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Cosmology with negative potentials

Gary Felder,1 Andrei Frolov,1 Lev Kofman,1 and Andrei Linde2
1CITA, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 3H8

2Department of Physics, Stanford University, Stanford, California 94305
~Received 15 February 2002; published 2 July 2002!

We investigate cosmological evolution in models where the effective potentialV(f) may become negative

for some values of the fieldf. Phase portraits of such theories in the space of variables (f,ḟ,H) have several
qualitatively new features as compared with phase portraits in the theories withV(f).0. Cosmological
evolution in models with potentials with a ‘‘stable’’ minimum atV(f),0 is similar in some respects to the
evolution in models with potentials unbounded from below. Instead of reaching an AdS regime dominated by
the negative vacuum energy, the universe reaches a turning point where its energy density vanishes, and then
it contracts to a singularity with properties that are practically independent ofV(f). We apply our methods to
investigation of the recently proposed cyclic universe scenario. We show that in addition to the singularity
problem there are other problems that need to be resolved in order to realize a cyclic regime in this scenario.
We propose several modifications of this scenario and conclude that the best way to improve it is to add a usual
stage of inflation after the singularity and use that inflationary stage to generate perturbations in the standard
way.

DOI: 10.1103/PhysRevD.66.023507 PACS number~s!: 98.80.Cq, 04.65.1e, 11.25.2w

I. INTRODUCTION

Since the invention of inflationary cosmology@1–5#, the
theory of the evolution of scalar fields in an expanding uni-
verse has been investigated quite extensively, both at the
classical and the quantum level. While many features of sca-
lar field cosmology are well understood, the overall picture
remains somewhat incomplete. In this paper we will extend
the investigation of scalar field cosmology to models with
negative effective potentials. We are also going to bring to-
gether several other issues, such as the impact of radiation
and particle production on the onset of inflation. This will
allow us to get a better understanding of various possibilities
that may appear in scalar field cosmology.

We are going to use a general approach based on the
investigation of 3D phase portraits that show the behavior of
the scalar fieldf, its velocity ḟ, and the Hubble constant
H5ȧ/a. We will see that the phase portraits of models with
V(f).0 and withV(f),0 are qualitatively different and
that additional changes appear when one adds matter and/or
radiation.

There are several reasons to study cosmology with nega-
tive potentials. The first one is related to the cosmological
constant problem. The simplest potential used in inflationary
cosmology isV(f)5 1

2 m2f2 @4#. One can add to this poten-
tial a small cosmological constantV0 without changing any
features of inflation. A small positiveV0;102120 ~in Planck
units! would be sufficient to describe the present acceleration
of the universe in a de Sitter–like state. But why shouldV0
be so small and positive? What would happen forV0,0?
Does the post-inflationary universe withV0,0 behave like
anti–de Sitter space, which is so popular in M theory?

Rather unexpectedly, the answer to this question appears
to be negative: After a long stage of inflation the universe
with V0,0 cannot approach an AdS regime; instead of that
it collapses@6–8#. In this paper we will study cosmological

behavior in a large class of theories with negative potentials
and explain why the universe in these theories stops expand-
ing and eventually collapses.

Another reason to study theories with negative potentials
is provided by the investigation of cosmology inN52,4,8
gauged supergravity. Recently it was found that in all known
versions of these theories potentials with extrema atV(f)
.0 are unbounded from below. Despite this fact, such mod-
els can, under certain conditions, describe the present stage
of acceleration of the universe@7,8#.

One more reason is related to a formal connection with
warp factor or bulk scalar dynamics in brane cosmology. It
has recently been shown that the equations for the warp fac-
tor and scalar field in brane cosmology with a scalar field
potentialV(f) are similar to the equations for the scale fac-
tor and scalar field in 4D cosmology with the opposite po-
tential 2V(f) @9#. This reveals an interesting relation of
cosmology with negative potentials and warp geometry with
positive potentials.

Finally, cosmology with a negative potentialV(f) is the
basis of the recently proposed ‘‘cyclic universe’’ model@10#
based in part on the ekpyrotic scenario@11#. However, unlike
in the ekpyrotic scenario@11#, the authors of@10# assume, in
accordance with@13#, that the scalar field potentialV(f) at
largef is positive and nearly constant. As a result, the uni-
verse experiences ‘‘superluminal expansion’’~inflation! that
helps to solve some of the cosmological problems. In this
sense cyclic scenario, unlike the ekpyrotic scenario of Ref.
@11#, is a specific version of inflationary theory rather than an
alternative to inflation@12#. Then the scalar field rolls to a
minimum of its effective potential withV(f),0, the uni-
verse contracts to a singularity, reemerges and again enters a
stage of inflation. This scenario inherits many unsolved prob-
lems of the ekpyrotic model@13#, including the singularity
problem@14#. The authors assume that the universe can pass
through the singularity and that one can use perturbation
theory and specific matching conditions at the singularity to
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calculate density perturbations in the post-big-bang universe
generated by processes prior to the singularity@15#. This
issue is rather controversial@16#. The possibility of achieving
a cyclic regime depends on various assumptions concerning
the creation of matter and the acceleration of the scalar field
during the big bang.

The idea that the big bang is not the beginning of the
universe but a point of a phase transition is quite interesting,
see e.g.@17–23#. However, the more assumptions about the
singularity one needs to make, the less trustworthy are the
conclusions. In this respect, inflationary theory provides us
with a unique possibility to construct a theory largely inde-
pendent of any assumptions about the initial singularity. Ac-
cording to this theory, the structure of the observable part of
the universe is determined by processes at the last stages of
inflation, at densities much smaller than the Planck density.
As a result, observational data practically do not depend on
the unknown initial conditions in the early universe.

Since the cyclic scenario does require repeated periods of
inflation anyway, it would be nice to avoid the vulnerability
of this scenario with respect to the unknown physics at the
singularity by placing the stage of inflation before the stage
of large scale structure formation rather than after it.

In order to achieve this goal we will examine the condi-
tions that are necessary for the existence of the cyclic regime
in the model of Ref.@10# and then check whether the model
can be modified in a way that would not require various
speculations about the behavior of matter, the scalar field,
and density perturbations near the singularity.

Our paper will thus consist of two parts. The first part will
contain a general study of scalar field cosmology with posi-
tive and negative potentials. The second part will be devoted
to a more speculative subject, it will include application of
our general results to the cyclic scenario.

In Sec. II we will describe several basic regimes that are
possible in scalar field cosmology: the universe can be domi-
nated by potential energy, by kinetic energy, by the energy
density of an oscillating scalar field, or by matter or radia-
tion. The discussion of these four distinct regimes will help
us to understand the phase portraits of the universe that we
are going to draw in the subsequent sections.

Section III will describe the use of phase portraits for
studying cosmological evolution. We will write the evolution
equations for the field and scale factor in the form of three
first order equations plus one time dependent constraint. The
solutions to these equations can then be represented as tra-
jectories in phase space, clearly showing the possible ways
the universe can evolve in different situations. Finally, by
using a Poincare´ projection we can map the entire phase
space onto a finite sphere, thus allowing the complete set of
possible trajectories to be easily seen.

In Sec. IV we will apply these methods to models with
positive definite potentials. Such potentials have been exten-
sively studied before with the use of phase portraits@24,25#.
We study them here partly to introduce the methods we are
using and to provide a point of comparison for the negative
potentials of the following section. We also present some
new results concerning the effects of matter and radiation on
the development of inflation.

In Sec. V we show the phase portraits for a model where
the effective potential can become negative. We discuss gen-
eral properties of such models, and in particular the ways in
which they differ from the models of the previous section.
One of our major conclusions is that such models generically
enter a stage of contraction. In Sec. VI we will examine in
detail the transition from expansion to contraction in models
of this type.

Many of the features of scalar field cosmology that we are
going to discuss are model independent. The phase portraits
in Secs. IV–VI all use the simplest modelV(f)5m2f2/2
1V0, but in Sec. VII we discuss some other theories with
negative potentials.

In Sec. VIII we will discuss cosmological evolution near
the initial and final singularities, and in particular the role of
particle production and anisotropy near the singularity.

In Sec. IX we will apply our methods to the investigation
of the cyclic scenario. As we will see, the cyclic regime in
this scenario does not appear automatically. One should fine-
tune the potentialV(f) and learn how to work with the
super-Planckian potentialsuV(f)u.1. One should also intro-
duce superheavy particles with specific properties, study
their production at the singularity, and make sure that they do
not affect the present stage of the evolution of the universe.
This adds new ‘‘epicycles’’ to this scenario, making it even
more speculative. We discuss several possible modifications
of this scenario and conclude that the best way to improve it
is to add a usual stage of inflation before the stage of large
scale structure formation. This modification resolves many
problems of the original version of the cyclic scenario. In
this modified form of the cyclic scenario, inflation is once
again the source of density perturbations as well as the reso-
lution of the cosmological problems such as homogeneity
and flatness.

Section X summarizes our main conclusions concerning
cosmology with negative potentials and cyclic universe.

II. FOUR BASIC REGIMES IN SCALAR FIELD
COSMOLOGY

A. A toy model with V„f…Ä 1
2 m2f2¿V0

We will study the behavior of a homogeneous scalar field
in a Friedmann universe with the metric

ds252dt21a2~ t !ds3
2 , ~1!

whereds3
25g i j dxidxj is the metric of a 3D space with con-

stant curvature,k50,61.
In this paper we will use a system of units in whichM p

51, where M p5(8pG)21/2;231018 GeV. The Fried-
mann equation for a scalar field with potential energy density
V(f) is

H25S ȧ

a
D 2

5
1

3
r2

k

a25
1

3 S 1

2
ḟ21V~f!1raD2

k

a2 . ~2!

Here r is the total energy density andra is the density of
matter with equation of statepa5ara . For nonrelativistic
mattera50, while for radiationa51/3.
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The evolution ofH is given by a combination of the Ein-
stein equations

Ḣ52
1

2
~r1p!1

k

a2 52
1

2
„ḟ21ra~11a!…1

k

a2 . ~3!

Alternatively, one can use the equation

ä

a
52

1

6
~r13p!5

1

3
„V~f!2ḟ2

…2
1

6
ra~113a!. ~4!

The evolution of the scalar fieldf follows from the Einstein
equations,

f̈13Hḟ1V,f50. ~5!

We shall study the basic properties of a 4D scalar field
cosmology using as an example the simplest harmonic oscil-
lator potential

V~f!5
1

2
m2f21V0 . ~6!

~For investigation of 5D brane cosmology with similar po-
tentials see@26# and references therein.! Surprisingly, we will
find that cosmology with the potential~6! with V0,0 shares
some common features with the cosmology of the ‘‘inverse’’
harmonic oscillator potential

V~f!52
1

2
m2f22V0 . ~7!

In particular, the expansion of the universe in theories with
V0,0 always turns into cosmological contraction.

Constructing phase portraits is a powerful method for in-
vestigating the dynamics of the scale factor or scalar field
system~3!–~5!. Before we look at the phase portraits for
various values ofV0 in this model, it will be useful to discuss
some of their features. For the remainder of this section we
will considerk50, i.e. flat universes. While this case will be
the main focus of our discussion throughout the paper, we
will in several cases refer to the extension of our results to
open or closed universes as well.

There are four basic regimes that we may encounter: the
universe can be dominated by the potential energy density
V(f), by the kinetic energy densityḟ2/2, by the energy
density of an oscillating scalar field, in which caseV(f)
;ḟ2/2, or by matter or radiationra .

B. The inflationary regime: Energy density dominated
by V„f…

Inflation occurs when the energy density is dominated by
V(f). In this caseḟ2/2,ra!V(f) and uf̈u!u3Hḟu. This
corresponds to the vacuum-like equation of state

p52r. ~8!

The equations fora andf in this regime have the following
form:

H25S ȧ

a
D 2

5
m2f2

6
1

V0

3
, ~9!

3
ȧ

a
ḟ1m2f50. ~10!

The solutions of the equations forf(t) anda(t) for the most
interesting casem2f2/2@uV0u are given by@4,27#

f~ t !5f02A2

3
mt, ~11!

a~ t !5a0expS f0
22f2~ t !

4 D . ~12!

These solutions, which describe inflationary expansion, are
valid only for ḟ2/2!V(f), which implies that inflation ends
at

ufeu;1. ~13!

In this paper we will assume thatm2@uV0u, in which case
m2f2/2@uV0u is always satisfied during inflation.

Note that the same solution is valid if one reverses the
time arrow,t→2t, in which case it describes a quasiexpo-
nential contraction of the universe~deflation!.

