point is — aV%Vy, where a(Vy)? is the
usual gradient energy in the Ginzburg-Landau
equation. Taking the order parameter, ¥, to be
dimensionless, @ has the dimensions of v?, where
v is the kinematic viscosity. From an analysis of
the coupled equations for fluid flow and diffusion,
Ruiz and Nelson predict a so-called active mixing
time given by
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where ¢, is the turnover time (i.e., the inverse
frequency) of the stirring force; ¢, is the order
parameter corresponding to the initial state of
the system; R is the stirring Reynolds number;
and P is the stirring Prandtl number, v/D.

In contrast to Eq. (1), passive mixing theories®
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It is evident that unless the system Prandtl num-
ber is unphysically large, the passive mixing
time cannot be much larger than ¢, for R>1. On
the other hand, 7, might substantially exceed
t, in some physically realizable circumstances
because of the linear dependence on P in the third
term on the right-hand side of Eq. (1).

In this Letter we report the results of a series
of measurements of mixing times for a stirred
critical mixture of nitroethane and 3-methylpen-
tane. We have used the known critical properties
of this mixture* to achieve high stirring Prandtl
numbers and precise control of the initial compo-
sitions. In each measurement the system was
allowed to phase separate at a temperature T';
<T. and was then heated to a temperature T';>T,.
Once the system reached thermal equilibrium at
T, stirring commenced and the mixing time was
determined by measuring the intensity of a laser
beam transmitted through the sample. The trans-
mitted intensity dropped almost to zero each time
the stirring started and then slowly recovered as
the two liquid phases mixed. The time required
for the intensity to recover to 90% of its final con-
stant value was taken to be the mixing time, 7.

The sample cell shape was roughly that of a
right circular cylinder with a vertical axis of
symmetry, of height ~11 cm and diameter ~3.5
cm. The laser beam passed horizontally along
a diameter of the cell near the midpoint of its
height and about 4 cm above a magnetic stirring
propeller of radius 1.2 cm which rotated in the
horizontal plane. There was a small but obser-
vable delay between the initiation of stirring and
the development of apparently homogeneous tur-
bulence in the cell. This time has been carefully
measured with the system in the two-phase re-
gion; no data are presented herein which have
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mixing times less than twice this interval. There
were small local heating effects due to the stir-
ring; these were measured and all temperature
differences quoted herein have been corrected for
the local heating.

The Reynolds number R used in Egs. (1) and
(2) is a stirring Reynolds number, Lv /v, where
L is the stirring propeller radius and v =27 L/¢,,.
Viscosity is known to diverge weakly near the
critical point. We have used the known* value of
v at T,~-T,=10 mK for calculating all Reynolds
numbers; the divergence of v is weak enough to
ignore its variation over the temperature range
of our measurements. With our stirring appar-
atus and this definition of R, we have achieved
Reynolds numbers ~4x10% Our parameter range
of 10*°s R < 4x10* is on the low edge of the range
known to show well-developed statistical turbu-
lence with Kolmogorov scaling®'® [Ruiz and Nel-
son use this scaling idea in deriving Egs. (1) and
(2)]. The local heating rates which we have meas-
ured are more than an order of magnitude small-
er than would be expected in the limit of Kolmog-
orov’ scaling.

The major results of our measurements are set
out in Figs. 1 and 2. Figure 1 shows mixing-
time data for a fixed value of ¥, and a wide vari-
ety of Reynolds numbers and final temperatures,
Ty. In this figure the ordinate is the ratio 7/¢,
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FIG. 1. Mixing time scaled by the turnover time ¢,
plotted as a function of Ty - T, for several different
Reynold’s numbers. All measurements have T, —T;
=150 mK., P values are indicated on the upper scale.

«TR. The abscissa is the difference between fi-
nal (one-phase) temperature and critical temper-
ature, Ty ~T,.. Since the diffusion coefficient is
known to vary as D(T,) =D (T, - T.)/T >

=D €,%%% the abscissa is also equivalent to a
reversed Prandtl-number scale and the Prandtl
number is indicated on the upper border of the
figure. The weak divergence of the viscosity has
been included in calculating Prandtl numbers.
All the measurements represented in Fig. 1 start-
ed with the system at an initial equilibrium tem-
perature 150 mK below T,. For T;-T.>50 mK,
the mixing times were always less than twice the
time for the fluid in the cell to appear by eye to
be fully turbulent. Consequently these data were
excluded from the figure.

