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Warped Geometry of Brane Worlds

Gary N. Felder, Andrei Frolov, and Lev Kofman
CITA, University of Toronto, 60 St. George St., Toronto ON Canada, M5S 3H8

18 December 2001

Abstract

We study the dynamical equations for extra-dimensional dependence of a
warp factor and a bulk scalar in 5d brane world scenarios with induced brane
metric of constant curvature. These equations are similar to those for the time
dependence of the scale factor and a scalar field in 4d cosmology, but with the sign
of the scalar field potential reversed. Based on this analogy, we introduce novel
methods for studying the warped geometry. We construct the full phase portraits
of the warp factor/scalar system for several examples of the bulk potential. This
allows us to view the global properties of the warped geometry. For flat branes,
the phase portrait is two dimensional. Moving along typical phase trajectories,
the warp factor is initially increasing and finally decreasing. All trajectories have
timelike gradient-dominated singularities at one or both of their ends, which
are reachable in a finite distance and must be screened by the branes. For
curved branes, the phase portrait is three dimensional. However, as the warp
factor increases the phase trajectories tend towards the two dimensional surface
corresponding to flat branes. We discuss this property as a mechanism that may
stretch the curved brane to be almost flat, with a small cosmological constant.
Finally, we describe the embedding of branes in the 5d bulk using the phase space
geometric methods developed here. In this language the boundary conditions at
the branes can be described as a 1d curve in the phase space. We discuss the
naturalness of tuning the brane potential to stabilize the brane world system.
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1 Introduction

One of the most interesting recent directions in high energy physics phenomenology
is the development of brane world scenarios in which our 3+1 dimensional spacetime
is a 3-brane embedded in a higher dimensional spacetime. In application to the very
early universe this leads to brane world cosmology, where the universe we observe is
a 3+1 dimensional curved brane embedded in the bulk. One of the issues in brane
world scenarios is the warped geometry of the internal space. In addition to the warp
factor in the bulk, brane world scenarios often contain bulk scalar fields. Examples
include the dilaton in Horava-Witten theory [1] (associated with the volume of the
compactified 6d Calabi-Yau space) where the 5d effective theory can be obtained [2]; the
Randall-Sundrum model [3] with phenomenological stabilization [5] where the choice
of the bulk/brane potentials must be consistent with the 5d warp geometry [6, 7], the
scalar sector of the supergravity realization of the Randall-Sundrum model [8], bulk
supergravity with domain walls [10] and others.

The 5d bulk scalar plus gravity brane world system is based on the five dimensional
Einstein equations with junction conditions at the branes. Here we consider a simpler
problem where the 5d space can be split into 4+1 de Sitter slices

ds2 = dw2 + A2(w)ds2
4 . (1)

The 4d de Sitter geometry is described by its scalar curvature 4R = 12H2, where H =
const is the 4d Hubble parameter. The warp factor A(w) is determined up to boundary
conditions by the five dimensional Einstein equations. For the sake of generality we
also present corresponding results for the more general case of a D dimensional warped
metric with D − 1 dimensional de Sitter slices. The limit of vanishing H corresponds
to a flat brane, while nonvanishing H corresponds to brane inflation.

The brane sets the boundary conditions for the warp factor A(w) and the scalar
field φ(w). It is known that often the warped geometry (1) somewhere outside of the
brane encounters a spacetime singularity. One way to cure this problem is to invoke a
second brane to screen the singularity by making the inner geometry periodic with the
inter-brane interval. Two end-of-the-world branes provide orbifold compactification of
the inner space. In the Randall-Sundrum model [3] with AdS bulk geometry without
scalars the second brane may be removed.

The properties of warped geometry with one or two branes were studied in many
papers, see e.g. [9, 10, 6, 7, 12, 13]. The purpose of this paper is to investigate the
global properties of 5d warped geometry (1) for a variety of bulk scalar field potentials
V (φ), supplemented by boundary conditions at the branes. We will try to understand
how typical is the singularity in the warped geometry, how much tuning is required for
the brane potentials, and how these depend on the brane curvature H2. Our approach
is different from what was used in the earlier literature.

The setting of the problem for the geometry (1) is similar to the investigation of the
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FRW universe geometry
ds2 = −dt2 + a2(t)ds2

3 . (2)

with the scale factor a(t) and a scalar field with the potential V (φ). Powerful method
that has been used to investigate this 4d problem is the construction of phase portraits
for the dynamic system for variables φ, φ̇, and ȧ/a. Using this method it can be shown
that for a broad range of potentials V (φ) inflation occurs along a separatrix that is a
typical intermediate asymptotic for a broad band of phase trajectories [15, 14].

Inspired by this analogy, we adopt the phase portrait approach to studying the
warped geometry of the brane world scenario. It turns out that the equations for the
system (A(w), φ(w)) with the potential V (φ) are similar to the cosmological equations
for (a(t), φ(t)) but with the sign of the potential reversed. (There are also differences
in the numerical coefficients in 4d and 5d.) Flipping the sign of the potential makes a
big difference. For example, it alters the geometry of the phase portrait by connecting
branches with positive and negative “Hubble” parameter A′

A
. This connection with 4d

cosmology suggests a convergence of this work with recent work on 4d cosmology with
negative potentials [16], the results of which can be extended to the warped geometry.
Our results overlap with [16] and the connection will be investigated further [17].

The structure of the paper is the following. In Section 2, we introduce the basic
equations for the brane world scenario. In Section 3, we discuss generic properties of
the brane world phase space in terms of A′

A
, φ′, φ and classify its critical points.

In Section 4, we systematically construct the phase portrait for a 5d space with flat
4d curvature H = 0 (flat branes) for the simple quadratic potential V (φ) = 1

2
m2φ2.

We will see that without branes all trajectories begin and end at naked singularities
dominated by the gradient energy φ′2 of the scalar field, which corresponds to a “stiff”
equation of state with anisotropic pressure. We also consider quadratic potentials with
positive and negative cosmological constants.

In Section 5, we consider exponential potentials V (φ) = V0e
−2

√
2φ.

In Section 6, we extend the method of phase portraits to brane world scenarios with
curved branes H 6= 0. We shall see that the brane with the larger warp factor will
have smaller curvature. We discuss how this effect may be related to the problem of
the small cosmological constant on the visible brane.

