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Connecting Polygonizations via Stretches and Twangs

Mirela Damian∗ Robin Flatland† Joseph O’Rourke‡ Suneeta Ramaswami§

Abstract

We show that the space of polygonizations of a fixed planar point set S of n points is connected by
O(n2) “moves” between simple polygons. Each move is composed of a sequence of atomic moves called
“stretches” and “twangs”. These atomic moves walk between weakly simple “polygonal wraps” of S.
These moves show promise to serve as a basis for generating random polygons.

1 Introduction

This paper studies polygonizations of a fixed planar point set S of n points. Let the n points be labeled pi,
i = 0, 1, . . . , n−1. A polygonization of S is a permutation σ of {0, 1, . . . , n−1} that determines a polygon: P =
Pσ = (pσ(0), . . . , pσ(n−1)) is a simple (non-self-intersecting) polygon. We will abbreviate “simple polygon”
to polygon throughout. As long as S does not lie in one line, which we will henceforth assume, there is at
least one polygon whose vertex set is S. A point set S may have as few as 1 polygonization, if S is in convex
position,1 and as many as 2Θ(n) polygonizations. For the latter, see Fig. 1a.

Our goal in this work is to develop a computationally natural and efficient method to explore all poly-
gonizations of a fixed set S. One motivation is the generation of “random polygons” by first generating a
random S and then selecting a random polygonization of S. Generating random polygons efficiently is a long
unsolved problem; only heuristics [AH96] or algorithms for special cases [ZSSM96] are known. Our work can
be viewed as following a suggestion in the latter paper:

“start with a ... simple polygon and apply some simplicity-preserving, reversible operations ...
with the property that any simple polygon is reachable by a sequence of operations”

Our two operations are called stretch and twang (defined in Section 2.2). Neither is simplicity preserving,
but they are nearly so in that they produce polygonal wraps defined as follows.

Definition 1 A polygonal wrap Pσ is determined by a sequence σ of point indices drawn from {0, 1, . . . , n−1}
with the following properties:

1. Every index in {0, 1, . . . , n−1} occurs in σ.

2. Indices may be repeated. If index i appears at least twice in σ, we call pi a point of double contact.

3. For sufficiently small ε > 0, there exists a perturbation within an ε-disk of the points in double contact,
separating each such point into two or more points, so that there is a simple closed curve C that passes
through the perturbed points in σ order. Sometimes such a P is called “weakly simple” because its
violations of simplicity (i.e., its self-touchings) avoid proper crossings.2

Fig. 1b shows a polygonal wrap with five double-contacts (p1, p4, p5, p8 and p9). Note that a polygon is a
polygonal wrap without double-contact points.
∗Dept. of Computer Science, Villanova Univ., Villanova, PA 19085, USA. mirela.damian@villanova.edu.
†Dept. of Computer Science, Siena College, Loudonville, NY 12211, USA. flatland@siena.edu.
‡Dept. of Computer Science, Smith College, Northampton, MA 01063, USA. orourke@cs.smith.edu.
§Dept. of Computer Science, Rutgers University, Camden, NJ 08102, USA. rsuneeta@camden.rutgers.edu.
1 S is in convex position if every point in S is on the hull of S.
2 Two segments properly cross if they share a point x in the relative interior of both, and cross transversely at x.
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Stretches and twangs take one polygonal wrap to another. A stretch followed by a natural sequence of
twangs, which we call a cascade, constitutes a forward move. Forward moves (described in further detail
in Section 2.3) take a polygon to a polygon, i.e., they are simplicity preserving. Reverse moves will be
introduced in Section 6. A move is either a forward or a reverse move. We call a stretch or twang an atomic
move to distinguish it from the more complex forward and reverse moves.

Our main result is that the configuration space of polygonizations for a fixed S is connected by for-
ward/reverse moves, each of which is composed of a number of stretches and twangs, and that the diameter
of the space is O(n2) moves. We can bound the worst-case number of atomic moves constituting a particular
forward/reverse move by the geometry of the point set. Experimental results on random point sets show
that, in the practical situation that is one of our motivations, the bound is small, perhaps even constant.
We have also established loose bounds on the worst-case number of atomic operations as a function of n: an
exponential upper bound and a quadratic lower bound. Tightening these bounds has so far proven elusive
and is an open problem.

One can view our work as in the tradition of connecting discrete structures (e.g., triangulations, match-
ings) via local moves (e.g., edge flips, edge swaps). Our result is comparable to that in [vLS82], which
shows connectivity of polygonizations in O(n3) edge-edge swap moves through intermediate self-crossing
polygons. The main novelty of our work is that the moves, and even the stretches and twangs, never lead to
proper crossings, for polygonal wraps have no such crossings. We explore the possible application to random
polygons briefly in Section 8. For the majority of this paper, we concentrate on defining the moves and
establishing connectivity.
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Figure 1: Examples. (a) A set of n = 3k + 2 points that admits 2k polygonizations. (b) Polygonal wrap Pσ
with σ = (0, 8, 6, 8, 1, 5, 9, 2, 9, 4, 5, 1, 4, 3, 7) (c) A polygonization with one pocket with lid ab.

