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ABSTRACT
Moderate-resolution spectroscopic observations from the Keck 10 m telescope are used to derive internal

kinematics for eight faint disk galaxies in the fields flanking the Hubble Deep Field. The spectroscopic data are
combined with high-resolution F814W Wide Field Planetary Camera 2 images from the Hubble Space Telescope
that provide morphologies, scale lengths, inclinations, and orientations. The eight galaxies have redshifts 0.15 =
z = 0.75, magnitudes 18.6 # I814 # 22.1, and luminosities 221.8 # MB # 219.0 (H0 5 75 km s21 Mpc21 and q0 5
0.05). Terminal disk velocities are derived from the spatially resolved velocity profiles by modeling the effects of
seeing, slit width, slit misalignment with galaxy major axis, and inclination for each source. These data are
combined with the sample of Vogt et al. to provide a high-redshift Tully-Fisher relation that spans 3 magnitudes.
This sample was selected primarily by morphology and magnitude, rather than color or spectral features. We find
no obvious change in the shape or slope of the relation with respect to the local Tully-Fisher relation. The small
offset of =0.4 mag in B with respect to the local relation is presumably caused by luminosity evolution in the field
galaxy population and does not correlate with galaxy mass. A comparison of disk surface brightness between local
and high-redshift samples yields a similar offset, 10.6 mag. These results provide further evidence for only a
modest increase in luminosity with look-back time.
Subject headings: galaxies: evolution— galaxies: kinematics and dynamics

1. INTRODUCTION

Until recently, studies of faint field galaxies have been
limited to galaxy counts, colors, and redshift distributions,
which can be used to construct luminosity functions at earlier
epochs. Such luminosity functions are then compared with
models incorporating a certain amount of number evolution
(controlled by galaxy formation and merging) coupled with
luminosity and color evolution (controlled by star formation
histories). Recent models range from those predicting only a
small degree of luminosity evolution (e.g., Gronwall & Koo
1995) to those invoking entirely new classes of galaxies (e.g.,
Babul & Rees 1992; Babul & Ferguson 1996) to those
requiring high merger rates (e.g., Broadhurst, Ellis, & Glaze-
brook 1992). A direct measure of luminosity evolution in field
galaxies will help to distinguish between various hypotheses.
Such measures have been attempted recently, but the results
are somewhat contradictory. Schade et al. (1996a) found
evidence for disk brightening by 1.2 mag in B in galaxies at
redshifts 0.5 # z # 1.2. Simard & Pritchet (1997) found even
greater levels of evolution (2.5 H 0.5 mag) in a sample of very
blue galaxies at z 1 0.35 for which strong [O II] lines could be
spatially resolved. Rix et al. (1997), also using kinematic
information, derived a brightening of 1.5 mag at z 1 0.25 for
sub-L, galaxies. In contrast, Vogt et al. (1996) and Bershady
(1997), using optical rotation curves, and Forbes et al. (1996),

using line widths, found only small deviations from the local
Tully-Fisher (TF) relation (Tully & Fisher 1977) for spiral
galaxies, implying only modest brightening (10.4 mag) out to
z 1 1. Simard & Pritchet postulate that these various results
could be reconciled if strong luminosity evolution were present
only in lower mass systems. If confirmed, this would be an
important factor in understanding the evolution of field gal-
axies.
This Letter introduces well-resolved rotation curves of eight

predominantly lower luminosity galaxies (LB = LB, 5 220.3;
see Efstathiou, Ellis, & Peterson 1988), selected by morphol-
ogy as suitable TF candidates. These new observations provide
a valuable test of the mass-dependent luminosity evolution
hypothesis, particularly in comparison with the higher mass
sample presented by Vogt et al. (1996, hereafter Paper I).
Combined with the work of Paper I, these data form a sample
of rotation curves for 16 galaxies at redshifts 0.15 = z = 1,
ranging over half the age of the universe (for q0 5 0, one-third
for q0 5 0.5). We also use this combined data set to explore
trends in surface brightness for comparison with Colless et al.
(1994), Forbes et al. (1996), and Schade et al. (1996a).
Detailed analysis of a significantly larger data set is currently
underway, and these results will be used to explore a variety of
relevant selection effects. A full description of our analysis
techniques is deferred to that paper (Vogt et al. 1997).

