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Abstract: We consider scalar Born-Infeld type theories with arbitrary potentials V (T )

of a scalar field T . We find that for models with runaway potentials V (T ) the generic in-

homogeneous solutions after a short transient stage can be very well approximated by the

solutions of a Hamilton-Jacobi equation that describes free streaming wave front propaga-

tion. The analytic solution for this wave propagation shows the formation of caustics with

multi-valued regions beyond them. We verified that these caustics appear in numerical

solutions of the original scalar BI non-linear equations. Our results include the scalar BI

model with an exponential potential, which was recently proposed as an effective action

for the string theory tachyon in the approximation where high-order spacetime derivatives

of T are truncated. Since the actual string tachyon dynamics contain derivatives of all

orders, the tachyon BI model with an exponential potential becomes inadequate when the

caustics develop because high order spatial derivatives of T become divergent. BI type

tachyon theory with a potential decreasing at large T could have interesting cosmological

applications because the tachyon field rolling towards its ground state at infinity acts as

pressureless dark matter. We find that inhomogeneous cosmological tachyon fluctuations

rapidly grow and develop multiple caustics. Any considerations of the role of the tachyon

field in cosmology will have to involve finding a way to predict the behavior of the field at

and beyond these caustics.
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1. Introduction

In this paper we investigate generic solutions of scalar Born-Infeld field theories of the form

S = −
∫

dDxV (T )
√

1 + α′∂µT∂µT , (1.1)

where T (xµ) is a (dimensionless) scalar field and V (T ) is its potential. The dimensional

parameter α′ has units of mass−2. In string theory Ms = l−1
S = 1/

√
α′ are the fundamental

string mass and length scales. For the remainder of the paper we will work in units where

α′ = 1.

Although this problem has merit by itself, especially as a BI generalization of the

sigma model approach to the effective string theory action [1], the reason to explore this

theory now is related to the rolling tachyon and its application to cosmology. Recently

Sen conjectured [2, 3] that the qualitative dynamics of a string theory tachyon field in

a background of an unstable D-brane system could be approximated with the effective

action (1.1) with V (T ) ∼ e−T .

– 1 –
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However, string theory tachyon calculations are reliable only in the approximation

where derivatives ∇µT are truncated beyond the quadratic order [4]. For instance, the

4D effective field theory action of the tachyon field T on a D3-brane, computed in bosonic

theory around the top of the potential, up to higher derivative terms, is given by [4]

SB = τ3

∫

d4x
√
g
(

α′e−T∂µT∂µT + (1 + T )e−T
)

+O(∂µ∂
µT ) , (1.2)

where τ3 is the brane tension. It is far from clear that the model (1.1) describes actual

tachyon dynamics. Still, this relatively simple formulation of tachyon dynamics (1.1) trig-

gered significant interest in the investigation of the role of tachyons in cosmology [5]–[9] and

in the field theory of tachyons [10]. Even before the recent works on tachyon cosmology, a

model known as “k-inflation” [11], based on the action (1.1), had been considered in cos-

mology in the search for interesting equation of states. Note that the BI model (1.1) with

a constant potential V = 1 and a time-like derivative of the tachyon field (∂µT∂µT < 0) is

equivalent to the Chaplygin gas model that was proposed as a model for both dark matter

and dark energy in the present Universe [12].

In what follows we will continue to call the scalar field T a tachyon field, bearing in

mind that the connection of this field to the actual string theory tachyon is uncertain and

that it might also have application to a broad potential pool of other theories.

Our investigation combines both analytic approximations and “heavy duty” field the-

ory lattice simulations [13], which we adopt here for the theory (1.1). We found that for

BI scalars with runaway potentials V (T ), i.e. potentials for which T → ∞ over time, the

most interesting features of the inhomogeneous solutions of the equations of motion are

the formation of caustics and the folding of the hypersurface T (t, ~x).

In section 2 we consider the equation of motion for the tachyon field in Minkowskii

spacetime in 1+1 dimensions. In this simple situation we are able to clearly show our main

results. (In later sections we will show that these same results apply to 3+1 dimensions and

an expanding universe.) First we consider an exponential potential V (T ) ∼ e−T , and we

assume some initial inhomogeneous realization of the tachyon field T (x). In cosmology this

is usually a realization of a random gaussian field. For theories where α ′ is a fundamental

scale, consistency of the effective field theory action approach requires that the gradients

(in fundamental units) not be large, ∇xT . 1. Assuming initial spatial gradients are not

large, we argue analytically and confirm numerically that after a quick, transient regime, the

equation of motion reduces to a simple first order Hamilton-Jacobi equation that describes

the propagation of free massive wave fronts. We then show that this same approximation

holds for a wide class of runaway potentials.

In section 3 we solve this Hamilton-Jacobi equation exactly using the method of char-

acteristics and find that the solution quickly develops caustics. We suggest a couple of

geometrical techniques to view the time evolution of T during this process. We also solve

the original equation of motion numerically for a realization of a gaussian field and show

the formation of caustics from the regions of small spatial gradients, in agreement with the

results of our approximation.

– 2 –
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In section 4 we extend the results on caustics in the T (t, ~x) field to 3 + 1 dimensions.

The qualitative results are unchanged.

