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Tachyonic instability and dynamics of spontaneous symmetry breaking
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Spontaneous symmetry breaking usually occurs due to the tachyonic~spinodal! instability of a scalar field
near the top of its effective potential atf50. Naively, one might expect the fieldf to fall from the top of the
effective potential and then experience a long stage of oscillations with amplitudeO(v) near the minimum of
the effective potential atf5v until it gives its energy to particles produced during these oscillations. However,
it was recently found that the tachyonic instability rapidly converts most of the potential energyV(0) into the
energy of colliding classical waves of the scalar field. This conversion, which was called ‘‘tachyonic preheat-
ing,’’ is so efficient that symmetry breaking typically completes within a single oscillation of the field distri-
bution as it rolls towards the minimum of its effective potential@G. Felderet al., Phys. Rev. Lett.87, 011601
~2001!#. In this paper we give a detailed description of tachyonic preheating and show that the dynamics of this
process crucially depends on the shape of the effective potential near its maximum. In the simplest models
whereV(f);2m2f2/2 near the maximum, the process occurs solely due to the tachyonic instability, whereas
in the theories2lfn with n.2 one encounters a combination of the effects of tunneling, tachyonic instability
and bubble wall collisions.

DOI: 10.1103/PhysRevD.64.123517 PACS number~s!: 98.80.Cq

I. INTRODUCTION

Since the beginning of the 1970s, spontaneous symmetry
breaking~SSB! has been a basic feature of all realistic theo-
ries of elementary particles. It is discussed in every book on
quantum field theory, so one might expect the theory of this
effect to be well understood. However, until very recently
this was not the case.

The standard picture of SSB that many people have in
mind looks as follows. The field initially stays at the top of
the effective potentialV(f) at f50 like a ball at the top of
a hill. Then some small external force pushes it to the right
or the left. Even if this force is infinitesimally small, it is
enough for the field to start falling down in the direction in
which it was pushed. The field then oscillates near the mini-
mum of its effective potentialV(f) at ufu5v, and eventu-
ally the whole universe becomes filled by a homogeneous
scalar fieldufu5v. As an example of this process one can
imagine a piece of ferromagnetic material being magnetized
under the influence of a very small external magnetic field.

That is why many authors who studied SSB assumed that
the field f was initially slightly displaced from the maxi-
mum ofV(f). Then they studied classical rolling of the field
f from this displaced state and the growth of quantum fluc-
tuations on top of the homogeneous classical field. It was
generally thought that the stage of oscillations of a homoge-
neous classical fieldf with amplitudeuDfu;v would last
for a very long time until it produced elementary particles
that drained the energy of the classical oscillations. One can
talk about spontaneous symmetry breaking only when the
field f settles down atufu;v and starts oscillating near this

state with an amplitude much smaller thanv: uDfu!v. The
most efficient process that was previously known to convert
the energy of a homogeneously oscillating scalar field into
the energy of elementary particles and make the amplitude of
the oscillations small was parametric resonance@2#, but in
most cases studied in the literature the homogeneous compo-
nent of the field makes several dozen oscillations before the
process completes.

However, in a recent paper by Felder, Garcı´a-Bellido,
Greene, Kofman, Linde and Tkachev@1# it was shown that
typically spontaneous symmetry breaking completes within a
single oscillation of the scalar field. One key observation
made in@1# was that nobody pushes the fieldf from the top
of the effective potential in the early universe, so the usual
picture of a homogeneously oscillating scalar field is incor-
rect in application to SSB. In those cases when the initial
value of the homogeneous component of the fieldf is close
to zero, quantum fluctuations rather than the classical rolling
of the homogeneous fieldf dominate the dynamics.

Usually SSB occurs because of the presence of tachyonic
mass terms such as2m2f2/2 in the effective potential, so
that V952m2,0. Long wavelength quantum fluctuations
fk of the field f with momentak,m grow exponentially,
fk;exp(tAm22k2). When these fluctuations become large
they can be interpreted as classical waves of the scalar field.
Spontaneous symmetry breaking occurs when the total am-
plitude of these fluctuations grows up tov. Because all
modes withk,m are growing, SSB occurslocally on a scale
somewhat greater thanm21. Later on, this scale gradually
increases. Inhomogeneities of the scalar field absorb some
part of the energyV(0), which suppresses the amplitude of
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the scalar field oscillations. As a result, the fieldf that ap-
pears after SSB is relatively homogeneous on the scale
somewhat greater thanm21, and the amplitude of its oscil-
lations Df(x,t) about the stateufu;v is substantially
smaller thanv. Thus, contrary to naive expectations, a pro-
longed stage of oscillations of a homogeneous component of
the scalar fields during SSB usually does not exist.

As we will show in this paper, one reaches a similar con-
clusion even if the fieldf initially has been slightly dis-
placed from the top of the potential~no SSB!. With this
initial condition, the homogeneous background field decays
within a few oscillations due to the broad parametric reso-
nance enhanced by the tachyonic regime.

The process of rapid transfer of the energy of the scalar
field V(0) into the energy of its inhomogeneous oscillations
due to tachyonic instability was calledtachyonic preheating
@1#. One should distinguish between the tachyonic preheating
and spinodal~tachyonic! instability, which occurs at the very
beginning of this process. The first stages of the process of
SSB related to tachyonic~spinodal! instability can be studied
by relatively simple methods. However, very soon the pro-
cess becomes exceedingly complicated. When the field
grows sufficiently large, one should take into account non-
linear effects. Oscillations of the field can trigger an explo-
sive process of particle production due to parametric reso-
nance @2#, which can be especially efficient in our case
because of the tachyonic instability. Particles~waves! of the
classical field produced in this process begin interacting with
each other~rescattering!. At this stage even advanced meth-
ods based on the Hartree@2# or 1/N @3# approximations fail
to describe the situation correctly. In addition, from the very
beginning of the process there may be production of topo-
logical defects, which cannot be described by perturbation
theory. One might expect that since this is a nonperturbative
phenomenon it cannot materially affect the process of SSB.
As we will see, however, the production of topological de-
fects is not a small correction but an important feature of
SSB. Topological defects, like other inhomogeneities gener-
ated by tachyonic instability, drain the energy of the scalar
field rolling down to the minimum of the effective potential.
By doing so, they diminish the amplitude of subsequent os-
cillations of the scalar field.

There is an extensive literature describing SSB, spinodal
instability and the production of topological defects during
high temperature phase transitions in cosmology@4,5#. To
study these issues one should find how the temperature
changes in the early universe@6# and use numerical methods
to find out how symmetry breaking occurs in an expanding
universe with a time-dependent temperature. Many interest-
ing results have been obtained in this direction, see e.g.@7#.
However, most of these results were strongly model-
dependent because the answers crucially depend on the ratios
between masses of the particles, their coupling constants, the
temperature of the universe and the rate of expansion. To
avoid this problem, in this paper we will concentrate on the
simplest possibility when the temperature was zero from the
very beginning and the field was standing on the top of the
effective potential. This will allow us to study basic features
of the process of spontaneous symmetry breaking in its pure

form without extra complications related to high temperature
effects and cosmological evolution.1

Even in this regime, the theory of SSB remains extremely
complicated since for its investigation one should go beyond
perturbation theory. Fortunately, during the last few years
new methods of lattice simulations have been developed.
They are based on the observation that quantum states of
Bose fields with large occupation numbers can be interpreted
as classical waves and their dynamics can be fully analyzed
by solving relativistic wave equations on a lattice@10,11#.
Similar methods were used in@12–17# in application to
sphaleron effects, the formation of disoriented chiral conden-
sates, and the problem of topological defect production and
baryogenesis in the early universe. In our paper, which ex-
tends the previous work@1#, we will further develop these
methods.

Usually the main output of lattice simulations is the cal-
culation of correlation functions, Wilson loops, etc. A signifi-
cant advantage of our methods is that the semi-classical na-
ture of the effects under investigation allows us to have a
clear visual picture of all the processes involved. One can
really seethe process of spontaneous symmetry breaking@1#,
which helps enormously in understanding the nature of this
effect. That is why this paper is accompanied by many fig-
ures that show the development of symmetry breaking in
various models.

