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Tachyonic instability and dynamics of spontaneous symmetry breaking
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Spontaneous symmetry breaking usually occurs due to the tachigmimoda) instability of a scalar field
near the top of its effective potential &t=0. Naively, one might expect the fielgl to fall from the top of the
effective potential and then experience a long stage of oscillations with ampQt(ilenear the minimum of
the effective potential ap=uv until it gives its energy to particles produced during these oscillations. However,
it was recently found that the tachyonic instability rapidly converts most of the potential evi€dgdyinto the
energy of colliding classical waves of the scalar field. This conversion, which was called “tachyonic preheat-
ing,” is so efficient that symmetry breaking typically completes within a single oscillation of the field distri-
bution as it rolls towards the minimum of its effective potenfi@al Felderet al, Phys. Rev. Lett87, 011601
(200D)]. In this paper we give a detailed description of tachyonic preheating and show that the dynamics of this
process crucially depends on the shape of the effective potential near its maximum. In the simplest models
whereV(¢)~ —m?¢$?/2 near the maximum, the process occurs solely due to the tachyonic instability, whereas
in the theories— A ¢" with n>2 one encounters a combination of the effects of tunneling, tachyonic instability
and bubble wall collisions.

DOI: 10.1103/PhysRevD.64.123517 PACS nuni§er98.80.Cq

I. INTRODUCTION state with an amplitude much smaller than|A ¢|<v. The
most efficient process that was previously known to convert
Since the beginning of the 1970s, spontaneous symmetrhe energy of a homogeneously oscillating scalar field into
breaking(SSB has been a basic feature of all realistic theo-the energy of elementary particles and make the amplitude of
ries of elementary particles. It is discussed in every book orihe oscillations small was parametric resonafik but in
quantum field theory, so one might expect the theory of thignost cases studied in the literature the homogeneous compo-
effect to be well understood. However, until very recentlynent of the field makes several dozen oscillations before the
this was not the case. process completes.
The standard picture of SSB that many people have in However, in a recent paper by Felder, GarBellido,
mind looks as follows. The field initially stays at the top of Greene, Kofman, Linde and Tkachgy] it was shown that
the effective potential/(¢) at ¢=0 like a ball at the top of typically spontaneous symmetry breaking completes within a
a hill. Then some small external force pushes it to the righsingle oscillation of the scalar field. One key observation
or the left. Even if this force is infinitesimally small, it is made in[1] was that nobody pushes the figldfrom the top
enough for the field to start falling down in the direction in of the effective potential in the early universe, so the usual
which it was pushed. The field then oscillates near the minipicture of a homogeneously oscillating scalar field is incor-
mum of its effective potential/(¢) at |#|=v, and eventu- rect in application to SSB. In those cases when the initial
ally the whole universe becomes filled by a homogeneougalue of the homogeneous component of the figli close
scalar field|¢|=v. As an example of this process one canto zero, quantum fluctuations rather than the classical rolling
imagine a piece of ferromagnetic material being magnetize@f the homogeneous fiel¢ dominate the dynamics.
under the influence of a very small external magnetic field. ~Usually SSB occurs because of the presence of tachyonic
That is why many authors who studied SSB assumed thanass terms such asm?¢?/2 in the effective potential, so
the field ¢ was initially slightly displaced from the maxi- thatV”=—m?<0. Long wavelength quantum fluctuations
mum ofV(¢). Then they studied classical rolling of the field ¢y of the field ¢ with momentak<<m grow exponentially,
¢ from this displaced state and the growth of quantum fluc¢k~exp¢\/m2—k2). When these fluctuations become large
tuations on top of the homogeneous classical field. It waghey can be interpreted as classical waves of the scalar field.
generally thought that the stage of oscillations of a homogeSpontaneous symmetry breaking occurs when the total am-
neous classical fielgp with amplitude|A ¢|~v would last  plitude of these fluctuations grows up ta Because all
for a very long time until it produced elementary particles modes withk<<m are growing, SSB occutecally on a scale
that drained the energy of the classical oscillations. One casomewhat greater tham™ 1. Later on, this scale gradually
talk about spontaneous symmetry breaking only when théncreases. Inhomogeneities of the scalar field absorb some
field ¢ settles down alt¢| ~v and starts oscillating near this part of the energw(0), which suppresses the amplitude of
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the scalar field oscillations. As a result, the fiebdthat ap-  form without extra complications related to high temperature
pears after SSB is relatively homogeneous on the scaleffects and cosmological evolutidn.
somewhat greater tham ™!, and the amplitude of its oscil- Even in this regime, the theory of SSB remains extremely
lations A ¢(x,t) about the state¢|~v is substantially complicated since for its investigation one should go beyond
smaller tharv. Thus, contrary to naive expectations, a pro-perturbation theory. Fortunately, during the last few years
longed stage of oscillations of a homogeneous component afew methods of lattice simulations have been developed.
the scalar fields during SSB usually does not exist. They are based on the observation that quantum states of
As we will show in this paper, one reaches a similar con-Bose fields with large occupation numbers can be interpreted
clusion even if the fieldy initially has been slightly dis- as classical waves and their dynamics can be fully analyzed
placed from the top of the potentigho SSB. With this by solving relativistic wave equations on a lattick0,11].
initial condition, the homogeneous background field decaysSimilar methods were used ifl2-17 in application to
within a few oscillations due to the broad parametric reso-sphaleron effects, the formation of disoriented chiral conden-
nance enhanced by the tachyonic regime. sates, and the problem of topological defect production and
The process of rapid transfer of the energy of the scalabaryogenesis in the early universe. In our paper, which ex-
field V(0) into the energy of its inhomogeneous oscillationstends the previous workl], we will further develop these
due to tachyonic instability was callaédchyonic preheating methods.
[1]. One should distinguish between the tachyonic preheating Usually the main output of lattice simulations is the cal-
and spinodaltachyonig instability, which occurs at the very culation of correlation functions, Wilson loops, etc. A signifi-
beginning of this process. The first stages of the process afant advantage of our methods is that the semi-classical na-
SSB related to tachyonispinoda) instability can be studied ture of the effects under investigation allows us to have a
by relatively simple methods. However, very soon the pro<lear visual picture of all the processes involved. One can
cess becomes exceedingly complicated. When the fielteally seethe process of spontaneous symmetry breaking
grows sufficiently large, one should take into account nonwhich helps enormously in understanding the nature of this
linear effects. Oscillations of the field can trigger an explo-effect. That is why this paper is accompanied by many fig-
sive process of particle production due to parametric resodres that show the development of symmetry breaking in
nance[2], which can be especially efficient in our case various models.
because of the tachyonic instability. Particlesaves of the In addition to the simplest models witk”(0)=—m?
classical field produced in this process begin interacting with<0, we will study some models where the curvature of the
each othefrescattering At this stage even advanced meth- effective potential neatp=0 is negative, but it vanishes at
ods based on the Hartr¢2] or 1N [3] approximations fail #=0. This happens in such theories as\¢* or —\ ¢>.
to describe the situation correctly. In addition, from the very[Potentials of the type of \ ¢ appear in the simplest su-
beginning of the process there may be production of topopersymmetrigSUSY) motivated models of hybrid inflatioh.
logical defects, which cannot be described by perturbatio\s we will see, the development of tachyonic instability in
theory. One might expect that since this is a nonperturbativeuch models is accompanied by bubble formation and
phenomenon it cannot materially affect the process of SSByrowth and bubble wall collisions. Rather interestingly, in
As we will see, however, the production of topological de-these theories bubble formation occurs via tunneling even
fects is not a small correction but an important feature ofthough there is no potential barrier W ¢) [18,19. More-
SSB. Topological defects, like other inhomogeneities generever in the theory—\ ¢° this process occurs even though
ated by tachyonic instability, drain the energy of the scalathere are no instantons describing bubble formation in this
field rolling down to the minimum of the effective potential. theory. To understand this process one should use the sto-
By doing so, they diminish the amplitude of subsequent osehastic approach to tunneling developed20].
cillations of the scalar field. Section Il describes the basic theory of spontaneous sym-
There is an extensive literature describing SSB, spinodainetry breaking and tachyonic instability, focusing particu-
instability and the production of topological defects duringlarly on the simplest example of a negative quadratic poten-
high temperature phase transitions in cosmolp4yp]. To  tial. In this section we also discuss the definition of
study these issues one should find how the temperatur@ccupation number used throughout the paper to describe the
changes in the early univerg@] and use numerical methods growth of fluctuations. Section Il generalizes the theory to a
to find out how symmetry breaking occurs in an expandindoroader class of potentials and to the case where the homo-
universe with a time-dependent temperature. Many interesgeneous field begins to be displaced from the maximum of
ing results have been obtained in this direction, see[&]g. the potential. Section IV presents the results of our numerical
However, most of these results were strongly model-simulations for the simplest SSB model, a single field with a
dependent because the answers crucially depend on the ratigsadratic tachyonic termi.e. V~—m?¢$?/2). Section V
between masses of the particles, their coupling constants, tliewmpares our results with results obtained from perturbative
temperature of the universe and the rate of expansion. Toalculations and shows how and when the perturbative cal-
avoid this problem, in this paper we will concentrate on theculations break down. Section VI extends our numerical cal-
simplest possibility when the temperature was zero from the
very beginning and the field was standing on the top of the——
effective potential. This will allow us to study basic features *A discussion of SSB and tachyonic preheating in the early uni-
of the process of spontaneous symmetry breaking in its purgerse will be contained if8,9].
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culations to the case of a complex field with a quadratic ) mdk? m?
tachyonic term. (6¢ >=f a 2= a7 3
. . o 87 8w
The next two sections discuss the somewhat more com-
plicated situation that arises when the tachyonic mass is
dependent and vanishes#t 0. Section VII discusses quar-
tic potentials ¥~ —\ ¢*/4) and explains how SSB occurs

and the average initial amplitude of all fluctuations with
<m was given by

through tunneling and bubble formation in such models. Sec- m

tion VIII discusses cubic potentials where the behavior is in op= > (4)
some ways intermediate between that of the quadratic and

quartic cases. The dispersion of the growing modestat0 is given by

In the concluding section we summarize our results and
briefly discuss their application to various cosmological sce- md k2 — M(2mt—1)+1
narios, including hybrid inflation, new inflation, brane infla- <5¢2>=f ——e2\M k= 5
tion, and the recently proposed ekpyrotic/pyrotechnic uni- o 87 167t

verse scenarios. Finally there is an Appendix that provides . .
details on our lattice calculations and lists the parameterdNiS means that the average amplitudié(k) of quantum

used for each of the simulations described in the paper. fluctuations with momenta-k |nr|t2|a_II¥ was §¢(k)~ki2m,
and then it started growing &$"'™ *",
There is a certain similarity between the generation of
Il. TACHYONIC INSTABILITY AND SPONTANEOUS classical inhomogeneities from quantum fluctuations either
SYMMETRY BREAKING due to tachyonic instability or, during inflation, due to
The simplest model of spontaneous symmetry breaking i§tretching of the wavelengths of these fluctuations. In both
based on the theory with the effective potential cases the fluctuations thus produced are in squeezed states
[21], although the mechanisms that produce them and the

4 resulting properties of the waves are somewhat different.