In section 5 we discuss the cosmological implications of our results. The cosmological

applications of a tachyon field T with an exponential potential are two-fold. First, a time

dependent field T with a sufficiently rapidly decreasing potential (T 2V (T )→ 0 at T →∞)

has a pressureless “cold dark matter” equation of state in the late time asymptotics tÀ 1

with its energy density decreasing as ε ∝ a−3, where a(t) is the scale factor of a Friedmann-

Robertson-Walker (FRW) cosmological model of the Universe [3, 6]. If the energy density

of the rolling tachyon becomes dominant, it could be a dark matter candidate. Second,

the tachyon appears in various models of brane inflation. In models with unstable D-

branes or annihilating D and D̄ branes where the unstable tachyon mode has a ground

state at T → ∞, ironically, it is exactly the above property of the tachyon that poses a

problem. Indeed, the energy density of the pressureless tachyon almost always ends up

dominating [8, 9].

A consistent investigation of the tachyon field in cosmology must include spatial inho-

mogeneities. The tachyon potential has a maximum with negative curvature. As it rolls

from this maximum inhomogeneities will be generated from its vacuum fluctuations, as in

the theory of spontaneous symmetry breaking (tachyonic preheating) [14].

The evolution of linear fluctuations of a rolling tachyon in an expanding universe was

considered in [6, 7]. As would be expected, tachyon fluctuations coupled with small metric

fluctuations grow with time due to gravitational instability, just like usual pressureless

matter. However, the linear stage of tachyon fluctuations very quickly changes to a strongly

non-linear stage. In the usual cold dark matter scenario cosmologists understand well the

non-linear bottom-up evolution of gravitational instability. In particular, the theory of

non-linear structure formation includes caustics and multi-streaming of collisionless dark

matter particles. (For CDM, however, early small scale caustic formation is a transient

phenomenon). Many qualitative aspects of this theory can be understood even without

expansion of the universe in the much simpler model of media of cold collisionless particles

with a smooth initial potential velocity field [18]. We shall address a similar problem for

the tachyon model (1.1).

Thus, to pursue tachyon cosmology further, we have to understand the non-linear

evolution of inhomogeneities, i.e. the generic solution of (1.1). In section 5 we write down

the equation of motion for the tachyon field in an expanding universe and recall the results

of [6] regarding linear growth of tachyon fluctuations. We develop an analysis of non-linear

inhomogeneities of the tachyon in an expanding universe. Again, the equation for the

tachyon field is reduced to the covariant form of the Hamilton-Jacobi equation. We argue

that the fully non-linear evolution of tachyon dark matter leads to the formation of caustics

and multi-valued regions beyond them, similar to what we derived in the simpler case of

sections 2–4 without expansion of the universe.

In section 6 we discuss the issue of how to physically interpret the development of

caustics. Formally, caustics border the regions where the solution becomes multi-valued.

The physical interpretation of multi-valued solutions and caustics depends on the scalar

field theory specified by the potential V (T ) and the dimensions of space-time. Second order

– 3 –
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and higher derivatives blow up on caustics. Therefore the action (1.1), which is supposed

to work in the approximation of truncation of high order derivatives , is no longer a valid

approximation to string theory tachyon dynamics once caustics have formed. It is unclear

how to work with multi-valued solutions T in the four dimensional theory derived for a

single-valued effective field T .

Also, the interaction of the scalar BI field with other fields (like the dilaton or gauge

fields in the tachyon case) may be important at caustics. We discuss some of the issues

involved in making such an interpretation, but we do not intend to resolve the question here.

2. Inhomogeneous non-linear tachyon field in 1 + 1 flat spacetime

The field equation derived from (1.1) is

∇µ∇µT − ∇µ∇νT

1 +∇αT∇αT
∇µT ∇νT − V,T

V
= 0 , (2.1)

where ∇µ is a covariant derivative with respect to the metric gµν . The energy momentum

tensor of tachyon matter is

Tµν =
V√

1 +∇αT∇αT
∇µT ∇νT − gµνV

√

1 +∇αT∇αT . (2.2)

For the rest of this section we will consider a tachyon field in 1+1 dimensional Minkowskii

space. We will discuss generalizations of our results to higher dimensions and expanding

universes in later sections.

2.1 The equation of motion

Specializing to 1 + 1 dimensional flat space, equation (2.1) becomes

T̈ =
(

1 + T ′2
)−1

[

(

1− Ṫ 2 + T ′2
)

(

T ′′ − V,T
V

)

+ 2T ′Ṫ Ṫ ′ − T ′2T ′′
]

, (2.3)

where dots and primes indicate time and space derivatives respectively.

First we consider an exponential potential

V (T ) = V0e
−T/T0 , (2.4)

but later we also will discuss other potentials V (T ). We can without loss of generality set

T0 = 1 by appropriate rescalings of spacetime coordinates, which will be measured in units

of T0.

2.2 The free streaming approximation for the exponential potential

For a homogeneous field with T ′ = 0 equation (2.3) can be solved exactly to give

T = ln (cosh(t− t∗)) + T∗ (2.5)

Ṫ = tanh(t− t∗), (2.6)

where t∗ and T∗ give the time at which Ṫ = 0 and the value of T at that time respectively.

Asymptotically Ṫ approaches 1− 2e−2t +O(e−4t) and T (t) ' t+ e−2t +O(e−4t).