In Section 7, we derive the Hamilton-Jacobi form of the self-consistent Einstein
equations for warped geometry with a scalar field, which leads to the SUSY form of
an arbitrary positive bulk scalar potential (without any underlying supersymmetry).
This correspondence has been previously noted in context of holographic renormaliza-
tion group flows [11]. We also address the similarity of the Einstein-Hamilton-Jacobi
constraint equation and the well-known gravitational stability form of the potential
[19, 20, 10].

In Section 8, we introduce branes to screen the singularities. We show how the brane
boundary conditions can be represented geometrically as a 1d curve in the 3d phase
space of the system. It turns out to be convenient to use the EHJ formalism (in many
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respects similar to using the SUSY form of the potential). From this perspective we
will discuss potentials that lead to brane stabilization and the degree of fine-tuning
required to achieve them.

The paper concludes with the summary of our results. There is also an appendix
in which the locations of critical points at infinity are derived for the phase portraits
shown here.

2 Equations and Notation

In this section we give the general formalism for a brane world scenario with a bulk
warp factor and scalar field. The total action is

S =
1

16πκ2
D

∫ √
−g dDx

{

R − (∇φ)2 − 2V (φ)
}

(3)

− 1

8πκ2
D

∑

∫ √
−h dD−1x {[K] + U(φ)} .

The D-dimensional gravitational coupling is related to the D-dimensional Planck mass
by MD−2

D = 1
8πκ2

D

. The bulk scalar field φ in (3) is dimensionless. The physical value of

the scalar field with canonical normalization is Φ = φ√
8πκD

and the physical scalar field

potential is V
8πκ2

D

. The first term in (3) describes the bulk; the second term is related

to the brane(s). We use a “mostly positive” signature and the curvature conventions
of Misner, Thorne and Wheeler (MTW). We write the jump of a quantity across the
brane as [K] = K+ − K−. Bulk indices will be greek, µ, ν, ...; brane indices will be
latin, a, b, .... Brane hypersurfaces are denoted as Σi where the index i runs over all
the branes. Throughout the paper we use overdots to indicate time derivatives and
primes to indicate derivatives with respect to the fifth dimension w.

The brane extrinsic curvature Kab is expressed through the normal unit vector nµ

and the tangent vierbien eµ
(a)

Kab = eµ
(a)e

ν
(b)∇µnν , (4)

the bulk equations are

Rµν −
1

2
Rgµν = Tµν , 2φ =

∂V

∂φ
, (5)

and the scalar field stress-energy tensor is given by

Tµν = φ,µφ,ν +
(

−1

2
(∇φ)2 − V (φ)

)

gµν . (6)

The junction conditions are

[Kab −Kgab] = U(φ)gab, [n · ∇φ] =
∂U

∂φ
. (7)

3



For some brane world scenarios the bulk and brane scalar field potentials are known.
In case of the RS models, for example, we have U(φ) = ±λ, where λ is a constant with
different signs on the two branes. The bulk potential is just a 5d negative cosmological
constant V (φ) = −Λ. In case of the HW model, U(φ) = U0e

−
√

2φ, V (φ) = V0e
−2

√
2φ.

Our calculations will be valid for arbitrary U(φ) and V (φ).

For 5d warped geometry (1) the bulk Einstein equations can be written as
(

A′

A

)′

= −1

4
φ′2 − 1

6
V (φ) −

(

A′

A

)2

, (8)

6

(

A′

A

)2

=
1

2
φ′2 − V (φ) + 6

H2

A2
, (9)

where the latter is a constraint equation. The equation for bulk scalar field

φ′′ + 4
A′

A
φ′ − V,φ = 0 (10)

is redundant with the Einstein equations.

In addition to the bulk equations given above we can specify boundary conditions at
the brane. The assumption of Z2 symmetry around each brane Σ implies the boundary
condition for the warp factor

A′

A
|Σ = −1

6
U (11)

and for the scalar field

φ′|Σ =
1

2
U,φ. (12)

Unless otherwise specified all boundary conditions are given on the positive side of the
brane.

When we refer to a flat or curved brane we are referring to its 4d, i.e. spacetime,
curvature. We only consider spatially flat branes, so the term flat brane refers to a 3+1
Minkowski geometry while a curved brane refers to a 3+1 de Sitter geometry.

The Einstein and field equations (8-10) can in principle be solved to find the w
dependence of φ and A, with boundary conditions supplied by the junction conditions
(11-12). It is instructive to compare 5d warped geometry with a scalar field with 4d
cosmological geometry (2) with a scalar field. In 4d cosmology we have the Einstein
equations

(

ȧ

a

).

= −1

3
φ̇2 +

1

3
V (φ) −

(

ȧ

a

)2

(13)

3
(

ȧ

a

)2

=
1

2
φ̇2 + V (φ) − 3

K

a2
, (14)

where K = 0,±1 is the curvature of 3d space, plus a redundant scalar field equation

φ̈ + 3
ȧ

a
φ̇ + V,φ = 0 . (15)
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Apart from trivial numerical coefficients, equations (8-10) and (13-15) differ in only
one respect: for the same sign of the potential in the action (3) the sign of the potential
in the cosmological equations will be opposite for the 4d cosmology and 5d brane world
cases. The sign reversal comes about because of the different metric signatures of dw2

and dt2.

The 4d cosmological equations for positive potentials have been comprehensively
studied by means of qualitative methods for analyzing ODEs [14, 15]. These methods
are equally applicable to 5d warped geometry. However, we will see below that the
sign reversal has profound implications for the qualitative properties of the phase space
behaviour.

Throughout the paper we will switch back and forth between a 4d and 5d viewpoint
for the potentials we consider. We will usually talk about the shape of our potentials
in terms of the behavior they elicit. For example, we refer to the potential V = 1

2
m2φ2

in 5d warped geometry (10) as a hill rather than a well, reflecting the fact that φ will
tend to accelerate away from the origin rather than towards it for this case. The same
potential acts as a well in the context of the 4d cosmological equation (15). We will
examine the implications of our work for 4D cosmology with negative potentials in
greater depth in a subsequent publication [17].