In addition to the simplest models withV9(0)52m2

,0, we will study some models where the curvature of the
effective potential nearf50 is negative, but it vanishes at
f50. This happens in such theories as2lf4 or 2lf3.
@Potentials of the type of2lf3 appear in the simplest su-
persymmetric~SUSY! motivated models of hybrid inflation.#
As we will see, the development of tachyonic instability in
such models is accompanied by bubble formation and
growth and bubble wall collisions. Rather interestingly, in
these theories bubble formation occurs via tunneling even
though there is no potential barrier inV(f) @18,19#. More-
over in the theory2lf3 this process occurs even though
there are no instantons describing bubble formation in this
theory. To understand this process one should use the sto-
chastic approach to tunneling developed in@20#.

Section II describes the basic theory of spontaneous sym-
metry breaking and tachyonic instability, focusing particu-
larly on the simplest example of a negative quadratic poten-
tial. In this section we also discuss the definition of
occupation number used throughout the paper to describe the
growth of fluctuations. Section III generalizes the theory to a
broader class of potentials and to the case where the homo-
geneous field begins to be displaced from the maximum of
the potential. Section IV presents the results of our numerical
simulations for the simplest SSB model, a single field with a
quadratic tachyonic term~i.e. V;2m2f2/2). Section V
compares our results with results obtained from perturbative
calculations and shows how and when the perturbative cal-
culations break down. Section VI extends our numerical cal-

1A discussion of SSB and tachyonic preheating in the early uni-
verse will be contained in@8,9#.
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culations to the case of a complex field with a quadratic
tachyonic term.

The next two sections discuss the somewhat more com-
plicated situation that arises when the tachyonic mass isf
dependent and vanishes atf50. Section VII discusses quar-
tic potentials (V;2lf4/4) and explains how SSB occurs
through tunneling and bubble formation in such models. Sec-
tion VIII discusses cubic potentials where the behavior is in
some ways intermediate between that of the quadratic and
quartic cases.

In the concluding section we summarize our results and
briefly discuss their application to various cosmological sce-
narios, including hybrid inflation, new inflation, brane infla-
tion, and the recently proposed ekpyrotic/pyrotechnic uni-
verse scenarios. Finally there is an Appendix that provides
details on our lattice calculations and lists the parameters
used for each of the simulations described in the paper.

II. TACHYONIC INSTABILITY AND SPONTANEOUS
SYMMETRY BREAKING

The simplest model of spontaneous symmetry breaking is
based on the theory with the effective potential

V~f!5
l

4
~f22v2!2[2

m2

2
f21

l

4
f41

m4

4l
, ~1!

wherem2[lv2 and l!1. V(f) has a maximum atf50
with curvatureV9[Vff52m2 and a minimum atf56v.

The development of tachyonic instability in this model
depends on the initial conditions. We will assume that ini-
tially the symmetry is completely restored so that the fieldf
does not have any homogeneous component, i.e.^f&50.
But then ^f& remains zero at all later stages and for the
investigation of SSB one needs to find the spatial distribution
of the fieldf(x,t). To avoid this complication, many authors
assume that there is a small but finite initial homogeneous
background fieldf(t), and even smaller quantum fluctua-
tionsdf(x,t) that grow on top of it. This approximation may
provide some interesting information, but quite often it is
inadequate. In particular, it does not describe the creation of
topological defects, which, as we will see, is not a small
nonperturbative correction but an important part of the prob-
lem.

Let us consider the equation for the scalar field fluctua-
tions in the model~1!:

f̈k1~k21V9!fk50. ~2!

For definiteness, we suppose that the mode functions de-
scribing quantum fluctuations in the symmetric phasef50
at the moment close tot50 are the same as for a massless
field, fk5(1/A2k)e2 ikt1 ikWxW. Then att50 we ‘‘turn on’’ the
term 2m2f2/2 corresponding to the negative mass squared
2m2. The modes withk5ukW u,m grow exponentially. Initial
dispersion of all growing fluctuations withk,m was given
by

^df2&5E
0

m dk2

8p2 5
m2

8p2 , ~3!

and the average initial amplitude of all fluctuations withk
,m was given by

df5
m

2p
. ~4!

The dispersion of the growing modes att.0 is given by

^df2&5E
0

m dk2

8p2 e2tAm22k2
5

e2mt~2mt21!11

16p2t2
. ~5!

This means that the average amplitudedf(k) of quantum
fluctuations with momenta;k initially was df(k);k/2p,

and then it started growing asetAm22k2
.

There is a certain similarity between the generation of
classical inhomogeneities from quantum fluctuations either
due to tachyonic instability or, during inflation, due to
stretching of the wavelengths of these fluctuations. In both
cases the fluctuations thus produced are in squeezed states
@21#, although the mechanisms that produce them and the
resulting properties of the waves are somewhat different.

To get a qualitative understanding of the process of spon-
taneous symmetry breaking, instead of many growing waves
with momentak,m in Eq. ~5! let us consider first a single
sinusoidal wavedf5D(t)coskx with k;m and with initial
amplitudeD(t);m/2p in one-dimensional space@so that the
average value of (df)2 corresponds tom2/8p2#. The ampli-
tude of this wave grows exponentially until it becomes
O(v);m/Al. This leads to the division of the universe into
domains of sizeO(m21) in which the field changes from
O(v) to O(2v). The gradient energy density of domain
walls separating areas with positive and negativef will be
;k2df25O(m4/l). This energy is of the same order as the
total initial potential energy of the fieldV(0)5m4/4l. This
is one of the reasons why any approximation based on per-
turbation theory and ignoring topological defect production
cannot give a correct description of the process of spontane-
ous symmetry breaking.

Thus a substantial part of the energyV(0) is transferred
to the gradient energy of the fieldf when it rolls down to the
minimum of V(f). Because the initial state contains many
quantum fluctuations with different phases growing at differ-
ent rates, the resulting field distribution is a Gaussian random
field with a varying spectrum. It cannot coherently give all of
its gradient energy back and return to its initial statef50.
This is one of the reasons why spontaneous symmetry break-
ing and the main stage of preheating in this model may occur
within a single oscillation of the fieldf.

Meanwhile if one were to make the usual assumption that
initially there exists a small homogeneous background field
f!v with an amplitude greater than the amplitude of the
growing quantum fluctuationsdf, so that m/2p!f
,m/Al, one would find out that whenf falls to the mini-
mum of the effective potential the gradient energy of the
fluctuations remains relatively small. In some situations this
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could lead one to falsely conclude that the field will experi-
ence many fluctuations before it relaxes near the minimum of
V(f). To avoid this error, we need to perform a complete
study of the growth of all tachyonic modes and their subse-
quent interaction without making this simplifying assump-
tion about the existence of a homogeneous fieldf.

The tachyonic growth of all fluctuations withk,m con-
tinues until A^df2& reaches the value;v/2, since atf
;v/A3 the curvature of the effective potential vanishes and
instead of tachyonic growth one has the usual oscillations of
all the modes. Equation~5! shows that this happens within a
time t* ;(1/2m)ln(C/l), whereC;102.

A convenient tool for studying this process is the spec-
trum of the growing quantum fluctuations. Rather than using
the usual power spectrumufku2, however, we find it more
informative to investigate the occupation numbernk of pro-
duced particles@2#. Indeed, in situations where the number of
particles is well defined~and this always happens at the end
of the process! the occupation numbernk is an adiabatic
invariant, i.e. it does not change during the field oscillations
unless some dramatic changes occur to the system. The stan-
dard definition of the occupation number which was exten-
sively used in the theory of preheating@2#, and which is valid
for m2>0, is

nk5
vk

2 S uḟku2

vk
2

1ufku2D 2
1

2
. ~6!