– 4 –
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For an inhomogeneous field the situation seems at first glance to be much more compli-

cated. Indeed, equation (2.3) is a non-linear partial differential equation. However, we can

give some general arguments for how the field should behave and then check our conclusions

numerically. Let us assume that the gradients are not large, T ′, T ′′ < 1. Solving equa-

tion (2.3) numerically, we found that the field rapidly approached the state 1− Ṫ 2+T ′2 = 0.

This means that T (t, x) is very close (exponentially in fact) to some auxiliary field that we

denote as S(t, x) and that satisfies the equation

Ṡ2 − S′2 = 1 . (2.7)

Because this combination will appear many times in the analysis that follows we will define

the operator P (T ) ≡ 1− Ṫ 2 + T ′2. Thus, equation (2.3) has an attractor P (T ) = 0. (Note

that if we multiply equation (2.3) by P (T ), then S will be a partial solution of the resulting

equation.)

One way to get a feeling for why the complicated equation (2.3) reduces to the very

simple form (2.7) is the following. Let us rewrite (2.3) without the last two terms in its

r.h.s., and dropping T ′2 in the factor (1 + T ′2). We have

T̈ =
(

1− Ṫ 2 + T ′2
)

(T ′′ + 1) . (2.8)

Assuming T ′′ > −1, this equation rapidly approaches the state P (T ) = 0. Indeed, if

initially P (T ) = (1 − Ṫ 2 + T ′2) > 0, then T̈ > 0 and Ṫ increases, which results in P (T )

asymptotically approaching zero from above. If initially P (T ) < 0 , then T̈ < 0, and P (T )

asymptotically approaches zero from below.

We did not pursue an investigation of precisely how small the initial values of T ′ and

T ′′ need to be for this approximation to be valid; we just assume that in dimensional units

T ′ < l−2
s , T ′′ < l−3

s . However, by using effective field theory we are implicitly assuming

that scales of inhomogeneities are greater than ls, so these inequalities must hold. Also, for

realistic scenarios of tachyon fields in cosmology they are definitely small. Indeed, initially

T ′ ∼ ls
L

Ti
T0
¿ 1, where L is the scale of cosmological ingomogeneities, which is always

expected to be larger than ls.

For applications of the action (1.1) other than string theory, however, one might imag-

ine that α′ À M2
s and thus the initial gradients could in principle be large. We note,

however, that for any initial configuration T (x) for which there are minima there will al-

ways be some neighbourhood around each minimum for which our approximation is valid.

Of course the gradients are also small around the maxima of the field configuration, but

as we will see later it is in regions around the minima where most interesting effects —

caustics — develop.

We have numerically tested a variety of initial conditions and found that for T ′ . 1

the field rapidly asymptotes to P = 0 everywhere. For configurations with large gradients

we have found that P rapidly approaches 0 in the neighbourhood of the extrema of the

initial configuration.

– 5 –
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2.3 The free streaming approximation for other potentials V (T )

The form (2.7) describes the large value asymptotic solution of equation (2.3) without any

trace of the potential V (T ) = V0e
−T/T0 . Therefore it is natural to ask whether this asymp-

totic solution may work for other potentials. To this end we consider runaway potentials

V (T ) where asymptotically T → ∞. Such runaway potentials include V (T ) = e−T
2
and

V (T ) = 1/T 2, which appear in the literature on cosmological tachyon matter [5].1 We

checked numerically that solutions of equation (2.3) with these potentials have large value

asymptotics of T that are described by the equation (2.7). We conjecture that the solu-

tions of all theories (1.1) with non-constant potentials V (T ) that admit runaway evolution

of the scalar field T can be approximated by the solutions of the free wave propagation

equation (2.7). Another words, the solution of (2.7) is an attractor of the equation (2.3).

If the potential V (T ) admits only finite valued evolution of the scalar field T , the

solution (2.7) may or may not appear as an intermediate asymptotic, depending on the

form of the potential V (T ). Certanly, if the potential V (T ) has a minimum at T ∼ T0, the

Hamilton-Jacobi asymptotic solution does not work.

It is interesting to consider the marginal case V (T ) = 1. This case corresponds to the

classical scalar BI theory. Consider a toy model where T describes transversal oscillations

of a light 3 + 1 dimensional brane embedded in five dimensional space-time. This case is

essentially different from the action (1.1) with an exponential potential because the term V ,T

vanishes in the equation of motion. Indeed, the equation of motion of the scalar BI actions

with constant V admit plane wave solutions and their (multi-valued) superpositions. By

proper coordinate transformation, the equation of motion can be reduced to a free scalar

field wave equation that can be solved analytically, see e.g. [15]. In general, this wave

equation has solutions with caustics and multi-valued regions beyond caustics (similar to

that, say, in classical wave optics). We used some of the analytic solutions in [15] to check

our numerical code for the general equation (2.3).2

3. Exact solutions in the free streaming approximation

The advantage of reducing equation (2.3) to the simple form (2.7) is that the latter can

be treated analytically.3 We return to the notation T for the scalar field, assuming it is

decribed now by the equation (2.7). The analytic solution corresponds to free relativistic

massive wave propagation along characteristics. It also admits a simple geometric inter-

pretation of how to construct “wave front” hypersurfaces T (t, x) at any time t directly

from the initial conditions, without step-by-step integration of the wave equation. The

most important feature of the free wave propagation, however, is the formation of caustics,

where higher order gradients of the scalar field such as T ′′ blow up.