3 Phase Portraits

Dynamical system (8-10) can be rewritten in terms of the variables

x ≡ φ; y ≡ φ′; z ≡ A′

A
, (16)

which gives the three “evolution” equations

x′ = y (17)

y′ = V,x − 4yz (18)

z′ = −1

6
V − 1

4
y2 − z2, (19)

plus the constraint equation

− 2V + y2 − 12z2 = −12
H2

A2
. (20)

Here V = V (x).

Reduction of equations to a set of first order ODEs allows us to represent their
solutions using phase portraits, i.e. plots of trajectories in the 3d phase space defined
by x, y, and z. This technique has been applied to the evolution equations for 4d
chaotic inflation models in [15, 14]. In general, all trajectories in phase space must
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begin and end at critical points, i.e. points where the derivatives of all the dynamic
variables, i.e. the r.h.s. of (17-19), vanish. In addition to starting and ending at such
points, trajectories may in general come from or move towards infinity. By making
a coordinate transformation of the phase space coordinates (x, y, z) that projects the
complete phase space onto a compact region (Poincaré projection), however, one can
define a discrete set of critical points at infinity. Together with the set of finite critical
points these points describe the complete set of possible beginning and ending points
for all trajectories. By identifying the properties of these critical points (attractors A,
repulsors R or saddle points S) and the trajectories that connect them it is possible
to obtain a complete qualitative description of the dynamical system (17-19). (We do
not expect more complicated situations for our dynamical system.)

Note that the parameter H related to the curvature of the branes appears only in
the constraint equation (20). Just as for standard FRW cosmology, our equations for
warped bulk geometry can be classified by the sign of H2. The case H2 > 0 corresponds
to curved branes with 4d de Sitter spacetime geometry, H2 < 0 corresponds to 4d AdS
space-time, and H = 0 corresponds to flat branes. These three cases correspond to
three regions in phase space. Since H2 is a constant of the motion, the phase space
trajectories can never cross from one of these three regions to another. In particular
this means that for any particular potential V the surface obtained by setting H2 = 0
in equation (20) defines a limiting surface in phase space that can never be crossed. In
later sections we will see the importance of this two dimensional surface for defining the
phase space portrait for different potentials. In this paper we only consider trajectories
in the regions with H2 ≥ 0.

In the rest of this section we discuss finding the critical points for a general potential
V (x). In subsequent sections we illustrate this general procedure with a series of
examples for which we construct the phase portraits.

To find the finite critical points we set all r.h.s. of equations (17-19) to zero. This
gives rise to the conditions

y = V,x = 0, (21)

z2 = −1

6
V (x) . (22)

For positive definite potentials there can be no finite critical points. For instance, for
V (φ) = V0e

−2
√

2φ there are no finite critical points. For non-negative potentials finite
critical points must all satisfy the conditions

y = z = V = V,x = 0. (23)

Any extremum for which V < 0, however, corresponds to two critical points

z = ±
√

−1

6
V . (24)
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To analyze the behavior near these critical points (x0, y0, z0) we consider small de-
viations

x = x0 + δx; y = δy; z = z0 + δz (25)

and linearize the equations (17-19). We then assume a solution of the form (δx, δy, δz) ∼
eλw, which gives us a matrix with eigenvalues

λ =
(

−2z0 , −2z0 ±
√

V0,xx + 4z2
0

)

. (26)

Negative eigenvalues correspond to attractors and positive eigenvalues to repulsors.
Critical points whose eigenvalues have different signs are saddle points. Those with
imaginary eigenvalues show oscillatory behavior. In our case the finite critical points
can not be stable for z0 < 0 or for V0,xx > 0. In either of these cases there will be
at least one unstable direction in the vicinity of the critical point. For z0 > 0 and
V0,xx < 0 the solutions are stable.

It still remains to find critical points that occur at infinite values of the parameters.
To do this we rescale the infinite space of x, y, and z into a finite Poincaré sphere by
means of the variable definitions

x =
r

1 − r
cos(θ) sin(ϕ) (27)

y =
r

1 − r
sin(θ) sin(ϕ) (28)

z =
r

1 − r
cos(ϕ). (29)

We also shall rescale w by defining dw̃ = dw/(1 − r).

Our phase space as described by the spherical coordinates {r, ϕ, θ} is contained
within a sphere of radius one. The ODEs describing our system in these variables are
written in Appendix A. Here we are only concerned with critical points at infinity,
which corresponds to r = 1. In general the terms involving V (x) and V,x(x) may be
divergent for large x, in which case they alter the structure of the infinite critical points.
Assuming V and V,x are not divergent as x → ∞, however, the set of infinite critical
points turns out to be independent of the potential. Given this assumption, we found
8 infinite critical points. We label them (S1, S2, S3, S4, A1, A2, R1, R2), reflecting their
behavior for the potentials we have examined. (S ↔ saddle point, A ↔ attractor, R ↔
repulsor.) Their coordinates on the Poincaré sphere are at r = 1 and

(ϕ, θ) = (0, 0), (π/2, 0), (π/2, π), (π, 0), (30)

(sin−1(
√

12/13) , π/2), (sin−1(
√

12/13), 3π/2),

(π − sin−1(
√

12/13), π/2), (π − sin−1(
√

12/13), 3π/2).

For the potentials considered in this paper several attractor and repulsor points are
located on the two dimensional surface corresponding to H2 = 0.
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x

y

z

S1

S2

S3

S4

R1

R2

A1

A2

x

y

Figure 1: Infinite critical points on the Poincaré sphere. The labels are given to show
correspondences with later plots for specific potentials.

Most realistic potentials are divergent as x → ∞, with the result that infinite critical
points can be added or removed relative to this generic picture. For instance, for
V = 1

2
m2φ2, V = −1

2
m2φ2, and V = V0e

−φ there are six, twelve, and seven infinite
critical points respectively. Nonetheless a close correspondence can usually be seen
between the critical points for these potentials and the generic ones discussed here.