C. The kinetic regime: Energy density dominated byḟ2Õ2

Another important regime occurs when the energy density
is dominated byḟ2/2. In this caseV(f),ra!ḟ2/2 and
uf̈u,u3Hḟu@m2f. This corresponds to the ‘‘stiff’’ equation
of state

p5r. ~14!

The equations fora andf are

H25S ȧ

a
D 2

5
ḟ2

6
, ~15!

f̈

ḟ
523

ȧ

a
. ~16!

The solutions can be written as follows:

a~ t !5t1/3, ~17!

f5f06A2

3
ln

t0

t
;

ḟ2

2
5

1

3t2 . ~18!

These solutions can describe an expanding universe or a uni-
verse collapsing towards a singularity.

During the expansion of the universe, the inflationary re-
gime V(f)@ḟ2/2 represents a stable intermediate
asymptotic attractor. Even if a flat universe begins in a state
with ḟ2/2@V(f), it typically rapidly switches to an infla-
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tionary regime withV(f)@ḟ2/2 @24,25,28#. This occurs be-
cause during the expansion of the universe withḟ2/2
@V(f), the value of the kinetic energy drops down liket22,
whereas the field changes only logarithmically. Therefore for
all power-law potentials, the value ofV(f) decreases much
more slowly thanḟ2/2. When it becomes greater thanḟ2/2,
inflation begins.

During the collapse of the universe, the opposite occurs.
V(f) grows only logarithmically, whereasḟ2/2 diverges as
t22, where t is the time remaining before the big crunch
singularity. This means that the regimeḟ2/2@V(f) generi-
cally occurs at the stage of collapse. In this regime one can
neglectV(f) in the investigation of the singularity att→0.

D. The oscillatory regime: Evolution determined by the energy
density of an oscillating scalar field

Now let us assume that the fieldf oscillates nearf50
with frequency much greater thanH, and that the average
value ofV(f) during these oscillations is much greater than
V05V(0). In this case one can neglect the term 3Hḟ in Eq.
~5!, so that in the first approximation one simply has

f̈1m2f50 ~19!

and

f5F sinmt. ~20!

Here F is the amplitude of the oscillation. The pressurep

5ḟ2/22V(f) produced by these oscillations is given by
(m2/2)F2cos 2mt, so if one takes an average over many os-
cillations, the pressure vanishes,p'0. The universe in this
regime expands asa;t2/3. Since the total energy of pressure-
less matter is conserved, the amplitude of the oscillations
decreases,F(t);a23/2;t21.

The regime of oscillations usually begins after the end of
inflation, atf&1. As long as one can neglectV0, the field
oscillations after inflation approach the following asymptotic
regime@29#:

f~ t !'2A 2

A3
mt sinmt'A 2

pA3
N sinmt. ~21!

Here t is the time after the end of inflation andN is the
number of oscillations.

It is amazing that this simple model withV0.0 can de-
scribe not only chaotic inflation in the early universe@4# and
the stage of self-reproduction of the universe@30#, but also
the present stage of inflation or acceleration. Indeed, when
the amplitude becomes very small the termV0 will become
important, and the universe enters a second stage of inflation
with H25V0/3. The amplitude of oscillations of the fieldf
in this regime falls down exponentially. In particular, for
m2@H2 the amplitude decreases ase23Ht/2. The evolution of
the scalar field and the scale factor in the theory withV0
.0 is shown in Fig. 1.

Note that in the casem2!V0/3 the stages of inflation at
largef and at smallf overlap. However, ifm2@V0/3 (V0
&102120 in Planck units, as suggested by the observational
data!, these two stages occur separately, see Fig. 1. In this
case we have a stage of self-reproduction of inflationary uni-
verse at very largef ~at f.m21/2@1), then a regular stage
of inflation without self-reproduction at smallerf. This stage
ends atf&1, and the field begins to oscillate. Eventually we
have a late-time stage of inflation when the fieldf relaxes at
f50.

If one considers the model withV0,0, a dramatic change
occurs when the energy density of oscillations~and matter!
gradually decreases and becomes comparable to2V0. Ac-
cording to Eqs.~2! and ~3!, the expansion of the universe
slows down at that time, and eventually the universe begins
collapsing; see Fig. 2.

When the universe contracts, the amplitude of oscillations
grows asa23/2. However, this process does not continue too
long. Indeed, let us compare 3Hḟ andm2f in this regime. If
one can neglectV0 ~and this is always the case for a suffi-
ciently largeF), one hasH'mF/A6 and ḟ;mf. There-
fore one hasu3Hḟu@um2fu for f@1, so instead of Eq.~20!
one should use Eq.~16!. Thus, during the collapse of the
universe the stage of oscillations ends and the regime domi-
nated by kinetic energy begins at

FIG. 1. Evolution of the scalar field and the scale factor in the modelV(f)5(m2/2)f21V0 with V0.0. In the beginning we have a
stage of inflation with the fieldf linearly decreasing atf.1. At this stage the equation of state isp'2r. Then the field enters a stage of
oscillations with a gradually decreasing amplitude of the field;p!r. When the energy of the oscillations becomes smaller thanV0, the
universe enters a second stage of inflation.
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ufbu;1. ~22!

Note thatufbu;ufeu, see Eq.~13!.
We will study the switch from expansion to contraction in

a flat universe in a much more detailed way in Sec. VI.
However, we would like to make here some comments con-
cerning this process.

The general textbook wisdom is that open and flat uni-
verses expand forever, whereas closed universes eventually
collapse. This lore was based on investigation of universes
with vanishing cosmological constants. A closed universe
with a sufficiently large positive cosmological constant may
expand forever, whereas open and flat universes with a nega-
tive cosmological constant eventually collapse.

One of the well-known solutions of this type is an open
universe with a negative vacuum energyV0. There is a solu-
tion to the Friedmann equationH22a225V0/3 for V0,0:
a(t)5A3/uV0u sinAuV0u/3t. This is a specific section of
anti–de Sitter space, which is popular in M theory and brane
cosmology. This universe has a coordinate singularity att
5pA3/uV0u. Naively, one might think that this is exactly
what we have found in our investigation of universes with
V0,0, namely that when the energy density of matter in an
expanding universe decreases and the total energy density
becomes dominated by a negative cosmological constant, our
universe reaches an AdS regime dominated by a negative
cosmological constant.

However, this is not the case. We discuss here a flat uni-
verse regime, which appears after a long stage of inflation. In
this case~unless one considers open inflation models with
V,1) the termk/a2 with k561,0 can be omitted in the
general Friedmann equation. The Friedmann equationH2

5r/3 describing a flat universe does not have any solutions
with r(f),0. Once the universe approaches the turning
point where the total energy density vanishes it begins col-
lapsing, and the total energy density becomes positive again
@6–8#. Thus the standard inflationary predictionV51 im-
plies that we cannot live in AdS space dominated by a nega-
tive cosmological constant@7,8#.

E. Evolution determined by the energy density
of matter or radiation

The first models of inflation were based on the assump-
tion that the universe from the very beginning was in a state
of thermal equilibrium; inflation began when the temperature
of the universe became much smaller than the Planck tem-
peratureT;M p @2,3#. Later it was found that this assump-
tion is not necessary, and in many models inflation may start
immediately after the big bang@4#. In this case the existence
of matter prior to inflation becomes less important, and
sometimes it even hampers the development of inflation@27#.
Therefore many works on initial conditions for inflation ne-
glect the possible impact of matter on the motion of the
scalar field and concentrate on finding self-consistent cosmo-
logical solutions describing scalar fields in otherwise empty
universes. This is the simplest approach, especially in cases

where ḟ2/2!V(f) and inflation begins immediately after
the big bang.

However, in some cases the scalar field initially may have
large kinetic energy,ḟ2/2@V(f). Moreover, one may ex-
pect creation of relativistic or nonrelativistic particles near
the singularity. Note that the existence of even a small
amount of matter may have an important effect on the mo-
tion of the field. Indeed, the kinetic energy of the scalar field
ḟ2/2 in the regimeḟ2/2@V(f) decreases asa26. Mean-
while, the density of radiation decreases asa24 and the den-
sity of nonrelativistic matter decreases asa23. Therefore the
energy density of matter eventually becomes greater than
ḟ2/2. As we will see, once it occurs, the field rapidly slows
down or even completely freezes. This effect may provide
good initial conditions for a subsequent stage of inflation
@31#.

Indeed, let us assume that in the beginning the fieldf

moves very fast, so thatu3Hḟu@uV,fu5um2fu. Suppose,
however, that at some moment the energy density of the
universe becomes dominated by matter with the equation of
statepa5ara . In this regime one can represent the cosmo-
logical evolution in the following form@27#:

FIG. 2. Evolution of the scalar field and the scale factor in the modelV(f)5(m2/2)f21V0 with V0,0. In the beginning we have a
stage of inflation with the fieldf linearly decreasing atf.1. At this stage the equation of state isp'2r. Then the field enters a stage of
oscillations with a gradually decreasing amplitude of the field;p!r. When the energy of the oscillations becomes equal touV0u, the universe
stops expanding and begins to contract. At this stage the amplitude of oscillations grows. When it becomes greater thanO(1), thefield stops
oscillating, the energy density is dominated by the kinetic energy of the scalar field,p'r, and the universe collapses.
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ra5ra~ t0!S a~ t !

a0
D 23(11a)

,

a~ t !5a0S t

t0
D 2/3(11a)

,

H5
2

3~11a!t
,

ḟ5ḟ0

a0
3

a3 5ḟ0S t0

t D 2/(11a)

. ~23!

This regime has a very interesting feature: Even if it contin-
ues for an indefinitely long time, the change of the fieldf
during this time remains quite limited. Indeed,

Df<E
t0

`

ḟdt5ḟ0E
t0

`S t0

t D 2/(11a)

dt5
11a

12a
ḟ0t0 .

~24!

If t0 is the very beginning of matter domination (ḟ0
2/2

;ra), thenḟ0t0;2/A3(11a)5O(1). Therefore

Df&1 ~25!

in Planck units~i.e.Df&M p). This means, in particular, that
a free fieldf in a matter dominated universe cannot move by
more thanO(M p).

This simple result has important implications. In particu-
lar, if the motion of the field in a matter-dominated universe

begins atufu@1, then it can move only byDf&1. There-
fore in theories with flat potentials the field always remains
frozen atufu@1.

The field begins moving again only when the Hubble con-
stant decreases andu3Hḟu becomes comparable touV,fu.
But in this case the condition 3Hḟ'uV,fu automatically
leads to inflation in the theorym2f2/21V0 for uV0u,m2 and
f@1.

This means that even a small amount of matter or radia-
tion may increase the chances of reaching a stage of infla-
tion, see@31# and Fig. 5 in Sec. V. Indeed, consider any
theory withV(f);fn. Suppose in the beginning we had a
kinetic energy dominated regimeḟ2/2@ra ,V(f) starting at
f@1. Then the fieldf would change very slowly, whereas
ḟ2/2 would rapidly drop down until it became comparable
either toV(f) or to ra . If at that momentV(f).ra , in-
flation would begin immediately. But even in the most unfa-
vorable caseV(f)!ra inflation would begin eventually. In-
deed, at f@1 one has the double inequalitym25V9
!V(f)!ra;H2. Therefore the Hubble constant is much
greater than the effective scalar field mass. In this case the
field practically does not move until the desirable regime
V(f).ra is reached and inflation begins.

III. PHASE PORTRAITS AND COSMOLOGICAL
EVOLUTION

Having discussed some important limiting regimes in sca-
lar field cosmology, we are now ready to investigate the
complete evolution of a Friedmann universe with a scalar
field. Later we will discuss the effects of adding matter to
this system, but for now we restrict ourselves to a system
with three independent variables,f, ḟ, andH. To study this
system we find it most convenient to rewrite the evolution
equations fora and f as a set of three coupled, first-order,
differential equations:

FIG. 3. Phase portrait for the theoryV(f)5
1
2 m2f21V0 with

V0.0 in rescaled coordinates (f,ḟ,H). The branches describing
stages of expansion and contraction~upper and lower parts of the
hyperboloid! are disconnected.

FIG. 4. Projection of the upper branch of the full phase portrait
for the theoryV(f)5

1
2 m2f21V0 with V0.0 in rescaled coordi-

nates (f,ḟ).
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df

dt
5ḟ ~26!

dḟ

dt
523Hḟ2V,f ~27!

dH

dt
52

1

3
~ḟ22V!2H2 ~28!

plus the constraint equation

H22
1

6
ḟ22

1

3
V52

k

a2 . ~29!

All solutions to these three equations can be represented
as trajectories in the 3D phase space off, ḟ, andH. Simply
looking at plots showing a number of these trajectories can
help give some intuition for the cosmology of a particular
model~as defined by the potentialV). There are a number of
ways to get more information out of the phase portraits, how-
ever.