1However, below we will see that V (T ) = T−2 is the borderline case for the free streaming approximation

in an expanding Universe in 3 + 1 dimensions.
2Any reader who is interested in the numerical solution for this particular case V = 1 can find movies

illustrating two and more waves scattering at http://cita.utoronto.ca/∼felder/borninfeld. Conser-

vations laws evident in the scattering reflect the large symmetry of the theory with V = 1.
3An independent derivation of this analytic solution was discovered by [16].

– 6 –
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3.1 The solution in characteristics

In this section we will derive the analytic solution of equation (2.7) for the field T (t, x) using

the method of characteristics. This equation has the form of a Hamilton-Jacobi equation

for the action field S, which can be viewed as a hypersurface in the three dimensional

auxiliary space (T, t, x). The initial value is given by the hypersurface T (t0, q), where t0
is the initial time and q is the initial spatial coordinate, x(t0) = q. The parameter q is

often called the lagrangian coordinate, while x is called the Eulerian coordinate. We will

set t0 = 0.

Equation (2.7) can be viewed as a description of the free streaming of massive particles

of mass Ms. The characteristics x(t, q) in this case are trajectories of individual particles

marked by their initial positions q. The vectors that are orthogonal to the family of

hypersurfaces S(t, x) are tangential to the family of characteristics x = x(t, q).

Expressing this particle viewpoint mathematically, the method of characteristics gives

us solutions along a family of curves parametrized by two variables, q —which defines which

curve we are on, and s — an affine parameter along each curve. For initial conditions we

set x(q, 0) = q, t(q, 0) = 0, and T (q, 0) = Ti(q). We then have the characteristic equations

dx

ds
(q, s) = P,T ′ = 2T ′ ; x(q, 0) = q (3.1)

dt

ds
(q, s) = P,Ṫ = −2Ṫ ; t(q, 0) = 0 (3.2)

dT

ds
(q, s) = T ′P,T ′ + Ṫ P,Ṫ = 2T ′2 − 2Ṫ 2 ; T (q, 0) = Ti(q) (3.3)

dT ′

ds
(q, s) = −P,x − T ′P,T = 0 ; T ′(q, 0) = Ti,q (3.4)

dṪ

ds
(q, s) = −P,t − Ṫ P,T = 0 ; Ṫ (q, 0) = ±

√

1 + T 2
i,q . (3.5)

There are two roots for the initial conditions equation for Ṫ because the original differential

equation is expressed in terms of squares and has two branches. The asymptotic behavior

of the tachyon field corresponds to Ṫ > 0, so from here on we will only consider that root.

The equations for T ′ and Ṫ trivially give

T ′(q, s) = Ti,q (3.6)

Ṫ (q, s) =
√

1 + T 2
i,q . (3.7)

Plugging these solutions into the equations for x, t, and T gives

x(q, s) = q + 2sT,q (3.8)

t(q, s) = −2s
√

1 + T 2
i,q (3.9)

T (q, s) = Ti,q − 2s . (3.10)

Although these equations can not be solved in the general case to eliminate both q

and s, it is a simple matter to eliminate the affine parameter s, which gives a parametric

– 7 –
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x

t

Figure 1: Characteristic curves for equation (3.11) with Ti = exp(−q2).

t=0 t=8

Figure 2: Evolution of the field configuration T (t, x) with Ti = exp(−q2).

solution for the field T (x(q, t), t)

x(q, t) = q − Ti,q
√

1 + T 2
i,q

t (3.11)

T (q, t) = Ti(q) +
t

√

1 + T 2
i,q

. (3.12)

The last two equations are the main analytic results of this section.

Figures 1 and 2 illustrate how these formulas work for a particular initial profile of

Ti(q). Note in particular that at the moment when different characteristic curves intersect

the field solution becomes multi-valued. Figure 3 shows deformation and folding of the

initial profile Ti(q) of the realization of one dimensional random gaussian field. We will

have much more to say about this effect.

– 8 –
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x

T

t=0.

x

T

t=400.

Figure 3: Evolution of the field configuration T (x, t) (right) with an initial realization of a random

gaussian field Ti(q) (left).

Note that from equation (3.6) we see that the gradients of the field along each charac-

teristic always remain the same as they are at t = 0,

T ′(x) = Ti,q , (3.13)

only spread out over a different region of space, q → x(t, q). (In the particle picture

each free streaming particle maintains its initial velocity Ṫ = Ṫi =
√

1 + T 2
i,q.) Since not

too large gradients is the condition for equation (2.7) to be a good approximation to the

equation of motion, this result suggests that if this approximation holds at some time t

it will continue to hold for all time. This argument offers an intuitive explanation for the

results of our numerical simulations, namely that this asymptotic regime remains stable.

3.2 Geometrical interpretations

The solution (3.11)-(3.12) represents a mapping of the initial field to the field at any time t

Ti(q)→ T (x, t; q) . (3.14)

Here we suggest two simple geometric constructions for the hypersurface T (x, t; q) at any

time t.

The first construction allows us to draw the deformation of the hypersurface T without

calculating any intermediate steps. Suppose Ti(q) is that hypersurface at the initial moment

t = 0. Consider a circle of radius equal to the time of interest t and insert this circle above

the curve Ti(q), making it tangent to this curve at the point q (without intersection), as

illustrated in figure 4.