However, this definition does not work in the tachyonic re-
gime when the effective mass squared of the fieldf becomes
negative since thenvk5Ak21m2 becomes imaginary.
Strictly speaking,nk should not be interpreted as the occu-
pation number of particles during the tachyonic regime. One
may still formally calculate the functionnk in this regime
using eitherAk21um2u or uku instead ofvk5Ak21m2 in the
expression fornk wheneverm2,0. The choice between
Ak21um2u anduku is arbitrary, and it does not change any of
the final physical results. The spectra shown in this paper
usedvk5uku in the tachyonic regime, with the exception of
Fig. 1 and Fig. 2, where we usedvk5Ak21um2u. The for-
mally defined quantitynk can be interpreted as the occupa-
tion number of particles after the end of the tachyonic re-

gime, whenm2>0. Moreover, for all nonvanishing momenta
these two quantities match very well when one switches
from the tachyonic regime to the normal one. Indeed,
whereas the value ofvk changes during the process, the
exponential growth ofnk is mainly determined byuḟku and
ufku, which do not change strongly during the switch be-
tween the tachyonic regime and the normal one. Therefore
the functionnk is very convenient and informative during the
whole process. When one calculatesnk during the tachyonic
regime, one can get a good idea of the number of particles
that will emerge at the end of this regime where the usual
particle interpretation becomes possible. In this sense we will
interpret the functionnk defined above as the occupation
number of particles in both regimes.

An additional caveat of this interpretation is that when
one calculatesfk , one does not distinguish between the con-
tribution to this quantity from small perturbations and from
topological defects. As a result, in the presence of topologi-
cal defects one can somewhat overestimate the number of
produced particles. The error, however, is not very large,
especially in theories where instead of domain walls we have
strings or monopoles. Moreover, eventually topological de-
fects disappear and release their energy in the form of pro-
duced particles, and the standard interpretation ofnk be-
comes completely valid.

The exponential growth of fluctuations during the tachy-
onic regime can be interpreted as the growth of the occupa-
tion number of particles withk!m. Using the estimates
given above, one can show thatnk for k!m at the timet*
grows up to

nk;exp~2mt* !5O~102!l21@1. ~7!

The time t* ;(1/2m)ln(C/l) depends only logarithmically
not only on l, but, more generally, on the choice of the
initial distribution of quantum fluctuations. As we see, for
small l the fluctuations withk!m acquire very large occu-
pation numbers. More importantly, such fluctuations will
have a large amplitude and will be in a squeezed state. The
general solution for these fluctuations will contain two terms,
Aevt and Be2vt, but after a short time only the growing
modeAevt survives. Therefore, independently of the initial
phases of quantum fluctuations, the only modes withk,m
that survive after the beginning of the tachyonic regime will

FIG. 1. Evolution of the occupation numbers for the fluctuations
with k!m in the modelV(f)52(m2/2)f21(l/4)f41(m4/4l).

FIG. 2. Same as in Fig. 1 fork50.5m.
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coherently grow, and their amplitude will become extremely
large. That is why these modes can be interpreted as classical
waves and can be studied by computer simulations using the
methods of@10,11#.

The dominant contribution tôdf2& in Eq. ~5! at the mo-
ment t* is given by the modes with wavelengthl *
;2pk

*
21;A2pm21ln1/2(C/l).m21, where C5O(102).

As a result, at the moment when the fluctuations of the field
f reach the minimum of the effective potential,A^df2&
;v, the field distribution looks rather homogeneous on a
scalel & l * . On average, one still has^f&50. This implies
that the universe becomes divided into domains with two
different types of spontaneous symmetry breaking,f;6v.
The typical size of each domain is l * /2
;(p/A2) m21ln1/2(C/l), which is slightly greater than
m21. At later stages the domains grow in size and percolate
~eat each other!, and SSB becomes established on a macro-
scopic scale.

Of course, these are just simple estimates that should be
followed by a detailed quantitative investigation. When the
field rolls down to the minimum of its effective potential its
fluctuations scatter off each other as classical waves due to
the lf4 interaction. It is difficult to study this process ana-
lytically, but fortunately one can do it numerically using the
method of lattice simulations developed in@10,11#.

Before describing the results of our lattice simulations, we
would like to discuss the setting of the problem, the choice
of the initial conditions and some other aspects of tachyonic
instability in a more general class of theories, including the
theories withV(f);2lfn.

III. TACHYONIC INSTABILITY IN A MORE GENERAL
CLASS OF THEORIES AND THE ROLE OF

INITIAL DISPLACEMENT

As we already emphasized, spontaneous symmetry break-
ing usually occurs due to quantum fluctuations when the field
f falls from an exactly symmetric statef50. However, it is
still very instructive to find out what happens when the field
falls down from some state withf05” 0. By doing this, we
will get an additional insight into the nature of tachyonic
instability. We will also be able to compare our results with
the results of earlier works on spontaneous symmetry break-
ing.

Consider the behavior of the fluctuationsdf with mo-
mentumk!m. An important observation is that these fluc-
tuations satisfy the same equation of motion asḟ:

f̈k52V9~f!fk . ~8!

A general solution of this equation forV52m2f2/2 is
fk(t)5a1emt1a2e2mt. Similarly, for ḟ one hasḟ5b1emt

1b2e2mt. At t@m21 only the growing mode survives, and
the ratiofk /ḟ becomes constant. This rule holds for other
types of tachyonic potentials as well. Thus one can investi-
gate the amplification of the long wavelength perturbations
of the scalar fieldf in a very easy way. Instead of solving

equations forfk in a time-dependent backgroundf(t), one
can find howḟ(t) changes in time. We will use this trick
here and in the next section.

Consider the theory

V~f!5V02lfn/2. ~9!

Suppose the fieldf begins rolling down fromf0. Energy
conservation implies that

ḟ2/22ḟ0
2/25V~f0!2V~f!. ~10!

We will assume for simplicity that in the beginning, atf
5f0, the field moves with the same velocity as if it were
falling with vanishing total energy fromf50 ~this assump-
tion does not make any difference for motion atf@f0).
Then one has

ḟ2/252V~f!5lfn/2. ~11!

Thus

ḟ5Alfn/2. ~12!

The solution is

f5Ff0
(22n)/22AltS n22

2 D G22(n22)

. ~13!

The most important result is Eq.~12!. In a more general case
of nonvanishing total energy we have

ḟ5Al~fn2f0
n!, ~14!

wheref0 is an initial field value whereḟ50. It implies that
the tachyonic fluctuations with small momenta in the long
time limit (f@f0) grow as follows:

fk5Cfn/2, ~15!

whereC is some constant.
This means, in particular, that in the theory with the po-

tential 2f2 the long wavelength fluctuations grow just like
the field itself,fk /f5const. Meanwhile for the theory with
2f3 the fluctuations grow faster,fk /f;f1/2, and for the
theory2f4 they grow even faster,fk /f;f.

Returning to the theory 2(m2/2)f21(l/4)f4

1(m4/4l), we find that the potential is tachyonic (V9,0)
for 0,f,v/A3, and it can be approximately represented as
2(m2/2)f2 for 0,f&v/2. When the fieldf grows from
f0!v to v/A3, the speed of the fieldḟ grows frommf0 to
(A5/6)mv. Consequently, the amplitude of density perturba-
tions grows by a factor;(A5/6)(v/f0), and the occupation
numbers nk of particles for k!m grow by a factor
O(v2/5f0

2).
Clearly, one has the largest amplification if one starts as

close tof050 as possible. However, iff0!m/2p, where
m/2p is the average amplitude of the long wavelength quan-
tum fluctuations with momentumk,m ~which grow almost
as fast as the homogeneous mode!, then the development of

TACHYONIC INSTABILITY AND DYNAMICS O F . . . PHYSICAL REVIEW D 64 123517

123517-5



f0 gives no information on the process of spontaneous sym-
metry breaking. In this case instead off0 one would need to
study all growing modes withk,m, just as in the casef0
50. This is what we are doing in the main part of this paper.