It is clear from Fig. 1 that 7/¢,, or equivalently
R71, shows no dependence on R as R is varied by
more than a factor of 5. This failure of 7/¢, to
show any R dependence holds true for all initial

- temperatures, T;, which we have investigated.

Furthermore, 7/¢, increases strongly and then
eventually levels off as Ty - 7.~ 0, and is much
larger than 1 for all the data in the figure.

These observations are clearly inconsistent
with both Egs. (1) and (2). In comparing experi-
ment with theory here it must be kept in mind
that ¢, is a function of the initial temperature dif-
ference T, —T; and not T; - T .. For 3-methylpen-
tane + nitroethane, we can combine the equilibri-
um measurements of others* to obtain the im-
portant parameter ay,?/v?=6,7x107 €;2® with
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FIG. 2. 7/ty€;® plotted as a function of Ty — T,.
Points are labeled by the initial temperature depth,
T.— T;. Each initial depth includes measurements at
various Reynolds numbers. P values are labeled on
the upper scale.
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€,=(T,-T;)/T, and B =0.34. With this value the
second term on the right-hand side of Eq. (1) is
seen to be negligible compared to the third term
as long as R> 1. Then, if P/R is large enough
to make the third term > 1, according to Eq. (1)
7/t,€;2® should be independent of T;. No such uni-
versality was observed. For example, 'r/toeﬁ’3
evaluated for T, - T; equal to 50 and 4000 mK,
respectively, differ by as much as a factor of 5.
This difference is most pronounced in the tem-
perature regime where P/R is largest, i.e., for
T; near T,.

On the other hand, we find that the function
‘r/toelﬁ is independent of T'; for sufficiently small
values of Ty —T,. This can be seen in Fig. 2,
which shows the logarithm of 7/¢.€;® plotted
against the logarithm of T; - T, for several sets
of data. Each of these data sets is characterized
by its indicated value of T~ T; and each contains
measurements for a variety of Reynolds numbers
similar to the variations in R shown in Fig. 1.
Dividing 7/¢, by €® (or equivalently by v,) clearly
does not cause all our data to lie on a single
curve; each data set shows a different descent
from its maximum value. For values of T, -~ T,
=500 mK all the curves are almost identical, but
for T, -T; values of 150 and 50 mK the differ-
ences are quite pronounced.

Our observations may be summarized by the
relation 7/t,= ay,f(€;s,¥,), where a is a constant
and f is a highly nonlinear function which satu-
rates as €, 0 and falls off steeply from the sat-
urated value as P is reduced below a certain val-
ue which depends on ¢,.

The leveling off of the reduced mixing time at
small values of €; in Fig. 2 is very likely due to
the 2 dependence of the diffusion constant,® an ef-
fect not included by RN. This 2 dependence should
manifest itself when 2*£,2 1, where §; is the cor-
relation length of the composition fluctuations
evaluated at T = T, (as is well known, & diverges
rapidly near the critical point®). Unfortunately
this explanation cannot account for our observa-
tion that the flattening occurs at values of T, -T
which increase with ¥, (see Fig. 2).

In summary, we have seen dramatic variations
with Reynolds number, stirring Prandtl number,
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and initial order parameter in the mixing times
of a stirred binary liquid mixture. These varia-
tions are far too large to be explained with pas-
sive-mixing calculations and thus presumably
arise from active-mixing effects of the sort dis-
cussed by Ruiz and Nelson. However, there are
several striking discrepancies between our ob-
servations and the predictions of Ruiz and Nel-
son; namely, (1) the failure to observe any
Reynolds-number dependence beyond the simple
R™ gcaling contained in 7/¢,, (2) the complicated
functional dependence on P, (3) the scaling of 7/
t, with ¥, rather than with %, and (4) the varia-
tion in magnitude of 7/t, which greatly exceeds
reasonable estimates using Eq. (1).

We are indebted to D. Nelson, R. Ruiz, and
D. Jasnow for helpful discussions and to R. Tobin
for fabricating the stirring sample cell. We are
deeply grateful to the Research Corporation for
an equipment grant which supplied the laser and
several of the optical components used in this ex-
periment, This work was supported in part by
the U. S. National Science Foundation.
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