2. OBSERVATIONS

The TF candidate objects were selected from the Wide
Field Planetary Camera 2 (WFPC2) F814W (I814) images of
the flanking fields of the Hubble Deep Field (HDF; Williams
et al. 1996). Selection was based on the following criteria: (i)
undistorted disk morphology; (ii) inclination greater than 308;
(iii) no interacting companions or obscuring foreground stars;

1 Based on observations obtained at the W. M. Keck Observatory, which is
operated jointly by the California Institute of Technology and the University of
California.

2 Based in part on observations with the NASAyESA Hubble Space Tele-
scope, obtained at the Space Telescope Science Institute, which is operated by
AURA, Inc., under NASA contract NAS 5-26555.

3 Current address: Dept. Astrofı́sica, Universidad Complutense, E-28040
Madrid, Spain.

4 Hubble Fellow.
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and (iv) I814 # 22.5. The selection was made with no a priori
knowledge of redshifts or luminosities. The galaxies were
observed in 1996 April under the auspices of the Deep
Extragalactic Evolutionary Probe (DEEP) project (Koo 1995),
using the Low-Resolution Imaging Spectrograph (LRIS; Oke
et al. 1995) on the Keck 10 m telescope. LRIS employs slit
masks to provide “long-slit” spectral observations for multiple
objects simultaneously. For the TF candidates, the slitlet for
each object was tilted to align with the major axis of each
galaxy. Slitlets were 1"1 wide and$12"0 long for these objects.
Integration times were 50 minutes for each of two 600 line
mm21 gratings, blazed at 5000 and 7500 Å; the combined
spectral range was roughly 3800–8600 Å. Spectral and spatial
scales were 1.28 Å pixel21 and 0"215 pixel21, respectively. The
seeing was approximately 1"0 FWHM. In addition to spectros-
copy, two 300 s V-band images of the field were acquired (see
Phillips et al. 1997 for more details of the observations and for
galaxy coordinates).
The new spectral data have several significant improvements

over those of Paper I. The targets were preselected as suitable
TF galaxies, whereas the rotation curves in Paper I were
obtained serendipitously. Slitlets were aligned with the galaxy
major axes, removing a source of potentially significant error.
Finally, the expanded spectral range means that multiple
emission lines were observed for each object, e.g., [O II] l3727
through [O III] l5007 for z , 0.7 (the majority of our sources),
and through Ha for z , 0.3. For z . 0.7, only the [O II] lines
were available.

3. DATA REDUCTION AND ANALYSIS

3.1. Spectral Measurements

The LRIS spectra were debiased and flat-fielded, and then
rectified. Wavelength calibration was done using the proce-
dure described in Kelson et al. (1997). No relative or absolute
flux calibration was applied. All spectra (not just those prese-
lected for TF work) were examined for spatially extended
emission lines, but only one additional object (IE 4-1304-1007)
displayed such lines (the apparent inclination of this object
was too low for our criteria, but we include it in our final
sample). Among the 18 preselected candidates, one has
yielded no redshift identification; one has a pure early-type
spectrum with no detected emission lines; one at z 5 0.109
displayed unusually weak lines, both in emission and absorp-
tion; eight show normal disk galaxy spectra, but the emission
lines are too weak to use to derive velocity curves; and seven
display emission lines of sufficient strength to determine
velocity structure. The group of eight has virtually the same
median redshift (0.50) and redshift range (0.41–0.77) as do the
seven successful targets.
The [OII] l3727 doublet, Hb, and [O III] l5007 were ob-