The equation for fluctuations in the modelV(f)
52(m2/2)f21(l/4)f41(m4/4l) is

f̈k1~k22m213lf2!fk50. ~16!

This equation should be solved simultaneously with the
equation for the background fieldf(t)

f̈2m2f1lf350. ~17!

Equation~16! is the Lame equation@22#. Its solutions depend
on the dimensionless parametersAlf0 /m. In the context of
the chaotic inflationary model, where the fieldf(t) is rolling
from its large initial valuef;M p , this parameter usually
was taken to be large@22#. In the context of the theory of
spontaneous symmetry breaking we are dealing with the op-
posite case whenf0 is close to zero.

The description of the growth of perturbations in the
model2(m2/2)f21(l/4)f41(m4/4l) is a straightforward
generalization of the theory of parametric resonance in the
model (l/4)f4, which has been studied using the stability/
instability chart of the Lame equation@22#. The presence of
the negative mass term adds an additional instability band at
k&m. The characteristic exponentm in this new zone is
significantly greater than in the higher zones because of the
tachyonic effect. Thus, the tachyonic parametric resonance
will be dominant.

When the field rolls towards the minimum ofV(f), the
occupation numbersnk , calculated from the solutionsfk of
Eq. ~16!, become large. However, forf0.m/2p the field
fluctuations do not grow large enough to dominate the energy
density immediately after the rolling to the minimum of the
effective potential. To find out what happens in this case, we
will describe, as an example, the evolution of the occupation
numbers of the modesfk with different momentak in the
model ~1! with l51024 if the field rolls from f050.01v
~which is larger thanm/2p in this model!.

Consider first a modefk with k!m. In the beginning,
when the fieldf rolls from f5f0 to f5v/A3, this mode
grows faster than any other fluctuations, just as we expected,
see Fig. 1. During this time interval, the occupation number
becomes;e9, which is in good agreement with our estimate
O(v2/5f0

2);23103. Then the field reaches the bottom of
the effective potential, goes somewhat beyond this point,
bounces back, and again approaches the tachyonic regionf
,v/A3. Until the field becomes smaller thanv/A3, the oc-
cupation number of particles withk!m does not change
much. But then itdecreasesalmost to the same value from
which we started our calculations. What happens is that the
solution for the fluctuations has two modes, the growing one
and the decaying one. When the field bounces, fluctuations
either grow or decay depending on the phase with which
they re-enter the tachyonic regime. Therefore even though
the modes withk!m grow fast on the way down, they also
decay fast on the way up, as shown in Fig. 1.

Meanwhile for the modes in a rather broad interval ofk,
from k;0.3m to k;0.6m, the modes continue their growth
when the field oscillates. Figure 2 shows the growth ofnk

during three consecutive oscillations of the fieldf. As we
see, during each full oscillation the occupation numbers
grow e15 times. Thus duringn oscillations the occupation
numbers should growe15n times.

This is an incredibly fast growth. It occurs much faster
than the usual parametric resonance in theories withm2.0
@2#. Clearly, this process can rapidly convert all the energy of
the homogeneous field into the energy of classical colliding
waves, and at this stage the only reliable way to study the
process is to use numerical simulations.

In the theory2m2f2 the fluctuations grow as fast as the
scalar field, so if one begins with a homogeneous field with
df/f0!1, then on the way down tof;v this field distri-
bution remains relatively homogeneous. However, when the
field rolls back towardsf5f0, the inhomogeneities withk
;0.5m continue growing. For example, if one takesf0
;1022v, quantum fluctuations~which have initial amplitude
only one order of magnitude smaller thanf0 in this model!
grow almost 104 times when the fieldf falls down fromf
5f0 and returns back. The amplitude of inhomogeneities
after the return becomes approximately three orders of mag-
nitude larger thanf0, which means that the homogeneity
becomes completely destroyed. At this stage~and in fact
much earlier! one can no longer study the evolution of quan-
tum fluctuations as if they were small deviations on a homo-
geneous background. When the field falls down to the mini-
mum of the effective potential again, it becomes divided into
large colliding waves. One cannot study the evolution of
such a system using perturbation theory.

In the theoriesV(f);2fn with n.2 the situation may
be even more interesting and the growth of the occupation
numbernk for smallk occurs even faster. For example, in the
theory2lf4 long wavelength fluctuations grow asf2 ~and
the occupation numbers grow asf4). Therefore when the
field f grows from f0 to v, the ratio df/f grows by a
factor of O(v/f0). This means that the field may become
very inhomogeneous on its way down even if initially it was
very homogeneous.

The average initial amplitude of tachyonic fluctuations in
the theory2lf4/4 at f05” 0 is given by df;AuV9u/2p
;A3lf0/2p. The initial level of inhomogeneities was given
by df/f;A3l/2p!1. When the fieldf reaches some
value v@f0, the ratio df/f grows and becomesdf/f
;(A3l/2p)(v/f0). Thus, if the rolling of the field begins at
a very small value of the fieldf0, or if it continues long
enough, so thatv/f0 becomes greater than 1/Al, the field
becomes completely inhomogeneous on its way down.

Moreover, if one considers a theory such as e.g.V(f)
52lf4/41lf6/v2, which has a minimum atf5v, then in
such theories, just as in the theory2m2f2, there are some
modes withk;Alf0 whose amplitude grows both on the
way down and on the way up. For these modes the degree of
inhomogeneity rapidly grows with each oscillation. The oc-
cupation numbers grow approximately as (v/f0)8 during
each full oscillation, so that aftern oscillations the occupa-
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tion numbers of the particles with momenta;Alf0 become
as large as (v/f0)8n. That is why it takes only one or two
oscillations before the oscillating scalar field becomes inho-
mogeneous and the first stage of preheating related to the
tachyonic instability completes.

The simple rules derived above explain the extraordinary
efficiency of tachyonic preheating. However, one can apply
these rules only at the beginning of the process, when one
can neglect the backreaction of created particles. That is why
we needed to perform computer simulations which took the
effects of backreaction into account.

IV. LATTICE SIMULATIONS OF SPONTANEOUS
SYMMETRY BREAKING IN THE THEORIES

WITH V„f…ÄÀM 2f2Õ2¿lf4Õ4

A description of our method@10,11# in application to this
problem is given in the Appendix.

There are several complementary ways one can represent
the results of our calculations. One of the best ways to do it
is to study the probability distribution functionP(f,t),
which is the fraction of the volume containing the fieldf at
a time t. At t50 we begin with the probability distribution
concentrated nearf50, with the quantum mechanical dis-
persion~5!, and then we follow its evolution; see Fig. 3.

In the beginning quantum fluctuations are very small, and
the probability distributionP(f,t) is very narrowly focused
nearf50. Then it spreads out and shows two maxima that
oscillate aboutf56v with an amplitude much smaller
thanv.

As we see from Fig. 3, the two maxima never come close
to the initial pointf50, which implies that symmetry be-
comes broken within a single oscillation of the distribution
of the fieldf. To demonstrate that this is not a strong cou-
pling effect, we show the results for the model~1! with l
51024. We obtained similar results forl51022. Note that
only when the distribution stabilizes and the domains be-
come large can one use the standard language of perturbation
theory describing scalar particles as excitations on a~locally!
homogeneous background. That is why the use of the non-
perturbative approach based on lattice simulations was so
important for our investigation.

One may wonder why the distribution is slightly asym-
metric, and why after symmetry breaking there are still many
points at ufu!v. The answer is that after SSB, space be-
comes divided into domains withf;6v. Domains are
large, and their size gradually grows after SSB because large
domains ‘‘eat’’ the small ones. Eventually in any finite size
box there will remain just one domain, i.e. the distribution
will become completely asymmetric. The points withufu
!v correspond to domain walls.

In this series of simulations we made a cut-off in the
spectrum of initial fluctuations atk.m. The reason is that
only the modes withk,m from the very beginning experi-
ence exponential growth and behave as classical fields. We
checked, however, that the results of the simulations remain
qualitatively the same if one makes a cut-off atk@m.