One important step is to determine all of the critical
points, i.e. the points for which the derivatives of all three
phase variables vanish. There are finite and infinite critical
points. Every trajectory must begin and end at these critical
points.

To find infinite critical points and visualize the flow of
trajectories at infinity, a useful trick is to do a Poincare´ map-
ping

xP[
x

11r
, ~30!

where x is any of (f, ḟ, H) and r 25f21ḟ21H2. The
interior of the unit spherefP

2 1ḟP
2 1HP

2 51 maps to the in-

finite phase space off, ḟ, andH, so by plotting trajectories
in these new coordinates the entire phase space can be easily
visualized. At times in this paper we will plot a 2D phase
portrait, e.g. in the variablesf andḟ only. In these cases we
use a 2D Poincare´ mapping wherer 25f21ḟ2.

With the Poincare´ mapping it is possible to identify a set
of infinite critical points, namely those that occur on the
bounding spherefP

2 1ḟP
2 1HP

2 51. These points represent
the possible starting and ending points for all trajectories that
go off to infinity in the usual coordinates.

Because no two trajectories can ever cross in phase space,
it is easy to define the behavior of a system whose phase
portrait is two dimensional. Fortunately, for the cosmological
systems we are considering we can identify a 2D surface that
separates different regions of the 3D phase space. For the flat
universek50 the constraint equation~29! defines a 2D sur-
face. All trajectories in this case are located at this surface,
i.e. the phase portrait for the flat universe is two dimensional.
This surface in turn divides the phase space into three sepa-
rate regions~including the surface itself! representing the
possible types of curvature. No trajectory can pass from one
of these regions to another. Although the location of the finite

critical points for a given model depends strongly onV, the
structure of the infinite critical points is very similar across a
wide range of potentials. See@9# for recent discussion.

IV. COSMOLOGY WITH A NON-NEGATIVE POTENTIAL

As a simple example we consider the modelV(f)5V0
1 1

2 m2f2 discussed in Sec. II A. By rescaling the field and
time variables the massm can be eliminated from the equa-
tions, so for simplicity we simply setm51 in what follows.
Thus the evolution and constraint equations become

df

dt
5ḟ ~31!

dḟ

dt
523ḟH2f ~32!

dH

dt
52

1

3
ḟ21

1

6
f21

1

3
V02H2 ~33!

6H22ḟ22f222V0526
k

a2 . ~34!

The hypersurface representing a flat universe is given by
settingk50 in the constraint equation, which gives

6H22ḟ22f252V0 . ~35!

The surface defined by this equation is a hyperboloid. For
positive definite potentialsV0.0 it is a hyperboloid of two
sheets, meaning the two branches atH.0 and H,0 are
disconnected. ForV050 this hyperboloid reduces to a
double cone.

There are two finite critical points for this system atf

5ḟ50, H56AV0/3. ForV050 these two points reduce to
a single finite critical point at the origin. To find the infinite
critical points we first rewrite the evolution equations in
terms of the Poincare´ variables and then set their derivatives
equal to zero. This yields eight points.

Figure 3 shows the phase space for this model withV0
.0 along with a sample of trajectories fork50. The hyper-
boloid along which all of these trajectories lie represents a
flat universe. The upper branch corresponds to expansion and
the lower one to contraction. The fact that the two branches
are disconnected means that in a flat universe in this model
expansion can never reverse and become contraction. Note
that this conclusion is unchanged for the caseV050. In that
case the hyperboloid becomes a double cone and the two
branches touch at a single point. Since that point is a critical
point, however, no trajectories can pass from one branch of
the cone to the other. The lower branch corresponds to the
upper branch with time reversalt→2t. The upper branch of
the flat universe hyperboloid is shown projected into a 2D
plot in Fig. 4. This plot is very similar to the one shown in
@24# for this model withV050. Note that the 2D plot is not
a direct ‘‘shadow’’ of the 3D plot since it uses the 2D rather
than the 3D Poincare´ mapping; see Sec. III. Effectively the
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upper branch of the hyperboloid is stretched out onto the
circle rather than vertically projected down to it. From here
on we will refer to such 2D portraits as projections of the 3D
ones.

For an expanding universe there are four infinite critical
points, two repulsors labeledR1 and R2 and two saddle
points labeledS1 andS2. All trajectories begin atR1 , R2 and
wind towards the focus at the center. The separatrices ema-
nating fromS1 andS2 represent attractor trajectories~not to
be confused with attractor critical points!. Along these tra-
jectories the universe experiences inflation (f2@ḟ2) until it
nears the center and begins winding around it, corresponding
to field oscillations near the potential minimum. These sepa-
ratrices represent a set of measure zero in the space of tra-
jectories; the two shown are the only trajectories that begin
at the saddle points. Nonetheless they are important because
most of the trajectories emanating from the repulsor points
asymptotically approach the separatrices. This is why infla-
tion is a generic feature of models such as this one, and also
why inflation erases all information about the initial condi-
tions that preceded it.

Thus a typical trajectory passes through three of the four
regimes described in Sec. II. Near the repulsors the kinetic
energy dominates and the equation of state is stiff,p'r.
Near the main part of the separatrices the equation of state is
inflationary, p'2r. Finally near the center the scalar field
oscillates and the equation of state is that of nonrelativistic
matter, p!r. During the oscillations the scalar field de-
creases as

f~ t !'
1

4N
sinmt, ~36!

whereN is the number of oscillations, see Eq.~21!. Although
particle production is not included in these phase portraits,
this evolution will typically end with the scalar field decay-
ing into other forms of matter, thus finishing the evolution in
the fourth regime, matter and/or radiation domination. The
contracting branch is a mirror image of the expanding one,
with the same three regimes occurring in the opposite order,
finally ending with a big crunch singularity at the attractor
pointsA1 andA2.

For an open or closed universe the trajectories would lie
in the interior or exterior of the hyperboloid, respectively
@24#. For an open universe nearly all trajectories would as-
ymptotically approach the separatrices on the flat universe
hypersurface. This tendency reflects the fact that for most
initial conditions inflation will occur and drive the universe
towards flatness. Once this has occurred the trajectories spi-
ral in towards the focus at the bottom of the hyperboloid. For
a closed universe there are also many trajectories that rapidly
approach these separatrices, but there is also a class of tra-
jectories that moves from the repulsive critical points to the
attractive ones without ever passing near the flat universe
hypersurface. These trajectories reflect closed universes that
collapse rapidly before inflation has a chance to occur.

This conclusion becomes even more apparent if one takes
into account matter or radiation@31#. As we have argued in
Sec. II E, the existence of matter rapidly freezes the motion
of the scalar field. Therefore if the fieldf was initially large
and had a large velocity such thatf@1, ḟ2/2@V(f), then
the presence of matter would increase the probability of in-
flation. This can be confirmed by comparing the phase por-
traits of the universe with and without radiation. Although
the phase portrait with radiation is three dimensional, it is
convenient to make its projection to the (ḟ,f) plane; see
Fig. 5.

In the second and fourth quadrants of this figure the field
starts out moving towards the minimum. The presence of
radiation slows the field down, causing it to move more
quickly towards the inflationary separatrix trajectory. In the
first and third quadrants where the field starts out moving
away from the minimum the duration of inflation is slightly
diminished by the presence of radiation, but the probability
of inflation is nearly unity.

V. COSMOLOGY WITH A NEGATIVE POTENTIAL

Now we turn to the main subject of our investigation,
cosmological models with scalar field potentials that may
become negative. We will continue using the simple example
V(f)5V01 1

2 m2f2, but now we will considerV0,0. The
hypersurface representing a flat universe is still defined by

6H22ḟ22f252V0 , ~37!

but with V0 negative, this surface is a hyperboloid of one
sheet.

Figure 6 shows the phase space for this model and sample
trajectories for a flat universe. The phase space is two dimen-
sional, but its topology is very different from that for non-
negative potentials. The infinite critical points are unchanged

FIG. 5. Phase portrait for the theoryV(f)5
1
2 m2f2 without

Poincare´ mapping. The thick lines show trajectories describing the
universe without radiation. The scalar field has half Planck density
at the beginning of the simulations. The thin lines show trajectories
where an equal amount of energy in radiation was added to the
system. As we see, in the presence of radiation the velocity of the
scalar field rapidly decreases, which usually leads to the onset of
inflation.
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because the finite termV0 has no effect at infinity, but there
are no finite critical points. Thus all trajectories begin at
infinity with H.0 and end at infinity withH,0. This is
possible because the regions corresponding to expansion and
contraction are now connected. This property is valid for all
types of curvaturek, i.e. for open, flat or closed universes.

To show a 2D projection of the flat universe hypersurface
for this model, we have to plot both the expanding and con-
tracting branches, as depicted on Fig. 7. Trajectories in the
expanding universe region spiral in towards the center. When
they touch the inner circle, the ‘‘throat’’ of the hyperboloid,
they pass into the contracting universe region. There they
spiral back out to infinity, i.e. the big crunch. Thus typical
trajectories in this scenario pass through the three regimes

described above, kinetic energy domination, potential energy
domination, and oscillations, and then pass back through
them in reverse order. As before, including particle produc-
tion will typically introduce a matter or radiation dominated
regime after the first stage of oscillations. Eventually, how-
ever, the matter and radiation will redshift away and the uni-
verse will begin contracting. We will examine this process in
more detail in the next section.

Aside from this ‘‘wormhole’’ connecting the expanding
and contracting branches this phase portrait looks a lot like
the one forV0.0 shown in Fig. 4. Note, however, that in
this case the separatrices emanating from the saddle points
S1 andS2 no longer spiral in to the center, but rather end up
reaching the pointsA1 and A2. Likewise there are separa-
trices that begin atR1 andR2 and end onS3 andS4. In the
expanding phase their segments and segments of nearby tra-
jectories represent the rare cases that manage to avoid infla-
tion. In the contracting phase they become the marginal tra-
jectories separating those that end at positive and negativef.
The number of windings~i.e. field oscillations! can be esti-
mated by settingm2f2/25uV0u and using Eq.~36! to give

N'
m

6AuV0u
. ~38!

~This number of windings can be used to determine which
repulsors and attractors are connected to which saddle points,
e.g. whether the separatrix that begins atR1 ends atS3 or
S4.!

The phase portraits shown above were constructed in a
way symmetric with respect to time reversal,t→2t. This is
a legitimate approach, since our equations allow all of the
solutions shown in the previous figures. However, one can
obtain some additional information if, for example, one con-
siders trajectories equally distributed with respect to the ini-
tial value of the fieldf at the Planck time and follows their
evolution from the region withH.0 to the region withH
,0.

If we do so, the phase portrait shown in Fig. 6 starts
looking somewhat different. Almost no trajectories begin-
ning in the upper part of the hyperboloid are seen in its lower
part, and those few that can be seen there are positioned very

FIG. 6. Phase portrait for the theoryV(f)5
1
2 m2f21V0 for

V0,0. The branches describing stages of expansion and contrac-
tion ~upper and lower parts of the hyperboloid! are connected by a
throat.

FIG. 7. Left: (f,ḟ) projection

of theH.0 branch. Right: (f,ḟ)
projection of the H,0 branch.
Trajectories from the left panel
continue on the right panel.
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close to the separatrices going fromS1 to A2, and fromS2
to A1; see Fig. 8. No trajectories are seen near the lines
going fromR1 to S3 and fromR2 to S4. This might seem
surprising because these lines are solutions of the equations
of motion, so there must be other solutions nearby. Indeed
we have seen them in Fig. 7. However, the lines going from
S1 to A2 and fromS2 to A1 are strong attractors in the
regimeH,0, whereas the lines going fromR1 to S3 and
from R2 to S4 are strong repulsors. Therefore most of the

trajectories originating atH.0 and homogeneously distrib-
uted with respect to the fieldf at the Planck density are
repelled from the lines going fromR1 to S3 and fromR2 to
S4, and tend to merge with the lines going fromS1 to A2
and fromS2 to A1.

This effect is especially apparent in the 2D phase portrait,
where we do not make the Poincare´ mapping, see Fig. 9.
Most of the trajectories coming from the panel withH.0
have merged with the separatrix on the panel corresponding
to H,0.

An important~and obvious! feature of the 3D phase por-
traits Figs. 6 and 8 is that the separatrices, as well as other
trajectories, never intersect in 3D. This is a trivial conse-
quence of the fact that we are solving a system of 3 first
order equations for 3 variables,f, ḟ and H. One of the
implications of this fact is that a bunch of trajectories in the
immediate vicinity of the lines going fromR1 to S3 and
from R2 to S4 never reach the inflationary regime described
by the inflationary separatrices going fromS1 to A2 and
from S2 to A1. Only the trajectories that are sufficiently far
away from the lines going fromR1 to S3 and fromR2 to S4
can enter the stage of inflation.