) To get a qualitative understanding of the process of spon-
taneous symmetry breaking, instead of many growing waves
with momentak<<m in Eq. (5) let us consider first a single

wherem?=\v? andA<1. V(¢) has a maximum ath=0 sinusoidal waves¢ = A(t)coskx with k~m and with initial

with curvatureV'=V = —m? and a minimum atp)=*+v.  amplitudeA (t)~m/27 in one-dimensional spa¢eo that the

The development of tachyonic instability in this model average value of§¢)? corresponds ton?/872]. The ampli-
depends on the initial conditions. We will assume that ini-tude of this wave grows exponentially until it becomes
tially the symmetry is completely restored so that the figld  O(v)~m/\. This leads to the division of the universe into
does not have any homogeneous component(i#g=0. domains of sizeD(m™1) in which the field changes from

But then(¢) remains zero at all later stages and for the©®(v) to O(—v). The gradient energy density of domain

investigation of SSB one needs to find the spatial distributionwalls separating areas with positive and negativavill be

of the field ¢(x,t). To avoid this complication, many authors ~k25¢2=0(m?*/\). This energy is of the same order as the

assume that there is a small but finite initial homogeneousotal initial potential energy of the fielf(0)=m?*4x. This

background fieldg(t), and even smaller quantum fluctua- is one of the reasons why any approximation based on per-
tions d¢(x,t) that grow on top of it. This approximation may turbation theory and ignoring topological defect production
provide some interesting information, but quite often it iscannot give a correct description of the process of spontane-
inadequate. In particular, it does not describe the creation ajus symmetry breaking.

topological defects, which, as we will see, is not a small Thus a substantial part of the energy0) is transferred

nonperturbative correction but an important part of the probto the gradient energy of the fieltl when it rolls down to the

®)

A m? A m
V(¢)= Z((l’z—vz)zE— 7¢2+ Z¢4+ n’

lem. _ _ _ minimum of V(¢). Because the initial state contains many
~ Let us consider the equation for the scalar field fluctuaquantum fluctuations with different phases growing at differ-
tions in the mode(1): ent rates, the resulting field distribution is a Gaussian random
field with a varying spectrum. It cannot coherently give all of
Bt (K2+ V") =0. ) its gradient energy back and return to its initial state 0.

This is one of the reasons why spontaneous symmetry break-

- . ing and the main stage of preheating in this model may occur
For definiteness, we suppose that the mode functions d?/\'/ithin a single oscillation of the fields

scribing quantum fluctuations in the symmetric phase0

h I h ; | Meanwhile if one were to make the usual assumption that
at the moment close to=0 are the same as for a massless,jsia|ly there exists a small homogeneous background field

field, ¢ = (1/y2k)e ™ *** Then att=0 we “turn on”the <y with an amplitude greater than the amplitude of the
term —m?¢%/2 corresponding to the negative mass squaregrowing quantum fluctuationsd, so that m/2m< g
—m?. The modes wittk= |k| <m grow exponentially. Initial <m/\/\, one would find out that wheb falls to the mini-
dispersion of all growing fluctuations witkk<m was given mum of the effective potential the gradient energy of the
by fluctuations remains relatively small. In some situations this

123517-3
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FIG. 1. Evolution of the occupation numbers for the fluctuations FIG. 2. Same as in Fig. 1 fd¢=0.5m.
with k<m in the modeN/( ) = — (M?/2) 2+ (N /4) b+ (m*4N).
gime, wherm?=0. Moreover, for all nonvanishing momenta

could lead one to falsely conclude that the field will experi-these two quantities match very well when one switches
ence many fluctuations before it relaxes near the minimum ofrom the tachyonic regime to the normal one. Indeed,
V(¢). To avoid this error, we need to perform a completewhereas the value ofy, changes during the process, the
study of the growth of all tachyonic modes and their SUbseexponentiaI growth of, is mainly determined by, and
quent interaction-without making this simplifying assump-| 4 | which do not change strongly during the switch be-
tion about the existence of a homogeneous figld tween the tachyonic regime and the normal one. Therefore

The tachyonic growth of all fluctuations wit<m con- e functionn, is very convenient and informative during the
tinues_until y(5¢°) reaches the value-v/2, since at¢  whole process. When one calculatgsduring the tachyonic
~v/+/3 the curvature of the effective potential vanishes andegime, one can get a good idea of the number of particles
instead of tachyonic growth one has the usual oscillations ofnhat will emerge at the end of this regime where the usual
all the modes. Equatio(d) shows that this happens within a particle interpretation becomes possible. In this sense we will
time t, ~(1/2m)In(C/\), whereC~ 10, interpret the functionn, defined above as the occupation

A convenient tool for studying this process is the specnumber of particles in both regimes.
trum of the growing quantum fluctuations. Rather than using An additional caveat of this interpretation is that when
the usual power spectrufi,/?, however, we find it more one calculatesh, , one does not distinguish between the con-
informative to investigate the occupation numbgrof pro-  tribution to this quantity from small perturbations and from
duced particle$2]. Indeed, in situations where the number of topological defects. As a result, in the presence of topologi-
particles is well definedand this always happens at the endcal defects one can somewhat overestimate the number of
of the processthe occupation numben, is an adiabatic produced particles. The error, however, is not very large,
invariant, i.e. it does not change during the field oscillationsespecially in theories where instead of domain walls we have
unless some dramatic changes occur to the system. The stafirings or monopoles. Moreover, eventually topological de-
dard definition of the occupation number which was extenfects disappear and release their energy in the form of pro-
sively used in the theory of preheatif®], and which is valid  duced particles, and the standard interpretatiomfoe-

for m*=0, is comes completely valid.
The exponential growth of fluctuations during the tachy-
W |¢k|2 | 1 qnic regime can be i_nterpre’_ted as the growth of th_e occupa-
== 7+|¢k| 5 (6)  tion number of particles witkk<m. Using the estimates
k

given above, one can show that for k<m at the timet,

grows up to
However, this definition does not work in the tachyonic re-

gime when the effective mass squared of the figldecomes (7)
negative since thenw,=k?>+m? becomes imaginary.

Strictly speakingn, should not be interpreted as the occu-The time t, ~(1/2m)In(C/\) depends only logarithmically
pation number of particles during the tachyonic regime. Ongot only on\, but, more generally, on the choice of the
may still formally calculate the function in this regime jnitial distribution of quantum fluctuations. As we see, for
using either/k*+[m?| or |k| instead ofw,= Vk“+m?inthe  small\ the fluctuations witk<<m acquire very large occu-
expression forn, wheneverm?<0. The choice between pation numbers. More importantly, such fluctuations will
VkZ+|m?| and|K| is arbitrary, and it does not change any of have a large amplitude and will be in a squeezed state. The
the final physical results. The spectra shown in this papegeneral solution for these fluctuations will contain two terms,
usedw,=|k| in the tachyonic regime, with the exception of Ae“t and Be !, but after a short time only the growing
Fig. 1 and Fig. 2, where we used,= k?+|m?|. The for- modeAe®! survives. Therefore, independently of the initial
mally defined quantityn, can be interpreted as the occupa- phases of quantum fluctuations, the only modes \kithm
tion number of particles after the end of the tachyonic re-that survive after the beginning of the tachyonic regime will

ne~exp(2mt, )= O(10P)\ " 1>1.
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coherently grow, and their amplitude will become extremelyequations forg, in a time-dependent backgrour(t), one

large. That is why these modes can be interpreted as classic@dn find howe(t) changes in time. We will use this trick
waves and can be studied by computer simulations using thgere and in the next section.

methods 0f10,11]. Consider the theory
The dominant contribution t65¢?) in Eq. (5) at the mo-
ment t, is given by the modes with wavelength, V(¢p)=Vo—\o"2. 9

~27k, '~ \2em UnY(C/N)>m~*, where C=0O(10%). _ _ _

As a result, at the moment when the fluctuations of the field®{PPose the _f'el(lj?s berg];ms rolling down frome,. Energy
¢ reach the minimum of the effective potential{5¢?) conservation implies that

~v, the field distribution looks rather homogeneous on a PN P _

scalel<I, . On average, one still hggs)=0. This implies 12— $pl2=N (o) — V(). (10
that the universe becomes divided into domains with twoye will assume for simplicity that in the beginning, &t

different types of spontaneous symmetry breakidg; =v.  — 4 the field moves with the same velocity as if it were

The typical ~size of each domain isl./2  ta)ling with vanishing total energy fronp=0 (this assump-

~(m/\2) m~HnY(C/\), which is slightly greater than tion does not make any difference for motion i o).
m~ L. At later stages the domains grow in size and percolat€hen one has

(eat each other and SSB becomes established on a macro-

scopic scale. $22=—N(p)=\p"/2. (11)
Of course, these are just simple estimates that should be

followed by a detailed quantitative investigation. When theThus

field rolls down to the minimum of its effective potential its )

fluctuations scatter off each other as classical waves due to b= \/Xgé”’z. (12

the A ¢* interaction. It is difficult to study this process ana- o

lytically, but fortunately one can do it numerically using the The solution is

method of lattice simulations developed[it0,11. 5
Before describing the results of our lattice simulations, we = pZ M2 \/Xt(n—>

would like to discuss the setting of the problem, the choice 2

of the initial conditions and some other aspects of tachyonic

instability in a more general class of theories, including the! "€ most important result is E@L2). In a more general case

theories WithV( )~ — \ &". of nonvanishing total energy we have

d=N(¢"— ¢}, (14)
I1l. TACHYONIC INSTABILITY IN A MORE GENERAL

CLASS OF THEORIES AND THE ROLE OF whered, is an initial field value wherey=0. It implies that
INITIAL DISPLACEMENT the tachyonic fluctuations with small momenta in the long
Eme limit (¢> ¢o) grow as follows:

—2(n—2)
13

As we already emphasized, spontaneous symmetry breal
ing usually occurs due to quantum fluctuations when the field b =Co"2, (15)
¢ falls from an exactly symmetric state=0. However, it is
still very instructive to find out what happens when the fieldwhereC is some constant.
falls down from some state witkhy# 0. By doing this, we This means, in particular, that in the theory with the po-
will get an additional insight into the nature of tachyonic tential — ¢? the long wavelength fluctuations grow just like
instability. We will also be able to compare our results withthe field itself, ¢, / ¢ = const. Meanwhile for the theory with
the results of earlier works on spontaneous symmetry break- 2 the fluctuations grow fastee/d~ ¢*2 and for the

Ing. theory — ¢* they grow even fastekp, /¢~ o.