The process of thermalization takes much longer than
spontaneous symmetry breaking@23#. Indeed, the standard
thermal distribution is given by the well known equation
nk5(evk /T21)21. At the moment when all the energy
V(0)5m4/4l is transferred to the thermal energy;T4, the
temperature rises up toT;ml21/4, and the occupation num-
bers at k&m become nk;(em/T21)21;T/m;l21/4. In
particular, for l;1024 one would havenk,m5O(10),
which is 5 orders of magnitude smaller than the results of our
calculations.

Thus, the occupation numbers should drop down dramati-
cally before full thermalization is achieved. This may happen
only if the total number of particles becomes many orders of
magnitude smaller~particle cannibalism!. If one considers
only those interactions that preserve the total number of par-
ticles ~scattering 2→2), one may achieve a kind of tempo-
rary thermal equilibrium with a nonvanishing effective
chemical potential of particlesf. This is what we see in our
calculations when the occupation numbers gradually ap-
proach some quasi-equilibrium asymptotic limit. Since there
is no real particle conservation in this theory, eventually the
effective chemical potential will vanish, and the true thermal
equilibrium withnk5(evk /T21)21 will be reached. But this
process takes much greater time than the time required for
spontaneous symmetry breaking.

To provide a visual picture of the distribution of the scalar
field, we show the growth of fluctuations in a two-

FIG. 3. The process of symmetry breaking in the model~1! for
l51024. The values of the field are shown in units ofv, time is
shown in unitsm21. For each moment of time, we also show the
occupation numbersnk ~the lower part of each panel!, with k mea-
sured in units ofm. At t50 one hasnk50, as in the usual quantum
field theory vacuum. In the beginning of the process the occupation
numbersnk grow exponentially fork,m (k,1 in the figure!, but
then this growth spreads tok.m because of domain wall formation
and collisions of classical waves of the fieldf. Within a single
oscillation the occupation numbers fork!m grow up to ;106,
which is in complete agreement with our estimatenk;102l21, Eq.
~7!. The spectrum rapidly stabilizes, but it is not thermal yet, and
the occupation numbers remain extremely large. Thermalization
takes much more time than spontaneous symmetry breaking.
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dimensional slice of 3D space in this model in Fig. 4.
Maxima correspond to domains withf.0; minima corre-
spond to domains withf,0. The third image corresponds to
the first one-half of an oscillation, just like the third panel in
Fig. 3. As we see the universe at that moment is already
divided into domains withf;6v. The initial size of each
domain is somewhat greater thanm21. Inside each domain
the deviation fromf5uvu is much smaller thanv. This con-
firms our conclusion that spontaneous symmetry breaking
occurs within a single oscillation.

The original domain structure can change within a time
O(10m21) because of domain wall collisions and domain
expansion. Gradually, the size of each domain grows and the
domain wall structure becomes more and more stable, as we
see in the last two images of Fig. 4.

If one continues the calculation for a much longer time,
one can see much more clearly the formation and growth of
domains withf56v. In the beginning these domains are
small, but then they ‘‘eat’’ each other and grow. To illustrate
this process we performed simulations in a 2D box of size
102431024. This allowed us to perform the calculations out
to a much greater time and see domain formation on a much
greater scale; see Fig. 5. One should note that the process of

rescattering of particles produced during preheating in 2D is
somewhat different from that in 3D. However, the tachyonic
instability is the same in both cases and the process of do-
main growth is qualitatively similar.

V. COMPARISON WITH THE USUAL PERTURBATIVE
APPROACH

Before going any further, let us discuss the difference
between our methods and the usual approach based on per-
turbation theory. In the usual approach one solves a self-
consistent system of equations for the homogeneous scalar
field f and for the variancêdf2&, where^df2& is gener-
ated due to particle production by the oscillating fieldf, see
e.g. @2,3#.

In this approach one would expect that the effective mass
of the fieldf is given bymf

2 52m213l^df2&. This is the
standard approach used, in particular, in the theory of the
high temperature cosmological phase transitions@6#.

Let us see what would happen if we naively applied this
method to our problem. Our investigation shows that within
a single oscillation the variance of the scalar field grows to
^df2&'v2; see Fig. 3. A more detailed investigation shows
that soon after the beginning of the process the value of
^df2& is not much different from3

4 v2. This would seem to
imply that immediately after spontaneous symmetry break-
ing the symmetry becomes restored again, because the effec-
tive mass squared of the fieldf becomes positive:mf

2

'2m21 9
4 lv2' 5

4 m2.
However, our numerical calculations clearly demonstrate

that this is not the case. So what is wrong with the standard
perturbative approach?

The point is that in order to investigate the tachyonic in-
stability one should study the local field distribution on a
scale comparable tom21 instead of the field distribution av-
eraged over the whole universe. In our scenario the universe

FIG. 4. Tachyonic growth of quantum fluctuations and the early
stages of domain formation in the simplest theory of spontaneous
symmetry breaking withV(f)52(m2/2)f21(l/4)f4.

FIG. 5. Formation of domains in the process of symmetry break-
ing in the model~1!.
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becomes divided into different domains of size greater than
O(m21). If one wants to study the process of spontaneous
symmetry breaking, then instead of finding the average val-
ues^f& and^df2& over the whole universe one should find
the average value off inside each domain. After that, one
should calculate the variance^df2&, wheredf is the local
deviation of the fieldf from its average value inside each
domain. But even this will give only partial information
about the process. That is why in addition to finding the
probability distribution and the occupation numbers~Fig. 3!,
we have shown the spatial distribution of the fieldf ~Fig. 4!.

This need for local averaging is an important issue that
was overlooked in many recent works on preheating, as well
as in some works on the backreaction of long wavelength
inflationary quantum fluctuations on the speed of expansion
and the average energy-momentum tensor of matter. We are
not saying that the calculation of averages such as^f& and
^df2& over the whole universe is not useful. For example, it
is quite informative in the theory of high temperature phase
transitions, where the typical contribution to^df2& occurs
due to the short wavelength fluctuations with the wavelength
T21, which is much smaller thanm21 at the time of the
phase transition@6#. However, one should be extremely care-
ful using averages likêdf2& over the whole universe in
situations where a substantial contribution to^df2& is given
by fluctuations whose wavelength is greater than the typical
length scale of the problem. It does not matter how accu-
rately one calculates such averages, whether one works in the
Hartree approximation or in the 1/N approximation, as in@3#.
In the case described above we calculated^df2& very accu-
rately using our lattice simulations. This method takes into
account not only the usual backreaction effects that could be
studied in the Hartree or 1/N approximations, but also effects
of rescattering of produced particles. Still we have seen that
a naive use of our results would lead to an incorrect conclu-
sion that symmetry becomes restored immediately after it
breaks down.

If one has to use perturbation theory in situations when
the infrared contribution tôdf2& is substantial, the occupa-
tion numbers are large and the results allow a semi-classical
interpretation, one can avoid the problem discussed above if
one rearranges perturbation theory in a nontrivial way. For
example, if one studies effects on a length scalel, one may
consider all fluctuations on larger scales as a nearly homo-
geneous classical field background and ignore the contribu-
tion of these fluctuations tôdf2&. In the context of the
theory of preheating, this issue was discussed in Sec. X of
Ref. @2#. In inflationary cosmology a similar approximation
constitutes the basis of the stochastic approach to inflation
@24,25,6#. An alternative method is to use numerical simula-
tions that can bring us more detailed information about the
process. This is the method we use in our paper.

To compare our method with the more traditional pertur-
bative approach assuming initial displacement of the field
f05” 0, we performed a series of simulations for different
values of f0 exceeding the level of the long wavelength
quantum fluctuations;m/2p. For f0'1022v the results
did not differ much from the results that we obtained for
f050 in the previous section. The distribution of the fieldf

never returned back to the vicinity off50, and the process
of spontaneous symmetry breaking occurred within a single
oscillation. Note, that our calculations were performed for
l;1024, so thatf0'1022v@m/2p;1022v/2p.