This observation will be important for us when we de-
scribe the cyclic scenario@10#; see Sec. IX. In this regime the
boldface inflationary separatrices reach the singularity and
are supposed to bounce back. In the language of the phase
portraits this bouncing back implies that the end of the line
going from S1 to A2 becomes the beginning of the line
going from R1 to S3. But in this case the universe cannot
attain the inflationary regime, since the trajectories close to
the line going fromR1 to S3 never switch to the vicinity of
the line going fromS1 to A2. Thus the cyclic regime is
possible only if bouncing from the singularity shifts the tra-
jectory to the right from the shaded separatrix. From Fig. 9 it
is obvious that this shift may happen either due to an in-
crease ofḟ or due to an increase of the fieldf.

The evolution of this system in an open or closed universe
is not very different from the flat universe evolution, al-
though the phase space is three dimensional. Because of the

FIG. 8. A different version of the phase portrait for the theory

V(f)5
1
2 m2f21V0 for V0,0. We begin with the trajectories

evenly distributed with respect to the initial values off in the early
universe~upper part of the hyperboloid! and see what happens to
them in the lower part. These trajectories are concentrated near the
boldface separatrices and repulsed from the shaded ones.

FIG. 9. As in the previous fig-
ure, we begin with the trajectories
evenly distributed with respect to
the initial values off in the early
universe. However, now we show
a 2D projection of these trajecto-
ries, without Poincare´ mapping.

Left: (f,ḟ) projection of theH

.0 branch. Right: (f,ḟ) projec-
tion of theH,0 branch. Trajecto-
ries from the left panel continue
on the right panel.

FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!

023507-10



structure of the trajectory flow between their ends at the in-
finite critical points, all trajectories pass from expansion to
contraction, even for an open universe. As withV0.0 the
trajectories for the open and closed cases will tend to asymp-
totically approach the flat universe hypersurface, and more
specifically will tend to approach the inflationary separa-
trices. As before, however, the closed universe will include
some trajectories that quickly collapse before experiencing
inflation.

It is instructive to estimate the time that the universe may
spend in its post-inflationary expanding phase before it be-
gins to contract. The energy density of the oscillations of the
scalar field, just like the energy density of nonrelativistic
matter, decreases asrCDM;4/3t2. The universe begins to
collapse atrCDM1V050. This happens att;2/A3uV0u. As
one could expect, this time can be greater than the present
age of the universe only ifuV0u&102120.

This estimate remains true for a wide variety of potentials
and for matter with any reasonable equation of state. How-
ever, in the theories whereV(f) has a very flat plateau or a
local minimum, the universe may spend a very long time
before the fieldf falls down to the minimum withV(f)
,0 @7,8,10#. Therefore in general the lifetime of the universe
may be very large even in theories with a very deep mini-
mum of V(f).

VI. GOING FROM EXPANSION TO CONTRACTION
IN THE MODEL V„f…Ä„m2Õ2…f2¿V0

Having analyzed general properties of phase portraits in
the theoryV(f)5(m2/2)f21V0, let us study in a more de-
tailed way the most interesting feature of the models with
V0,0, the switch from expansion to contraction. It is always
possible to study this process numerically, but sometimes
one can do better than that.

It will be convenient to representV(f)5(m2/2)f21V0
in the form

V~f!5
m2

2
~f22f0

2!. ~39!

This potential has a minimum atf50, where it takes a
negative valueV(f)52(m2/2)f0

2. The potential vanishes
@V(f)50# at f56f0.

Let us assume, in the first approximation, that the scale
factor of the universe does not change much during each
oscillation of the fieldf. In such a case the fieldf would
experience a simple oscillatory motion,

f~ t !5F cosmt, ~40!

whereF is the amplitude of the oscillations. In this case the
total energy density of the scalar field would remain con-
stant,r5(m2/2)(F22f0

2).
This approximation works well forF'f0. For F.f0,

there are two cosmological solutions, describing either an
expanding universe withH51mA(F22f0

2)/6 or a con-
tracting universe withH52mA(F22f0

2)/6.

If the Hubble constantH is positive, the amplitude of the
field and its total energy density decrease. If the initial am-
plitude of the oscillations is much greater thanf0, the field
oscillates with a slowly decreasing amplitude until it ap-
proachesf0. But the energy density cannot decrease too
much because at the moment whenr5V(f)1ḟ2/2 van-
ishes, the Hubble constant vanishes too, so thatȧ50. Then
the universe begins to collapse,ȧ,0, and the amplitude of
the oscillations begins to grow. Eventually this growth be-
comes so fast that the field stops oscillating and moves to-
wardsf56`.

The best way to understand this effect is to examine what
happens during the critical oscillation when the sign ofȧ
changes. We will study this process analytically, making
some simplifying approximations.

First of all, we will assume that the fieldf begins this
oscillation att50 moving with zero initial velocity from a
point f1'f0 such that 0,Df5f12f0!f0. The initial
energy density of the field isDV5V(f1)5(m2/2)(f1

2

2f0
2)!uV(0)u. We will try to evaluate the turning point mo-

ment tc whereȧ50 ~i.e. H50).
Let us consider the series expansion of the Hubble param-

eter around the beginning of this process

H~ t !'H11Ḣ1t1
1

2
Ḧ1t21

1

3!
Ĥ1t31•••, ~41!

whereH1 and its derivatives are taken att50. The reason to
include the terms up tot3 in this series is the following.
From the relationḢ52 1

2 ḟ2 we find that for vanishing ini-
tial velocity ḟ150 one hasḢ15Ḧ150. The first nonvan-

ishing coefficient Ĥ1'2f̈2'2„V8(f1)…252m4f1
2 is

negative. Note thatH15AV(f1)/35ADV/3. This means
that at the moment

tc'S 12V~f1!

„V8~f1!…4
D 1/6

5m21S 12DV

m2f0
4D 1/6

~42!

the Hubble parameter vanishes. Note that the first part of this
equation is pretty general, whereas the second one is specific
to quadratic potentials.

At the turning point

fc'f02S 3DV

2m2f0
D 1/3

. ~43!

These results imply that the turn occurs during the first os-
cillation starting atf1 if DV&m2f0

4, i.e. f1
22f0

2&f0
4. In

the most interesting caseDV!m2f0
4 the turn occurs in the

immediate vicinity of the pointf0 where the potential be-
comes negative.

To study the subsequent evolution off(t) anda(t), let us
assume that the scale factora during the first oscillation does
not change much. This is a reasonable assumption sinceȧ

COSMOLOGY WITH NEGATIVE POTENTIALS PHYSICAL REVIEW D66, 023507 ~2002!

023507-11



50 at the turning point. We will therefore takea51 during
this oscillation, andf(t)5f1 cosmt. The potential energy
density of the field is

V~f!5DV2
m2f1

2

2
sin2mt ~44!

and the acceleration of the universe is given by

ä'
ä

a
5

V2ḟ2

3
5

DV

3
2

m2f1
2

2
sin2mt. ~45!

Taking into account that initiallyȧ5aADV/3'ADV/3, this
yields

ȧ'
DV

3
t2

m2f1
2

4
t1

mf1
2

8
sin 2mt1ADV/3. ~46!

By integrating this relation fromt50 to t5p/m, i.e. during
one-half of an oscillation, one finds that the conditiona'1
implies then thatf1'f0!1, i.e.f0!M p .

Now we are going to find how the energy densityr of the
field f changes during the timep/m when the fieldf moves
from f1 to 2f1. In order to do this, we will represent the
scalar field equationf̈13Hḟ52V8(f) in the form

ṙ5
d~V1ḟ2/2!

dt
523Hḟ2. ~47!

Thus in order to find the total change of the energy density of
the scalar field during some time one should integrate
23Hḟ2:

Dr5D~V1ḟ2/2!523E
t0

t

Hḟ2dt. ~48!

Using this equation, one can find the change of the energy
density of the fieldf during the timep/m when the fieldf
moves fromf1 to 2f1:

Dr25
3p2

16
m2f1

42
pA3DV

2
mf1

22
p2

4
DVf1

2 . ~49!

In the most interesting casef1'f0, one can neglect the last
term in this equation and replacef1 by f0:

Dr25
3p2

16
m2f0

42
pA3DV

2
mf0

2 . ~50!

Thus, if the initial kinetic energy of the field is equal to zero
at the beginning of the oscillation atf5f1, at the moment
when the fieldf will reach the point2f1 its kinetic energy
will be positive,

ḟ2

2
5Dr25

3p2

16
m2f0

42
pA3DV

2
mf0

2 . ~51!

Note that forDV!m2f0
4 the last term is much smaller

than the first one, so one finds, in the first approximation,
that the fieldf coming to the point2f1 acquires kinetic
energy

ḟ2

2
5Dr2'

3p2

16
m2f0

45
3p2f0

2

8
V0!V0 , ~52!

and velocity

ḟ'A3p2

8
mf0

2 . ~53!

This velocity continues to grow during subsequent oscilla-
tions and eventually the scalar fieldf and the scale factora
blow up, as shown in Fig. 2.

So far we have studied an expanding universe that stops
its expansion and collapses. But what if it was collapsing at
the beginning of the oscillation? Suppose the scalar field was
moving very slowly until it reached the pointf1. Then it
started falling down, just as in the case considered above.
However, this time we will assume that the universe was not
expanding but collapsing. This corresponds to the choiceȧ
52ADV/3 at the beginning of the process.

In this case the universe will continue collapsing with
ever growing speed. The evolution of the fieldf can be
studied by the same methods as the ones used above. The
main difference will be that the fieldf passing through the
point f52f1'f0 will have kinetic energy

ḟ2

2
5Dr15

3p2

16
m2f0

41
pA3DV

2
mf0

2 . ~54!

The kinetic energy of the fieldf at f52f0 differs from
that atf52f1 by DV. However, forDV!m2f0

4 this dif-
ference is much smaller than each of the terms in Eqs.~50!,
~54!. Thus these two equations with the above-mentioned
accuracy give the kinetic energy of the fieldf not only at
f52f1 but also atf52f0.

This discussion, as well as the difference betweenDr2

andDr1 , will play an important role in our investigation of
the cyclic universe scenario@10#. As we will see, the cyclic
regime is possible only if the fieldf, after bouncing from the
singularity, approaches the point2f0 with energy density
greater thanDr1 , which in its turn is greater thanDr2 ,
which is the energy of this field at the point2f0 on its way
towards the singularity. Thus one needs this field to bounce
from the singularity with an increased energy, and one
should check that the possible source of this additional en-
ergy does not create problems for the scenario. In fact, we
will see that with an account taken of particle production, the
required energy increase can be much greater than the differ-
ence betweenDr1 andDr2 .

VII. OTHER MODELS WITH V„f…Ë0

Until now we have studied only one simple model with a
quadratic potential. However, many features of models with
negative potentials are model-independent. Consider, for ex-
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ample, the model with the ‘‘inverted potential’’V(f)5V0
2m2f2/2 with V0.0. This is the simplest example of a
potential unbounded from below. The evolution of the scalar
field and scale factor in this model is shown in Fig. 10. As
we see, in the beginning the universe experiences a stage of
inflation when the scalar field slowly rolls from the top of the
effective potential.~We considered a model withV0@m2.!
Later on, inflation ends and the speed of the field increases.
If one neglects the effects of the expansion of the universe, at
largef one hasḟ252„V02V(f)…. Therefore

ä

a
5

1

3
„V~f!2ḟ2

…5V~f!2
2

3
V0 . ~55!

At large f the universe starts moving with ever growing
negative acceleration. If one takes into account the expansion
of the universe,ḟ2 becomes even smaller, and the decelera-
tion is even greater. As a result, the expansion slows down
and the universe starts contracting. At this stage the ‘‘friction
term’’ 3Hḟ in the equation of motion of the scalar field
becomes negative, which causes the fieldf to grow and
leads to a rapid collapse of the universe.

Another example is the standard potential used for the
description of spontaneous symmetry breaking, with the ad-
dition of a negative cosmological constantV0,0:

V~f!5
l

4
~f22v2!21V0

52
1

2
m2f21

m2

4v2 f41
1

4
m2v21V0 . ~56!

Herem2[lv2 and the pointf5v corresponds to the mini-
mum of V(f) with symmetry breaking. The potentialV(f)
becomes equal toV0,0 in the minimum ofV(f) at f5v.
As we see in Fig. 11, the scalar field in this case experiences
a stage of oscillations near the minimum of the effective
potential withV(f)5V0,0, but then it jumps off the mini-
mum and blows up because of the ‘‘negative friction’’ in the
collapsing universe. For most model parameters and initial
conditions, if the field originally moves towards the mini-
mum with f51v it will blow up in the directionf→2`
andvice versa. The reason is that at the initial stages of the
development of the instability the fieldf is most efficiently
accelerated by the negative friction if for a while it moves in
a relatively flat direction, i.e. from one minimum to another,
instead of directly moving upwards@8#.