Consider the behavior of the fluctuatio@® with mo- Returning to the theory —(m?2)¢?+ (\/4)p*
mentumk<m. An important observation is that these fluc- +(m®*4\), we find that the potential is tachyoni®/(<0)
tuations satisfy the same equation of motiondas for 0< ¢<v/+/3, and it can be approximately represented as

—(m?/2)¢? for 0< p=<wv/2. When the field$ grows from
the=—\"(b) . ® Po=<vto v/\/3, the speed of the fielg grows fromme, to

(\/5/6)mv. Consequently, the amplitude of density perturba-

. ) . > 2im tions grows by a factor-(1/5/6)(v/ ¢,), and the occupation
A general solution of this equation fov'=—m"¢%/2 i nympers n, of particles for k<m grow by a factor

pi(t)=a,e™+a,e” ™. Similarly, for ¢ one hasp=h;e™  O(v2/542).

+bye” ™. At t>=m"* only the growing mode survives, and  Clearly, one has the largest amplification if one starts as
the ratio ¢/ ¢ becomes constant. This rule holds for otherclose to¢y,=0 as possible. However, ido<m/27, where
types of tachyonic potentials as well. Thus one can investim/2 is the average amplitude of the long wavelength quan-
gate the amplification of the long wavelength perturbationgum fluctuations with momenturk<<m (which grow almost

of the scalar fieldp in a very easy way. Instead of solving as fast as the homogeneous mpdeen the development of

123517-5
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¢ gives no information on the process of spontaneous sym- Meanwhile for the modes in a rather broad intervakpf
metry breaking. In this case instead¢@f one would need to  from k~0.3m to k~0.6m, the modes continue their growth
study all growing modes witkk<<m, just as in the cas¢,  when the field oscillates. Figure 2 shows the growtmpf
=0. This is what we are doing in the main part of this paper.during three consecutive oscillations of the field As we
The equation for fluctuations in the model(¢)  see, during each full oscillation the occupation numbers

== (M?2)¢*+ (N /4) "+ (mP/4N) is grow e®® times. Thus duringn oscillations the occupation
; , ) numbers should grow!™ times.
it (kK=m*+ 3\ ¢°) = 0. (16) This is an incredibly fast growth. It occurs much faster

than the usual parametric resonance in theories mith-0
e‘[2]. Clearly, this process can rapidly convert all the energy of
the homogeneous field into the energy of classical colliding

This equation should be solved simultaneously with th
equation for the background fielgl(t)

d—mPh+Np3=0. (17) waves, and at this stage the only reliable way to study the
process is to use numerical simulations.
Equation(16) is the Lame equatiof22]. Its solutions depend In the theory—m?¢? the fluctuations grow as fast as the

on the dimensionless parametefs¢,/m. In the context of ~ Scalar field, so if one begins with a homogeneous field with
the chaotic inflationary model, where the fieigt) is rolling ¢/ o<1, then on the way down tg~wv this field distri-
from its large initial value¢~M ,, this parameter usually bution remains relatively homogeneous. However, when the
was taken to be largi22]. In the context of the theory of field rolls back towardsh= ¢o, the inhomogeneities witkh
spontaneous symmetry breaking we are dealing with the op=0-9m continue growing. For example, if one takefg
posite case whemb, is close to zero. ~10 2v, quantum fluctuationévhich have initial amplitude
The description of the growth of perturbations in the ©nly one order of magnitude smaller thgg in this mode}
model — (m?/2) p2+ (N /4) $*+ (m?*/4)) is a straightforward ~ 9row almost 16 times when the fields falls down from ¢
generalization of the theory of parametric resonance in th& ¢o and returns back. The amplitude of inhomogeneities
model (\/4)¢$*, which has been studied using the stability/ after the return becomes approximately three orders of mag-
instability chart of the Lame equatid@22]. The presence of hitude larger thang,, which means that the homogeneity
the negative mass term adds an additional instability band d&ecomes completely destroyed. At this staged in fact
k<m. The characteristic exponept in this new zone is Much earlieyone can no longer study the evolution of quan-
significantly greater than in the higher zones because of thé!m fluctuations as if they were small deviations on a homo-
tachyonic effect. Thus, the tachyonic parametric resonanc@eneous background. When the field falls down to the mini-
will be dominant. mum of the effective potential again, it becomes divided into
When the field rolls towards the minimum & ¢), the  large colliding waves. One cannot study the evolution of
occupation numbens,, calculated from the solutiong, of ~ Such a system using perturbation theory.
Eq. (16), become large. However, fap,>m/27 the field In the theoriesV(¢) ~ — ¢" with n>2 the situation may
fluctuations do not grow large enough to dominate the energf€ €ven more interesting and the growth of the occupation
density immediately after the rolling to the minimum of the Numbem, for smallk occurs even faster. For example, in the
effective potential. To find out what happens in this case, wéheory —\ ¢* long wavelength fluctuations grow @ (and
will describe, as an example, the evolution of the occupatioh€ occupation numbers grow as'). Therefore when the
numbers of the modes, with different momente in the  field ¢ grows from ¢, to v, the ratio 5¢p/¢ grows by a
model (1) with A\=10"* if the field rolls from $o=0.01 factor of O(v/¢). This means that the field may become

(which is larger tham/27 in this mode). very inhomogeneous on its way down even if initially it was
Consider first a modeb, with k<m. In the beginning, Very homogeneous. . . _ .
when the fields rolls from ¢= ¢, to p=0v/+/3, this mode The average initial amplitude of tachyonic fluctuations in

grows faster than any other fluctuations, just as we expectedhe theory —\¢%/4 at ¢o#0 is given by s~ \[V"]/2m
see Fig. 1. During this time interval, the occupation number= v3\ ¢o/27. The initial level of inhomogeneities was given
becomes-~ e°, which is in good agreement with our estimate by d¢/¢~\3x/2m<1. When the field¢ reaches some
O(v?/5¢2)~2%10°. Then the field reaches the bottom of value v> ¢y, the ratio ¢/¢ grows and becomesa/ ¢
the effective potential, goes somewhat beyond this point;~ (V3X/2m)(v/ ). Thus, if the rolling of the field begins at
bounces back, and again approaches the tachyonic regiona very small value of the fieldb,, or if it continues long
<u//3. Until the field becomes smaller thar3, the oc-  enough, so thab/$, becomes greater than\i, the field
cupation number of particles witk<m does not change becomes completely inhomogeneous on its way down.
much. But then itdecreasesimost to the same value from  Moreover, if one considers a theory such as &)
which we started our calculations. What happens is that thes —\ ¢*/4+X ¢°/v?, which has a minimum ap=v, then in
solution for the fluctuations has two modes, the growing onesuch theories, just as in the theorym?¢?, there are some
and the decaying one. When the field bounces, fluctuationsiodes withk~ \\ ¢, whose amplitude grows both on the
either grow or decay depending on the phase with whictway down and on the way up. For these modes the degree of
they re-enter the tachyonic regime. Therefore even thouglnhomogeneity rapidly grows with each oscillation. The oc-
the modes witkk<m grow fast on the way down, they also cupation numbers grow approximately as/$o)® during
decay fast on the way up, as shown in Fig. 1. each full oscillation, so that after oscillations the occupa-
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£=0 t=8 £=9 In the beginning quantum fluctuations are very small, and
the probability distributiorP(¢,t) is very narrowly focused
near¢=0. Then it spreads out and shows two maxima that
oscillate about¢=*=v with an amplitude much smaller
thanv.

\ As we see from Fig. 3, the two maxima never come close

to the initial point¢$=0, which implies that symmetry be-
comes broken within a single oscillation of the distribution

T 5 T 5 T 5 of the field ¢». To demonstrate that this is not a strong cou-
pling effect, we show the results for the mod&) with A

=13 £-15 £-18 =10"“. We obtained similar results for=10"2. Note that

only when the distribution stabilizes and the domains be-
come large can one use the standard language of perturbation
theory describing scalar particles as excitations goeally)
homogeneous background. That is why the use of the non-

perturbative approach based on lattice simulations was so
\ important for our investigation.