served for most sources in the final sample. The spatially
resolved emission lines were analyzed using the same Gaussian
profile fitting technique described in Paper I (see also Vogt
1995). Briefly, a single (or double) Gaussian profile was used
to fit each emission line (or doublet) at each point in the
spatial direction. Profiles were considered acceptable when-
ever the Gaussian fit met minimum requirements in height and
width, generally a signal-to-noise ratio (SyN) of 5 s and 3 s,
respectively; the typical value was 10 s for both width and
amplitude. Central wavelengths of the profiles were used to
construct observed rotation curves.
As discussed in Paper I, the sizes of the disks in these

galaxies are on the order of the seeing and the slit width. Thus,
wavelength shifts in the observed spectral lines are not only a
function of the velocity profile of the disk, but also the surface
brightness distribution and the mapping of the seeing-
smoothed flux through the full slit. (A simplifying factor for
the new data is that the misalignment of the slit relative to the
galaxy major axis was less than 108 for all but one source.) To
derive terminal velocities, we must correct for these effects. To
this end, we employ a grid of simple exponential disk models
with different terminal velocities in order to simulate emission
lines, and we fit these model emission lines identically to the
spectral data. The circular velocity of the galaxy model was
adjusted iteratively to match the observed data and was
adopted as the intrinsic terminal velocity, Vterm. (For some
galaxies, a clear turnover in the velocity curve was not ob-
served. Rather than match the inner, rising rotation curve and
extrapolate to a turnover velocity, we have chosen the model
whose measured turnover velocity matches themaximum velocity
measured in our spectra; these models provide lower limits to the
true Vterm.) Errors in Vterm were estimated by varying the inclination
and position angle of each galaxy by H108.

3.2. Photometric Parameters

The Hubble Space Telescope (HST) I814 images were analyzed
using IRAF-based tools (see, e.g., Forbes et al. 1994; Phillips et
al. 1997). Total magnitudes were measured from aperture growth
curves; inclinations and position angles were estimated from
outer elliptical isophotes; and disk scale lengths were measured
from simultaneous disk-plus-bulge fits to the major-axis intensity
profiles. HST took images of the flanking fields in I814 only, so a
LRIS V image was used to determine a V 2 I color. The I814
image was seeing-degraded to match the ground-based image,
and the color was determined within a 2"2 diameter aperture (see
Phillips et al. 1997 for more detail).
Intrinsic galaxy parameters were calculated using themeasured

redshifts, photometry, and angular scales, assuming H0 5 75
km s21 Mpc21 and q0 5 0.05.5 To determine rest-frame luminos-
ities, LB, k-corrections were interpolated from the model spectral
energy distributions (SEDs) of Gronwall & Koo (1995), which
are based on Bruzual & Charlot (1993) models and realistic star
formation scenarios. Current epoch (i.e., nonevolving) SEDs
were used. Since rest-frame B corresponds to observed V606 at z 1
0.4 and to I814 at z 1 0.8, errors in the k-corrections should be
small. Galactic extinction was taken to be negligible for the HDF
(Williams et al. 1996), and sources were corrected for internal
extinction following the method of Tully & Fouqué (1985) in
order to be consistent with Pierce & Tully (1988, 1992).

4. RESULTS AND DISCUSSION

Images of the eight new galaxies and their spatially resolved
[O II] lines are shown in Figures 1a and 1b (Plates L8 and L9),
along with the observed and modeled velocity curves. Like the
eight galaxies discussed in Paper I, these new distant TF
galaxies appear to be quite similar to local normal spiral
galaxies, both morphologically and kinematically. The HST
images show apparently normal, disk-dominated spirals. Al-
lowing for seeing and resolution effects, the velocity curves are
qualitatively similar to those of local spirals. The rotation
curves are traceable to13 exponential scale lengths (Rd) in the
disks, a length comparable to the extent of rotation curves for
local galaxies (cf. Vogt 1995). A simple estimate of their

5 The data from Paper I have been adjusted for these new values.
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masses,M 5 V 2RyG, yields values of (0.5–5) 3 1011MJ within
15 kpc, similar to the range of masses found for nearby spirals.
For purposes of discussion, we separate the velocity data

into two classes. High quality is defined as having sufficient
SyN and resolution elements to clearly determine a terminal
velocity, at least one emission line free of strong night-sky
contamination, apparent inclination greater than 308, and a slit
misaligned with the galaxy major axis by less than 208. Six of
the eight new galaxies and five from Paper I meet these
criteria. Note that the serendipitous object, IE 4-1304-1007, is
a low-quality source.