When the field accelerates enough it enters the regime

ḟ2@V(f) and continues growing with a speed practically

independent ofV(f): f; lnt, ḟ;t21, see Eq.~18!. So for
all potentialsV(f) growing at largef no faster than some
power off one hasḟ2/2 growing much faster thanV(f) ~a
power law singularity versus a logarithmic singularity!. This
means that one can indeed neglectV(f) in the investigation
of the singularity, virtually independently of the choice of the
potential. Thus we see that from the point of view of the
singular behavior of the fieldf(t) and the scale factor,po-
tentials having a global minimum with V(f),0 are as dan-
gerous as potentials unbounded from below.

Since a small modification of the potential@shifting the
minimum of V(f) towardsV(f),0# may lead to a change
of regime from expansion to contraction, one may wonder

FIG. 10. Evolution of the scalar field and scale factor in the modelV(f)5V02m2f2/2.

FIG. 11. Evolution of the scalar field and the scale factor in the modelV(f)5(l/4)(f22v2)21V0, with V0,0.
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whether some other modification ofV(f) can switch the
regime of contraction back to expansion. The answer follows
from the equationḢ52 1

2 (r1p). This equation implies that
Ḣ<0 becauser1p>0 in accordance with the null energy
condition. This means, in particular, that if the universe
switches from expansion to contraction, it cannot later return
to the regime of expansion. The only possible exception
would be if the universe were to pass through a stage of
super-Planckian density in which the Einstein equations were
invalid.

Even though many properties of the theories with nega-
tive potentials are model-independent, the topology of their
phase portraits depends on the choice of the potentialV(f).
For example, the hypersurface representing a flat universe in
the theoryV(f)5V02m2f2/2 is given by the constraint
equation

ḟ256H21m2f222V0 . ~57!

This equation describes a hyperboloid just like the flat uni-
verse hypersurface of the theoryV(f)5V01m2f2/2. In this
case, however, the axis of the hyperboloid is in theḟ direc-
tion rather than theH direction. Moreover, the hyperboloid
for this model has two sheets forV0,0 and one sheet for
V0.0, which is the reverse of the situation forV(f)5V0
1m2f2/2. The different orientation of the hyperboloid
means, for example, that for the theory unbounded from be-
low all trajectories end in a big crunch singularity, regardless
of the signs ofV0 andk.

VIII. APPROACH TO THE SINGULARITY, QUANTUM
CORRECTIONS, AND PARTICLE PRODUCTION

Talking about the dynamics of the cosmological scalar
field, until now we have remained in the realm of classical
physics. We ignored possible quantum effects, and in particu-
lar the effects of particle production. These effects may lead
to some important qualitative changes of the phase portraits,
however, especially near the singularity.

First of all, near the singularity one may need to take into
account quantum corrections to the effective action of gen-
eral relativity. Even ignoring possible effects related to brane
cosmology or M theory, one may need to add to the effective
action terms proportional toR2, RmnRmn, etc.

An important example of such a theory is given by a
combination of scalar field theory and the Starobinsky
model, where the effective Lagrangian has additional terms
;R2 @25#. Whereas this addition is not very significant at
low energies, it completely changes the behavior of the
theory near the singularity.

For example, in the absence of this term the generic re-
gime for a scalar field approaching the singularity isḟ2/2
@V(f), which corresponds to the equation of statep5r.
This regime was recently discussed in@32# in the context of
string cosmology. As we have seen, in this casea;t1/3, f
; ln t.

However, if one adds the termR2, the most general re-
gime for theories where the potential is not too steep be-

comes quite different:a;t1/2, f;t21/2 @25#.
It is even more important to consider the effects of par-

ticle production. If one ignores quantum effects, one typi-
cally finds the curvatureR;t22 in a collapsing universe.
Scalar particles minimally coupled to gravity, as well as
gravitons and helicity 1/2 gravitinos@33#, are not confor-
mally invariant; their frequencies thus experience rapid
nonadiabatic changes induced by the changing curvature.
These changes lead to particle production due to nonadiaba-
ticity with typical momentak2;R;t22. The total energy-
momentum tensor of such particles produced at a timet after
~or before! the singularity isTmn;O(k4);R2;t24 @34,35#.
Comparing the density of produced particles with the classi-
cal matter or radiation density of the universer;t22, one
finds that the density of created particles produced at the
Planck timet;1 is of the same order as the total energy
density in the universe.

The main point of this discussion is that particle produc-
tion near a cosmological singularity can be extremely effi-
cient. Generically one expects that when the universe
emerges from or approaches a singularity and its density is
close to the Planck density, the density of produced particles
should be comparable to the total energy density of the uni-
verse.

This is a pretty general conclusion. For example, in brane
cosmology a similar effect of particle production may occur
even thoughR50 in 4D. Indeed, the change of distance
between branes leads to a nonadiabatic change of the spec-
trum of Kaluza-Klein modes and thus to particle production;
one may call it a time-dependent Casimir effect. Note that
this effect exists even in theories with unbroken supersym-
metry @36#.

This observation has many implications. In particular, one
can no longer expect that matter~or a scalar field! has the
equation of statep5r near the singularity. Even if the uni-
verse around the Planck time was dominated by matter with
p5r, the creation of particles would immediately change the
situation. And even if the density of created particles initially
was somewhat smaller than the energy density of matter with
p5r, this situation would rapidly change. The density of the
component of matter withp5r decreases asa26, whereas
the energy density of radiation and nonrelativistic particles
decrease asa24 anda23 respectively. Therefore the energy
density of such particles soon becomes greater than the en-
ergy density of the matter component withp5r. Once this
happens the scalar field immediately freezes. It loses its ini-
tial kinetic energy and begins moving very slowly. As we
already discussed, this provides perfect initial conditions for
inflation. This result also has important implications for the
cyclic universe scenario@10#.

IX. CYCLIC UNIVERSE

A. The basic scenario

Until now we have studied the evolution of the universe
and classified new possibilities that appear in scalar theories
with negative potentials. This problem is very interesting. Its
investigation has already brought us to an important realiza-
tion: We cannot live in anti–de Sitter space dominated by a
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negative cosmological constant, not because the negative
cosmological constant is forbidden, but because a universe
dominated by negative vacuum energy cannot appear after a
long stage of inflation@6–8#. Another interesting realization
is that the available observational data can tell us nothing
about the future of the universe: we may live in a stage of a
nearly constant de Sitter–like inflationary acceleration, but it
may end with a global collapse@37–39,7,8#.

A common feature of cosmological evolution in models
with negative potentials is that it begins in a singularityand
ends in a singularity, even if the universe is not closed. This
was not the case for the theories withV(f).0, where the
universe may continue expanding forever and never end in a
singularity even if it is closed.

This naturally brought back old speculations about the
oscillating, or cyclic, evolution of the universe; see e.g.@17–
23,10#. The universe may be created in a singularity, then
collapse and reemerge again.

There is a certain intellectual attractiveness in this idea.
However, during the past 20 years this idea has lost some of
its initial appeal. Indeed, if there was a stage of inflation after
the singularity, then the initial conditions producing our uni-
verse are nearly irrelevant for the investigation of the forma-
tion of large-scale structure in the observable part of the
universe. Moreover, inflation in many of its simplest versions
is eternal@30,40#. This fact may not solve the singularity
problem@41#, but it puts the origin of our part of the universe
indefinitely far away in the past@42#.

Recently Steinhardt and Turok proposed a version of in-
flationary theory where the stage of inflation occursafter
formation of the large scale structure of the universe and
perturbations responsible for the formation of the structure of
the universe are producedbefore the singularity, during the
previous cycle of the universe evolution@10#. In this scenario
inflation does not protect us from all uncertainties associated
with the physical processes occurring around the big bang.
On the contrary, in order to describe our universe in this
scenario one must know exactly what happens with small
perturbations of the metric when they pass through the sin-
gularity.

The cyclic scenario@10# is a modified version of the ek-
pyrotic scenario@11#. It is based on the idea that we live on
one of two branes whose separation can be parametrized by a
scalar fieldf. It is assumed that one can describe the brane
interaction by an effective 4D theory with the effective po-
tential V(f) having a minimum atV(f),0. In the original
version of the ekpyrotic scenario it was assumed thatV(f) is
always negative, but it vanishes atf50 and atf→`. It was
claimed that one of the main advantages of the ekpyrotic
scenario was the absence of a cosmological singularity and
the possibility to solve the major cosmological problems
without the help of inflation, which was called ‘‘superlumi-
nal expansion.’’

However, later it was found that it is difficult to solve the
cosmological problems in the ekpyrotic scenario without us-
ing inflation @13#. Moreover, perturbations of the fieldf that
could be responsible for large scale structure formation in
this scenario are generated due to tachyonic instability@43#
at the time whenV(f) was supposed to be smaller than

210250 in Planck units. Therefore it is difficult to avoid
inflation in this model: Even a miniscule positive contribu-
tion to V(f) of the order 10250 would lead to a stage of
exponential expansion of the universe at largef @13#. Also,
in @44# it was shown that in the context of the effective 4D
theory used in@11# the universe can only collapse. This
means that the ekpyrotic scenario suffers from the cosmo-
logical singularity problem. This problem has been analyzed
in @14#, but so far it remains unresolved.

In the cyclic universe scenario the authors assume, in ac-
cordance with the suggestion of Ref.@13#, thatV(f) is posi-
tive at largef, and therefore the universe experiences a stage
of inflation. This stage provides the solution to the major
cosmological problems. However, it is assumed that this is
an extremely low-scale inflation associated with the present
stage of acceleration of the universe in a state withV(f)
;102120. Inflationary perturbations produced at this stage
have wavelengths comparable to the present size of the ho-
rizon, so they cannot be responsible for galaxy formation.

Therefore it is assumed that the desired perturbations of
the scalar field are produced after inflation, by the same ta-
chyonic mechanism as in the ekpyrotic scenario@11,13,43#.
The effective potential of the scalar field in the cyclic sce-
nario has the shape shown in Fig. 12. Inflation occurs at large
f. Once the field rolls down to the region whereV(f),0,
the universe begins to collapse. At that time perturbations of
the scalar field are generated. The speed of the field in a
collapsing universe grows. It reaches the plateau atf→
2` where, according to@10#, the potential vanishes. The
universe enters the regime where its energy density is domi-
nated by the kinetic energy of the scalar field, and it evolves
towards the singularity in accordance with Eqs.~17!, ~18!.

Usually, this would be considered the end of the evolution
of the universe. However, in the cyclic scenario it is assumed
that the universe goes through the singularity and reappears
again. When it appears, in the first approximation it looks
exactly as it was before, and the scalar field moves back
exactly by the same trajectory by which it reached the sin-
gularity @14#.

This is not a desirable cyclic regime. Therefore it is as-
sumed in@10# that the value of kinetic energy of the fieldf
increasesafter the bounce from the singularity. This increase
is supposed to appear as a result of particle production at the

FIG. 12. Scalar field potential in the cyclic scenario. The mini-
mum of the potential may occur at any value off; in this section
for simplicity we will assume that it occurs atf50; we will con-
sider a more general situation later.
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moment of the brane collision~even though one could argue
that usually particle production leads to an opposite effect!.
If the increase of the kinetic energy is large enough, the field
f rapidly rolls over the minimum ofV(f) in a state with a
positive total energy density, and continues its motion atf
.0. The kinetic energy of the field decreases faster than the
energy of matter produced at the singularity. At some mo-
ment the energy of matter begins to dominate. Eventually~a
few billion years after the big bang! galaxies form. Then the
energy density of ordinary matter becomes smaller than
V(f) and the present stage of inflation~acceleration of the
universe! starts again.

As we see, this version of the ekpyrotic scenario is not an
alternative to inflation anymore. Rather it is a very specific
version of inflationary theory. The major cosmological prob-
lems are supposed to be solved due to exponential expansion
in a vacuum-like state, even though the mechanism of pro-
duction of density perturbations in this scenario is nonstand-
ard. Let us remember that Guth’s first paper on inflation@2#
was greeted with so much enthusiasm precisely because it
proposed a solution to the homogeneity, isotropy, flatness
and horizon problems, even though it did not address the
formation of large scale structure. The Starobinsky model
that was proposed a year earlier@1# could account for large
scale structure and the observed CMB anisotropy@45#, but it
did not attract as much attention because it did not empha-
size the possibility of solving these initial condition prob-
lems.