4 Quadratic Bulk Potentials: V = 1
2 m2φ2

As a simple example of a bulk scalar potential we consider V = 1
2
m2φ2. In the equations

of motion the mass m can be absorbed by rescaling the fifth coordinate w → mw, so
without loss of generality we simply set m = 1. Thus in the general equations (17-19)
we shall use

V =
1

2
x2, V,x = x. (31)

There is one finite critical saddle point for this case at the origin x = y = z = 0. In the
field equation (15) this point corresponds to the field sitting at the top of the potential
with no velocity and the warp factor neither increasing nor decreasing. This state is,
however, unstable. As we show in the Appendix, there are only six infinite critical
points for this case at

(ϕ, θ) = (0, 0), (π, 0), (sin−1(
√

12/13), π/2), (sin−1(
√

12/13), 3π/2), (32)
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(π − sin−1(
√

12/13), π/2), (π − sin−1(
√

12/13), 3π/2).

In other words the set of infinite critical points is identical to the generic case (30)
except without the points (π/2, 0) and (π/2, π), i.e. S3 and S4 in Figure 1.

The constraint equation (20) for the quadratic potential has the form

− x2 + y2 − 12z2 = −12
H2

A2
. (33)

Setting H2 = 0 in the constraint equation defines the two dimensional surface

− x2 + y2 − 12z2 = 0, (34)

which is a double cone opening up in the positive and negative y directions, see upper
panel of Figure 2.

The cases H2 > 0 and H2 < 0 correspond to trajectories outside and inside the
double cone respectively. For all values of H2 nearly all trajectories begin at the points
R1 and R2 on the top of the cone and end at the points A1 and A2 on the bottom, see
Figures 2 and 5. There are separatrices that connect saddle infinite points S1, S2 with
the saddle point S at the origin, see Figure 5.

In this section we consider trajectories that lie along the cone, i.e. “flat” geometry
with H2 = 0. As we have mentioned, this case plays a special role in the investigation
of the 3d phase portrait. We consider the case H2 > 0 in section 6. Figure 2 shows
Poincaré projection of two dimensional phase space and some of the trajectories for
the flat case. Phase trajectories that begin on the double cone surface (34) remain on
it. Trajectories that lie off the cone can, and in general do, approach it in the limit
r → 1, but any trajectory that lies on the cone at any finite point must lie entirely on
it. Therefore, the phase space required to describe warped bulk geometry with flat 4d
slices is two dimensional.

The flat case we are considering is similar to 4d FRW flat cosmology with a scalar
field, which can also be described with a two dimensional phase portrait [15, 14]. In the
cosmological case the phase manifold has two disconnected planes, one for an expanding
universe and another for a contracting universe (which can be obtained from the first
by time reversal). In the 5d case, however, the expanding and contracting regions of
the phase portrait are connected, which leads to very different behavior of A(w) and
φ(w).

In addition to showing the 3d phase portrait, Figure 2 also shows the projection of
one of the cones onto the (x, z) plane and the projection of the upper half of both cones
onto the (x, y) plane. There are several interesting features to note about this portrait.
As in the 4d case, trajectories can not pass from one cone to the other. Trajectories
can not pass through the critical point S at the origin, or through any critical point
for that matter, because by definition all derivatives vanish at these points. In the 4d
case this separation meant that for H2 = 0 with this scalar potential the sign of the
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Figure 2: Phase portrait in Poincaré coordinates and trajectories with H2 = 0 for
V = 1

2
m2φ2. The top figure shows the trajectories in the full 3D phase space while the

bottom pictures show projections onto the xz and xy planes. In both projections, only
half of the cone is shown for clarity. Trajectories at xy plane continue on the other
side of the cone.
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Hubble parameter could never change. In the 5d case, by contrast, the geometry of
the cone dictates that the sign of y, i.e. of φ′, can never change. Consider what this
means for the equation of motion (10), which describes an inverted harmonic potential
with friction

x′′ + 4
A′

A
x′ − x = 0 . (35)

Ordinarily we would expect that if you start on one side of the hill −x2 rolling towards
the origin you could either go over the top or stop and roll back in the direction you
came from. However, the latter behavior is not possible for our dynamical system.
The reason comes from the behavior of the effective “friction” A′

A
= z. Looking at the

constraint equation (34) we can see that as y decreases z2 approaches zero. Once the
kinetic energy is small enough z will change sign. This means that the warp factor
A(w), which was initially increasing, will begin shrinking. At this turn-around point
the friction term in the scalar field equation of motion (35) becomes negative, y begins
to grow again, and the field inevitably makes it over the top of the hill. From that
point onward y grows with increasing speed, eventually reaching the singular point
at infinity within a finite distance. (If we insert brane at some w1 so that A(w) was
decreasing initially then friction will always be negative, and the same result holds.)

This behavior is clear in the phase portraits shown here. All trajectories must cross
from z > 0 to z < 0, and must end up at the infinite critical point with x

y
→ 0. In

other words as φ grows, φ′ grows infinitely faster, so the singularity is reached in a
finite distance. Note that on each branch of the cone (±y) there are two topologically
distinct sets of trajectories, distinguished by which side of the cone (±x) they are on
when they cross from z > 0 to z < 0. Physically this difference simply reflects whether
they crest the top of the hill before or after the turn-around point discussed earlier.
These two classes of trajectories are separated by separatrices connecting the infinite
critical points to the origin, as can be seen in the right-hand side of Figure 2.

All trajectories begin on the repulsive infinite critical points R1 and R2 where z > 0
and end at the attractive infinite critical points A1 and A2 where z < 0. This is why
eventually A(w) always decreases. The separatrix trajectories are obtained from two
curves that intersect at the origin, one each starting from R1 and R2 and ending at A2

and A1 respectively.

Near the end points of all trajectories R1, R2, A1, and A2 the gradient term 1
2
y2

dominates over the potential term 1
2
x2. Recall that energy density of the the scalar

field from (6) is ρ = 1
2
φ′2+ 1

2
m2φ2; its pressure is anisotropic: Pw = 1

2
φ′2− 1

2
m2φ2, while

in the other three directions P1,2,3 = −1
2
φ′2− 1

2
m2φ2. Thus, in the regime where gradient

terms dominate, we have T µ
ν = −ρ diag(+1, +1, +1, +1,−1). (Recall that we use MTW

convention for T µ
ν where ρ = −T 0

0 ). The pressure is anisotropic, in the direction of
the extra dimension it corresponds to a stiff equation of state Pw = ρ, while in the
perpendicular direction it has vacuum-like equation of state P1,2,3 = −ρ. Compare this
with a stiff equation of state in 4d scalar field cosmology nearby spacelike singularity,
i.e. P = ρ [15, 14]. As we approach infinite values of φ′, we have ρ ∝ A−2(D−1), in 5d

11



x

y

z

R1

A2

x

y

R2

Figure 3: Trajectories with H2 = 0 for V = 1/2m2φ2 + Λ with Λ < 0.