For a much greater initial displacement the results were
somewhat different, but still forf0!v we have found that
the regime of homogeneous oscillations completely disap-
peared after a couple of oscillations. Consider, for example,
the casef050.1v; see Fig. 6. As one might expect, in this
case the final probability distribution is entirely concentrated
at f;1v, and one can check that no topological defects are
produced at the end of the process. But even in this case we
have found that the process completes very fast, after the
second oscillation.

This result differs from the results of investigation of the
same model in@3#, where it was claimed that the oscillations
of the homogeneous component of the field in this model
continue for a long time with the amplitude comparable tov,
even if one starts withf0!m/2p. The reason for the dis-
agreement is very simple. First of all, in the investigation of
spontaneous symmetry breaking in the theory2(m2/2)f2

1(l/4)f41(m4/4l) in @3# the initial displacement of the
field f0 was chosen two orders of magnitude smaller than

FIG. 6. The process of symmetry breaking in the model~1! for
l51024 in the case where the fieldf was initially displaced from
f50 by f051021v. As we see, in this case spontaneous symmetry
breaking takes two oscillations to occur, and the occupation num-
bers are smaller than in the case of falling fromf50.
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the level of the long wavelength quantum fluctuations with
k,m, df;m/2p. In this case SSB appears not because of
the growth of the homogeneous component of the field, but
because of the generation of fluctuations withk,m. In such
a situation investigation of the homogeneous component of
the field does not give much information about spontaneous
symmetry breaking.

Moreover, as soon as the combined amplitude of all fluc-
tuations withk,m ~i.e. A^df2&k,m) becomes comparable
to v, which happens much earlier than the homogeneous
component of the field reaches the minimum of the effective
potential, the universe becomes divided into domains with
colliding walls. At this moment the standard perturbative ap-
proach completely breaks down. It does not describe rescat-
tering of produced particles, collisions of classical waves of
the scalar field, and dynamics of topological defects. In this
regime equations describing the evolution of the homoge-
neous component of the fieldf derived in the Hartree ap-
proximation~or in the 1/N approximation! become inappli-
cable. That is why in our work we studied SSB using a
combination of analytical investigation and lattice simula-
tions.

VI. SPONTANEOUS SYMMETRY BREAKING IN THE
THEORY OF A COMPLEX FIELD

In the previous section we studied symmetry breaking in a
theory~1! describing a one-component real fieldf. One can
perform a similar investigation for the theory of a multi-
component scalar fieldf i with the potential~1!, simply re-
placing f2 with ufu2. Figure 7 illustrates the dynamics of
symmetry breaking in the model~1! with a two-component
scalar fieldf5(f11 if2)/A2. It shows the probability dis-
tribution P(f i ,t), which is the fraction of the volume con-
taining the fieldf at a timet.

In the beginning, the probability distribution is concen-
trated nearf50, with the quantum mechanical dispersion
~5!. Then the probability distribution spreads out, and after a
single oscillation it stabilizes atufu;v, which corresponds
to SSB. The standard approximation representing the scalar
field as a homogeneous background field with small fluctua-
tions does not work at any stage of the process.

A detailed investigation of the spatial distribution of the
field f shows@1# that after the first oscillation the scalar field
can be represented as a collection of classical waves oscil-
lating nearufu;v with an amplitude smaller thanv/2. Thus
SSB indeed occurs within a single oscillation of the field
distribution. A small but nonvanishing height of the histo-
gram in Fig. 7 atf50 is due to the presence of strings that
havef50 at their cores.

Figure 8 shows the occupation numbersnk of produced
particles. During the first oscillation these numbers grow up
to 107–108 for k,m (k,1 in the figure!. Then the occupa-
tion numbers atk,m slightly decrease, whereas the occupa-
tion numbers atk.m begin to grow. Complete thermaliza-
tion takes a very long time.

In the model of a complex scalar field, instead of domain
walls one has strings that are produced when the field falls
down; see Fig. 9. The whole process of string formation
occurs within a single oscillation. After that the new long
strings are not formed. Sometimes small string loops appear
and disappear because of occasional large fluctuations of the
scalar field. If symmetry were broken and then restored again
when the field distribution moves back tof50, we would
see strings being ‘‘melted,’’ and then a completely new set of
strings would appear. Meanwhile, our simulations show that
the large scale string distribution is formed as the fieldf first
rolls down to the minimum of the effective potential. During
the subsequent oscillations the strings formed in the begin-
ning of the process do not disappear and are not replaced by
new ones; instead they experience only gradual evolution.
This confirms our conclusion that symmetry breaking is
achieved within a single oscillation.

Just as in the case of the one-component scalar field, per-
turbative methods of investigation of this theory cannot de-

FIG. 7. The process of symmetry breaking in the model~1! for
a complex fieldf5(1/A2)(f11 if2). The field distribution falls
down to the minimum of the effective potential atufu5v and ex-
periences only small oscillations with rapidly decreasing amplitude
uDfu!v.

FIG. 8. Occupation numbersnk of particles produced during
tachyonic preheating in the model of a complex scalar fieldf with
effective potentialV52m2f* f1l(f* f)2 with l51024. In the
beginning~lower curves!, nk grows fork&m (k&1 in this figure!,
but then eventually this growth spreads to largerk.
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scribe the formation of topological defects and scattering of
classical waves produced by the tachyonic instability. There-
fore such methods break down within the first oscillation of
the field distribution.

VII. QUARTIC POTENTIAL

The process of SSB will occur in a somewhat different
way in theories where the curvature of the effective potential
near its maximum depends onf. For example, one may
consider the Coleman-Weinberg model, which was the basis
for the first version of the new inflation scenario@26#:

V5
l

4 S f4log
f2

v2 2
f4

2
1

v4

2 D . ~18!

This potential has a maximum atf50 and a minimum at
f5v. At small f the effective potential looks like
2lf4/4 with an effective coupling constantl(f)
5l log(v2/f2).

Another interesting example is the toy model

V52
l

4
f41

af6

6
1

v4

12
. ~19!

An important feature of such potentials is that the tachy-
onic massm2(f)5V9(f) vanishes atf50. Therefore the
simple arguments based on the tachyonic growth of small
quantum fluctuations do not apply here. The decay of the
symmetric phase in such models occurs via tunneling and the
formation of bubbles. Historically, this was the first example
of a theory where tunneling occurs between two states (f

50 and f5” 0) even though there is no barrier separating
these states@18#; see also@19#.

To study symmetry breaking in these models one should
first consider the growth of the fieldf in the model

V52
l

4
f4, ~20!

and then see what happens when one adds extra terms that
stabilize the potential.

The tunneling trajectories~instantons! with minimal ac-
tion possess theO(4) symmetry of Euclidean space@27#.
The Euclidean equation forO(4) symmetric tunneling is

f913f8r 215V8~f! ~21!

with the boundary conditionsf(r 5`)5v and f8(0)50.
Heref8(r )5df/dr, r 5Axi

2; thexi are the Euclidean coor-
dinates,i 51,2,3,4.

Equation~21! in the theory~20! has a family of solutions
@28,18#

f~r !52A2

lS r

r 21r2D , ~22!

wherer is arbitrary. Note that the value of the scalar field in
the center of the bubble depends onr:

f~0!52A 2

Alr
. ~23!

The corresponding Euclidean action does not depend onr,

SE52p2E r 3S 1

2
~f8!21V~f! Ddr5

8p2

3l
. ~24!

The probability of bubble formation per unit four-volume
can be estimated by the expression

P;r24expS 2
8p2

3l D;l2f4~0!expS 2
8p2

3l D . ~25!

The probability of tunneling in the Coleman-Weinberg
theory~18! can be estimated by this equation if instead ofl
one uses the effective coupling constantl log(v2/f2). Tun-
neling is not strongly suppressed atl log(v2/f2);1. This
means that tunneling occurs to a point with exponentially
small f: f;ve2C/l, with C5O(1).