At the point of contact the slope of the circle is equal to the derivative Ti,q. It is then

a simple matter to calculate that the coordinates of the center of the circle will be the

Eulerian coordinate x(q, t) and the field value T (x, t), as given by equations (3.11), (3.12).

If we insert circles of the same radius t at all q tangential to Ti,q at each point q, and then

draw a curve through the centers of these circles, we will get the new profile of the field

– 9 –
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x

T

x

T

Figure 4: Use of tangent circles to illustrate the deformation of the hypersurface T (x, t; q).

T (x, t) at any given time. Evidently, T (x, t) is flattening around the maxima of the field

of Ti,q and sharpening around its minima. At some moment tc there will be a situation

where a circle of radius tc is touching the curve Ti,q not in one, but in two points, q1 and

q2. This corresponds to caustic formation. For larger t this construction will decribe the

folding of T (x, t) with cusps, as in figure 3.

Notice that for homogeneous initial conditions Ti(q) =const, this construction with

the circles of radius t just gives the overall linear growth T = t.

Another, complementary geometrical construction is based on drawing the character-

istics in (t, x) coordinates. From each point of the initial profile Ti(q) draw a straight line

with slope

√

1+T 2
i,q

Ti,q
, as illustrated in figure 5. The gradient T ′(x) is propagated unaltered

along each of these characteristics, while the field value along each line evolves according

to equation (3.12).

3.3 Caustics and beyond

In this section we use the results obtained above to derive the behavior of a BI scalar

with a runaway potential, i.e. one for which equation (2.7) is the correct asymptotic.

Consider an initial profile Ti(q). The solution (3.11)–(3.12) tells us that for each point

q the corresponding x value will evolve linearly, as will the corresponding value of T .

Unless Ti,q is the same everywhere these x values will move at different rates and there will

eventually be different values of q, and thus of T , corresponding to the same value of x. In

other words the field will become multi-valued. Another way of describing this behavior is

to note that the characteristic curves along which our solutions are defined will in general

intersect.4 Figure 1 shows the characteristic curves in the (x, t) plane for a toy model initial

configuration Ti(q) = exp(−q2). Figure 5 shows the propagation of characteristics for a

realization of a random gaussian field.

4If T ′′ < 0 throughout all space then no characteristics will ever cross, but this is not a physically

realistic condition.
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x

t

Figure 5: Propagation of characteristics for the realization of initial conditions from figure 3

Since the evolution of T is defined along each of these curves, the regions where they

intersect are regions where this solution is multi-valued. Figure 2 shows the evolution of

the field configuration for the case of figure 1. Correspondingly, figure 3 shows it for the

initial conditions of figure 5. In the terminology of wave front propagation, the front T (t, x)

deforms, and at some points it develops folding and then multi-valued regions.

The caustics are the stable singularities of the mapping (3.14). For our case we can

extend the theory of caustic formation [18]. To see how they develop consider the second

derivative of the field T , calculated from equations (3.11), (3.12)

T ′′(t, x) =
∂T ′(t, x)

∂q

∣

∣

∣

∣

t

∂q

∂x

∣

∣

∣

∣

t

=
Ti,qq

1− Ti,qq

(1+Ti,q)3/2 t
, (3.15)

where in the last step we have used the fact that T ′(x) = Ti,q. At the moment of time tc
and at the critical point qc where the denominator of this equations vanishes, the second

derivative blows up, and a caustic forms. For a given value of q this occurs at

tc =
(1 + T,q(qc))

3/2

T,qq(qc)
. (3.16)

Obviously, the caustics first form at the maximum of the combination
T,qq

(1+T,q)3/2 . From

figure 5 it is easy to see that typically the position of this maximum is well correlated with

the position of the minimum of the initial field profile Ti(q).

For a random gaussian field the typical time of caustic formation can be calculated in

terms of the spectrum (r.m.s. values) of the gaussian field. For simplicity, if L is the typical

length of small scale inhomogeneities, then we can estimate tc ∼ L2/Ti. The statistics of

the caustics are defined by the statistics of the field
Ti,qq

(1+Ti,q)3/2 ≈ Ti,qq. The number density

of caustics per cubic volume will be roughly proportional to O(10−2)L−3.
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It is interesting to note the character of the scalar field folding for the potential V = 1,

where the action (1.1) describes a light brane in extra dimensions. In this model the free

streaming approximation does not work. However, the field equation does admit multi-

valued solutions [15] as well as caustics. In this case a multi-valued field is simply the result

of a poor choice of parametrization. For example a scalar field representing the position of

a brane in a higher dimension might appear to be multi-valued if the brane folds over in

an S shape. A different slicing of the extra dimension, however, will remove this problem.

In the general case of runaway potentials we are considering here, however, the folding is

more serious than that because the field actually crosses itself at points.

Solutions with intersecting characteristic curves — orbit crossing — are common in

cosmology with collisionless matter. We will discuss this in section 5.