ρ ∝ A−8. This corresponds to a timelike singularity (say at w = w0) as A(w) → 0. Near

singularities φ ∝
√

D−2
D−1

log(w −w0), A(w) ∝ (w −w0)
1

D−1 . In 5d, A(w) ∝ (w −w0)
1/4.

We conclude that the end points of all trajectories correspond to timelike singularities.
For realistic models these singularities should be screened by branes.

To end this section we modify the quadratic potential by adding a cosmological
constant V = 1/2m2φ2 + Λ, where Λ may have either sign. Negative Λ with no scalar
(or equivalently m = 0) corresponds to the Randall-Sundrum [3, 4] model. In other
words we are considering the question of what happens to the RS model (say AdS
with a single flat brane) if one adds a massive bulk scalar. As we will see, this model
has the same gradient type naked singularities that we found for the simple quadratic
potential.

Once again we take m = 1 so V = 1
2
x2 + Λ Since Λ is not divergent as x → ∞

the set of 6 infinite critical points is the same as for V = 1/2m2φ2. To consider the
finite critical points and the limiting surface H2 = 0, however, we have to distinguish
between two cases based on the sign of Λ. The limiting surface is given by

y2 = 12z2 + x2 + 2Λ, (36)
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Figure 4: 2d projections of trajectories for V = e−2
√

2φ, H2 = 0 on xz, (y > 0) and xy
planes. In both projections, only half of the surface is shown for clarity.

which is a hyperboloid of one or two sheets for Λ < 0 and Λ > 0 respectively. For
Λ > 0 the potential is positive definite and there are no finite critical points. For Λ < 0

there are two finite saddle points at x = y = 0, z = ±
√

|Λ|/6.

For Λ > 0 the phase portrait is nearly identical to the case studied above. The only
difference is that the two cones separate into two disconnected pieces of a hyperboloid.
Since trajectories for Λ = 0 could not pass from one cone to the other anyway, this
change has no significant effect on the behavior of the system.

Figure 3 shows the phase portrait for the quadratic potential with a negative cos-
mological constant. There are no longer two separated sheets, reflecting the fact that
there are now trajectories connecting positive and negative y. There are two critical
saddle points at which the field is sitting motionless at the top of the hill. There are
eight separatrix trajectories, one each connecting each of the four infinite critical points
to each of the finite critical points on the limiting surface. As before all trajectories
begin and end at the y dominated infinity. If we fix the brane at the middle of a
trajectory, one of the singularity will be screened. However, without the second brane
it is impossible to screen the other singularity. Therefore, the RS model with negative
cosmological constant and a single Z2 symmetric brane will acquire singularity at final
distance if a massive scalar field with nonvanishing condensate φ(w) is added.

5 Exponential Bulk Potentials

In this section we consider the bulk scalar potential V = V0e
−2

√
2φ. Dilaton scalar

fields with exponential potentials naturally arise in many high dimensional theories.
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We consider the properties of warped geometry and dilaton using the phase portrait of
their dynamical system. In our dimensionless variables, after rescaling of w by V

1/2
0 ,

we have V = e−2
√

2x.

Since the potential is positive definite there are no finite critical points. Infinite
critical points will not occur at any point where the potential diverges exponentially,
i.e. for x < 0. There are thus 7 infinite critical points

(ϕ, θ) = (0, 0), (π/2, 0), (π, 0), (37)

(sin−1(
√

12/13), π/2), (sin−1(
√

12/13), 3π/2),

(π − sin−1(
√

12/13), π/2), (π − sin−1(
√

12/13), 3π/2)

corresponding to all points shown in Figure 1 except S3.

The limiting surface H2 = 0 is described by

y2 = 12z2 + 2e−2
√

2x. (38)

Like for quadratic case, this surface consists of two branches, one each at positive and
negative y, that touch only at a critical point. In this case that critical point is at
x = ∞. For H2 = 0 we once again have that y can never change sign, meaning a
field moving up the potential from negative infinity will always continue on to x =
+∞. There are, however, two very different ways this can occur. Figure 4 shows 2D
projections of the phase portrait for this case. Consider upper half plane y > 0. Many
trajectories begin at infinite point R1 z > 0, x/y → 0 and end at infinite point A1

z < 0, x/y → 0, just as they did for the quadratic potential. For these trajectories y
is growing ever more rapidly and a gradient singularity must occur at a finite distance
(from the fixed brane). There is, however, another class of trajectories that approaches
the infinite critical point S4 at z = y/x → 0. These are trajectories for which y and z
asymptotically decrease as x approaches infinity, so the field and metric do not diverge
in a finite distance. There is no singularity at the end of trajectories which are heading
towards S4. Two types of trajectories are divided by separatrix between R1 and S4.
Behaviour for y < 0 half is similar.

All trajectories in Figure 4 for exponential bulk potential can be obtained analyti-
cally as closed form solutions of Hamilton-Jacobi equation (56) derived in Section 7.
However, we will not give their explicit form here, as the behavior of the solutions is
adequately described by the phase portrait already discussed.

6 Warped Geometry with 4d de Sitter Slices

In this section we extend the phase space analysis to include non-flat 4d sections of
the 5d warped geometry with constant 4d curvature ∼ H2. We consider the case of
positive H2 corresponding to de Sitter 4d geometry. We continue to consider our major
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Figure 5: Trajectories with H2 > 0 for V = 1
2
m2φ2.

example, a simple quadratic potential V (φ) = 1
2
m2φ2, which we began to investigate

in Section 4.

All trajectories in the 3d phase space (x, y, z) in this case are located outside the
cone. Without branes, a sampling of trajectories with H2 > 0 is shown in Figure 5.