One may wonder why the distribution is slightly asym-
15 15 5 metric, and why after symmetry breaking there are still many
points at|¢|<v. The answer is that after SSB, space be-
FIG. 3. The process of symmetry breaking in the mddeffor ~ comes divided into domains witlp~ *=v. Domains are
A=10"* The values of the field are shown in unitswftime is  |arge, and their size gradually grows after SSB because large
shown in unitsm™*. For each moment of time, we also show the gomains “eat” the small ones. Eventually in any finite size
occupation numbers, (the lower part of each paneWwith kmea-  yox there will remain just one domain, i.e. the distribution

sured in units om. At t=0 one ha, =0, as in the usual quantum will become completely asymmetric. The points Witw
field theory vacuum. In the beginning of the process the occupatimkv correspond to domain walls

numbersn, grow exponentially folk<m (k<1 in the figurg, but In this series of simulations we made a cut-off in the
then this growth spreads to>m because of domain wall formation o . .
spectrum of initial fluctuations d&t>m. The reason is that

and collisions of classical waves of the fietl Within a single v th d ithc<m f th beginni .
oscillation the occupation numbers fékm grow up to ~10°, only the modes wi m from the very beginning experi-

which is in complete agreement with our estimage- 10°\ %, Eq.  €N¢€ exponential growth and behave as classical fields. We
(7). The spectrum rapidly stabilizes, but it is not thermal yet, angchecked, however, that the results of the simulations remain

the occupation numbers remain extremely large. Thermalizatiofludlitatively the same if one makes a cut-offkat m.
takes much more time than spontaneous symmetry breaking. The process of thermalization takes much longer than
spontaneous symmetry breakifg3]. Indeed, the standard

tion numbers of the particles with momenta/\ ¢, become thermal distribution is given by the well known equation
as large asu(/ ¢o)®". That is why it takes only one or two Mk=(e“«'"—1)7*. At the moment when all the energy
oscillations before the oscillating scalar field becomes inhoV(0)=m?/4\ is transferred to the thermal energyT*, the
mogeneous and the first stage of preheating related to tHgmperature rises up ~mx ™" and the occupation num-
tachyonic instability completes. bers atk=m becomen,~(e™T—1)"'~T/m~\"" In

The simple rules derived above explain the extraordinaryarticular, for \~10"* one would haven,_,=0(10),
efficiency of tachyonic preheating. However, one can appNNhich is 5 orders of magnitude smaller than the results of our
these rules only at the beginning of the process, when on@alculations.
can neglect the backreaction of created particles. That is why Thus, the occupation numbers should drop down dramati-
we needed to perform computer simulations which took thecally before full thermalization is achieved. This may happen

effects of backreaction into account. only if the total number of particles becomes many orders of
magnitude smallefparticle cannibalism If one considers
V. LATTICE SIMULATIONS OF SPONTANEOUS qnlly those |n'geract|ons that preservilthe totell(l_ num;aer of par-
SYMMETRY BREAKING IN THE THEORIES ticles (scattering 2—.>'2)_, one may achieve a |rjd of tempo-
WITH V() =—M2¢%2+\ "4 rary thermal equilibrium with a nonvanishing effective

chemical potential of particleg. This is what we see in our

A description of our methof10,11] in application to this  calculations when the occupation numbers gradually ap-
problem is given in the Appendix. proach some quasi-equilibrium asymptotic limit. Since there

There are several complementary ways one can represeistno real particle conservation in this theory, eventually the
the results of our calculations. One of the best ways to do ieffective chemical potential will vanish, and the true thermal
is to study the probability distribution functio(¢,t),  equilibrium withn,= (e“«’T—1)~1 will be reached. But this
which is the fraction of the volume containing the fieldat  process takes much greater time than the time required for
a timet. At t=0 we begin with the probability distribution spontaneous symmetry breaking.
concentrated neap=0, with the quantum mechanical dis-  To provide a visual picture of the distribution of the scalar
persion(5), and then we follow its evolution; see Fig. 3. field, we show the growth of fluctuations in a two-
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t=0 t=100

t=1000 t = 10000

FIG. 5. Formation of domains in the process of symmetry break-
t=34 t=48 ing in the model(1).

rescattering of particles produced during preheating in 2D is
somewhat different from that in 3D. However, the tachyonic
instability is the same in both cases and the process of do-
main growth is qualitatively similar.

V. COMPARISON WITH THE USUAL PERTURBATIVE
APPROACH

Before going any further, let us discuss the difference
FIG. 4. Tachyonic growth of quantum fluctuations and the earlybetween our methods and the usual approach based on per-
stages of domain formation in the simplest theory of spontaneougyrbation theory. In the usual approach one solves a self-
symmetry breaking witV( ) = — (m?/2) >+ (N /4) " consistent system of equations for the homogeneous scalar
field ¢ and for the variancés¢?), where(5¢?) is gener-
dimensional slice of 3D space in this model in Fig. 4.ated due to particle production by the oscillating figidsee
Maxima correspond to domains wi#h>0; minima corre- €.9.[2,3].
spond to domains witip<<0. The third image corresponds to  In this approach one would expect that the effective mass
the first one-half of an oscillation, just like the third panel in of the field ¢ is given bym?’ = —m?+3\(8¢?). This is the
Fig. 3. As we see the universe at that moment is alreadgtandard approach used, in particular, in the theory of the
divided into domains withp~ =v. The initial size of each high temperature cosmological phase transitiis
domain is somewhat greater them *. Inside each domain Let us see what would happen if we naively applied this
the deviation fromp=|v| is much smaller than. This con- method to our problem. Our investigation shows that within
firms our conclusion that spontaneous symmetry breaking single oscillation the variance of the scalar field grows to
occurs within a single oscillation. (8¢?)~v?; see Fig. 3. A more detailed investigation shows
The original domain structure can change within a timethat soon after the beginning of the process the value of
O(10m~1) because of domain wall collisions and domain{J8$?) is not much different frongv?2. This would seem to
expansion. Gradually, the size of each domain grows and thignply that immediately after spontaneous symmetry break-
domain wall structure becomes more and more stable, as wag the symmetry becomes restored again, because the effec-
see in the last two images of Fig. 4. tive mass squared of the fiel¢g becomes positivemfzS
If one continues the calculation for a much longer time,~ —m?+ 2 p2~Sm?.
one can see much more clearly the formation and growth of However, our numerical calculations clearly demonstrate
domains with¢=*v. In the beginning these domains are that this is not the case. So what is wrong with the standard
small, but then they “eat” each other and grow. To illustrate perturbative approach?
this process we performed simulations in a 2D box of size The point is that in order to investigate the tachyonic in-
1024x 1024. This allowed us to perform the calculations outstability one should study the local field distribution on a
to a much greater time and see domain formation on a muckcale comparable tm ™~ * instead of the field distribution av-
greater scale; see Fig. 5. One should note that the process efaged over the whole universe. In our scenario the universe
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becomes divided into different domains of size greater tha t=0 t=4 £=8
Oo(m™ ). If one wants to study the process of spontaneous
symmetry breaking, then instead of finding the average val
ues( ) and({5¢?) over the whole universe one should find
the average value ap inside each domain. After that, one
should calculate the variandé¢?), where 8¢ is thelocal 105 105
deviation of the field¢ from its average value inside each
domain. But even this will give only partial information
about the process. That is why in addition to finding the L 1775
probability distribution and the occupation numbéFgy. 3),
we have shown the spatial distribution of the fieldFig. 4). £=12 £e18 =18
This need for local averaging is an important issue that
was overlooked in many recent works on preheating, as wel
as in some works on the backreaction of long wavelength
inflationary quantum fluctuations on the speed of expansiorn
and the average energy-momentum tensor of matter. We ar s 105
not saying that the calculation of averages sucl¢sand
(8¢?) over the whole universe is not useful. For example, it
is quite informative in the theory of high temperature phase I 5 5 13
transitions, where the typical contribution {6¢?) occurs

10°

due to the short wavelength fluctuations with the wavelengt e=2t t-23 kel
T, which is much smaller tham™?! at the time of the

phase transitiof6]. However, one should be extremely care-

ful using averages liké 5¢%) over the whole universe in —— .

situations where a substantial contribution| &$?) is given
by fluctuations whose wavelength is greater than the typical 1o° 108 10°
length scale of the problem. It does not matter how accu-
rately one calculates such averages, whether one works in th .
Hartree approximation or in theM/approximation, as ih3]. T o3
In the case described above we calculdtég?) very accu-
rately using our lattice simulations. This method takes into FIG. 6. The process of symmetry breaking in the mddgffor
account not only the usual backreaction effects that could bs=10"* in the case where the field was initially displaced from
studied in the Hartree or W/approximations, but also effects ¢=0 by ¢o=10""v. As we see, in this case spontaneous symmetry
of rescattering of produced particles. Still we have seen thfﬁreakmg takes wo OS_C'”at'ons to oceur, and the occupation num-
a naive use of our results would lead to an incorrect conclu2®"s ¢ smaller than in the case of falling frafw-0.
sion that symmetry becomes restored immediately after it
breaks down. never returned back to the vicinity @f=0, and the process
If one has to use perturbation theory in situations wherpf spontaneous symmetry breaking occurred within a single
the infrared contribution t§54?) is substantial, the occupa- oscillation. Note, that our calculations were performed for
tion numbers are large and the results allow a semi-classical~ 104, so thatgo~10"2v>m/27~ 10 2v/27r.
interpretation, one can avoid the problem discussed above if For a much greater initial displacement the results were
one rearranges perturbation theory in a nontrivial way. Fosomewhat different, but still fopo<v we have found that
example, if one studies effects on a length s¢alene may the regime of homogeneous oscillations completely disap-
consider all fluctuations on larger scales as a nearly homgeeared after a couple of oscillations. Consider, for example,
geneous classical field background and ignore the contribuhe casep,=0.1v; see Fig. 6. As one might expect, in this
tion of these fluctuations t¢5¢?). In the context of the case the final probability distribution is entirely concentrated
theory of preheating, this issue was discussed in Sec. X dit ¢~ +wv, and one can check that no topological defects are
Ref.[2]. In inflationary cosmology a similar approximation produced at the end of the process. But even in this case we
constitutes the basis of the stochastic approach to inflatiohave found that the process completes very fast, after the
[24,25,4. An alternative method is to use numerical simula-second oscillation.
tions that can bring us more detailed information about the This result differs from the results of investigation of the
process. This is the method we use in our paper. same model i3], where it was claimed that the oscillations
To compare our method with the more traditional pertur-of the homogeneous component of the field in this model
bative approach assuming initial displacement of the fieldcontinue for a long time with the amplitude comparable to
¢o#0, we performed a series of simulations for differenteven if one starts withbg<m/27. The reason for the dis-
values of ¢, exceeding the level of the long wavelength agreement is very simple. First of all, in the investigation of
quantum fluctuations~m/2z. For ¢,~10 %v the results spontaneous symmetry breaking in the theerym?/2)¢?
did not differ much from the results that we obtained for + (\/4)¢*+ (m*/4\) in [3] the initial displacement of the
¢o=0 in the previous section. The distribution of the figdd field ¢, was chosen two orders of magnitude smaller than
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FIG. 8. Occupation numbens, of particles produced during
tachyonic preheating in the model of a complex scalar fieldith
effective potentiaV = —m?¢* ¢+ A (d* ¢)2 with A=10"%. In the
beginning(lower curve$, n, grows fork<m (k=<1 in this figure,
but then eventually this growth spreads to larger