We begin by defining pockets, which play a central role in our algorithms for polygonal transformations.
Then in Section 2.1 we describe two natural operations that transform one polygon into another but fail
to achieve connectivity of the configuration space of polygonizations, which motivates our definitions of
stretches and twangs in Section 2.2. Following these preliminaries, we establish connectivity and compute
the diameter in Sections 3–7. We conclude with open problems in Section 9.

1.1 Pockets and Canonical Polygonization

Let P be a polygonization of S. A hull edge ab that is not on ∂P is called a pocket lid. The polygon external
to P bounded by P and ab is a pocket of P .

Lemma 2 Any point set S not in convex position has a polygonization with one pocket only [CHUZ92].

For a fixed hull edge ab, we define the canonical polygonization of S to be a polygon with a single pocket
with lid ab (cf. Lemma 2) in which the pocket vertices are ordered by angle about vertex a, and from closest
to farthest from a if along the same line through a. We call this ordering the canonical order of the pocket
vertices; see Fig. 1c.

2 Polygonal Transformations

Let P be a polygon defined by a circular index sequence σ. We examine operations that permute this
sequence, transforming P into a new polygon with the same set of vertices linked in a different order.
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Throughout the paper we use 4abc to denote the closed triangle with corners a, b and c.

2.1 Swaps and Hops

We begin by defining two natural transformation operations, a swap and a hop. A swap operation is a
transposition of two consecutive vertices of P that results in a new (non-self-intersecting) polygon. Fig. 2a
illustrates the swap operation. It is well known that transpositions connect all permutations, but this is not
the case for swaps. Because we require that the resulting polygon be simple, a vertex pair cannot be swapped
if the operation results in a self-intersecting polygon. Fig. 2b shows an example of a polygon for which no
vertex pair can be swapped without creating an edge crossing. Thus, swaps do not suffice to connect all
polygonizations, which motivates our definition of a more powerful move, which we call a hop.

(a)

SWAP(b, c)

a

b

c
d

a

b

c
d (b)

Figure 2: (a) Swap(b, c) illustrated (b) Polygon admitting no swaps.

The hop operation generalizes the swap by allowing a vertex to hop to any position in the permutation,
as long as the resulting polygon is simple. Fig. 3a shows the stretching of the edge ab down to vertex v,
effectively “hopping” v between a and b in the permutation. We denote this operation by Hop(e, v), where
e = ab (note the first argument is from and the second to).

To specify the conditions under which a hop operation is valid, we introduce some definitions, which
will be used subsequently as well. A polygon P has two sides, the interior of P and the exterior of P . Let
abc = (a, b, c) be three vertices consecutive in the polygonization P . For noncollinear vertices, we distinguish
between the convex side of b, that side of P with angle ∠abc smaller than π, and the reflex side of b, the side
of P with angle ∠abc larger than π. Note that this definition ignores which side is the interior and which
side is the exterior of P , and so is unrelated to whether b is a convex or a reflex vertex in P . Every true
vertex has a convex and a reflex side (collinear vertices will be discussed in Section 2.2). To ensure that the
resulting polygon is simple, Hop(e, v) is valid iff the following two conditions hold: (1) the triangle induced
by the two edges incident to v is empty of other polygon vertices and (2) the triangle induced by e and v
lies on the reflex side of v and is empty of other polygon vertices.

Although more powerful than a swap, there also exist polygons that do not admit any hops. Fig. 3b
shows an example (the smallest we could find) in which each edge-vertex pair violates one or both of the
two conditions above. This example shows that hops do not suffice to connect all polygonizations.

(a)

HOP(ab,v)

a
b

c d

a
b

c d

v

v

(b)

Figure 3: (a) Hop(ab, v) illustrated (b) Polygon admitting no Hops.

The limited transformation capabilities of the swap and hop operations motivate our introduction of two
new operations, stretch and twang. The former operation relaxes the two hop conditions and allows the
creation of a polygonal wrap. The latter operation restores the polygonal wrap to a polygon. We show that
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together they are capable of transforming any polygon into a canonical form (Sections 3-5), and from there
to any other polygon (Sections 6-7).

2.2 Stretches and Twangs

Unlike the Hop(e, v) operation, which requires v to fully see the edge e into which it is hopping, the
Stretch(e, v) operation only requires that v see a point x in the interior3 of e. The stretch is accomplished
in two stages: (i) temporarily introduce two new “pseudovertices” on e in a small neighborhood of x (this is
what we call Stretch0 below), and (ii) remove the pseudovertices immediately using twangs.