Once again, trajectories begin and end at the same four critical points on the top and
bottom edges of the cone. Now, however, there is no topological constraint preventing
y from changing sign, so trajectories beginning at either of the points at z > 0 can end
at either of the points at z < 0. As before, however, the warp factor always goes from
increasing to decreasing as the derivative A′/A decreases monotonically from positive
infinity to negative infinity. There is once again a topological constraint imposed by a
pair of separatrices, however. In this case these are the trajectories that move straight
down along the line x = y = 0, one between the point S1 and the origin S and the
other between the origin and the point S2. Trajectories passing to the right of this line
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must end at y > 0 and trajectories passing to the left of it must end at y < 0. This
constraint simply reflects the fact that if the field comes to rest on one side of the hill
it will end up rolling down on that same side. Once again all trajectories end up with
x/y → 0, suggesting they reach the gradient type singularity in a finite distance.

The most interesting feature of the flow of phase trajectories in three dimensions
is that they all tend to lean towards the limiting surface of the cone in the region of
positive z. The physical reason for this is the following. Inspecting the constraint
equation (20) we see that for increasing A(w) (positive z = A′

A
), the curvature term

H2

A2 decreases. This means that the 4d de Sitter slices of the 5d geometry are getting
flatter. This is very similar to how in 4d cosmology inflation flattens the universe.
Imagine we fix two branes at w1 and w2, and the warp factor is increasing between
them, A(w2) > A(w1). Let us normalize A(w1) = 1. Let us rewrite the 5d metric,
specifying the 4d de Sitter coordinates in the form

ds2 = dw2 + A2(w)
(

−dt2 + e2Htd~x2
)

. (39)

The intrinsic 4d metric at the first brane at w1 is

ds2
4 =

(

−dt2 + e2Htd~x2
)

, (40)

while the intrinsic metric at the second brane is

ds2
4 = A2(w2)

(

−dt2 + e2Htd~x2
)

. (41)

Rescaling the 4d coordinates with A(w2), t′ = A(w2)t, ~x′ = A(w2)~x, we obtain 4d
metrics in the canonical form

ds2
4 = −dt′2 + e2H′t′d~x′2 . (42)

The physical curvature is described in terms of H ′ = H/A(w2), which is smaller than
H , and thus the second brane is flatter than the first one. The larger A(w2), the flatter
the brane at w2. It would be interesting to apply this mechanism to the problem of
smallness of the cosmological constant on the visible brane.

7 Phase Trajectories, Einstein-Hamilton-Jacobi

Equations, and the SUSY Form of the Potential

So far we have only considered warped geometry with a bulk scalar without including
branes. Branes must be self-consistently embedded in the 5d spacetime in accordance
with the junction conditions. The junction conditions involve the brane scalar field po-
tential U(φ). Their solution is often found by using an (auxiliary) SUSY superpotential
[6].
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Before we apply our phase portrait methods to the brane world scenario with branes,
we introduce one more element. Phase space trajectories can be conveniently described
in terms of Hamilton or Hamilton-Jacobi equations. In general relativity, usually the
ADM 3 + 1 formalism is used to derive the Einstein-Hamilton-Jacobi equations. In
the context of 4d FRW cosmology with a scalar field the Einstein-Hamilton-Jacobi
equations were derived by Bond and Salopek [18]. In the context of holographic renor-
malization group flows, the Hamilton-Jacobi equations were considered by de Boer
et. al. [11]. In this section we extend these results for a D-dimensional spacetime with
a scalar field. We use (D− 1)+1 splitting, but our (D− 1) hypersurface can be either
timelike or spacelike, and we consider branes of arbitrary constant curvature, and not
just the flat case. We find that for the flat brane geometry, the constraint equation
reduces to the SUSY representation of the scalar potential (this occurs even though
the system is not necessarily supersymmetric).

Let us consider an arbitrary D-dimensional metric in Gaussian normal coordinates,

ds2 = ǫ dw2 + gabdxadxb , (43)

where ǫ = ±1 depending on the timelike or spacelike character of the (D − 1) + 1
splitting. For the 4d cosmological problem [18] ǫ = −1, while for the 5d warped
geometry ǫ = +1.

The components of the curvature tensor can be split according to the Gauss-Codazzi
equations

(D)Ra
bcd = (D−1)Ra

bcd + ǫ(Ka
dKbc −Ka

cKbd)
(D)Rw

abc = ǫ(Kab:c −Kac:b)
(D)Rw

awb = ǫ(−Kab,w + KacKc
b) (44)

The Einstein and Ricci tensor components can be split as

(D)Gw
w = −1

2
(D−1)R +

ǫ

2
(K2 −KabKab)

(D)Gw
a = ǫ(K c

a :c −K:a)
(D)Rab = (D−1)Rab + ǫ(2K c

a Kbc −KKab −Kab,w) . (45)

We further specify the metric ansatz in a form unifying equations (1) and (2)

ds2 = ǫ dw2 + A2(w)γab(x
i)dxadxb , (46)

where γab is the metric of D − 1 dimensional constant curvature space, and we write

H =
A′

A
. (47)

Although this function of the warp factor was already used for the “Hubble” parameter
z, here we have denoted it differently since the very same combination can be considered
as a function of φ and will play the role of the Hamiltonian.
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For this metric ansatz, we have

Kab = 1
2
gab,w = Hgab, K = (D − 1)H, (48)

KabKab = (D − 1)H2, Kab,w = (H′ + 2H2)gab.

The bulk Einstein equations give us three equations. The first equation is

− (D − 2)H,a = φ′φ,a . (49)

It can be shown [18] that H = H(φ). Then from (49) we obtain the momentum
constraint equation

− (D − 2)H,φ = φ′ . (50)

The second equation is the energy constraint equation

1
2
(D − 1)(D − 2)H2 − (D−1)R

ǫ

2
=

φ′2

2
− ǫ

[

1
2
φ,aφ

,a + V (φ)
]

. (51)

The third equation is

(D−1)Rab − ǫ{(D − 1)H2 + H′}gab = φ,aφ,b + 2
D−2

V (φ) gab (52)

From the trace of the last equation and the energy constraint it follows that

D−1
2

(H′ + H2) +
φ′2

2
+ ǫ

D−2
V (φ) = 0. (53)

Next we suppose that φ = φ(w). Then from (51–53) we find that the scalar field
configuration in D dimensions is described by a system of three variables {φ, φ′,H}

H′ = −H2 − φ′2

D − 1
− 2ǫ

(D − 1)(D − 2)
V (φ) ,

φ′′ =
∂V

∂φ
− (D − 1)Hφ′ . (54)

These equations generalize the equations (8–10) and (13–15).