o, ¢,

FIG. 7. The process of symmetry breaking in the mddglfor
a complex fieldp=(1/\2) (¢, +ib,). The field distribution falls In the beginning, the probability distribution is concen-
down to the minimum of the effective potential |2 =v and ex-  trated near¢=0, with the quantum mechanical dispersion
periences only small oscillations with rapidly decreasing amplitude(5). Then the probability distribution spreads out, and after a
|Ag|<v. single oscillation it stabilizes dip|~v, which corresponds

to SSB. The standard approximation representing the scalar

the level of the long wavelength quantum fluctuations withfield as a homogeneous background field with small fluctua-
k<m, 8¢~m/27. In this case SSB appears not because ofions does not work at any stage of the process.
the growth of the homogeneous component of the field, but A detailed investigation of the spatial distribution of the
because of the generation of fluctuations vikitim. In such  field ¢» shows[1] that after the first oscillation the scalar field
a situation investigation of the homogeneous component ofan be represented as a collection of classical waves oscil-
the field does not give much information about spontaneoukating near| ¢|~v with an amplitude smaller thasw2. Thus
symmetry breaking. SSB indeed occurs within a single oscillation of the field

Moreover, as soon as the combined amplitude of all flucdistribution. A small but nonvanishing height of the histo-
tuations withk<m (i.e. \(8¢?) ) becomes comparable gram in Fig. 7 atp=0 is due to the presence of strings that
to v, which happens much earlier than the homogeneoubave ¢=0 at their cores.
component of the field reaches the minimum of the effective Figure 8 shows the occupation numbeisof produced
potential, the universe becomes divided into domains wittparticles. During the first oscillation these numbers grow up
colliding walls. At this moment the standard perturbative ap-to 10/—10® for k<m (k<1 in the figure. Then the occupa-
proach completely breaks down. It does not describe rescation numbers ak<<m slightly decrease, whereas the occupa-
tering of produced patrticles, collisions of classical waves oftion numbers ak>m begin to grow. Complete thermaliza-
the scalar field, and dynamics of topological defects. In thidion takes a very long time.
regime equations describing the evolution of the homoge- In the model of a complex scalar field, instead of domain
neous component of the fiel@t derived in the Hartree ap- walls one has strings that are produced when the field falls
proximation(or in the 1N approximation become inappli- down; see Fig. 9. The whole process of string formation
cable. That is why in our work we studied SSB using aoccurs within a single oscillation. After that the new long
combination of analytical investigation and lattice simula-strings are not formed. Sometimes small string loops appear

tions. and disappear because of occasional large fluctuations of the
scalar field. If symmetry were broken and then restored again
VI. SPONTANEOUS SYMMETRY BREAKING IN THE when the field distribution moves back tﬁ)=0, we would
THEORY OF A COMPLEX FIELD see strings being “melted,” and then a completely new set of

strings would appear. Meanwhile, our simulations show that
In the previous section we studied symmetry breaking in ahe large scale string distribution is formed as the figlfirst

theory(1) describing a one-component real fighd One can  rolls down to the minimum of the effective potential. During
perform a similar investigation for the theory of a multi- the subsequent oscillations the strings formed in the begin-
component scalar fielgp; with the potential(1), simply re-  ning of the process do not disappear and are not replaced by
placing ¢? with |¢|2. Figure 7 illustrates the dynamics of new ones; instead they experience only gradual evolution.
symmetry breaking in the modél) with a two-component This confirms our conclusion that symmetry breaking is
scalar fieldp= (¢, +id,)/\2. It shows the probability dis- achieved within a single oscillation.
tribution P(¢; ,t), which is the fraction of the volume con- Just as in the case of the one-component scalar field, per-
taining the field¢ at a timet. turbative methods of investigation of this theory cannot de-
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t=11 =0 and ¢#0) even though there is no barrier separating
these stategl8]; see alsq19].

To study symmetry breaking in these models one should
first consider the growth of the fielg in the model

_ My
V——Zq'), (20)

and then see what happens when one adds extra terms that
stabilize the potential.
The tunneling trajectorieginstantong with minimal ac-
tion possess th®©(4) symmetry of Euclidean spad@7].
The Euclidean equation fad(4) symmetric tunneling is

¢"+34'171=V'(¢) (21)

with the boundary conditiong)(r=«)=v and ¢'(0)=0.
Here¢'(r)=dg¢/dr, r= \/ﬁ thex; are the Euclidean coor-
dinates,i=1,2,3,4.

Equation(21) in the theory(20) has a family of solutions

[28,18
- \/E
p(nN=21/3

) @

FIG. 9. Strings produced after one half of an oscillation in the

model (1) for a complex fielde. wherep is arbitrary. Note that the value of the scalar field in
the center of the bubble depends @n

scribe the formation of topological defects and scattering of

classical waves produced by the tachyonic instability. There- $(0)=2 2 23)

fore such methods break down within the first oscillation of /)\p'

the field distribution.
The corresponding Euclidean action does not depeng,on

VIl. QUARTIC POTENTIAL 2

1 T
The process of SSB will occur in a somewhat different SE:ZWZJ r3<§(¢’)2+V(¢))dr=K. (24)
way in theories where the curvature of the effective potential
near its maximum depends af. For example, one may The probability of bubble formation per unit four-volume
consider the Coleman-Weinberg model, which was the basiéan be estimated by the expression
for the first version of the new inflation scenaf@6]:

P~p~4 g’ N2oH0 87’ 25
N 2 gt 8 p ex i $"(0)ex an |- (25
V= Z (,‘[) IogF — ?4- ? . (18)

The probability of tunneling in the Coleman-Weinberg
theory(18) can be estimated by this equation if instead\ of
one uses the effective coupling constaribg@?¢?). Tun-
neling is not strongly suppressed atog?¢?)~1. This
means that tunneling occurs to a point with exponentially

This potential has a maximum gi=0 and a minimum at
¢=v. At small ¢ the effective potential looks like
—N¢*4 with an effective coupling constani\(¢)

=\log@¢?). . small ¢: ¢p~ve ™, with C=0(1).
Another interesting example is the toy model On the other hand, in the modél9) the effective cou-
5 4 pling constant\ and the factor exp{87/3\) suppressing
V=——¢ht ﬂ+ U__ (19) the tunneling do not depend af, whereas the subexponen-
4 6 12 tial factor in the expression for the tunneling probabili®p)

is greater for largep. Thus in this model tunneling may
An important feature of such potentials is that the tachy-occur to relatively largep.
onic massm?(¢)=V"(¢) vanishes aip=0. Therefore the The bubbles that appear after the tunneling are described
simple arguments based on the tachyonic growth of smalby Eq.(22) if one understands by? its Minkowski counter-
quantum fluctuations do not apply here. The decay of theartr?—t?:
symmetric phase in such models occurs via tunneling and the
formation of bubbles. Historically, this was the first example b(r)=2 \E( P
A

of a theory where tunneling occurs between two statgs ( rZ—t2+ p7 '

(26)
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Such bubbles have symmet®(3,1). When the bubble ap- .
pears(at t=0), the field takes its maximal valug, at the
center of the bubbleg,=2/p+/2/x. Then it grows, and be- ) ———
comes infinitely large at=p=2/¢g\2/Ix=26/m (o). 4 :
Heremi($) =V"(¢) =3\ ¢?. |
Of course, in realistic models like Eq&l8) and (19) the
field does not grow indefinitely large. It reaches the mini- |
mum of the effective potential ab=+v and then it begins |~
oscillating there. Meanwhile quantum fluctuations may grow )
on top of the smooth instanton solution. The investigation of ~ N yr
these oscillations and bubble wall collisions is a complicated ~_V 5 f /
problem that can be studied numerically. Fortunately, the be- ~Y |/
havior of the oscillating field prior to the bubble wall colli- / /
sions and neglecting quantum fluctuations can be studieu 7

analytically by making a certain change of variables. FIG. 10. Field values on a partial 2D slice through the lattice in
Ir_ldee_d, it is known that in prqperly chosen t_:oordlnz_ites[he modelV=\/4[ ¢*log(¢?vd) —(442)+ (v*/2)]. The process of
the interior of each bubble looks like an open universe filledsymmetry breaking occurs due to tunneling and bubble formation.
by a homogeneouscalar field¢ [29]. One can show that After the tunneling, the bubble grows, and the field inside it begins
during the main part of the first oscillation of the field the to oscillate. If the tunneling occurs from=0 to ¢y<v, the am-
radius of curvaturegscale factor of this open universe is plitude of oscillations remains large for a long time, and instead of
O(p), which leads to expansion of the open universe withthe usual picture of a single bubble wall propagating in all direc-
Hubble constantH~p‘1~ m¢( bo) 2 This introduces the tions one has a series of propagating waves with amplitude compa-

damping term Bh'ﬁ to the equation of motion of the scalar rable tov. The _figure shows a hal'f of such bubb_le, which appears
field, which gradually diminishes the amplitude of its oscil- &fter the tunneling ta=.02. Cutting the bubble in half allows us
lations. Suppose that the tunneling occursstg<uv, as in the to see that the amplitude of oscillations o!ecre_ases rather slowly, just
Coleman-Weinberg model. Then during the main part of thé™> *© expected. Because the bubbles in this model take an expo-
first oscillation the effective mass of the field remains nentially long time to form, in our simulations we did not start at

. . ¢=0 and wait for one to appear, but rather started using the ana-
much greater thahl ~my( o), S0 in the limitdo/v—0 ONe | s orm of the instanton as our initial conditions.
can neglect the effect of expansion of the open universe or¥
the amplitude of the oscillations. Later on, the Hubble con-