4. The tachyon field in flat 3 + 1 dimensions

Although we have been discussing the 1D case for simplicity the same basic results hold in

3 + 1 dimensions, the case relevant for cosmology. In fact all of the results in this section

hold for an arbitrary number of dimension. In flat spacetime the equation of motion (2.1)

reads

T̈
(

1 + (~∇T )2
)

=
(

1− Ṫ 2 + (~∇T )2
)

(

~∇2T − V,T
V

)

+ (4.1)

+ 2(∂j Ṫ )(∂
jT )Ṫ − (∂j∂kT )(∂

jT )(∂kT ) , (4.2)

where dots indicates time derivatives and j and k are spatial indices, (~∇T )2 = ∂jT∂jT .

(We reserve the subscript i for the initial configuration of the field T .)

Again, for runaway potentials the solution to equation (4.1) rapidly approaches an

asymptotic regime where it can be described by the Hamilton-Jacobi equation

Ṫ 2 − ~∇T
2
= 1 , (4.3)

which describes free streaming of the field T (t, ~x).

Solving this equation with the method of characteristics gives essentially the same

answer that we got before, only with the lagrangian parameter q now replaced with a

vector ~q

~x(~q, t) = ~q − ∇~qTi
√

1 + |∇~qTi|2
t (4.4)

T (~q, t) = Ti(~q) +
1

√

1 + |∇~qTi|2
t . (4.5)

As in the 1D case, the position and field value of each initial point move linearly with

a velocity that depends on the initial gradient at that point. Thus different characteristic

curves will once again intersection However, the mapping

Ti(~q)→ T (~x, t; ~q) (4.6)
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has a more rich structures of caustics, which form a network of two-dimensional struc-

tures [18]. The geometrical construction we used above to get the hypersurface T (~x, t; ~q)

without step-by-step integration can be generalized to higher dimensions. In this case we

have to insert an D dimensional hypersphere of radius t, where D is the number of spa-

tial dimensions. We place the hypersphere so that it touches the initial D dimensional

hypersurface Ti(~q) tangentially at each point ~q. (This process is easiest to picture for

D = 2.) The hypersurface T (~x, t; ~q) then will be an envelope of all centers of the inserted

hyperspheres. The caustics will first form when there is a hypersphere of radius tc that

simultaneously touches two points, ~q1 and ~q2. In this case the equation (4.4) has two roots.

However, for D > 1 there will be situations where the hypersphere touches three or more

points ~q. This corresponds to the merging of caustics and the formation of a network.

Let us calculate the second derivatives of the field T , ∇j∇kT . In 3 + 1 dimensions

these derivatives form a three dimensional tensor. At each point it can be diagonalized.

Let (λ1, λ2, λ3) be the eigenvalues of the tensor ∇j∇kT . We also assume the ordering

λ1 > λ2 > λ3. The fields λj(~x, t; ~q) evolve from their initial values λ0j(~q). One can show

that the eigenvalues propagating along the characteristics change with time as

λj(~x, t; ~q) =
λ0j

1− λ0j

(1+Ti,q)3/2 t
. (4.7)

At any given point ~qc a caustic will form at the time

tc =
(1 + Ti,q)

3/2

λ01(~qc)
. (4.8)

The caustics thus first form at the maximum of the combination λ01

(1+Ti,q)3/2 . For a random

three dimensional random gaussian field the typical time of caustic formation can be cal-

culated in terms of its r.m.s. values. The statistics of the caustics are defined by the field

λ01(~q), which is a non-gaussian random field.

In some aspects our results are relativistic generalizations of the non-relativistic prob-

lem of caustic formation [17, 18].

5. The tachyon field in an expanding universe

In this section we will discuss why consideration of the tachyon (or any other scalar) in

cosmology must include consideration of inhomogeneous solutions, and we will show that

for the tachyon field those solutions lead to the formation of caustics and multi-valued

regions. First we will recall some basic results for the background solution with tachyon

matter and for linear gravitational instability in an expanding universe with this tachyon

background [6]. Next we will extend this analysis to the non-linear regime of gravitational

instability.
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5.1 Cosmological background of the rolling tachyon

The equation for a time-dependent homogeneous rolling tachyon in an expanding universe

with a scale factor a(t) follows from (2.1)

T̈

1− Ṫ 2
+ 3

ȧ

a
Ṫ +

V,T
V

= 0 . (5.1)

When rolling tachyon matter dominates in an expanding universe, the equation for the

evolution of the scale factor is

ȧ2

a2
=

8πG

3

V (T )
√

1− Ṫ 2
. (5.2)

For the exponential potential of interest V = V0 e−T/T0 , the homogeneous background

asymptotic solution of equation (5.1) in an expanding universe for tÀ T0 is [6]

T (t) = t+
T0

4

(

a

a0

)6

e−2t/T0 . (5.3)

This solution is valid for arbitrary a(t), not just when the tachyon dominates. For this

solution, the energy density redshifts like ordinary matter

ε =
V (T )

√

1− Ṫ 2
= V0

(a0

a

)3
, (5.4)

while the pressure vanishes

p = −V (T )
√

1− Ṫ 2 = −
(

a

a0

)3 V 2

V0
→ 0 . (5.5)

When the tachyon dominates a(t) = a0t
2/3.