Stretch0. Let v see a point x in the interior of an edge e of P . By see we mean “clear visibility”, i.e.,
the segment vx shares no points with ∂P other than v and x (see Fig. 4a). Note that every vertex v of P
sees such an x (in fact, infinitely many x) on some e. Let x− and x+ be two points to either side of x on
e, both in the interior of e, such that v can clearly see both x− and x+. Two such points always exist in a
neighborhood of x. We call these points pseudovertices. Let e = ab, with x− closer to the endpoint a of e.
Then Stretch0(e, v) alters the polygon to replace e with (a, x−, v, x+, b), effectively “stretching” e out to
reach v by inserting a narrow triangle 4x−vx+ that sits on e (see Fig. 4b).

x

x- x+

v v v

(a) (b) (c)

x

STRETCH   (e,v)0

TWANG(      v)x-a

TWANG(v      )x+ b

a b
e

a ba b

Figure 4: Stretch(e, v) illustrated (a) v sees x ∈ e (b) Stretch0(e, v) (c) Stretch(e, v).

To complete the definition of Stretch(e, v), which removes the pseudovertices x+ and x−, we first define
the twang operation.

Twang. Informally, if one views the polygon boundary as an elastic band, a twang operation detaches the
boundary from a vertex v and snaps it to v’s convex side.

Definition 3 The operation Twang(abc) is defined for any three consecutive vertices abc ∈ σ such that

1. {a, b, c} are not collinear.

2. b is either a pseudovertex, or a vertex in double contact. If b is a vertex in double contact, then 4abc
does not contain a nested double contact at b. By this we mean the following: Slightly perturb the
vertices of P to separate each double-contact into two or more points, so that P becomes simple. Then
4abc does not contain any other occurrence of b in σ. (E.g., in Fig. 5a, 4a′bc′ contains a second
occurrence of b.)

Under these conditions, the operation Twang(abc) replaces the sequence abc in P by sp(abc), where
sp(abc) indicates the shortest path from a to c that stays inside 4abc and does not cross ∂P. We call b
the twang vertex. Whenever a and c are irrelevant to the discussion, we denote the twang operation by
Twang(b).

Informally, Twang(abc) “snaps” the boundary to wrap around the hull of the points in 4abc, excluding
b (see Fig. 5a). A twang operation can be viewed as taking a step toward simplicity by removing either a
pseudovertex or a point of double contact. We should note that sp(abc) includes every vertex along this
path, even collinear vertices. If there are no points inside 4abc, then sp(abc) = ac, and Twang(abc) can

3 By “interior” we mean “relative interior,” i.e., not an endpoint.
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c'
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c'

(a)

a

b

c

b1

b2
b3

a

b

c

(b)

b1

b2
b3

TWANG(abc)TWANG(abc)

Figure 5: Twang(abc) illustrated (a) Twang(abc) replaces abc by sp(abc) (b) Twang(abc) creates the
hairpin vertex a and three doubled edges ab1, b1b2 and b2b3.

be viewed as the reverse of Hop(ac, b). If a=c (i.e., ab and bc overlap in P), we call b a hairpin vertex of
P; in this case, Twang(aba) replaces aba in P by a. Hairpin vertices and “doubled edges” arise naturally
from twangs. In Fig. 5b for instance, Twang(abc) produces a hairpin vertex at a and doubled edges ab1,
b1b2, b2b3. So we must countenance such degeneracies. In general, there are points interior to the triangle,
and the twang creates new points of double contact. Below, we will apply twangs repeatedly to remove all
double contacts.

Stretch. We can now complete the definition of Stretch(e, v), with e = ab. First execute Stretch0(e, v),
which picks the two pseudovertices x+ and x−. Then execute Twang(ax−v) and Twang(vx+b), which de-
tach the boundary from x+ and x− and return to a polygonal wrap of S (see Fig. 4c). We refer to e (v) as
the stretch edge (vertex ).

2.3 Twang Cascades

A twang in general removes one double contact and creates perhaps several others. A TwangCascade
applied on a polygonal wrap P removes all points of double contact from P:

TwangCascade(P)

Loop for as long as P has a point of double contact b:

1. Find a vertex sequence abc in P that satisfies the twang conditions (cf. Def. 3).
2. Twang(abc).

Note that for any point of double-contact b, there always exists a vertex sequence abc that satisfies the
twang conditions and therefore the twang cascade loop never gets stuck. That a twang cascade eventually
terminates is not immediate. The lemma below, whose proof we omit, shows that Twang(abc) shortens the
perimeter of the polygonal wrap (because it replaces abc by sp(abc)) by at least a constant depending on the
geometry of the point set. Therefore, any twang cascade must terminate in a finite number of steps.

Lemma 4 A single twang Twang(abc) decreases the perimeter of the polygonal wrap by at least 2dmin(1−
sin(αmax/2)), where dmin is the smallest pairwise point distance and αmax is the maximum convex angle
formed by any triple of non-collinear points.

Supplementing this geometric bound, Corollary 13 in Appendix 3 establishes a combinatorial upper bound
of O(nn) on the number of twangs in any twang cascade. An impediment to establishing a better bound is
that a point can twang more than once in a cascade. Indeed we present in Appendix 2 an example in which
Ω(n) points each twang Ω(n) times in one cascade, providing an Ω(n2) lower bound.