. . Thus instead of the naive picture of a bubble consisting of
stant in the open universe bubble becomes even smaller and_. . ) .
a single spherically symmetric shéWhich would be a cor-

its damping effect on the oscillations becomes even less Si%ct picture in the thin-wall approximatigone has a series

nificant. As a result, the amplitude of oscillations of a homo- - ; )

. . . of waves of almost equal amplitude following each other; see
geneous scalar field for a long time remains almost un<. AL S
changed Fig. 10. Reheating in this model occurs due to a combination

From the point of view of an outside observer using theOf different effects. First of all, particles are produced during

. . , . the collision of waves produced by different tunneling
ggﬁ?;rc(ffcirhdénbajﬁf,Sl‘if;ﬁ?éfersnfo?n;|g:1at ttirrLeef:/Siltﬁ ;r;nthl(iatu deevents. But they are also produced due to the tachyonic in-
) X 9 ampit tability, as well as by the oscillations of the scalar field
O(v), sending spherical waves of the same amplitude in al nside each bubble
d'“zc“"”.s- The amplitude of each wave IS a functiorxdf We should make some comments here. First of all, if the
—14, which means that they propagate with a speed asym

totically approaching the speed of light and their ampIitudtlaO[unne'Ing oceurs to very small values éf quantum fluctua-

N tions produced due to tachyonic instability inside ®€3,1)
gggglengm depend on their distance from the center of thgymmetric bubble may completely distort the shape of the

bubble during the field oscillations. Within few oscillations,
tachyonic preheating creates colliding waves inside the
2 thi lecting th I ) f th __bubble; see Fig. 11. . _

In this paper we are neglecting the overall expansion of the uni- - e that each tunneling event produces an exponentially

verse caused by the energy density of the scalar field. This effe ) . . - S
will be considered in a separate publication. Here we consider “ex‘i}irge sphere filled either by a positive field oscillating

pansion” as it is seen inside the bubble in the coordinate system i%\round ¢=v with a slowly decreasing amplitude, or by a

which the interior of the bubble looks like a homogeneous oper/€92tiVe fieldé, oscillating aroundp=—wv. In both cases
naSB occurs within a single oscillation within each bubble,

choice of the coordinate system in flat space where it is more cor@nd then finally the fieldj relaxes neartv due to a com-

venient to study the bubble motion. bined effect of the amplitude decrease because of the bubble
%0ne could speculate about the possibility of sending a signal t&XPansion, and the development of tachyonic preheating, as

aliens using such waves with an amplitude that does not decreade Fig. 11.

with the distance. The problem is that these waves are only possible Finally, we should say that if the tunneling occurs to ex-

as a result of vacuum decay, which first kills those who send théremely small values o#, or if it does not occur for a long

signal and then those who receive it. time, one may obtain an inflationary regif6]. Tachyonic
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The curvature of the effective potentisll'=|m2,| at ¢
~0¢hmdko) in the theory (27) is given by
— 2\ 8pmd ko)~ —Av(Ko/\27). Consider fluctuations
with momentumk somewhat greater thak,, so that the
amplitude of the long wavelength fielfkp does not change
significantly on a scalé 1. Short wavelength fluctuations
with k= Ck, with C somewhat greater than 1 will grow on
top of the fieldp~ Spmd ko) if k2=<|mZ¢|~\vko/ 2.

Taking for definitenes€= /2, one may argue that fluc-
tuations withk=<\v /27 may enter a self-sustained regime of
tachyonic growth. Small fluctuations rapidly grow large,
which justifies using semi-classical methods for the descrip-
tion of this process. The average initial amplitude of the
growing tachyonic fluctuations with momenta smaller than

FIG. 11. The process of symmetry breaking in the model Nv/2m is
=\4[ p*log(¢?v?)—(¢*2)+ (v*/2)] taking into account quantum
fluctuations in the instanton background for-10 4. As we see, Av
quantum fluctuations lead to a growing asymmetry and decoherence Sbrms™ A2 (28)

of the oscillations due to the tachyonic preheating inside the bubble.

;hgzl prehﬁatinlﬁ in this (;“Odi' occurs d#e o a CTOhmﬁi”ed effec:] %rhese fluctuations grow until the amplitude & becomes
n:Jm ie wa Cci’ Illsmr;ﬁain ntt?fthyo?'zr?rﬁneat'ng'r e<atter MeChatomparable to 2/3, and the effective tachyonic mass van-
sm 1s especially eflicie € tunneling occursdg<v. ishes. At that moment the field can be represented as a col-
preheating in this regime will be discussed in a subsequer{?cuon of waves with dispersio .<5¢ >.~”’ corres_pondmg
o to coherent states of scalar particles with occupation numbers
publication[8]. 21\ N2
N~ (4meIN)“>1.

A more accurate investigation shows that the initial value
of the field is a few times greater thaf,m«~ Av/4m? (see
below), and therefore the occupation numbers will be some-

Another important example of tachyonic preheating iswhat smaller,
provided by the theory

VIIl. CUBIC POTENTIAL AND STOCHASTIC APPROACH
TO TUNNELING

n~O(10)\ 2. (29)
V=—£v¢3+ l¢)4+ lu“ (27)
3 4 127 Because of the nonlinear dependence of the tachyonic
) o . _mass ong, a detailed description of this process is more
This potential is a prototype of the potential that appears inpyolved than in the theorfl). Indeed, even though the typi-
descriptions of symmetry breaking in F-term hybrid inflation 4 amplitude of the growing fluctuations is given by Eq.
[30,31. _ o (28), the speed of the growth of the fluctuations increases
_The development of instability in this theory presents Usconsiderably if the initial amplitude is somewhat bigger than
with a new challenge. The curvature of the effective potentiaq_ (2g). Thus even though fluctuations with an amplitude a
at =0 in this theory vanishes, which means that, unlike infa\y times greater than E28) are exponentially suppressed,
the theory—m?¢? (1), infinitesimally small perturbations in  they grow faster and may therefore have a greater impact on
this theory do not grow. On the other hand, unlike in theine process than fluctuations with amplitu@s).
theory—)\qﬁ“. (20), therg are no instantons in.this theory that | ow probability fluctuations withS¢> 8¢, correspond
would 3descr|be tunneling fromy=0. Thus, in the theory o peaks of the initial Gaussian distribution of the fluctua-
_)\Uz(ﬁz' which occupies an intermediate position betweenjons of the fieldg. The theory of the 3D random Gaussian
—m?¢? and —\ ¢*, both mechanisms that could lead to the fields is well developed32]. Its statistical properties are de-
development of instability do not work. Does this mean thatermined by the spectruh®e,|. One of the most interesting
the statep=0 in this theory is, in fact, stable? features of the Gaussian field is statistics and the shapes of
The answer to this question is no; the stéte:0 in the  the high peaks of the field distribution. Such peaks tend to be
theory —\v ¢ is unstable. Indeed, even though) initially  spherically symmetric. As a result, the whole process looks
is zero, long wavelength fluctuations of the fietl are  not like a uniform growth of all modes, but more like bubble
present, and they may play the same role as the homoggroduction (even though there are no instantons in this
neous fieldg in triggering the instability. mode). A simple physical interpretation of the inhomoge-
Equation(5) implies that scalar field fluctuations with mo- neous fragmentation of the field is based on the fact that
mentak=<K, have initial amplitude 5¢2)~k§/8m2. Thus the  the interaction- v ¢* corresponds to attraction between the
short wavelength fluctuations with momerka k, live on  fluctuation modes. As a result, the seed inhomogendities
top of a long wavelength field with an average amplitudepeaks of the initial random distributiprwill be amplified
Sdmd ko) ~ V(8% ~kol2\2 7. due to the nonlinear interaction of the fluctuations. A well
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known example of this type of instability is gravitational V' (4(0))
instability of matter in the universe. (8¢ ei,~ K5/8T?=CP . (34)
To study the growth of fluctuations in a more detailed 247°¢(0)

way, one may use the stochastic approach to tunneling and
bubble formation developed if20]. The main idea of this This is an estimate of the dispersion of perturbations that

approach can be explained as foIIows_. Tunneling can be "Rhay sum up to produce a bubble of the figlthat satisfies
resented as a result of the accumulation of quantum fluctugn e’ congdition(31). Of course, this estimate is rather crude.

tions. whose amplitude greatly e>_<ceeds _their usual value dEBut let us nevertheless use E84) to evaluate the probabil-
termined by the uncertainty pnnmplg. This happe.”s when th"ﬁy that these fluctuations build up a bubble of a radius
long vyavelength guantum flut_:tuatlo_ns_ respo_n3|ble for th% kgl containing the field$ at its center. Assuming, in the
tun_nellng correspond to hosonic excitations with large OCCU% ot approximation, that the probability distribution is Gauss-
pation numbers. In such cases one can treat these fluctuatloirg1 one finds:

as classical fields experiencing Brownian motion due to their
interaction with the short wavelength quantum fluctuations.