So far we have not specified the curvature of the D − 1 hypersurfaces. Assuming
that the induced brane-world metric is de Sitter spacetime, (D−1)Rab = (D − 2)H2

A2 γab,
and from (51) we obtain the constraint equation

ǫV (φ) =
1

2
(D − 2)2

(

∂H
∂φ

)2

− 1

2
(D − 1)(D − 2)

(

H2 − ǫ
H2

A2

)

. (55)

Let us apply the Hamilton-Jacobi constraint equation for warped geometry with
ǫ = +1 and flat D − 1 dimensional slicing with H2 = 0. In this case we have

V (φ) =
1

2
(D − 2)2

(

∂H
∂φ

)2

− 1

2
(D − 1)(D − 2)H2 . (56)
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Here the scalar field potential is taken as function of φ which is solution of the self-
consistent equations (in loose terminology, “on-shell” value of the potential) It is not
expected that the arbitrary potential V (φ) will have the SUSY form (56) for non self-
consistent geometry.

Compare this equation with the well known result that the stability of the bulk
scalar field requires a “supersymmetric” form of the potential [19, 20]

V (φ) = 2(D − 2)2

(

∂W

∂φ

)2

− 2(D − 1)(D − 2)W 2 , (57)

where W is some auxiliary function W = W (φ) which is called the “superpotential”,
but which emerges from the requirement of stability even without supersymmetry.

Comparing equations (56) and (57), we see that the bulk potential (56) can be
expressed in the SUSY form (57) where the Hamiltonian H plays the role of the su-
perpotential W = 1

2
H. It would be interesting to understand the relation between

these two apparently different approaches to scalar field dynamics in D dimensional
spacetime that lead to such similar looking results. Here we have simply noted that
the SUSY form of the potential is a very convenient to treat the bulk and the junction
conditions in a unified way.

The brane junction conditions (11,12) in terms of the Hamiltonian H are

− 2(D − 2)H = U(φ), −2(D − 2)
∂H
∂φ

=
∂U

∂φ
, (58)

where the values of all the functions are taken at the brane position w. Therefore,
choosing U(φ) = −2(D − 2)H(φ) at the brane, we automatically satisfy the junction
conditions. This is similar to the approach of [6]. Here, however, we make an explicit
connection between the superpotential W and the Hamiltonian H.

We also shall notice that for curved branes with nonzero curvature H2, the form (56)
is not supersymmetric anymore.

8 Warp Geometry Between Branes

In the previous sections we discussed how to solve the gravity/scalar field equations in
the bulk. To complete the brane world picture we must include branes as well, which
are embedded in the bulk according to junction conditions (11,12). We will consider
the case of static branes (wi = const) only, and assume mirror symmetry across the
brane (Z2 symmetry).

In the language of phase portraits, the two boundary conditions (11,12) define a 1d
curve in the 3d phase space. The equation for this curve is determined by the surface
potential U(φ), and can be parameterized by the value of the scalar field φ as

y = ±1

2
U,x(x), z = ∓U(x)

6
, (59)
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Figure 6: Segment of trajectory at the cone (shaded surfaces) in 1
2
m2φ2 theory be-

tween two branes. Phase space positions of branes are obtained by intersection of the
trajectory with U1, U2 curves, and is “pinned” by the choice of brane surface potentials
U1, U2.

where the signs correspond to the orientation (the choice of normal vector nµ) of the
brane with respect to the bulk: the upper/lower signs are taken for the brane being on
the left/right edge of the bulk, i.e. at lower/higher limit of w. The bulk trajectories
must start/end on these curves in the full phase space (and not at infinity as it was in
the absence of branes) for junction conditions to be satisfied at the brane, as illustrated
in Figure 6. The location of the brane is then given by the point of intersection of the
phase space curve (59) and the bulk trajectory, and can be uniquely specified by the
value of the field φ on the brane.

If one considers the case of a brane world with a single brane, for many potentials
V (φ) one encounters a problem that, in general, singularities occur a finite distance
from the brane (although there are potentials like exponential potential considered in
Section 6, where singularity outside of Z2 symmetric brane is avoidable). One possible
solution to the problem of timelike singularity outside of the brane in the brane world
scenario is to shield the singularity with a second brane. Given our assumption of
Z2 symmetry, the imposition of a second brane would effectively compactify the fifth
dimension, making a circle with the two branes at opposite poles. The junction condi-
tions must then be met separately at each brane, which is not necessarily guaranteed
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for an arbitrary choice of potentials V and U .

Let us address the question about the existence of warped geometry bulk solution
between two branes, if the potentials Ui at the brane are arbitrary. It is known [5, 6] that
in general such solutions can exist, but they are not expected to be compatible with the
flat brane, but rather with curved brane. We can obtain similar conclusion using the
methods developed in this paper. To see this in terms of phase portraits, the problem
of finding a consistent two-brane solution reduces to finding a trajectory in the full
three dimensional phase space that connects the two corresponding junction condition
curves U1 and U2. Geometrically, this can be viewed as finding the intersection of a 2d
surface generated by the bulk trajectories passing through the first curve U1, and the
second curve U2.

As an intersection of a 2d surface and a curve in 3d is typically a point (unless
they overlap or do not intersect altogether), for generic choice of V and U there may
be only one such trajectory (if any), and the brane separation is fixed by its length.
However, this successful trajectory is not expected in general to be located on the
H2 = 0 surface. Still, one can force the segment of trajectory between branes to be
on the surface H2 = 0 by simply shifting the potentials U1, U2 by a constant amount.
This tuning is a familiar tuning of four dimensional cosmological constant on the brane
(see also [6]).