In fact, the stage of acceleration of the universe in the
cyclic model iseternal inflation. Indeed, the main criterion
for the process of self-reproduction of the inflationary uni-
verse to occur is that the amplitude of inflationary perturba-
tions df;H;AV should be greater than the changeDf of
the classical value of the fieldf during the timeH21: Df
;V8/V @30,40,42#. For the potentialV(f) used in the cyclic
model one hasdf5const in the limitf→`, whereasDf
→0 in this limit. Thus the universe at largef enters the
stage of eternal self-reproduction, quite independently of the
possibility to go through the singularity and reappear again.
In other words, the universe in the cyclic scenario is not just
a chain of eternal repetition, but a growing self-reproducing
inflationary fractal of the type discussed in@30,40,42#.

It is remarkable that quantum effects and the mechanism
of self-reproduction may work even at the present stage
when the wavelength of inflationary fluctuations is greater
than the size of the observable part of the universe and the
square of their amplitude is as small as 102120 in Planck
units. The reason why it may work is that the curvature of
the effective potential at largef is even much smaller.

One may wonder, however, whether this version of infla-
tionary theory is good enough to solve all major cosmologi-
cal problems. Indeed, inflation in this scenario may occur
only at a density 120 orders of magnitude smaller than the
Planck density. If, for example, one considers a closed uni-
verse filled with matter and a scalar field with the potential
used in the cyclic model, it will typically collapse within the
Planck timet;1, so it will not survive until the beginning of
inflation in this model att;1060. For consistency of this
scenario, the overall size of the universe at the Planck time

must be greater thanl;1030 in Planck units, which consti-
tutes the usual flatness problem. The total entropy of a hot
universe that may survive until the beginning of inflation at
V;102120 should be greater than 1090, which is the entropy
problem@27#. An estimate of the probability of quantum cre-
ation of such a universe ‘‘from nothing’’ givesP;e2uSu

;exp(224p/V);e2120 @46#.
There are some other unsolved problems related to this

theory, such as the origin of the potentialV(f) @13# and the
5D description of the process of brane motion and collision
@44,47#. In particular, the cyclic scenario assumes that the
distance between the branes is not stabilized. Thus one
would need to find some other mechanism that would ensure
that the effective gravitational constant, as well as other pa-
rameters depending on the fieldf ~i.e. on the brane separa-
tion!, does not change in time too fast. This is one of the
reasons why it is usually assumed that the branes in Hor˘ava-
Witten theory must be stabilized.

We will not discuss these problems here. Instead of that,
we will concentrate on the phenomenological description of
possible cycles using the effective 4D description of this sce-
nario. This will allow us to find out whether the cyclic re-
gime is indeed a natural feature of the scenario proposed in
@10#.

For the remainder of this section we will analyze this
scenario using the tools developed in the earlier sections of
the paper. In Sec. IX B we will describe the phase portrait of
the cyclic scenario. In Sec. IX C we will consider the condi-
tions that must be satisfied at the bounce in order for the
cyclic regime to occur. In Sec. IX D we will analyze the
motion of the field as it returns from the singularity and show
that the conditions described in Sec. IX C are difficult to
realize self-consistently without invoking super-Planckian
potentials, even in the vicinity of the minimum. Following
the authors of@10# we will consider such super-Planckian
potentials in Sec. IX E. Aside from the problem of applying
the effective 4D theory at such high energies, we will find
that there are still other problems in such realizations of the
scenario. In Secs. IX F and IX G we will propose some
modifications of the cyclic scenario that may resolve some of
the problems raised here.

B. Phase portrait of the cyclic universe

The phase space of the cyclic scenario is the usual 3D

space (f,ḟ,H). If one does not take into account matter and
radiation, the phase portrait of the scenario forms a 2D sur-
face in 3D space. It is shown in Fig. 13 without the Poincare´
mapping.~If one adds radiation, the flow of trajectories be-
comes three dimensional.! The trajectories corresponding to

different initial values off andḟ start at largeH, i.e. in the
upper part of Fig. 13. The trajectories beginning at large
positivef reach the separatrix going from the point S1 to the
point A. Its upper part (H.0) corresponds to inflation.
These trajectories follow the separatrix towards the throat of
the phase portrait atH50, and then all of them move to-
wards the singularity. The trajectories beginning at large
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negativef fall from the singularity at large positiveH to the
singularity at large negativeH without entering the stage of
inflation.

If one flips ḟ→2ḟ andH→2H, which corresponds to
time reversal, the separatrix connecting points S1 and A be-
comes the separatrix connecting points R and S2. In the
lower part of the figure~at negativeH) this line corresponds
to the stage of deflation~exponential contraction of the uni-
verse, which is a time reversal of inflation!. These two sepa-
ratrices divide all trajectories into three topologically discon-
nected parts: the trajectories to the right of the shaded
separatrix, the trajectories between the shaded and the bold-

face separatrix and the trajectories to the left of the boldface
separatrix.

One could think that the shaded separatrix separates infla-
tionary trajectories from the trajectories that fall to the sin-
gularity without reaching the stage of inflation. However, it
is not so. As we already discussed in Sec. V, the trajectories
that reach the stage of inflation are at a finite distance to the
right away from the line connecting points R and S2~i.e. at

greater values off and ḟ).

The (f,ḟ) projection of the phase portrait for the cyclic
scenario is shown in Fig. 14, also without the Poincare´ map-
ping. An interesting feature of the right panel of Fig. 14 is
the apparent absence of any trajectories near the shaded line
~the right separatrix at the right panel!. This might seem
surprising because this line is a solution of the equations of
motion, so there must be other solutions nearby. The reason
is that the deflationary universe regime described by this line
is a strong repulsor, just opposite to the fact that the infla-
tionary boldface line atH.0 ~the right separatrix at the left
panel! is a strong attractor. As a result, the density of trajec-
tories near the shaded line atH,0 is very small; that is why
they do not show up in Fig. 14. We discussed a similar issue
in Sec. V.

As we see, all trajectories beginning atH.0 end up in
the singularity atH→2`. In the cyclic scenario it is as-
sumed that the universe goes through the singularity and
re-appears again. When this happens, all trajectories withf

,0, ḟ,0 andH,0 in the left lower part of the right panel
in Fig. 14 suddenly reappears in the right upper corner of the
left panel of Fig. 14, describing the trajectories starting at
f,0, ḟ.0 andH.0. If one ignores particle production at
the singularity, the boldface separatrix on the right panel be-

FIG. 13. The 3D phase portrait for the cyclic scenario. All tra-
jectories~lines! begin atH.0 and end in a singularity atH,0.

FIG. 14. The 2D phase portrait for the cyclic scenario. All trajectories begin at the bounding box of the left panel (H.0) and end at the
bounding box of the right panel (H,0).
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comes the shaded line at the left panel~time reversal!. As a
result of this flip, the fieldf, which previously was running
down along the boldface separatrix towards the singularity in
Fig. 13, eventually returns exactly to the same place atf
.0 where it was in the very beginning of the process. How-
ever, it returns back not at the stage of exponential expansion
but at the stage of exponential contraction, following the
shaded separatrix in Fig. 13.

Exponential contraction is not a desirable regime. In order
to reach the cyclic inflationary regime, some of the trajecto-
ries to the left of the boldface separatrix after the singularity
should jump sufficiently far away to the right of the shaded
separatrix. As we already mentioned, Ref.@10# assumes that
this jump may occur due to an increase in the energy of the
scalar field bouncing back from the singularity. This increase
in energy is supposed to happen due to particle production.
Only if this jump is sufficiently large can these trajectories
reach the inflationary separatrix going from S1 to A. Then
inflation begins, the field rolls to the minimum ofV(f)
again, and everything repeats.

C. Moving towards the minimum of V„f…

To study the potential shown in Fig. 12 we will assume
that near the minimum it can be represented as (m2/2)(f2

2f0
2). At f*f0 we will take it to be flat withV'102120

and atf,f0 we will takeV50. The results of a numerical
investigation for more complicated potentials are very simi-
lar to the ones obtained for this simple model. However, in
this model one can study everything analytically using the
results obtained in Sec. VI. Indeed, we know how the field
moves atf,2f0, whenV(f)50, and we also know how
it behaves in the quadratic potential, when it moves from
2f0 to f0. The only thing that we need to do is to patch
these two regimes together.

At the initial stage the scalar field moves extremely
slowly at f.f0 and the universe inflates. Once it reaches
f'f0 it falls down, V(f) becomes negative, and the uni-
verse begins to contract. To describe this process one can use
the theory developed in the first part of this paper. The con-
traction begins atf5fc ~42!. The scalar field reachesf5
2f0 with energyDr2 given by Eq.~49!.

Subsequently, the fieldf moves towardsf52` and the
singularity develops in accordance with Eq.~18!. To describe
this motion one should taket051/A3Dr2 in Eq. ~18! and
replacef0 by 2f0:

f1f05A2

3
lnA3Dr2t,

ḟ2

2
5

1

3t2 . ~58!

In this solutionf52f0 at t5t0.
Let us use this equation to find the value of the fieldf at

the Planck time when the energy density becomes 1 in
Planck units and one can no longer study this regime within
the context of general relativity. This happens attp51/A3 in
Planck units. Therefore the scale factor of the universea
;t1/3 decreases by a factor;(Dr2)1/6 from the beginning
of the process atf52f0 until the density becomesO(1).
The scalar fieldf at that time is given by

fp52f01A1

6
ln Dr2 . ~59!

Settinga(tp)51 we can write our solution as

f2fp5A2

3
lnA3t,

ḟ2

2
5

1

3t2 ,

a531/6 t1/3, ~60!

which in turn implies

ḟ5A 2

a3, f2fp5A6 lna. ~61!

One can also represent our results in terms of the confor-
mal timet, wheredt5adt. In this caset5(2t325/6)3/2, and

f2fp5A3

2
ln

2t

A3
. ~62!

The Planck timetp51/A3 corresponds totp5A3/2.
The cyclic scenario requires that the universe bounce back

from the singularity and the field move back from2` to f0.
Depending on how much kinetic energy the field has at this
point three regimes are then possible:

~1! ḟ2/2<Dr2 at f52f0. This is the regime that would
be reached if the bounce were perfectly symmetric~in which
case ḟ2/25Dr2). The universe starts collapsing atf
<fc . The field overshoots the pointf5f0 and moves with
ever growing speed towardsf51`. There is a small bunch
of trajectories such that the scalar field evolves very slowly,
the equation of state isp52r, and the universecontracts
exponentially. Eventually, however, the kinetic energy of the
field f dominates and the collapse becomes power law with
p5r.

This regime is represented by the trajectories to the left of
the shaded separatrix in the upper part of the left panel in
Fig. 14.

~2! Dr2,ḟ2/2,Dr1 at f52f0. The universe starts
collapsing atf.fc . The field does not have enough energy
to reach the pointf5f0, so it returns back to negativef,
the field moves with ever growing speed tof52`, and a
singularity develops.

This regime is represented by a small bunch of trajecto-
ries to the right of the shaded separatrix in the upper part of
the left panel in Fig. 14.

~3! ḟ2/2*Dr1 at f52f0. The universe continues ex-
panding and the fieldf becomes greater thanf0. It contin-
ues growing and gradually slows down. As a result, inflation
begins. Then the field very slowly decreases, falls into the
minimum of V(f), the universe collapses and the field
moves tof52`. This is the regime required by the cyclic
scenario.

This regime is represented by trajectories starting suffi-
ciently far from the shaded separatrix, to the right of it in the
upper part of the left panel in Fig. 14.
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The last of these regimes requires additional explanation.
Let us remember how we derived the expression forDr1 :
We considered the fieldf slowly rolling from f5f0 during
the stage of contraction and found that it arrived at the point
f52f0 with kinetic energyDr1 . If we reverse the time
evolution of the universe, we will see the scalar field rolling
down fromf52f0 and arriving at the pointf5f0 with a
nearly vanishing speedduring the stage of expansion. If the
initial kinetic energy of the field is greater thanDr1 , it
reaches the pointf5f0 with a nonvanishing speed and
moves further onto the plateau where the energy density of
the fieldf becomes constant, and inflation begins.

As we have seen in Sec. VI, the difference betweenDr1

andDr2 is extremely small:

dr5Dr12Dr25pA3DVmf0
2 . ~63!

HereDV has the meaning of the height of the effective po-
tential atf.f0; in our caseDV;102120. Thus one might
expect that it is pretty easy to jump from the trajectory with
energyDr2 to the desirable trajectory with energy greater
thanDr1 , as in case~3!.