Suppose that the large fluctuations of the scalar field re- > 12723
sponsible for reheating in the mod@?) initially look like P(¢)~ex = - CZV—’(qS)

- 2
spherically symmetric bubblésvhich is the case if the prob- 2(5¢ >k<k0
ability of such fluctuations is strongly suppressed, see (35
above. The equation of motion for a bubble of a scalar field
¢(r) in Minkowski space is Let us first apply this result to the theory\ ¢*/4. In this
) case one finds
p=¢"+2¢'T1=V'(¢). (30)
2
Herer is a distance from the center of the bubble abd P(¢)~ex;{ - 12%) (36)
=d¢lor. At the moment of its formation, the bubble wall C\
does not moveg=0, ¢=0 (critical bubble. Then it gradu-
ally starts growing¢>0, which requires that Note that the factor in the exponent in E§6) to within a
factor of C~2 coincides with the Euclidean acti@z in Eq.
|¢"+2¢'t <=V (). (31  (24). Taking into account the very rough method we used to

estimatek, and calculate the dispersion of the perturbations

A bubble of a classical field is formed only if it contains a "€SPOnsible for tunneling, the coincidence is rather impres-

sufficiently large fieldé, and if the bubble itself is suffi- SIVe- It was shown ifi24,2) that this approach gives exactly
ciently large. If the size of the bubble is too small, the gra-® Same answer as the Euclidean approach for the case of

H H H : " 2
dient terms are greater than the tdWii( )|, and the fieldp ~ tunneling during inflation whew”<H*. _ ,
inside the bubble does not grow. Most importantly, this method allows us to investigate

At small r the shape of the bubble can be approximatecfunne"ng and the development of instability in the theories
by ¢=$(0)— ar?/2. In this approximation, the bubble has a where instanton solutions do not exjig0]. In particular, for

- . 3 .
typical sizero~+2¢(0)/a, and ¢'r 1= ¢"=— a. There- tunneling in the theory-\v ¢°/3 one finds

fore at the moment of the bubble formation, whis 0, one
has

2
127 ¢) | -

P(¢)~(\v ¢)29XD( T Cho
¢"=V'(¢(0))/3. (32

. " 2 - We included here the subexponential fact@(kg)
Replacing¢” by ko$(0) one finds that the bubble can be ~(\v ¢)?, which is necessary to describe the probability of

considered a result of overlapping of quantum ﬂucwation%unneling per unit time per unit volume

: ; -1
with typical momente=ko~r, *, where This means that tunneling is not suppressed &br
) ~C?\v/1272. This result is in agreement with our previous
k(z)zczv (¢(0))_ (33) estimatg(28). Now let us take into account that the total time
34(0) of the development of instability is a sum of the time of
tunneling plus the time necessary for rolling of the field
Here C=0(1) is some numerical factor reflecting uncer- down. One can show that the time of rolling down is in-
tainty in our estimate oK. versely proportional tan(¢)~ JAv ¢, i.e. it decreases at
Let us estimate the probability of an event when vacuumarge ¢. Also, the subexponential factoi ¢ ¢)? grows at
fluctuations occasionally build up a configuration of the fieldlarge ¢, which makes tunneling to largey faster. Conse-
satisfying this condition. In order to do it one should remem-quently, as we already discussed above, the main contribu-
ber that the dispersion of quantum fluctuations of the figld tion to the development of instability is given by the fluctua-
with k<kg is given by(8¢?)~k3/82. This gives tions with ¢=C?\v/1272. Exponential suppression of the
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FIG. 12. Field values on a 2D
slice through the lattice fo=
—(AB)v >+ (N4 p* (27). The
growth of quantum fluctuations of
¢ looks like bubble formation.
Remarkably, the bubbles expand
and collide even before the aver-
age field value reaches the mini-
mum. Preheating occurs due to a
combined effect of bubble produc-
tion, tachyonic instability and
bubble wall collisions. This figure
should be compared with Fig. 4
for the theory V=—(m?/2)¢?

+ (N 4)p* (1).

probability of such fluctuations leads to their approximatethe study of modes with large momenta that are limited by
spherical symmetry. the inverse lattice spacing. These modes give an additional
The results of our lattice simulations for this model arecontribution to the effective parameters of the model. In the
shown in Fig. 12. In this model bubbles form quickly enoughlimit of zero lattice spacing these corrections would become
(unlike in the model-\ ¢*), so we were able to start with infinite, but they are regularized by the lattice cutoff. In our
quantum fluctuations centered at)=0 and allow the simulations of the simple modél) these corrections gave a
bubbles to form. The bubbldhigh peaks of the field distri- contribution to the effective mass of the fieltl that was
bution) grow, change shape, and interact with each othemmuch smaller tham and therefore did not affect our results.
rapidly dissipating the vacuum energy(0). Meanwhile, in the cubic model similar corrections induce a
Figure 13 shows the probability distributi®(#,t) inthe  (fictitious) linear term\v ¢(¢?). This term should be sub-
model (27). As we see, in this model the field distribution tracted by the proper renormalization procedure, which
also rapidly relaxes near the minimum of the effective potenbrings the effective potential back to its for(87). See the
tial within a single oscillation. In this case the histogram in Appendix for more details. This was the first time in our
the beginning looks pretty chaotic because of bubble formasimulations when a careful treatment of high frequency
tion and bubble wall collisions, which we could see in themodes was necessary. A similar situation may occur in any
previous figure. theory wherev”(0)=0, such as the theory \ ¢* discussed
One should note that the numerical investigation of thisin the previous section.
model involved specific complications due to the necessity Figure 14 shows the occupation numbers of produced par-
of performing renormalization. Lattice simulations involve ticles in the model(27) with A=10"2. These occupation
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£=0 t=65 [2]. It has also been noted that in the case where potentials
become concavgV’($)<0], preheating may become more
efficient[33]. Now we see that this effect is very generic. In
many theories with concave potentials the energy of an un-
stable vacuum state is transferred to the energy of inhomo-
0 1 0 1 geneous classical waves of scalar fields within a single os-
cillation of the field distribution. We emphasize here that we
are talking about the oscillations of the field distribution
rather than about the oscillations of a homogeneous field
because quite often the homogeneous compofyghof the

field ¢ remains zero during the process of spontaneous sym-
metry breaking.

One of the important consequences of our results is the
observatiorf1] (see alsd35]) that in many models of hybrid
inflation [34] the first stage of reheating occurs not due to
homogeneous oscillations of the scalar field but due to tachy-
onic preheating1]. A detailed discussion of this effect will
be contained irf9].

The process of preheating and symmetry breaking may

FIG. 13. Histograms describing the process of symmetry breaktake an especially unusual form in the theory of brane infla-
ing in the model27) for A=10"2. After reaching the minimum of  tijon [36—3§ based on the hybrid inflation scenario and the
the effective potential, the distribution acquires the form shown inmechanism of tachyon condensation on the brane antibrane
the last frame and practically does not oscillate. The last histograngystem[39].
corresponds to the last frame in Fig. 12. The situation in models of the type used in the new infla-

tion scenario is somewhat more complicated. In these models

numbers grow up to 78-1C¢° within a single oscillation, the potential is also concave. However, the expansion of the
which is in good agreement with our estim#g9). universe stretches inhomogeneities of the field rolling down
from the top of the effective potential and makes it homoge-

neous on an exponentially large scale. Therefore to evaluate
IX. CONCLUSIONS a possible significance of tachyonic instability in this regime

In this paper we studied the dynamics of spontaneou§ne must compare the amplitude of the homogeneous com-
symmetry breaking, which occurs when a scalar field fallsPonent of the field with the amplitude of the quantum fluc-
down from the top of its effective potential. We have found, tuations. The result appears to be very sensitive to the scale
in agreement with{1], that the main part of this process Of spontaneous symmetry breaking in such models. A pre-
typ|Ca||y Comp|etes within a Sing|e oscillation of the distri- |iminary inveStigation of this issue indicates that in small-
bution of the scalar field. This is a very unexpected conclufield models where the scale of spontaneous symmetry
sion that may have important cosmological implications. ~ breaking is much smaller thaM ,, the leading mechanism

One of the most efficient mechanisms for the creation off preheating typically is tachyonic. If correct, this would be
matter after inflation in theories with convex effective poten-a Vvery interesting conclusion indicating that in large-field
tials [V (#)>0] is the mechanism of parametric amplifica- Mmodels the leading mechanism of preheating typically is re-
tion of vacuum fluctuations in the process of homogeneou@ted to parametric resonance, whereas in small-field models

oscillations of the inflaton field, which was called preheatingthe main mechanism of preheating is typically tachyonic, at
least at the first stages of the process. We will return to the

discussion of this issue in a coming publicati@.
ko Finally we should mention that an interesting application
: of our methods can be found in the recently proposed ekpy-
rotic and pyrotechnic scenar[d0,41]. Even though we are
very skeptical with respect to the ekpyrotic/pyrotechnic sce-
nario for many reasons explained[#i], it is still interesting
that the methods developed in the theory of tachyonic pre-
heating provide us with a very simple theory of the genera-
tion of density perturbations in these modgid].

£=91 £=108
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APPENDIX A: THE LATTICE CALCULATIONS were qualitatively similar using either definition. The occu-
pation numben, is given by averaging over a spherical shell
in Fourier space. This definition coincides with the standard
The lattice calculations reported on in this article were allone in the end of the process, where the mass squared be-
done using the programATTICEEASY, developed by Gary comes positive and topological defects disappear.
Felder and Igor Tkachev. The program records the value of The full details of these lattice calculations can be found
the fields and derivatives at each point on a spatial grid within the documentation available on theTTICEEASY website
evenly spaced points. The fields are then evolved using theat http://physics.stanford.edul/latticeeasy. Moreover, these

1. Overview

classical equations of motion calculations have been discussed in previous publications of
) ) ours (e.g.[10,11)). This is our first publication where we
$p—V:p+V'=0. (A1) discuss simulations that used renormalization, however, so

we will discuss this procedure in the next section. The last
The use of the classical equations is justified because theection of the Appendix lists the parameters used for each of
instability discussed rapidly drives the fields to a state withthe runs illustrated in the paper.
exponentially large occupation numbers, meaning they effec-
tively act as classical fieldsl0]. Although LATTICEEASY is 2. Renormalization
designed tagoptionally) include the effects of cosmological i o i i
expansion on field evolution, all of the simulations reported AS We have discussed, the justification for doing a classi-
here were done in a flat spacetime background. The effects &@! calculation for quantum fields is that once the field fluc-

expansion will be discussed in subsequent publicationgj,ations are amplified sufficiently quantum effects are negli-
[8,9]. gible. There are some cases, however, when these quantum

Time evolution is done with a staggered leapfrog algo-€ff€Cts may be important, and in such cases they may be
fithm using a fixed time step. The initial conditions for the (Partially) accounted for through a simple form of renormal-
fields and derivatives are set in momentum space and thdation.