4.1. TF Relation at High-Redshif t

In Figure 2, we compare the 16 galaxies with a local TF
relation in the rest-frame B band. The local relation shown is
an inverse fit (i.e., Vterm as a function of MB) to the local sample
from Pierce & Tully (1992); this is the proper fit for compar-
ison with a magnitude-limited sample (see Paper I). The 11
high-quality sources have a weighted offset of 0.36 H 0.13 mag
relative to the local relation and an rms dispersion of 0.65 mag.
This observed dispersion matches the combined estimated
errors of the logarithmic velocity widths (0.47), the rest-frame
B magnitudes (0.2), and an assumed intrinsic scatter in the TF
relation (0.4; cf. Willick et al. 1996 and references therein),
thus helping to validate our error estimates. The lower quality
points show a much larger scatter, as expected.
We emphasize that the derived offset, 10.4 mag, represents

an upper limit to luminosity evolution of field galaxies, for
these reasons: any magnitude-limited sample is biased toward
more luminous objects; our analysis is restricted to objects
with detectable emission lines—that is, actively star-forming
galaxies that are likely to have elevated B luminosities; some
terminal velocities are lower limits; and we may be overcor-
recting for extinction if galaxies were less dusty at earlier
epochs. Our choice of q0 5 0.05 is also conservative—derived
luminosities are reduced by 0.1–0.4 mag for q0 5 0.5. While

mass evolution is a possible factor, we have assumed implicitly
that evolution in luminosity dominates the observed offset. We
do not expect the masses to evolve strongly, though, given the
presence of clearly formed disks.
The new HDF data extend the luminosity range of our total

sample to 221.8 = MB = 219. It is notable that there is no
deviation from a linear relation over this range, i.e., there is no
evidence in these data for different amounts of luminosity
evolution in different luminosity or mass regimes.
One explanation for the wide range in luminosity evolution

found by various groups is that sample selection strongly
affects the degree of evolution detected in a given sample. In
our sample, the galaxies were chosen primarily by morphology.
On the other hand, Bershady (1997), Simard & Pritchet
(1997), and Rix et al. (1997) selected blue galaxies. These
studies all had different sample selection, redshift ranges, and
observational and analysis techniques; a direct comparison is
not practical nor is a full discussion of these parameters within
the scope of this Letter (see Vogt et al. 1997). However, it is
useful to consider the potentially critical issue of color-
selection criteria. The Bershady (1997) low-redshift (0.05 #
z # 0.35) sample shows an offset of less than 0.5 mag, while
the Rix et al. (1997) spatially unresolved data at redshift z 1
0.25 show evidence for a magnitude offset of 11.5 relative to
a local blue sample (i.e., the effect would be even greater if the
data were compared with a general local sample). Simard &
Pritchet (1997) chose the strongest [O II] emitters from among
a sample of emission-line galaxies (Simard 1996), and they
found the highest offset of all (2.5 H 0.5 mag for a redshift of
z 1 0.35; note the large scatter). This suggests that the bluest,
most actively star-forming galaxies may show the largest
offsets. Forbes et al. (1996), whose sample was not color-
selected, noted some correlation between their offsets and
their galaxy colors in the sense that the galaxies with the
largest offsets tended to be blue. Rix et al. (1997) find the same
trend within their blue sample. As a further example, Figure 2
includes the two galaxies from Vogt et al. (1993) with observed
optical rotation curves; one (SA 68-2545.3) was chosen specif-
ically for its unusually strong [O II] flux, and this galaxy shows
a very large offset from the TF relation. Taken together, this
suggests that for redshifts z ? 0.2, color may prove to be a
good indicator of luminosity evolution in field galaxies, distin-
guishing between an average, stable population and a bluer,
star-forming population with enhanced luminosity.