2.3.1 Forward Move

We define a forward move on a polygonization P of a set S as a stretch (with the additional requirement
that the pseudovertices on the stretch edge lie on the reflex side of the stretch vertex), followed by a twang
and then a twang cascade, as described below:

5



ForwardMove(P, e, v)

Preconditions: (i) P is a simple polygon, (ii) e and v satisfy the conditions of Stretch(e, v), and
(iii) v is a noncollinear vertex such that pseudovertices x+ and x− on e lie on the reflex side of v.
{Let u, v, w be the vertex sequence containing v in P (necessarily unique, since P is simple).}

1. P ← Stretch(e, v).
2. P ← Twang(uvw).
3. P ′ ← TwangCascade(P).

A ForwardMove takes one polygonization P to another P ′ (see Fig. 6), as follows from Lemma 4. Next
we discuss two important phenomena that can occur during a forward move.

Stretch Vertex Placement. We note that the initial stretch that starts a move might be “undone” by
cycling of the cascade. This phenomenon is illustrated in Fig. 6, where the initial Stretch(ab, v) inserts v
between a and b in the polygonal wrap (Fig. 6b), but v ends up between c and b in the final polygonization
(Fig. 6f). Thus any attempt to specifically place v in the polygonization sequence between two particular
vertices might be canceled by the subsequent cascade. This phenomenon presents a challenge to reducing a
polygon to canonical form (discussed in Section 5).

v =b1

(d) (e) (f)

e

b2

a2

c2
b3

a3

c3

=a4

c4

a b a b a b a b 4a=b b a b

cc c c
c c=

u

w

v

a1u==

v v v v

(a) (b) (c)c1w=

a1u=

Figure 6: Forward move illustrated. (a) Initial polygon P (b) After Stretch(ab, v) (c) After Twang(a1b1c1)
(d) After Twang(a2b2c2) (e) After Twang(a3b3c3) (f) After Twang(a4b4c4).

3 Single Pocket Reduction Algorithm

Now that the basic properties of the moves are established, we aim to show that our moves suffice to connect
any two polygonizations of a point set S. The plan is to reduce an arbitrary polygonization to the canonical
polygonization. En route to explaining this reduction algorithm, we show how to remove any particular
pocket by redistributing its vertices to other pockets. This method will be applied repeatedly in Section 4
to move all pockets to one particular pocket.

In this section we assume that P has two or more pockets. We use hull(P ) to refer to the closed region
defined by the convex hull of P . For a fixed hull edge e that is the lid of a pocket A, the goal is to reduce
A to e by redistributing the vertices of A among the other pockets, using forward moves only. This is
accomplished by the Single Pocket Reduction algorithm (described below), which repeatedly picks a
hull vertex v of A and attaches v to a pocket other than A; see Fig. 7 for an example run. Call a vertex v
of P a true corner if the two polygon edges incident to v are non-collinear.

Single Pocket Reduction(P, e) Algorithm

Loop for as long as the pocket A of P with lid e contains three or more vertices:
1. Pick an edge-vertex pair (e, v) such that

e is an edge of P on ∂B for some pocket B 6= A
v ∈ A is a non-lid true corner vertex on hull(A) that sees e

2. P ← ForwardMove(P, e, v).

We now establish that the Single Pocket Reduction algorithm terminates in a finite number of
iterations. First we prove a more general lemma showing that a twang operation can potentially reduce, but
never expand, the hull of a pocket.
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Lemma 5 (Hull Nesting under Twangs) Let A be a pocket of a polygonal wrap P and let vertex b 6∈
hull(P) satisfy the twang conditions. Let A′ be the pocket with the same lid as A after Twang(b). Then
A′ ⊆ hull(A).

Proof: Let abc be the vertex sequence involved in the twang operation. Then Twang(abc) replaces the
path abc by sp(abc). If abc does not belong to ∂A, then Twang(abc) does not affect A and therefore A′ ≡ A.
So assume that abc belongs to ∂A. This implies that b is a vertex of A. Note that b is a non-lid vertex, since
b 6∈ hull(P). Then 4abc ⊂ hull(A), and the claim follows from the fact that sp(abc) ⊂ 4abc.
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Figure 7: Single Pocket Reduction(P, a1a5) illustrated: (a) Initial P ; (b) After Stretch(b1b2, a2); (c) Af-
ter Twang(a1a2a3); (d) After Twang(a3a4a5); (e) After Stretch(a2b1, a3); (f) After Twang(a4a3a5); (g) After
Stretch(a2a3, a4)+Twang(a1a4a5).

Lemma 6 The Single Pocket Reduction algorithm terminates in O(n) forward moves.

Proof: Let S denote the set of vertices of P in hull(A). Thus |S| = O(n). We show that |S| decreases by
at least 1 in each loop iteration, thus establishing the claim of the lemma.

First observe that the existence of an edge-vertex pair (e, v) selected in Step 1 is guaranteed by the fact
that P has two or more pockets. Step 2 of the Single Pocket Reduction algorithm, which performs a
forward move to a different polygonization, attempts to reduce A by vertex v, thus decrementing |S|. We
now show that this step is successful in that it does not reattach v back to A. Furthermore, we show that S
acquires no new vertices during this step. These together show that |S| decreases by at least 1 in each loop
iteration.