Fourier transformed to give the initial spatial distribution. Consider how this applies to the lattice calculations dis-

The initial values of the modes are given by quantum fluc-cussed here. Initially the field fluctuations are only those rep-

tuations. Each mode has a random phase and a Gaussi%?en.ting guantum vacuum states. These fluctuations affect
random amplitude with expectation value couplings, masses, and the total energy of the system in a
way that is dependent on the lattice spacing. For example,
consider the theory

2y 1 A2
V= Zm“— §)\v¢3+ 1—2)\04 (A3)
The exception to this is the Coleman-Weinberg potential for

which the initial conditions were set by the instanton con-and rewrite the fieldp(x,t) as the sum of a homogeneous
figuration described in the text. Note that ordinarily the equa- ' 9

. . A7 e i componenip(t) and fluctuationsS¢. The effective potential
tions for quantum fluctuations would hay&”+m- in the felt by the homogeneous fielep will receive a correction

place ofk in the formula above. For the models discussed(amOn othessfrom the fluctuations equal to
here, however, we were simulating a quench in which the 9 q
effective squared mass of the fields is presumed to have rap- SN~ —\v(54%) . (A%)

idly become negative. Thus we used initial conditions corre-

spo.nding to massless fluctuations. Fpr some of the runs he(e;he 1/3 is canceled by a coefficient arising from combina-
we imposed a momentum cutoff, settiig=0 for all modes  {qyics) This correction represents an unphysical effect in the
above a certain momentutn Such cutoffs eliminated un-  senge that its strength depends on the ultraviolet cutoff im-
physical effects from quantum fluctuations that were not exposed by the lattice. In the limit of zero lattice spacing where
cited to large values. In each such case we also ran withoypjtrarily large momenta would be included on the lattice

the cutoff and found the results to be qualitatively similarihis correction would become infinite. This would add an

except for the addition of high frequency noise in the ﬁeldunphysical ternC ¢ to the effective potential. This effect can

distribution. o _ , be eliminated, however, by adding a counterterm
The plots shown in this paper show either field values
(which are self-explanatoyy probability distribution func- AV=\v{5¢?) ¢ (A5)

tions (PDF), or occupation number spectra. The PDF of a

field is obtained by dividing the field values on the grid into or equivalently by adding the term

evenly spaced bins and simply counting the number of grid

points in which the field value was in each bin. The occupa- Av{5¢?) (A6)
tion number is defined by Fourier transforming the field and

computing for each mode by E@6), wherem®=V", o,  to the equation of motion fog. Note that 5¢2) in this case
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refers to the value that arises from initial quantum fluctua-described here to prevent the field from artificially rolling
tions, not to a dynamic quantity that changes as the fielé&way from¢=0 due to the induced linear term.
evolves and fluctuations grow. Such changes represent physi-
cal effects and should not be eliminated. In effect this cor-
rection eliminates the linear term in the potential¢gat 0 In this section we list the parameters used for the lattice
when the field is in the vacuum state. simulations from which all of the figures in the paper were
The above example illustrates how a simple form Ofdrawn.'The models discqssed in the paper will be referred to
renormalization can be implemented on the lattice. This proh‘?re szlmply as Quadrzatlbﬂode_l (D], Complex (model 1
cedure could in principle be used to renormalize any masgVith ¢~ replaced by ¢|%), Quartic[model (18)], and Cubic

coupling constant, or energy term in the theory. Ordinarily model (27)]. The parameter8l, L, dt, andk, refer to the

th i fi taoin| number of grid points, the width of the box, the time step,
ese corrections are not impor €SS One USes a VelY 44 the initial momentum cutoff respectively. Lengths and
large value of the momentum cutpfbecause the quantum

: - times are measured in units ¢ghv. The coupling constant
effects are quickly swamped as the fluctuations become ams 150 given for each run, as well as any information specific

plified. We did not find it necessary to use renormalizationy the particular plot. All runs are assumed to be three di-
for any models except the cubic one, where we used it amensional unless otherwise indicated.

3. List of parameters

[1] G. Felder, J. GararBellido, P.B. Greene, L. Kofman, A. [16] P. Laguna and W.H. Zurek, Phys. Rev.38, 085021(1998;

Linde, and I. Tkachev, Phys. Rev. LeB7, 011601(2001). J.R. Anglin and W.H. Zurek, Phys. Rev. Leg, 1707(1999;
[2] L. Kofman, A. Linde, and A.A. Starobinsky, Phys. Rev. Lett. J. Dziarmaga, P. Laguna, and W.H. Zurekid. 82, 4749
73, 3195(1994; Phys. Rev. D56, 3258(1997). (1999; L.M. Bettencourt, N.D. Antunes, and W.H. Zurek,

Phys. Rev. D62, 065005(2000).

[17] J. Garcia-Bellido, D.Y. Grigoriev, A. Kusenko, and M.
Shaposhnikov, Phys. Rev. 80, 123504(1999.

[18] A.D. Linde, Nucl. PhysB216, 421 (1983.

[19] K. Lee and E.J. Weinberg, Nucl. PhyB267, 181 (1986.

[20] A. Linde, Nucl. PhysB372, 421 (1992.

[21] D. Polarski and A. Starobinsky, Class. Quantum Giz,.377
(1996; A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec,

[3] D. Boyanovsky, M. D’Attanasio, H.J. de Vega, R. Holman, and
D.-S. Lee, Phys. Rev. B2, 6805(1995.

[4] D.A. Kirzhnits, Pis'ma Zh. Eksp. Teor. Fid5, 745 (1972
[JETP Lett.15, 529 (1972]; D.A. Kirzhnits and A.D. Linde,
Phys. Lett.42B, 471 (1972; Zh. Eksp. Teor. Fiz67, 1263
(1974 [Sov. Phys. JETRO, 628(1975]; S. Weinberg, Phys.
Rev. D9, 3357(1974; L. Dolan and R. Jackiwibid. 9, 2904

(1974. _ Phys. Rev. D50, 4807 (1994).
[5] D.A. Kirzhnits and A.D. Linde, Ann. PhysIN.Y.) 101, 195 (55 bR Greene, L. Kofman, A. Linde, and A.A. Starobinsky,
(1976. Phys. Rev. D56, 6175(1997.
[6] A. D. Linde, Particle Physics and Inflationary Cosmology [23] G. Felder and L. Kofman, Phys. Rev. 3, 103503(2001).
(Harwood, Chur, Switzerland, 1980 [24] A. A. Starobinsky,Stochastic De Sitter (Inflationary) Stage in
[7] A. Vilenkin and E.P.S. ShellardCosmic Strings and Other the Early Universgin Current Topics in Field Theory, Quan-
Topological DefectsCambridge University Press, Cambridge, tum Gravity and StringsLecture Notes in Physics Vol. 206,
England, 2000 edited by H. J. de Vega and N. Sanchi&pringer, Heidelberg,
[8] G. Felder, L. Kofman, and A. Linde, “Preheating in new in- 1986, p. 107.
flation” (in preparation [25] A. Linde, D. Linde, and A. Mezhlumian, Phys. Rev. 43,
[9] G. Felder, J. GararBellido, P. B. Greene, L. Kofman, and A. 1783(19949.
D. Linde (in preparation [26] A.D. Linde, Phys. Lett108B, 389 (1982; 114B, 431 (1982;
[10] S.Y. Khlebnikov and I.I. Tkachev, Phys. Rev. Left7, 219 116B, 335(1982; A. Albrecht and P.J. Steinhardt, Phys. Rev.
(1996; 79, 1607(1997. Lett. 48, 1220(1982.

[11] G. Felder and I. Tkachev,LATTICEEASY: A program for lattice  [27] S. Coleman, Phys. Rev. D5, 2929(1977.
simulations of scalar fields in an expanding universe,”[28] S. Fubini, Nuovo Cimento 84, 521 (1976.

hep-ph/0011159. [29] S. Coleman and F. De Luccia, Phys. Rev2[) 3305(1980.
[12] D.Y. Grigoriev and V.A. Rubakov, Nucl. PhysB299 67  [30] E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart, and D.
(1988. Wands, Phys. Rev. @9, 6410(1994).
[13] A.A. Anselm and M.G. Ryskin, Phys. Lett. B66, 482(199J); [31] M. Bastero-Gil, S.F. King, and J. Sanderson, Phys. Re§0D
J.D. Bjorken, K.L. Kowalski, and C.C. Taylor, “Baked 103517(1999.

Alaska,” SLAC-PUB-6109, Presented at 7th Les Rencontreq§32] J. Bardeen, J.R. Bond, N. Kaiser, and A. Szalay, Astrophys. J.
de Physique de la Vallee d’Aoste: Results and Perspectives in 304, 15 (1986.
Particle Physics, La Thuile, Italy, 1993; K. Rajagopal and F.[33] B.R. Greene, T. Prokopec, and T.G. Roos, Phys. Re%6D

Wilczek, Nucl. PhysB399 395 (1993; D. Boyanovsky, H.J. 6484 (1997); G. Felder, L. Kofman, and A. Linddbid. 59,
de Vega, and R. Holman, Phys. Rev.5D, 734(1995. 123523(1999.
[14] K. Rajagopal and F. Wilczek, Nucl. PhyB404, 577 (1993. [34] A. Linde, Phys. Lett. B259, 38 (1991); Phys. Rev. D49, 748
[15] D. Ibaceta and E. Calzetta, Phys. Rev6®& 2999(1999. (1994.

123517-18



TACHYONIC INSTABILITY AND DYNAMICS O F . ... PHYSICAL REVIEW D 64 123517

[35] J. Garcia-Bellido and A. Linde, Phys. Rev.57, 6075(1998. and R.J. Zhang, J. High Energy Phgg, 047 (200J.
[36] S.H. Alexander, “Inflation from D-anti-D brane annihilation,” [39] A. Sen, J. High Energy Phy88, 010(1998; 08, 012(1998.
hep-th/0105032. [40] J. Khoury, B.A. Ovrut, P.J. Steinhardt, and N. Turok, Phys.
[37] G. Dvali, Q. Shafi, and S. Solganik, “D-brane inflation,” Rev. D (to be publishey] hep-th/0103239.
hep-th/0105203. [41] R. Kallosh, L. Kofman, and A. Linde, Phys. Rev. @ be

[38] C.P. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G. Rajesh, published, hep-th/0104073.

123517-19



	Tachyonic Instability and Dynamics of Spontaneous Symmetry Breaking
	Recommended Citation

	tmp.1597687303.pdf.pgc5C