Now we consider the case of a general potential V (T ). Let us write down T (t) =

t+ θ(t), |θ| ¿ t (note that θ̇ < 0). To first order in θ, eq. (5.1) reduces to

θ̈

θ̇
= 2

V ′

V

∣

∣

∣

∣

T=t

+ 6
ȧ

a
. (5.6)

This equation can be integrated and we obtain

θ̇ = −1

2

(

a

a0

)6 V 2

V 2
0

∣

∣

∣

∣

T=t

, 1− Ṫ 2 = 2θ̇ , (5.7)

so the same expressions (5.4) and (5.5) follow for ε and p (with the potential V (T ) estimated

at T = t). Now, the condition |θ| ¿ t requires a3V → 0 as t → ∞. If the tachyon itself

dominates expansion of the Universe, this condition reduces to T 2V (T ) → 0 at T → ∞.

Thus, for this wide class of potentials the tachyon behaves like dust-like matter at late

times.
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5.2 Linear fluctuations in tachyon matter

Next we consider small inhomogeneous perturbations of the tachyon field δT (t, ~x) around

the time-dependent background solution T (t) of equation (5.1):

T (t, ~x) = T (t) + δT (t, ~x) . (5.8)

Small scalar metric perturbations around a FRW background can be written in the longi-

tudinal gauge as

ds2 = − (1 + 2Φ) dt2 + (1− 2Φ) a2 (t) d~x2 . (5.9)

Solving the linearized Einstein equations and linearized tachyon equation of motion, we

find [6] the time evolution of the fluctuations Φ and δT

Φ(t, ~x) = const , δT (t, ~x) = Φ(~x) · t . (5.10)

Linear metric fluctuations are constant, as in the cold dark matter scenario. However, the

fluctuations in the tachyon field grow. The tachyon fluctuations are unstable due to the

effects of gravitational instability in an expanding universe.

The linear approximation for the rolling tachyon/gravity system works only during a

short time interval (of the order of tens of T0). Indeed, let us inspect the energy density

of tachyon matter in the model with the exponential potential not assuming it to be

homogeneous and using the perturbed space-time metric (5.9):

ε =
V0e
−T/T0

√

1− (1− 2Φ)Ṫ 2 + a−2(∇~xT )2
. (5.11)

For fluctuations of δT , we have δT ' Φ(~x) t where Φ(~x) describes the initial spatial

profile of fluctuations. The full tachyon field including fluctuations is T (t, ~x) = t +

(T0/4)(a/a0)
6e−2t/T0 + Φ(~x) t. The numerator of the expression (5.11) vanishes as e−t/T0 ,

while the denominator evolves as (a/a0)
6e−2t/T0 +a−2t2(∇~xΦ)

2. The linear approximation

works during a very short time interval while (∇~xΦ)
2 . e−2t/T0 . When this inequality

breaks, linear analysis becomes insufficient. For cosmological fluctuations Φ ∼ 10−5, the

linear theory for δT is valid during a time interval of order of 10T0.

5.3 Non-linear tachyon inhomogeneities

One can try to use a quasi-linear ansatz for inhomogeneities of T (t, ~x). Non-vanishing

energy density (5.11) for the rolling tachyon with the numerator V ∼ e−t/T0 is achievable

only if the denominator vanishes as e−t/T0 , too. We therefore suggest the following ansatz

for the inhomogeneous tachyon field

T (t, ~x) = t+U(~x, t) + f(~x, t)

(

a

a0

)6

e−2t/T0 , (5.12)

where f(~x, t) and U(~x, t) are two as yet undetermined functions. In the homogeneous case

f(~x, t) =const. We assume that in the inhomogeneous case f(~x, t) remains sub-exponential.
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Notice that the form (5.12) corresponds to a standard procedure for obtaining the non-

relativistic Hamilton-Jacobi equation. Indeed, the effective 4-velocity of tachyon matter is

defined as

uµ = − ∇µT

(−∇αT∇αT )1/2
(5.13)

In the quasi-linear approximation, where the 3-velocity of tachyon matter is small compared

to the speed of light c = 1, so that u0 = −u0 → 1 for t→∞, we have

uµ ≈ −∇µT . (5.14)

The most interesting part of the expression (5.12) is the term containing the function

U(~x, t), which survives in late time asymptotics. To see the effect of this term, we substi-

tute the form (5.12) in the Einstein equations. We further assume that the gravitational

potential is still linear (as in the usual theory of gravitational instability with ordinary

matter), while inhomogeneities in tachyon field are not. Then from the Einstein equations,

where we keep the gravitational potential linearized, we derive

U̇ − 1

2a2
(∇~xU)2 = Φ . (5.15)

This equation is supplemented by the Poisson equation for the gravitational potential,

∇2
~xΦ = 4πGa2(ε(t, ~x)− ε̄(t)) , (5.16)

which, however, we will not use here. In the linear regime this equation gives us back the

right linear expression δT = U = Φt. Equation (5.15) is similar to the cosmic Bernoulli

equation for dust-like matter with U being a (minus) scalar velocity potential for the

effective 3-velocity of tachyon matter.

It is easy to recognize that eq. (5.15) comes from the covariant form of the Hamilton-

Jacobi equation

gµν∂µS ∂νS = 1 . (5.17)

Indeed, for the metric (5.9) we have g00 = −(1 − 2Φ), gij = 1
a2 (1 + 2Φ)δij . Substituting

these in (5.17), we get

(1− 2Φ)

(

∂S

∂t

)2

− 1

a2
(1 + 2Φ) (∇~xS)

2 = 1 . (5.18)

For a linear gravitational potential Φ we have

Ṡ2 − 1

a2
(∇~xS)

2 = 1 + 2Φ . (5.19)

The form (5.12) for S, S ≈ t+ U , immediately leads to equation (5.15) for U .