The first step of the forward move, Stretch(e, v), does not affect S. The second step, Twang(avb),
replaces the path avb by sp(avb), thus eliminating v from A. Since v is a true corner vertex of A, hull(A)
does not contain v at the end of this step. Let A′ be the pocket of P with the same lid as A at the end of
TwangCascade(P ). Since a hull vertex never twangs, Lemma 5 implies that hull(A′) is a subset of hull(A)
and therefore |S| does not increase during the twang cascade. Furthermore, since hull(A) does not contain
v after the first twang operation, v must lie outside of hull(A′) at the end of the twang cascade.

4 Multiple Pocket Reduction Algorithm

For a given hull edge e, the goal is to transform P to a polygon with a single pocket with lid e, using forward
moves only. If e is an edge of the polygon, for the purpose of the algorithm discussed here we treat e as a
(degenerate) target pocket T . We assume that, in addition to T , P has one or more other pockets, otherwise
there is nothing to do. Then we can use the Single Pocket Reduction algorithm to eliminate all pockets
of P but T , as described in the Pocket Reduction algorithm below.

Pocket Reduction (P, e) Algorithm

If e is an edge of P , set T ← e, otherwise set T ← the pocket with lid e
(in either case, we treat T as a pocket).

For each pocket lid e′ 6= e
Call Single Pocket Reduction(P, e′)
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Observe that the Pocket Reduction algorithm terminates in O(n2) forward moves: there are O(n)
pockets each of which gets reduced to its lid edge in O(n) forward moves (cf. Lemma 6).

Fig. 8 illustrates the Pocket Reduction algorithm on a 17-vertex polygon with three pockets A, B
and C, each of which has 3 non-lid vertices, and target pocket T with lid edge e = t1t2. The algorithm
first calls Single Pocket Reduction(P, a1a5), which transfers to B all non-lid vertices of A, so B ends
up with 6 non-lid vertices (this reduction is illustrated in detail in Fig. 7). Similarly, Single Pocket
Reduction(P, b1b5) transfers to C all non-lid vertices of B, so C ends up with 9 non-lid vertices, and finally
Single Pocket Reduction(P, c1c5) transfers all these vertices to T .
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Figure 8: (a-e) Pocket Reduction(P, t1t2): (a) Initial P ; (b) After Single Pocket Reduction(P, a1a5); (c)
After Single Pocket Reduction(P, b1b5); (d) After Single Pocket Reduction(P, c1c5); (e) After Canonical
Polygonization(P, t1t2).

This example shows that the O(n2) bound on the number of forward moves is tight: an n-vertex polygon
with a structure similar to the one in Fig. 8a has O(n) pockets. The number of forward moves performed by
the Pocket Reduction algorithm is therefore 3 + 6 + 9 + . . . 3n

5 = Θ(n2), so we have the following lemma:

Lemma 7 The Pocket Reduction algorithm employs Θ(n2) forward moves.

5 Single Pocket to Canonical Polygonization

Let P (e) denote an arbitrary one-pocket polygonization of S with pocket lid e = ab. Here we give an
algorithm to transform P (e) into the canonical polygonization Pc(e). This, along with the algorithms
discussed in Sections 3 and 4, gives us a method to transform any polygonization of S into the canonical
form Pc(e). Our canonical polygonization algorithm incrementally arranges pocket vertices in canonical
order (cf. Section 1.1) along the pocket boundary by applying a series of forward moves to P (e).

Canonical Polygonization(P, e) Algorithm

Let e = ab. Let a = v0, v1, v2, . . . , vk, vk+1 = b be the canonical order of the vertices of pocket P (e).
For each i = 1, 2, . . . , k

1. Set `i ← line passing through a and vi

2. Set ei−1 ← pocket edge vi−1vj , with j > i− 1
3. If ei−1 is not identical to vi−1vi, apply ForwardMove(ei−1, vi).

We now show that the one-pocket polygonization resulting after the i-th iteration of the loop above
has the points v0, . . . , vi in canonical order along the pocket boundary. This, in turn, is established by
showing that the ForwardMove in the i-th iteration involves only points in the set {vi, vi+1, . . . , vk}.
These observations are formalized in the following lemma, whose proof appears in Appendix 1:

Lemma 8 The i-th iteration of the Canonical Polygonization loop produces a polygonization of S with
one pocket with lid e and with vertices v0, . . . , vi consecutive along the pocket boundary.

Lemma 9 The Canonical Polygonization algorithm constructs Pc(e) in O(n) forward moves.
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6 Reverse Moves

Connectivity of the space of polygonizations will follow by reducing two given polygonizations P1 and P2

to a common canonical form Pc, and then reversing the moves from Pc to P2. Although we could just
define a reverse move as a time-reversal of a forward move, it must be admitted that such reverse moves are
less natural than their forward counterparts. So we concentrate on establishing that reverse moves can be
achieved by a sequence of atomic stretches and twangs.