On the other hand, in the model~19! the effective cou-
pling constantl and the factor exp(28p2/3l) suppressing
the tunneling do not depend onf, whereas the subexponen-
tial factor in the expression for the tunneling probability~25!
is greater for largef. Thus in this model tunneling may
occur to relatively largef.

The bubbles that appear after the tunneling are described
by Eq. ~22! if one understands byr 2 its Minkowski counter-
part r22t2:

f~r !52A2

lS r

r 22t21r2D . ~26!

FIG. 9. Strings produced after one half of an oscillation in the
model ~1! for a complex fieldf.

TACHYONIC INSTABILITY AND DYNAMICS O F . . . PHYSICAL REVIEW D 64 123517

123517-11



Such bubbles have symmetryO(3,1). When the bubble ap-
pears~at t50), the field takes its maximal valuef0 at the
center of the bubble,f052/rA2/l. Then it grows, and be-
comes infinitely large att5r52/f0A2/l52A6/mf(f0).
Heremf

2 (f)5V9(f)53lf2.
Of course, in realistic models like Eqs.~18! and ~19! the

field does not grow indefinitely large. It reaches the mini-
mum of the effective potential atf56v and then it begins
oscillating there. Meanwhile quantum fluctuations may grow
on top of the smooth instanton solution. The investigation of
these oscillations and bubble wall collisions is a complicated
problem that can be studied numerically. Fortunately, the be-
havior of the oscillating field prior to the bubble wall colli-
sions and neglecting quantum fluctuations can be studied
analytically by making a certain change of variables.

Indeed, it is known that in properly chosen coordinates
the interior of each bubble looks like an open universe filled
by a homogeneousscalar fieldf @29#. One can show that
during the main part of the first oscillation of the field the
radius of curvature~scale factor! of this open universe is
O(r), which leads to expansion of the open universe with
Hubble constantH;r21;mf(f0).2 This introduces the
damping term 3Hḟ to the equation of motion of the scalar
field, which gradually diminishes the amplitude of its oscil-
lations. Suppose that the tunneling occurs tof0!v, as in the
Coleman-Weinberg model. Then during the main part of the
first oscillation the effective mass of the fieldf remains
much greater thanH;mf(f0), so in the limitf0 /v→0 one
can neglect the effect of expansion of the open universe on
the amplitude of the oscillations. Later on, the Hubble con-
stant in the open universe bubble becomes even smaller and
its damping effect on the oscillations becomes even less sig-
nificant. As a result, the amplitude of oscillations of a homo-
geneous scalar field for a long time remains almost un-
changed.

From the point of view of an outside observer using the
usual coordinatesx and t this means that the fieldf in the
center of the bubble oscillates for a long time with amplitude
O(v), sending spherical waves of the same amplitude in all
directions. The amplitude of each wave is a function ofx2

2t2, which means that they propagate with a speed asymp-
totically approaching the speed of light and their amplitude
does not depend on their distance from the center of the
bubble.3

Thus instead of the naive picture of a bubble consisting of
a single spherically symmetric shell~which would be a cor-
rect picture in the thin-wall approximation!, one has a series
of waves of almost equal amplitude following each other; see
Fig. 10. Reheating in this model occurs due to a combination
of different effects. First of all, particles are produced during
the collision of waves produced by different tunneling
events. But they are also produced due to the tachyonic in-
stability, as well as by the oscillations of the scalar field
inside each bubble.

We should make some comments here. First of all, if the
tunneling occurs to very small values off, quantum fluctua-
tions produced due to tachyonic instability inside theO(3,1)
symmetric bubble may completely distort the shape of the
bubble during the field oscillations. Within few oscillations,
tachyonic preheating creates colliding waves inside the
bubble; see Fig. 11.

Note that each tunneling event produces an exponentially
large sphere filled either by a positive fieldf oscillating
aroundf5v with a slowly decreasing amplitude, or by a
negative fieldf, oscillating aroundf52v. In both cases
SSB occurs within a single oscillation within each bubble,
and then finally the fieldf relaxes near6v due to a com-
bined effect of the amplitude decrease because of the bubble
expansion, and the development of tachyonic preheating, as
in Fig. 11.

Finally, we should say that if the tunneling occurs to ex-
tremely small values off, or if it does not occur for a long
time, one may obtain an inflationary regime@26#. Tachyonic

2In this paper we are neglecting the overall expansion of the uni-
verse caused by the energy density of the scalar field. This effect
will be considered in a separate publication. Here we consider ‘‘ex-
pansion’’ as it is seen inside the bubble in the coordinate system in
which the interior of the bubble looks like a homogeneous open
universe. This is not a physical expansion but a consequence of the
choice of the coordinate system in flat space where it is more con-
venient to study the bubble motion.

3One could speculate about the possibility of sending a signal to
aliens using such waves with an amplitude that does not decrease
with the distance. The problem is that these waves are only possible
as a result of vacuum decay, which first kills those who send the
signal and then those who receive it.

FIG. 10. Field values on a partial 2D slice through the lattice in
the modelV5l/4@f4log(f2/v2)2(f4/2)1(v4/2)#. The process of
symmetry breaking occurs due to tunneling and bubble formation.
After the tunneling, the bubble grows, and the field inside it begins
to oscillate. If the tunneling occurs fromf50 to f0!v, the am-
plitude of oscillations remains large for a long time, and instead of
the usual picture of a single bubble wall propagating in all direc-
tions one has a series of propagating waves with amplitude compa-
rable tov. The figure shows a half of such bubble, which appears
after the tunneling tof05.02v. Cutting the bubble in half allows us
to see that the amplitude of oscillations decreases rather slowly, just
as we expected. Because the bubbles in this model take an expo-
nentially long time to form, in our simulations we did not start at
f50 and wait for one to appear, but rather started using the ana-
lytic form of the instanton as our initial conditions.

GARY FELDER, LEV KOFMAN, AND ANDREI LINDE PHYSICAL REVIEW D 64 123517

123517-12



preheating in this regime will be discussed in a subsequent
publication@8#.

VIII. CUBIC POTENTIAL AND STOCHASTIC APPROACH
TO TUNNELING

Another important example of tachyonic preheating is
provided by the theory

V52
l

3
vf31

l

4
f41

l

12
v4. ~27!

This potential is a prototype of the potential that appears in
descriptions of symmetry breaking in F-term hybrid inflation
@30,31#.

The development of instability in this theory presents us
with a new challenge. The curvature of the effective potential
at f50 in this theory vanishes, which means that, unlike in
the theory2m2f2 ~1!, infinitesimally small perturbations in
this theory do not grow. On the other hand, unlike in the
theory2lf4 ~20!, there are no instantons in this theory that
would describe tunneling fromf50. Thus, in the theory
2lvf3, which occupies an intermediate position between
2m2f2 and2lf4, both mechanisms that could lead to the
development of instability do not work. Does this mean that
the statef50 in this theory is, in fact, stable?

The answer to this question is no; the statef50 in the
theory2lvf3 is unstable. Indeed, even though^f& initially
is zero, long wavelength fluctuations of the fieldf are
present, and they may play the same role as the homoge-
neous fieldf in triggering the instability.

Equation~5! implies that scalar field fluctuations with mo-
mentak&k0 have initial amplitudêdf2&;k0

2/8p2. Thus the
short wavelength fluctuations with momentak.k0 live on
top of a long wavelength field with an average amplitude
df rms(k0);A^df2&;k0/2A2p.

The curvature of the effective potentialV95umeff
2 u at f

;df rms(k0) in the theory ~27! is given by
22lvdf rms(k0);2lv(k0 /A2p). Consider fluctuations
with momentumk somewhat greater thank0, so that the
amplitude of the long wavelength fielddf does not change
significantly on a scalek21. Short wavelength fluctuations
with k5Ck0 with C somewhat greater than 1 will grow on
top of the fieldf;df rms(k0) if k2&umeff

2 u;lvk0 /A2p.
Taking for definitenessC*A2, one may argue that fluc-

tuations withk&lv/2p may enter a self-sustained regime of
tachyonic growth. Small fluctuations rapidly grow large,
which justifies using semi-classical methods for the descrip-
tion of this process. The average initial amplitude of the
growing tachyonic fluctuations with momenta smaller than
lv/2p is

df rms;
lv
4p2 . ~28!