This suggest that we can go even further beyond the quasi-linear ansatz (5.12) to a fully

non-linear, covariant free streaming approximation (5.17). Equation (5.19) describes free

wave front propagation in a gravitational field described by the gravitational potential Φ.
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Equation (5.17) describes this propagation in a general curved space time. The common

feature of the wave front propagation in all these settings is the formation of caustics, which

occurs similarly to how we described it in the previous sections.

In application to tachyon cosmology, we can continue to use the geometrical techniques

we developed for flat spacetime. However, in the cosmological problem the initial hyper-

surface of T (~q) is defined by the linear stage of gravitational instability and is given by the

initial profile of the scalar metric perturbations, T (~q) = Φ(~q)t0, where t0 is some initial time

moment. Therefore the timing of appearance and statistics of caustics are defined by the

scales, amplitude and statistics of the initial metric perturbations Φ(~q), as in the problem

of gravitational clustering in the standard cold dark matter scenario. We expect caustics in

the tachyon matter to form around the moment of equilibrium zeq between radiation and

matter, when inhomogeneities start growing in the matter dominated regime. The density

of caustics will be defined by the minimal scale of the cosmological fluctuations, say, 1 mm

(in present day scales).

Caustics in the theory of cosmological gravitational instability are common for models

with cold collisionless matter. In the theory of the large scale structure of the universe

they are described by the famous Zel’dovich approximation [17]. The theory of caustics in

pressureless media has been well developed [18] and includes many dynamical and statistical

aspects [19] and geometrical techniques for constructing the mapping q → x(q, t) [20]. The

principal difference, however, is that for media of particles the physics is well defined

beyond the caustics, while here we are dealing with a non-linear scalar field whose action

is ill-defined in the multi-valued regime. Another important difference is that caustics in

media correspond to infinite values of mass density, while it is not clear whether the energy

density ε will be singular at caustics in the case of a BI scalar field.

6. Conclusion

We considered field theory with the action (1.1). At first glance the equation of motion

for the evolution of the non-linear inhomogeneous field T (t, ~x) looks very complicated.

Remarkably, we found that in flat spacetime for several examples of runaway potentials

V (T ) with the ground state at infinity, generic solutions of the theory (1.1) very quickly

approach an asymptotic form T (t, ~x)→ S(t, ~x), which obeys the Hamilton-Jacobi equation

Ṡ2 − (~∇~xS)
2 = 1 . (6.1)

Considering an example of the theory (1.1) in an expanding universe with small metric

perturbations, we found that in this more complicated case the equation of the tachyon

is again very well approximated by the solution of the covariantly generalized Hamilton-

Jacobi equation

gµν
∂S

∂xµ
∂S

∂xν
= 1 . (6.2)

We conjecture that the solution S of the Hamilton-Jacobi equation (6.2) is an attractor

for the equation of motions of the theory (1.1) with a runaway potentail V (T ). It will be

interesting to check if this conjecture can be extended to other non-trivial geometries gµν
and how it depends on V (T ).
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Another question we would like to address is the character of convergency of the so-

lution of the actual tachyon equation to the approximated function S which obeys (6.2).

Generalizing the convergence of the homogeneous runaway tachyon solution, we may sug-

gest the asymptotic expansion

T = S + f1 e
−S + f2 e

−2S + . . . , (6.3)

where f1, f2, . . . are non-exponential functions of t and x. The functions f1, f2, . . . can

be important, when we address the issue about the value of energy density at caus-

tics.

The most important finding of our study is that generic solutions of theory (1.1) with

a runaway potential contain caustics and multi-valued regions of T . The interpretation of

the multi-valued field T may depend on the potential V (T ) and the dimensionality D of the

theory. However, the meaning of the multi-valued solutions in an effective four dimensional

theory with a runaway potential is not clear to us.

The model (1.1) can be used as an approximation to the string theory tachyon when

higher order derivatives can be neglected

S = −
∫

d4x
√−gV (T )

√

1 + α′∇µT∇µT +O(∇µ∇µT ) . (6.4)

We found, however, that the generic solution of the equations where we keep only low order

gradients is not consistent because at the caustics second and higher derivatives blow up.

Therefore the simple theory (1.1) does not work for the string theory tachyon. As a result,

at this point, we can say little about cosmological applications of the tachyon.

The situation is different for the theory (6.4) with the potential V (T ) which has a

ground state at finite T . In this case caustics may not develop. However, in this case, as

was shown in [6], the tachyon field model (1.1) describes neither non-relativistic cold dark

matter nor dark energy in the present Universe.

Another aspect that should be included in a comprehensive analysis of the tachyon

is its interaction with the dilaton field, gauge fields and others [1]. It will be interesting

to see if the interaction is especially important on caustics or if the backreaction of such

interactions may even affect their formation.
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[11] C. Armendáriz-Picón, T. Damour and V. Mukhanov, k-inflation, Phys. Lett. B 458 (1999)

209 [hep-th/9904075].

[12] A.Y. Kamenshchik, U. Moschella and V. Pasquier, An alternative to quintessence, Phys. Lett.

B 511 (2001) 265 [gr-qc/0103004];
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