Reverse Stretch. The reverse of Stretch(e, v) may be achieved by a sequence of one or more twangs,
as illustrated in Fig. 9a. This result follows from the fact that the “funnel” created by the stretch is empty,
and so the twangs reversing the stretch do not cascade.

v
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TWANG (    )x3
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b
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v

Figure 9: Reverse atomic moves: (a) Stretch(ab, v) is reversed by Twang(v), Twang(c1), Twang(c2),
Twang(c3). (b) Twang(b) is reversed by Stretch(x2x3, b), Twang(x2), Twang(x1) and Twang(x3).

Reverse Twang. An “untwang” can be accomplished by one stretch followed by a series of twangs. Fig. 9b
illustrates how Twang(abc) may be reversed by one Stretch(e, b), for any edge e of sp(abc), followed by
zero or more twangs. Observe that the initial stretch in the reverse twang operation is not restricted to the
reflex side of the stretch vertex, as it is in a ForwardMove. If b is a hairpin vertex (i.e., a and c coincide),
we view ac as an edge of length zero and the reverse of Twang(b) is simply Stretch(e, b).

Consequence. We have shown that the total effect of any forward move, consisting of one stretch and a
twang cascade, can be reversed by a sequence of stretches and twangs. We call this sequence a reverse move.
One way to view the consequence of the above two results can be expressed via regular expressions. Let the
symbols s and t represent a Stretch and Twang respectively. Then a forward move can be represented
by the expression st+: a stretch followed by one or more twangs. A reverse stretch, s−1 can be achieved by
one or more twangs: t+. And a reverse twang t−1 can be achieved by st∗. Thus the reverse of the forward
move st+ is (t−1)+s−1 = (st∗)+t+ , a sequence of stretches and twangs, at least one of each.

7 Connectivity and Diameter of Polygonization Space

We begin with a summary the algorithm which, given two polygonizations P1 and P2 of a fixed point set,
transforms P1 into P2 using stretches and twangs only.

Polygon Transformation(P1, P2) Algorithm

1. Select an arbitrary edge e of hull(P1).
2. P1 ← Pocket Reduction(P1, e); M1 ← atomic moves of [P2 ← Pocket Reduction(P2, e)].
3. Pc ← Canonical Polygonization(P1, e); M2 ← atomic moves of [Canonical Polygonization(P2, e).]
4. Reverse the order of the moves in M1 ⊕M2 (⊕ represents concatenation).
5. For each stretch s (twang t) in M1 ⊕M2 in order, execute reverse stretch s−1(reverse twang t−1) on Pc.

This algorithm, along with Lemmas 7 and 9, establishes our main theorem:

Theorem 10 The space of polygonizations of a fixed set of n points is connected via a sequence of forward
and reverse moves. The diameter of the polygonization space is O(n2) moves.
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Computational Complexity. With appropriate preprocessing, each twang operation can be carried out
in O(n) time (since sp() might hit O(n) vertices). So the running time of a single forward/reverse move is
T ·O(n), where T is an upper bound on the number of twangs in a move.

8 Random Polygons

Let G be the graph whose nodes are polygonizations and whose arcs are the moves defined in this paper. We
know thatG can have an exponential numberN of vertices. We have established that it is connected, and that
it has diameter O(n2). One way to generate “random polygons,” as mentioned in Section 1, is to start with
some polygonization P of a random set of n points S, and repeatedly select moves randomly. An immediate
question here is: How many moves are needed to achieve adequate mixing, i.e., ergodicity? If we view the
random moves as a random walk in G, and ask for the expected time for a random walk to visit all N vertices
(the expected cover time) of a connected graph G, the answer is known: Θ(N3) [Fei95]. Unfortunately, the
maximum number of polygonizations of a set of n points has been shown to be Ω(4.6n) [GNT00], and it seems
likely that the expected number of polygonizations of a random set of points is also exponential (although we
have not found this established in the literature). Thus, exponentially many moves are needed to cover the
polygonization graph in the worst case, and perhaps in the expected case as well. Although disappointing,
this is inevitable given the size of G, and mitigated somewhat by the relatively small diameter of G.

We have implemented a version of random polygon generation. After creating an initial polygonization,
we move from polygonization to polygonization via a sequence of forward moves, where additional stretches
are permitted in the cascade to simulate reverse moves. Trials on random polygons suggest that the average
length of a cascade for polygons of up to n=100 vertices is about 1.3, with 7 the maximum cascade length
observed in trials of thousands of forward moves. Cascade length seems to be independent of n. Thus, even
though we only have loose bounds on the length of a twang cascade, for random point sets the mean length
appears to be a constant less than 2.

9 Open Problems

Our work leaves many interesting problems open. The main unresolved question is establishing a tighter
combinatorial bound on the number of twangs T in a twang cascade and thereby resolving the computational
complexity of the polygon transformation algorithm. We have shown (in Appendices) that T is Ω(n2) and
O(nn), leaving a large gap to be closed. Another related question asks to improve the efficiency of the polygon
transformation algorithm in terms of forward moves (the lower bound in Lemma 7 is for our particular
algorithm, not all algorithms).