In reality, however, the required jump in kinetic energy
becomes much larger when one takes into account quantum
effects. As the fieldf moves through the minimum from
2f0 to f0 its mass changes from 0 tom and back to 0
again, all within a timeO(m21) ~half of an oscillation!, see
Fig. 16. This nonadiabatic change,Dm/Dt;m2, will lead to
the production off particles with energy densityO(m4)
@29#. Therefore the fieldf loses an amount of energy
O(m4), which makes it less likely to reachf0 while the
universe is still expanding.~The production off particles
during this very short time interval appears in addition to the
process of particle creation near the singularity discussed in
Sec. VIII.! Thus in order to realize the cyclic scenario the
kinetic energy density of the fieldf at the point2f0 must
be greater thanDr1 by O(m4), which is much greater than
DV.

One may wonder where the field gets this boost in kinetic
energy. Usually one would expect that the field after a
bounce can only lose energy due to particle production.
However, in@10# it is assumed that it can actually gain en-
ergy as a result of particle production during the brane col-
lision ~i.e. in the singularity!. It is not quite clear whether this
can indeed happen, see e.g.@47# where it is claimed that
particles can be created during the brane collision only if
they have negative energy density. We are not going to dis-
cuss this issue here. Instead of that, we will follow the as-
sumptions of@10# and check what happens to the scalar field
f if the universe after the bounce contains some matter or
radiation.

D. A scalar field with a vanishing potential in the presence
of radiation

Let us consider the motion of the fieldf from 2` to
2f0 in the presence of radiation. The Friedmann equation
describing this process can be written as follows:

S ȧ

a
D 2

5
1

3
S ḟ i

2

2

ai
6

a6 1r i
r
ai

4

a4D . ~64!

Hereḟ i is the velocity of the field at some momentt i , ai is
the scale factor of the universe at that moment, andr i

r is the
density of radiation at that time. This equation reflects the
fact that the kinetic energy of the field decreases asa26 and
radiation energy decreases asa24 during the expansion of
the universe. Note that here we are considering processes at
sub-Planckian energies where the usual Friedmann cosmol-
ogy is supposed to be valid.

It is convenient to write this equation in terms of the
conformal timet, wheredt5adt:

~a8!25
A2

a2 1B, ~65!

wherea85da/dt5aȧ, A25ḟ i
2ai

6/6 andB5r i
rai

4/3.
Taking a(0)50 ~at the singularity!, the solution of this

equation is

a252At1Bt2. ~66!

For definiteness, we will normalize our solution at the
time t i5tp , when ḟ2/251 and ai51. Then A251/3, B
5rp

r /3, and

a25
2

A3
t1

rp
r

3
t2. ~67!

Then, using equationf85ḟ iai
3/a25A6A/a2, one finds

f2f̃p5A3

2
ln

2t

A3S 11
rp

r

2A3
t D 1Cr

5A6 ln
a

11
rp

r

2A3
t

1Cr . ~68!

Here f̃p is the value of the scalar field at the time when
ḟ2/251 after the bounce. The constant of integrationCr is
supposed to vanish in the absence of radiation, i.e. forrp

r

50. In this casef̃p5fp , and our solution~68! coincides
with the solution presented in Eq.~62!. This means that in
the absence of radiation the fieldf elastically bounces from
the singularity, in accordance with@14#.

One can find the constantCr for any givenrp
r from the

condition thatf5f̃p at ḟ2/251 anda51. In particular, for
rp

r !1 one hasCr'rp
r (A3/2A2).

Equation ~68! implies that atrp
r t.2A3 the field stops

moving. Therefore we will assume thatrp
r t!1 at f,2f0.

This leads to a strong constraint onrp
r :

rp
r &~Dr1!1/3. ~69!
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If one takes, for definiteness,f0;0.1M p , m2f0
2;10220, as

in the original version of the ekpyrotic scenario@11#, one
finds that the cyclic scenario with these parameters cannot
work unless the energy density of radiation at the Planck
time is less than 1026 in Planck units. In general the density
of gravitationally produced particles is;H4, which isO(1)
at the Planck time, so it is not clear how particle production
could be so strongly suppressed.

Suppose, however, that for whatever reason one can in-
deed haverp

r !(Dr1)1/3. In this caserp
r t!1 and Eq.~68!

can be represented in the following form:

f2f̃p5A6 lna2
rp

r

A2
S t2A3

2D . ~70!

With our normalization ofa one has

1

2
ḟ25a26. ~71!

As we already discussed, if we want the field to move tof
.f0 during the stage of expansion of the universe, its ki-
netic energyḟ2/2 must be greater thanDr1 at f52f0. If
we assume that the field has sub-Planckian energy as it
moves through the minimum, i.e. thatDr1!1, then

f̃p.2f01
1

A6
lnDr11rp

rA 3

2A2
~Dr1!21/3. ~72!

Comparison with Eq.~59! gives the following condition:

f̃p2fp.rp
rA 3

2A2
~Dr1!21/31

1

A6
ln

Dr1

Dr2

. ~73!

In general, it could happen that after bouncing from the sin-
gularity the field f appears at the Planck density atf̃p

Þfp , so thatf̃p2fp5O(rp
r ) @10#. However, our investi-

gation shows that the cyclic scenario withDr1!1 could
work only if f̃p2fp@rp

r .
This means that the cyclic scenario can work only if a

very small amount of radiation can produce a major change
in the state of the fieldf at the Planck time:f̃p2fp

*rp
r (Dr1)21/3. Second, the amount of radiation at the

Planck time must be very small,rp
r &(Dr1)1/3. This may be

a real problem if, as we expect, quantum effects at Planckian
densities create particles with densityrp

r 5O(1).
These problems are less serious in models withDr1>1,

i.e. if the field f acquires super-Planckian energy even be-
fore it reaches the plateau atf,2f0. Such models are sus-
pect because the usual 4D approach based on general rela-
tivity becomes unreliable at super-Planckian densities. It
appears that such models are necessary for the cyclic model,
however, and in at least one of their papers the authors of
@10# invoke such a model. We therefore consider such poten-
tials here.

E. Super-Planckian potentials for the cyclic scenario

Let us now consider a potential proposed by the authors
of the cyclic scenario@10#:

V~f!5V0 ~12e2cf! F~f!. ~74!

In the particular example studied in the last paper of Ref.
@10# one hasF(f)5e2e2gf

, V05102120, c510, and g
'1/8. This potential is shown in Fig. 15. This potential has
the same structure as the potential shown in the Fig. 12, but
the scales and the position of the minimum are determined
by the parameters given in@10#. At f50 this potential van-
ishes. It approaches its asymptotic valueV05102120 at f
*1. Inflation in this scenario is possible atf*1. At f
*15 one hasV3/2*V8 and the universe enters the process of
eternal inflation@40,30#. The potential has a minimum atf
'236; the value of the potential in this minimum isVmin
'23.

Let us try to understand the origin of the parametersc
510, g'1/8 used in@10#. According to@15#, the amplitude
of density perturbations in this scenario in the limitc@1 can
be estimated as

dr

r
;1025A2Vj j4, ~75!

whereVj is approximately equal to the value of the potential
in its minimum Vmin and j is the efficiency with which ra-
diation is produced at the singularity; it is assumed thatj
!1. This suggests that in order to be consistent with obser-
vational data (dr/r;1024) one should have2Vj@1. This
means one must rely on calculations using the equations of
general relativity atuV(f)u@1.

The authors of@15# have warned the readers that their
results are very preliminary and many authors do not agree
with their derivation of the amplitude of density perturba-
tions @16#. Therefore it may happen that the correct equation
for perturbations in the cyclic scenario as well as the expres-
sion forV(f) will be quite different. Here we will simply try
to understand the values of the parameters used in@10# and
check the consequences of the potential they suggested.

FIG. 15. An example of cyclic scenario potential used in Ref.
@10#.
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The spectrum of density perturbations obtained in@15# is
not blue, as in@11#, but red, like in the pyrotechnic scenario
@13# and in the simplest versions of chaotic inflation. The
spectral index isn'124/c2. Observational data suggest that
n50.9360.1, which implies thatc*5. If one takesc@5,
andVJ.1, one finds that the curvature of the effective po-
tential in its minimum becomes much greater than 1.

Once one takesV;23 in the minimum of the potential
with c510 @10#, the parameterg can be determined numeri-
cally: g50.1226. It would be hard to provide explanation of
the numerical value of this parameter. Meanwhile if one
takesg51/850.125, one findsV;2331023 in the mini-
mum of the potential. This would reducedr/r by a factor of
30. Thus, in order to have density perturbations with a cor-
rect magnitude one should fine-tune the value ofg50.1226
with accuracy better than 1%.

Figure 16 shows the effective mass of the fieldf. As we
see, um2u5uV9u*1 in the vicinity of the minimum of the
effective potential. A numerical investigation of the motion
of the field moving fromf.0 in a theory with this potential
shows that its kinetic energy at the moment whenf reaches
the minimum of the effective potential isO(102). When the
field approachesf;239, where the effective potential be-
comes flat, the kinetic energy of the fieldf becomes;106,
i.e. a million times greater than the Planck density.

Even if we continue to trust our calculations in such a
regime, there are still problems. First of all, there is a dis-
tance Df.30 from the point f'230 where the field
emerges from the deep minimum of its effective potential to
the regionf.1, where inflation in this theory may begin.
Let us assume that the kinetic energy of the field is smaller
than the Planck energy atf;230, since otherwise we just
cannot trust our analysis at all. This assumption is in accor-
dance with@10#. Indeed, according to the estimates made in
@10#, f̃p2fp' ln@H5(out)/H5(in)#,1

2ln
4
3,1. In this model

fp'234, so indeed one expectsf̃p,233.
As we discussed in Sec. IX D, we expect that gravita-

tional particle production will create particles with density
O(1) at the Planck time. Independently of gravitational pro-
duction, however, there should be production off particles
with densityO(m4) due to the nonadiabatic change of the
effective mass of the field moving fromf5239 to f.
232, see Fig. 16. In this modelO(m4)*O(1). Thus, when
the field reaches the relatively flat region atf.232, its
motion produces ultrarelativistic particlesf with super-
Planckian energy density. These particles, just like usual ra-
diation, immediately freeze the motion of the fieldf. One
can show that in this scenario the fieldf can reach the in-
flationary regime atf.0 ~which is necessary for the con-
sistency of the cyclic scenario! only if at f;232 ~i.e. at the
flat part of the potential! the kinetic energy density of the
field f is 12 orders of magnitude greater than the~Planckian!
energy density of the produced particles. The effective 4D
description in terms of the scalar fieldf and its effective
potential V(f) is inapplicable for the description of such
processes.

This problem is not unresolvable. For example, one may
consider effects related to non-relativistic particles produced

at the singularity. These particles contribute to the equation
of motion for the fieldf by effectively increasing its poten-
tial energy density@10#. They may push the field towards
positive values of the fieldf despite the effects described
above. However, this would add an additional epicycle to a
scenario that is already quite speculative. Indeed, one would
need to produce a sufficiently large number of such particles
and make sure that massive particles decouple from the sca-
lar field at the present epoch. The last condition is necessary
to avoid a rapid change of the coupling constants related to
the brane separation described by the fieldf.

One may try to improve the situation by altering the shape
of the potential. First of all, the original argument of@10#
was that the functionF(f) appears because at small values
of the string couplinggs nonperturbative effects should be

suppressed by a factore21/gs or e21/gs
2
, or perhaps by

e28p2/gs
2
. In the case of type IIA~or heterotic! string theory

in d510 the string coupling isgs5e2f @14#. Thus one could
expect the suppression function to be one of the three pro-
posed types:F(f);e2e2gf

, F(f);e2e22gf
, or F(f)

;e28p2e2gf
, with g51 rather than withg50.1226.

It is possible to haveVmin523, as in@10#, for g51, but
only if one takesc581.56. The value ofc must be fine-
tuned: a change inc of 1% results in a change ofVmin by two
orders of magnitude. In accordance with@15#, this would
lead to an order of magnitude change in the amplitude of
density perturbations.

With these parameters, however, the curvature of the ef-
fective potential in its minimum becomes two orders of mag-
nitude greater than the Planck mass squared, so all calcula-
tions in such models in the context of the effective 4D theory
are unreliable. In potentials withF(f);e2e22gf

or F(f)
;e28p2e2gf

the curvature in the minimum withuV(f)u
*O(1) becomes much greater still.

F. Bicycling scenario

Various modifications to the cyclic scenario are possible.
For example, instead of the asymmetric potential shown in
Figs. 12 and 15, one may consider a symmetric potential, as
in Fig. 17.