4.2. Surface Brightness Evolution

Changes in surface brightness levels in disk galaxies can
provide an independent determination of luminosity evolu-
tion, provided scale lengths do not evolve strongly, and is
particularly useful since it is independent of q0. Freeman
(1970) showed that disks in local spiral galaxies have a near-
uniform central surface brightness (mB 5 21.65 mag arcsec22).
Recently, de Jong (1995) found a morphological-type depen-
dence to the surface brightness and studied the effect of
internal extinction, determining a value of mB 5 21.45 H 0.76
mag arcsec22 for the case of spirals with T-types 1–6
(de Vaucouleurs et al. 1991) with semitransparent disks.
Among high-redshift (z 1 0.5) galaxies, Forbes et al. (1996)
concluded that the surface brightness increases by 0.6 H 0.1
mag with respect to local galaxies of similar mass. This is also
in agreement with Colless et al. (1994). Schade et al. (1996a,
1996b) find increases of10.9 mag out to a redshift z 1 0.5 and

FIG. 2.—A high-redshift TF diagram plotting Vterm vs. B luminosity. We
show our data (numbered in increasing redshift) and those from Vogt et al.
(1993) and Paper I compared with the relationship (solid line) based on H I

velocity width measurements of a restricted set of 32 local cluster spirals (Pierce
& Tully 1992). The dashed lines are the 3 s limits to the dispersion in this local
relation. Velocities have been corrected by sin i, and the magnitudes corrected
for internal extinction. We adopt H0 5 75 km s21 Mpc21 and q0 5 0.05.
Assuming the same slope as that of the local sample, the weighted fit (dotted
line) to our 11 high-quality points ( filled symbols) is offset from the local
relation by 0.36 H 0.13 mag toward higher luminosity.
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1.6 H 0.1 mag for disk galaxies at redshifts 0.5 , z , 1.1,
respectively (with no correction for internal extinction). For
our sample, we compare disk sizes and luminosities for the 15
disk galaxies, as plotted in Figure 3 (we exclude the “double
nucleus” galaxy from Paper I, since its structure is complex).
The single early-type spiral (NE 4-1269-1248) appears to be a
“ring galaxy” whose profile is difficult to fit. Scale length
measurements for it range from 0"4 to 1"0; we adopt 0"6 (with
large uncertainties) since it appears most credible. This galaxy
also has a significantly larger bulge-to-disk (ByD) ratio (10.9)

than that of the others (10.1). As is normal practice, the disk
scale lengths have not been corrected to face-on values.
Sources with inclination i ? 808may be systematically in error,
because of distortion of the surface brightness profiles from
nonuniform extinction at different radii (cf. Giovanelli et al.
1994). A comparison is made with de Jong’s local galaxy
sample and distant galaxy measurements from Schade et al.
(1996a). We find our sample to have an overall offset of 0.59 H
0.13 mag with respect to local galaxies, in fairly good agree-
ment with the offset in the TF relation. Although the highest
redshift data (z . 0.75) generally lie within the locus of the data
points from Schade et al., the median offset in our data is
significantly less. The apparent brightening at the high-mass end
(seen also in the data of Forbes et al. 1996) could be caused by a
bias toward higher than average luminosities among the most
distant objects, as well as by luminosity evolution.

5. CONCLUSIONS

In summary, we have compared a set of 16 high-redshift
galaxies with a local TF relation and find a modest amount of
luminosity evolution (DMB = 0.4). This conclusion is sup-
ported by an examination of the surface brightness character-
istics of the sample, which show evidence for evolution at the
level of 10.6 mag. We find no evidence for deviation from a
linear TF relation at lower luminosities to a magnitude MB 1

219. The bluest galaxies within the sample have a slightly
larger offset from the local TF relation, which suggests (when
taken in conjunction with results of other studies) that the
derived degree of luminosity evolution may depend strongly
on sample selection.
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