In Section 7 we established connectivity with forward moves and their reverse, and although both moves
are composed of atomic stretches and twangs, the forward moves seem more naturally determined. This
suggests the question of whether forward moves suffice to ensure connectivity. It remains to be seen if the
polygonization moves explored in this paper will be effective tools for generating random polygons. One
possibility is to start from a doubled random noncrossing spanning tree, which is a polygonal wrap. Finally,
we are extending our work to 3D polyhedralizations of a fixed 3D point set.
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Appendix 1: Canonical Polygonization

Lemma 11 The i-th iteration of the Canonical Polygonization loop produces a polygonization of S
with one pocket with lid e and with vertices v0, . . . , vi consecutive along the pocket boundary.

Proof: The proof is by induction. The base case corresponds to i = 1 and is trivially true for the case
when e0 = v0v1. Otherwise, v1 sees e0 (since no edge can block visibility from v0 to v1) and therefore
Stretch(e0, v1) is possible. See Fig. 10a. Furthermore, v1 may not twang a second time during the twang
cascade of the forward move. This is because a second Twang(v1) may only be triggered by the twang of
a hull vertex, which can never occur (hull vertices never twang). This implies that the ForwardMove in
Step 3 of the first iteration creates a one-pocket polygonization in which v0 and v1 are consecutive along the
pocket boundary (see Fig. 10a,b). This completes the base case.
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Figure 10: Canonical Polygonization: Stretch(vi, x) is always possible. (a) Base case (i = 1): v1 sees
v0 (b) After iteration 1, v0 and v1 are consecutive along the pocket boundary (c) vi sees x.

To prove the inductive step, suppose that the lemma holds for iterations 1, . . . , i− 1. Note that the exis-
tence of the edge ei−1 selected in Step 2 of the algorithm follows immediately from the fact that v0, v1, . . . vi−1

are consecutive along the pocket boundary (cf. inductive hypothesis). If ei−1 is identical to vi−1vi, there
is nothing to prove. So assume that ei−1 and vi−1vi are distinct. We now show that vi sees ei−1, so that
Stretch(ei−1, vi) is possible.

First observe that the wedge bounded by `i−1 and `i is either degenerate (if v0, vi−1, vi are collinear),
or is empty of any pocket points (since vi follows vi−1 in the cw sorted order). In the former case, vi sees
vi−1 and ei−1. In the latter case, ei−1 must intersect `i (cf. Fig. 10c). In either case, vi sees ei−1 and hence
Stretch(ei−1, vi) is possible. This along with the induction hypothesis implies that at the end of stretch
operation, vertices v0, v1, . . . vi are consecutive along the pocket boundary.

Next we show by contradiction that the twang cascade of the forward move involves only vertices
vi+1, . . . , vk, so that v0, v1, . . . vi remain consecutive along the pocket boundary. Suppose the claim is false.
For ease of presentation, define rank(vi) = i. Let y be the first vertex with rank(y) ≤ i to get into double
contact. Clearly y cannot coincide with a, since a is a hull vertex and cannot get into double contact. Let
Twang(qrs) be the twang that created the double contact at y. Note that at the time of Twang(qrs),
vertices v0, v1, . . . vi are consecutive along the pocket boundary, since none of these vertices was in double
contact prior to y (by choice of y) and therefore could not have twanged. Since Twang(qrs) creates the
double contact at y, y ∈ 4qrs and lies on sp(qrs). We also have that rank(r) > i, by our choice of y.

Two cases are possible: (i) y lies strictly to the left of `i, and (ii) y lies on `i In either case, since y ∈ 4qrs
and r lies on or to the right of `i, it must be that min{rank(q), rank(s)} < rank(y). Suppose w.l.o.g that
rank(q) < rank(y). Thus we have that rank(q) < rank(y) ≤ rank(vi) < rank(r). In other words rank(r) −
rank(q) ≥ 2, but since q ∈ {v0, v1, . . . vi−1} and qr is an edge of the pocket, it must be that rank(r) − rank(q)
= 1 (since v0, v1, . . . vi are consecutive along the pocket boundary). Thus we have reached a contradiction.
This completes the induction step.
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Appendix 2: Twang Cascade Lower Bound

Fig. 11 shows an example in which one point v twangs twice in a cascade, which gives a hint at the complex
changes that can occur during a cascade. We will return to this example in Appendix 3 below.
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Figure 11: Point v twangs twice: (a) Initial P (b) After Stretch(e, b1) (c–i) After Twang(aibici), i = 1 . . . 7
(i) v in double contact a second time, and can twang a second time.

Figure 12 displays an example in which Ω(n) points each twang Ω(n) times in one cascade, providing
an Ω(n2) lower bound on the length of a cascade. The cascade is initiated by Stretch(e, v) followed by
Twang(v). From then on Twang(ai, bi, ci) twangs in a cycle. Each such twang alters the path to sp(ai, ci),
which wraps around bi+1. In the next pass through the cycle, Twang(ai, bi+1, ci) occurs. This continues
just twice in this figure, but in general the number of cycles is the number of bj vertices inside each 4aibici.
Figure 13 shows that this number can be Ω(n). Here the bj vertices are evenly spaced on a circle, and

e
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Figure 12: Stretch(e, v) followed by Twang(v)
initiates a quadratic-length twang cascade.

a
i

c
i

b
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Figure 13: It is possible for each triangle 4aibici
to enclose Ω(n) vertices bj .