FIG. 16. Effective mass squaredm25V9 of the scalar field in
the vicinity of the minimum ofV(f) in the cyclic scenario.
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In the beginning, the scalar field is large and positive and
it slowly moves towards the minimum. When it falls to the
minimum the universe begins to contract and the field is
rapidly accelerated towards the singularity atf52`. As we
already mentioned, the structure of the singularity is not sen-
sitive to the existence of the potential, especially if it is as
small asV0;102120. Suppose in the vicinity of its minimum
the potential is approximately quadratic,V(f)'m2(f2

2f0
2)/2. If f0<1 andm!1, then according to Eq.~59! the

kinetic energy of the fieldf reaches the Planck value at

fp52f01A1

6
ln Dr2'A2

3
ln~mf0

2!. ~76!

For definiteness, suppose thatm;AV0;10260, and f0
5O(1). Then we would not even know that such a mini-
mum exists~the field would not move there! until the energy
density of matter dropped below its present density 102120.
In this case the kinetic energy of the field moving towards
f52` would reach the Planck value atfp;2112. At that
time the scale factor of the universe would decrease by a
factor of Dr2

1/6;10220.
Now let us assume, as in@10#, that the fieldf bounces

from the singularity and moves back. Its energy density
drops down to the Planck energy density atf̃p'fp;102.
During its subsequent evolution the kinetic energy of the
field rapidly drops down because of radiation. Even if the
density of radiation at the time whenf5f̃p were as small as
10239, it would eventually begin to dominate because its
relative contribution grows asa2, i.e. up to 1040 times before
it reaches2f0.

Therefore the fieldf freezes at large negativef. At this
stage the energy density is dominated by particles produced
near the singularity and density perturbations prepared dur-
ing the previous cycle lead to structure formation. Then the
universe cools down while the field is still large and negative
and the late-time stage of inflation begins. During this stage
the field slowly slides towards the minimum of the effective
potential and then rolls towards the singularity atf→`.
When it bounces from the singularity, a new stage of infla-
tion begins. The universe in this scenario enters a cyclic
regime with twice as many cycles as in the original cyclic
scenario of Ref.@10#. One may call it thebicycling scenario.

An advantage of this scenario is that it may work even if
a lot of radiation is produced at the singularity and the field
f rapidly loses its kinetic energy. However, if in order to
have density perturbations of a sufficiently large magnitude
one needs to have a potential with a super-Planckian depth
V(f),21, as in @10,15#, then this scenario has the same
problem as the scenario considered in the previous section.
The kinetic energy of the fieldf becomes greater than the
Planck density as soon as it rolls to the minimum ofV(f). It
becomes even much greater when the field rolls out of the
minimum, and the 4D description fails.

G. Cycles with inflationary density perturbations

As we see, one of the main difficulties of the cyclic sce-
nario is related to the non-inflationary mechanism of genera-
tion of density perturbations. It requires a very specific and
fine-tuned potential; see@13# and discussion above. Accord-
ing to @15#, this potential must have a super-Planckian depth,
so one cannot study the corresponding processes by tradi-
tional methods. Moreover, the very existence of this mecha-
nism of generation of density perturbations remains contro-
versial @16#.

This problem can be avoided if we consider a potential
that grows at largeufu, such as the one shown in Fig. 18. The
field begins to move from large positivef, falls to the mini-
mum of V(f), and moves with ever growing speed to2f.
If, for example, the potential grows likefn at a sufficiently
large negativef, it does not affect the motion of the fieldf
towards the singularity. However, when the fieldf bounces
back, it immediately loses its velocity due to the impact of
radiation created at the singularity. Therefore it slows down
and enters a stage of inflation. At this stage all good and bad
memory about the previous life of the universe and processes
at the singularity are erased and new density fluctuations are
produced. All particles produced at the singularity become
diluted, but new ones are produced at the end of inflation due
to gravitational effects@48# or by the mechanism of instant
preheating@49,50#. These new particles constitute the matter
contents of the observable universe.

Gradually the density of ordinary matter decreases, and
the energy density of the universe becomes determined by
V(f)'V0. The universe enters a stage of low energy infla-

FIG. 17. Symmetric scalar field potential in the new cyclic sce-
nario. At large values ofufu one hasV(f)'V0;102120 and there
is a minimum atf50.

FIG. 18. Scalar field potential in the cyclic scenario incorporat-
ing a stage of chaotic inflation. Inflationary perturbations are gen-
erated and the large-scale structure of the universe is produced at
f,0.
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tion ~quintessence!, which may result in a regime of self-
reproduction ifV(f) is flat enough. In those exponentially
large domains of the universe where the field eventually falls
down to the minimum ofV(f), it continues rolling tof
5`, bounces back after the singularity, slows down due to
radiation, experiences low-energy inflation, and rolls down
to the minimum ofV(f) again.

In this model of the oscillating universe one can have
large scale structure formation due to inflationary perturba-
tions without any need to rely on controversial assumptions
about the behavior of perturbations passing through the sin-
gularity. Also, one no longer needs to have potentials with
uV(f)u.1. However, in this model inflationary perturbations
are generated only every second time after the universe
passes the singularity~at f,0, but not atf,0). The model
can be made even better by making the potential rise both at
f→` and atf→2`; see Fig. 19. In this case the stage of
high-energy inflation and large-scale structure formation oc-
curs each time after the universe goes through the singularity.

Thus we see that it is possible to propose a scenario de-
scribing an oscillating inflationary universe without making
any assumptions about the behavior of non-inflationary per-
turbations near the singularity. Another important advantage
of this scenario is that inflationary cycles may begin in a
universe with initial size as small asO(1) in units of the
Planck length, just as in the standard chaotic scenario@4#.
Still, in many other respects this scenario is almost as com-
plicated as the cyclic scenario of Ref.@10#. The theory of
reheating of the universe in this model, just as in@10#, is
rather unconventional. Gravitational particle production,
which is the only source of matter in this scenario, may
dramatically overproduce gravitinos and moduli fields
@48,50#. To avoid this problem one would need to use the
mechanism of instant preheating@49,50#. In order to com-
bine the stage of chaotic inflation and the stage of low-scale
inflation ~quintessence! the potential must be rather compli-
cated. To avoid this complication one may need to consider
two-field models of the type of hybrid inflation.

The main problem of this model is that one still must
assume that somehow the universe can go through the sin-
gularity. But now this assumption is no longer required for
the success of the scenario since the large scale structure of
the universe in this scenario does not depend on processes

near the singularity. This allows us to remove the remaining
epicycles of this model. Indeed, the main source of all the
problems in this model is the existence of the minimum of
the effective potential withV(f),0. Once one cuts this
minimum off, the potential becomes extremely simple, see
Fig. 20, and all problems mentioned above disappear. In par-
ticular, one may use the simplest harmonic oscillator poten-
tial (m2/2)f21V0 with V0;102120 considered in the begin-
ning of our paper. This theory describes an eternally self-
reproducing chaotic inflationary universe, as well as the late
stage of accelerated expansion~inflation! of the universe
driven by the vacuum energyV0.0.

X. CONCLUSIONS

The main goal of our work was to perform a general
investigation of scalar field cosmology in theories with nega-
tive potentials. We have found that the phase portraits of
such theories in the 3D space (f,ḟ,H) have different geom-
etry as compared with phase portraits in theories with
V(f)>0. In theories withV(f).0 the phase portraits for
flat universes are divided into two disconnected parts de-
scribing expanding and contracting universes (H.0 andH
,0). Meanwhile in theories withV(f),0 these two parts
become connected. The trajectories moving towardsV(f)
,0 simultaneously move from the parts of the phase portrait
with H.0 towards the parts withH,0. Once the universe
begins to contract, it never returns to the stage of expansion
until it reaches the singularity.

This does not mean that theories with negative potentials
should be banned from consideration. In some cases the sca-
lar field may be trapped in a metastable minimum, or it may
roll towardsV(f),0 extremely slowly. However, it is quite
interesting that with an account taken of general relativity
potentials that have minima atV(f),0 can be as dangerous
as potentials unbounded from below.

A general feature of all trajectories bringing the universe
towards the singularity is that in all theories with power-law
potentials the kinetic energyḟ2/2 becomes much greater
thanV(f) near the singularity. This means that the descrip-
tion of the singularity is nearly model independent, at least at
the classical level. In particular, the equation of state of the
universe approaching the singularity typically isp5r.

However, this conclusion can be altered with an account
taken of quantum effects, including particle production near

FIG. 19. Scalar field potential in the cyclic scenario incorporat-
ing a stage of chaotic inflation. Inflationary perturbations are gen-
erated and the large-scale structure of the universe is produced both
at f,0 and atf.0.

FIG. 20. The scalar field potential that appears after the step-by-
step simplification of the cyclic scenario.
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the singularity. Typically particle production near the singu-
larity is so efficient that it turns off the regimep5r when a
contracting universe approaches the Planck density. The ef-
fects related to particle production are especially significant
in an expanding universe as they tend to completely elimi-
nate the stage withp5r.

In addition to the general study of cosmology with nega-
tive potentials, we performed an investigation of a possibility
that our universe may experience repeated cycles of inflation
and contraction@10#. For a complete study of this scenario
one would need to resolve the singularity problem, as well as
several other problems discussed in@13,44,16,47#. In addi-
tion, as we show in this paper, the parameters of the effective
potentials used in the cyclic scenario must be fine-tuned with
accuracy better than 1%. This scenario, as proposed in@10#,
requires investigation of an effective potentialV(f) of a
super-Planckian depth,uV(f)u.1, and of a scalar field with
mass greater than the Planck mass. Even if all of these prob-
lems could be resolved in the context of a more general
approach, the existence of a cyclic regime in the model of
Ref. @10# would require additional assumptions. We have
shown that ultrarelativistic particles produced near the singu-
larity, as well as scalar particles created when the field falls
down to the minimum of the effective potential, tend to halt
the motion of the classical fieldf, which prevents inflation-
ary cycles from occurring. One way to address this problem
is to study quantum creation of supermassive particles with
specific interactions with the scalar field. However, this
would add new ‘‘epicycles’’ to a scenario that is already very
complicated.

We proposed several modifications to the cyclic scenario
of Ref. @10# that could make it more realistic and less depen-
dent on the unsolved singularity problem. In particular, if one
assumes that the potentialV(f) slowly grows at largeufu
then the universe may still enter a regime of eternal oscilla-
tions, but the singularity will be separated from the stage of
large scale structure formation by a stage of chaotic inflation.
This scenario allows us to combine attractive features of the
oscillating universe model@17–21# and chaotic inflation@4#.
An important advantage of this model is that it does not need
to rely on the controversial theory of density perturbations
passing through the cosmological singularity.

But even this model remains very complicated. Fortu-
nately, it allows for one final simplification that resolves all
of its remaining problems. If one removes the minimum of
the potential atV(f),0, one returns to the usual scenario of
chaotic inflation. It describes an eternally self-reproducing
inflationary universe, as well as the present stage of acceler-
ated expansion.

Note added in proof

Two months after this paper was submitted to Phys. Rev.
D, the authors of the cyclic scenario issued a new paper on
this scenario@51#. This new paper, which is supposed to be a
summary of the state of the cyclic universe model, omitted
any mention of the criticisms of the ekpyrotic or cyclic sce-
nario in our paper and in the papers of other authors
@13,16,44#. It was claimed in@51# that the cyclic scenario ‘‘is
able to reproduce all of the successful predictions of the con-
sensus model~inflationary cosmology! with the same exquis-
ite detail.’’ They continued by saying that ‘‘All of the differ-
ences between the two paradigms harken back to the
disparate assumptions about whether there is a ‘beginning’ or
not.’’ Then they said that ‘‘if the big bang were not a begin-
ning, but rather, a transition from a pre-existing contracting
phase, then the inflationary mechanism would fail.’’

We disagree with these claims. As explained in our paper,
the original version of the cyclic scenario@10# does not have
firmly established theoretical predictions and it suffers from
many unsolved problems. This scenario is not a real alterna-
tive to inflation because it assumes that the universe passes
through an infinite number of stages of inflation. If one as-
sumes, following@10,51#, that the universe can pass through
the singularity, then it is very easy to add a standard stage of
chaotic inflation to the beginning of each cycle. This has
been demonstrated in Sec. VIII G of our paper. Instead of
failing @51#, the standard inflationary mechanism resolves
many of the problems of the cyclic scenario. Therefore we
are not debating whether inflationary theory is better than the
models of a noninflationary cyclic universe, because all ver-
sions of the cyclic universe scenario use an infinite number
of stages of inflation. We are just comparing different ver-
sions of inflationary theory. Some of these versions, dis-
cussed in Sec. VIII G, admit the existence of a cyclic regime
combined with chaotic inflation and do not lead to any prob-
lems with the generation of metric perturbations. Meanwhile
some other models, such as the original version of the cyclic
scenario@51#, are very problematic and require modifications
as described in Sec. VIII of our paper.
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