We conclude that for potentials Ui which are not specially selected, brane worlds
scenario is not expected to have flat branes. The branes in the self-consistent scenario
are flat in a special but important case, which occurs when the junction condition curve
is also a bulk trajectory, as it happens for Hamiltonian of the previous section. In this
case, the two branes of opposite potentials U1 = −U2 = −2(D − 2)H can consistently
be placed at any separation. If one modifies the brane surface potentials U1,2 by adding
quadratic corrections ∝ (φ − φ1,2)

2 as it was done in [6], the solution will be “pinned”
between φ1 and φ2, as illustrated in Figure 6, and the brane separation will be fixed by
the choice of φ1 and φ2. In other words, the separation in the space of φ is translated
into the inter-brane distance.

9 Conclusion

We have developed here a method for systematically exploring the properties of differ-
ent potentials in brane world warped geometry. To construct the phase portrait of the
dynamical system of gravity/scalar, one can apply the qualitative theory of differential
equations. Solutions of these equations are represented by the trajectories propagating
in the phase space. For a single bulk scalar, trajectories are in three dimensional phase
space. For the case of the flat branes, all trajectories are located at two dimensional
surface, and the phase portrait of the dynamical system can be easily investigated.

In general, the phase space trajectories have timelike singularities at one or two of
their ends. These singularities are dominated by the scalar field gradient term, and
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associated with the infinite critical points in the phase space. We describe how to
find critical points for an arbitrary potentials. There are, however, examples of the
potentials without singularity at one of the end of phase trajectory. In this case, it
is possible to construct non-singular warped geometry with a single brane with Z2

symmetry.

We also considered the Einstein-Hamilton-Jacobi formulation of the warped geom-
etry with scalar field. Constrain equation relate the arbitrary bulk potential, the
Hamiltonian and its φ-derivative. Surprisingly, the scalar potential taken on the self-
consistent solutions acquires SUSY form even without underlying supersymmetry in
the theory. We address the issue how this form of the constrain equation for arbi-
trary “on-shell” potential is related to the requirement to the of the SUSY form of the
potential for gravitational stability of gravity/scalar system.

One can use the phase space with bulk trajectories to study warped geometry be-
tween two branes. Junction conditions for each brane generate one dimensional curve
in the phase space. Segment of trajectory between two such curves corresponds to the
inter-brane warp factor and scalar field. Without tuning the potential, this configu-
ration in general is not located at the two dimensional surface which represents the
flat branes, in other words, the solution exist in general for curved branes. However,
one can achieve solution with two flat branes by a simple shift of the potentials. This
analysis can be easily extended for more realistic case of several bulk scalar degrees of
freedom. For instance, for two bulk scalars, phase space is five dimensional and brane
junction conditions generate two dimensional surface. Without tuning the brane po-
tentials, in general there is a segment of trajectory which connect both two dimensional
surfaces in 5d (except special cases).

We leave the phenomenological applications of our methods for construction of
braneworld scenario with stabilization and investigation of their stability for future
work.

Acknowledgements

We are grateful to Dick Bond, Andrei Linde, Renata Kallosh, Boris Khesin, and Dario
Martelli for fruitful discussions and comments. This work was supported by NSERC,
CIAR, PREA of Ontario and NATO Linkage Grant 975389.

Appendix

In this appendix we find the coordinates of the infinite critical points using the coor-
dinates of the Poincaré mapping. We continue to denote derivatives with primes, with
the understanding that all r, θ, and ϕ derivatives are with respect to w̃. In these new
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variables, our basic equations (17–19) for arbitrary potential become

r′ =
1

16
(1 − r) cosϕ

(

−25 + 9 cos 2ϕ + 34 cos 2θ sin2 ϕ
)

(60)

+
1

8
(1 − r)2

(

4 sin 2θ sin2 ϕ − cos ϕ(−25 + 9 cos 2ϕ + 34 cos 2θ sin2 ϕ)
)

+
1

48
(1 − r)3 (24 sin ϕ(−2V,x sin θ + sin 2θ sin ϕ)

+ cosϕ(8V + 75 − 27 cos 2ϕ − 102 cos 2θ sin2 ϕ)
)

,

θ′ = −2r cos ϕ sin 2θ − (1 − r) sin2 θ +
(1 − r)2

r
V,x cos θ csc ϕ, (61)

ϕ′ =
1

32
r (−14 sin ϕ − 18 cos 2ϕ sin ϕ + 13 cos 2θ sin ϕ + 17 cos 2θ sin 3ϕ) (62)

+
1

4
(1 − r) sin 2θ sin 2ϕ +

(1 − r)2

r

(

V,x cos ϕ sin θ +
1

6
V sin ϕ

)

.

Suppose that the potential V (x) and its derivative V,x are not divergent at infinity
x → ∞, and there is no “accidental” cancellations of terms (see example below).
Taking limit r = 1 and putting r.h.s. of equations for θ′, ϕ′ to zero, we find 8 solutions
for θ, ϕ at the Poincaré sphere, given by equation (30).

For quadratic potential V (x) = 1
2
x2. we plug the expressions for V and V,x into the

above dynamical equations. The behavior of r′ and θ′ at r = 1 are unchanged. The
equation for ϕ′, however, picks up another nonzero term in that limit, namely

1

6

(1 − r)2

r
V sin ϕ =

1

12
cos2 θ sin3 ϕ, (63)

so the total ϕ′ equation becomes

ϕ′ =
1

96
{(−39 − 54 cos 2ϕ + 42 cos 2θ) sin ϕ + (50 cos 2θ − 1) sin 3ϕ} . (64)

The r.h.s. of equations for θ′, ϕ′ vanish for 6 points (θ, ϕ), given by equation (32). Two
points from (30) disappear due to the cancellation by special form of the potential V .

For exponential potential we have

V = e−2
√

2x = exp
(

−2
√

2
r

1 − r
cos θ sin ϕ

)

, (65)

V,x = −2
√

2e−2
√

2x = −2
√

2 exp
(

−2
√

2
r

1 − r
cos θ sin ϕ

)

. (66)

At infinite point with x < 0 potential diverges exponentially, and one of the 8 critical
points (30) disappear. Remaining 7 points are given by equation (37).
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