∠(ai, bi, ci) = 90◦. As the length |aibi| grows longer, the fraction of points inside 4aibici approaches n/4.

Appendix 3: Twang Cascade Upper Bound

Figs. 6, 11, and 12 support an intuition that a twang cascade simplifies pocket entanglements in some sense.
We capture this notion combinatorially in the pocket hierarchy tree TP for a polygonization P , a unique
representation of the nesting of pockets and subpockets of P in a tree. Each pocket has a level k, with P
itself level 0, the pockets described in Section 1.1 as level-1 pockets, and its subpockets at level 2, and so on.
We will call all of these pockets, and use a superscript to distinguish the level k and subscripts to distinguish
among the pockets at the same level: P ki .
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Each node of TP is the list of vertices in hull(P ki ). If P ki is convex, it has no children. Otherwise, each
edge ab of hull(P ki ) which is not an edge of the polygonization P is a pocket lid for the vertices of P from a
to b. Fig. 14 illustrates the hierarchy. Note that every vertex v ∈ P is on the hull of one or more pockets of
TP .

For each pocket P ki , we define a pocket count S(P ki ) to be the number of points on or in hull(P ki ). For
example, in Fig. 14c, the pocket with lid (7, 0) contains points {7, 0, 8, 10, 11, 3, 5, 9} and so has pocket count
8. Note that we count points 8 and 10 only once even though they are in double contact. Finally, we define the
pocket vector V for P to list the sum of all pocket counts for all pockets at each level: V = <V1, V2, V3, . . . >,
Vk =

∑
i S(P ki ). The pocket vectors in Fig. 14 are:

(c) <13, 18, 14, 3>
(d) <13, 18, 13, 5, 4>
(e) <13, 17, 10, 5, 4>
(f) <13, 17, 9, 5, 4>
(g) <13, 17, 9, 4, 3>
(h) <13, 17, 9, 3>
(i) <13, 17, 8>

Let V = <V1, V2, V3, . . . > and W = <W1,W2,W3, . . . > be two pocket vectors. We define a lexicographic
ordering relation on them: V < W iff V1 = W1, V2 = W2, . . . , Vk = Wk, Vk+1 < Wk+1. The steady odometer-
like decrementing of the pocket vector evident in the above example is the sense in which a twang cascade
simplifies pocket structure:

Theorem 12 A twang Twang(abc) always strictly reduces the pocket vector.

Proof: Assume P ki is the highest pocket in the hierarchy for which vertex b is on hull(P ki ). We know at
least one such pocket exists.

Case 1: b is a lid vertex of pocket P ki .

We show by contradiction that this case is impossible: Since b is a lid vertex of pocket P ki , it must be
a vertex on the hull of the parent of P ki . But this contradicts our assumption that P ki is the highest
pocket having b on its hull. (If b has no parent because it is a level-1 pocket, then it must be on the
hull of the entire polygon, which is a contradiction since such vertices are never twanged.)

For example, in Fig. 14c, let b = 10. Then b is a lid vertex of pocket {10, 8, 9} at level 3, but it is also
a non-lid hull vertex of pocket {11, 7, 8, 10} at level 2.

Case 2: b is not a lid vertex of pocket P ki .

This case implies that a, b, and c are all part of pocket P ki ’s boundary, as are edges ab and bc. Because
a twang is performed at b, we know b is a corner point of hull(P ki ). Thus after the twang, hull(P ki )
loses this corner point and S(P ki ) goes down by one.

Now we show that the pocket counts for pockets at levels < k do not change as a result of Twang(abc),
and in addition no other pocket besides P ki at level k changes. First, observe that in addition to P ki ,
the only pockets that may include edges ab and bc are P ki ’s ancestors and descendents in the hierarchy.
Therefore, Twang(abc) affects only these pockets and no others. Of these pockets, only changes in
P ki ’s ancestors could increase the pocket vector. We show now that the counts for the ancestors do
not changed. First observe that only the lid vertices of a pocket are hull vertices of its parent. Since b
is not a lid vertex, Twang(abc) cannot change the hull of its parent, and similarly cannot change the
hull of any of its ancestors. If the hulls do not change, then the point counts for the pockets do not
change.

Corollary 13 A twang cascade can have at most O(nn) steps.
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Figure 14: Pocket hierarchy for cascade illustrated in Fig. 11. Middle column displays the pocket tree (each
node showing: points on hull, points interior, S() pocket count), right column the pocket vector transposed.
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Proof: Let m be the maximum length of a pocket vector: m = n/3 = O(n). In the worst case, a decrement
of Vk by 1 is followed by Vk, . . . , Vm each being (somehow) reset to n and counting down through their full
range. If this happens for every decrement, then the “odometer” counts through all mn distinct possible
pocket vectors.

Note particularly the change in the pocket vector from Fig. 14c to d: although V2 decrements from 14
to 13, V3 increases from 3 to 5 (and, in addition, TP grows in depth). It is this phenomenon that makes
establishing a better bound via the pocket hierarchy problematical.
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