These fluctuations grow until the amplitude ofdf becomes
comparable to 2v/3, and the effective tachyonic mass van-
ishes. At that moment the field can be represented as a col-
lection of waves with dispersionA^df2&;v, corresponding
to coherent states of scalar particles with occupation numbers
nk;(4p2/l)2@1.

A more accurate investigation shows that the initial value
of the field is a few times greater thandf rms;lv/4p2 ~see
below!, and therefore the occupation numbers will be some-
what smaller,

nk;O~10!l22. ~29!

Because of the nonlinear dependence of the tachyonic
mass onf, a detailed description of this process is more
involved than in the theory~1!. Indeed, even though the typi-
cal amplitude of the growing fluctuations is given by Eq.
~28!, the speed of the growth of the fluctuations increases
considerably if the initial amplitude is somewhat bigger than
Eq. ~28!. Thus even though fluctuations with an amplitude a
few times greater than Eq.~28! are exponentially suppressed,
they grow faster and may therefore have a greater impact on
the process than fluctuations with amplitude~28!.

Low probability fluctuations withdf@df rms correspond
to peaks of the initial Gaussian distribution of the fluctua-
tions of the fieldf. The theory of the 3D random Gaussian
fields is well developed@32#. Its statistical properties are de-
termined by the spectrumudfku2. One of the most interesting
features of the Gaussian field is statistics and the shapes of
the high peaks of the field distribution. Such peaks tend to be
spherically symmetric. As a result, the whole process looks
not like a uniform growth of all modes, but more like bubble
production ~even though there are no instantons in this
model!. A simple physical interpretation of the inhomoge-
neous fragmentation of the fieldf is based on the fact that
the interaction2lvf3 corresponds to attraction between the
fluctuation modes. As a result, the seed inhomogeneities~the
peaks of the initial random distribution! will be amplified
due to the nonlinear interaction of the fluctuations. A well

FIG. 11. The process of symmetry breaking in the modelV
5l/4@f4log(f2/v2)2(f4/2)1(v4/2)# taking into account quantum
fluctuations in the instanton background forl;1024. As we see,
quantum fluctuations lead to a growing asymmetry and decoherence
of the oscillations due to the tachyonic preheating inside the bubble.
Thus preheating in this model occurs due to a combined effect of
bubble wall collision and tachyonic preheating. The latter mecha-
nism is especially efficient if the tunneling occurs tof0!v.
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known example of this type of instability is gravitational
instability of matter in the universe.

To study the growth of fluctuations in a more detailed
way, one may use the stochastic approach to tunneling and
bubble formation developed in@20#. The main idea of this
approach can be explained as follows. Tunneling can be rep-
resented as a result of the accumulation of quantum fluctua-
tions whose amplitude greatly exceeds their usual value de-
termined by the uncertainty principle. This happens when the
long wavelength quantum fluctuations responsible for the
tunneling correspond to bosonic excitations with large occu-
pation numbers. In such cases one can treat these fluctuations
as classical fields experiencing Brownian motion due to their
interaction with the short wavelength quantum fluctuations.

Suppose that the large fluctuations of the scalar field re-
sponsible for reheating in the model~27! initially look like
spherically symmetric bubbles~which is the case if the prob-
ability of such fluctuations is strongly suppressed, see
above!. The equation of motion for a bubble of a scalar field
f(r ) in Minkowski space is

f̈5f912f8r 212V8~f!. ~30!

Here r is a distance from the center of the bubble andf8
5]f/]r . At the moment of its formation, the bubble wall
does not move,ḟ50, f̈50 ~critical bubble!. Then it gradu-
ally starts growing,f̈.0, which requires that

uf912f8r 21u,2V8~f!. ~31!

A bubble of a classical field is formed only if it contains a
sufficiently large fieldf, and if the bubble itself is suffi-
ciently large. If the size of the bubble is too small, the gra-
dient terms are greater than the termuV8(f)u, and the fieldf
inside the bubble does not grow.

At small r the shape of the bubble can be approximated
by f5f(0)2ar 2/2. In this approximation, the bubble has a
typical size r 0;A2f(0)/a, and f8r 215f952a. There-
fore at the moment of the bubble formation, whenf̈50, one
has

f95V8„f~0!…/3. ~32!

Replacingf9 by k0
2f(0) one finds that the bubble can be

considered a result of overlapping of quantum fluctuations
with typical momentak&k0;r 0

21, where

k0
25C2

V8„f~0!…

3f~0!
. ~33!

Here C5O(1) is some numerical factor reflecting uncer-
tainty in our estimate ofk0.

Let us estimate the probability of an event when vacuum
fluctuations occasionally build up a configuration of the field
satisfying this condition. In order to do it one should remem-
ber that the dispersion of quantum fluctuations of the fieldf
with k,k0 is given by^df2&;k0

2/8p2. This gives

^df2&k,k0
;k0

2/8p25C2
V8„f~0!…

24p2f~0!
. ~34!

This is an estimate of the dispersion of perturbations that
may sum up to produce a bubble of the fieldf that satisfies
the condition~31!. Of course, this estimate is rather crude.
But let us nevertheless use Eq.~34! to evaluate the probabil-
ity that these fluctuations build up a bubble of a radiusr
*k0

21 containing the fieldf at its center. Assuming, in the
first approximation, that the probability distribution is Gauss-
ian, one finds:

P~f!;expS 2
f2

2^df2&k,k0

D 5expS 2
12p2f3

C2V8~f!
D .

~35!

Let us first apply this result to the theory2lf4/4. In this
case one finds

P~f!;expS 2
12p2

C2l D . ~36!

Note that the factor in the exponent in Eq.~36! to within a
factor ofC'2 coincides with the Euclidean actionSE in Eq.
~24!. Taking into account the very rough method we used to
estimatek0 and calculate the dispersion of the perturbations
responsible for tunneling, the coincidence is rather impres-
sive. It was shown in@24,20# that this approach gives exactly
the same answer as the Euclidean approach for the case of
tunneling during inflation whenV9!H2.

Most importantly, this method allows us to investigate
tunneling and the development of instability in the theories
where instanton solutions do not exist@20#. In particular, for
tunneling in the theory2lvf3/3 one finds

P~f!;~lvf!2expS 2
12p2f

C2lv D . ~37!

We included here the subexponential factorO(k0
4)

;(lvf)2, which is necessary to describe the probability of
tunneling per unit time per unit volume.

This means that tunneling is not suppressed forf
;C2lv/12p2. This result is in agreement with our previous
estimate~28!. Now let us take into account that the total time
of the development of instability is a sum of the time of
tunneling plus the time necessary for rolling of the field
down. One can show that the time of rolling down is in-
versely proportional tom(f);Alvf, i.e. it decreases at
large f. Also, the subexponential factor (lvf)2 grows at
large f, which makes tunneling to largef faster. Conse-
quently, as we already discussed above, the main contribu-
tion to the development of instability is given by the fluctua-
tions with f*C2lv/12p2. Exponential suppression of the
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probability of such fluctuations leads to their approximate
spherical symmetry.

The results of our lattice simulations for this model are
shown in Fig. 12. In this model bubbles form quickly enough
~unlike in the model2lf4), so we were able to start with
quantum fluctuations centered at^f&50 and allow the
bubbles to form. The bubbles~high peaks of the field distri-
bution! grow, change shape, and interact with each other,
rapidly dissipating the vacuum energyV(0).

Figure 13 shows the probability distributionP(f,t) in the
model ~27!. As we see, in this model the field distribution
also rapidly relaxes near the minimum of the effective poten-
tial within a single oscillation. In this case the histogram in
the beginning looks pretty chaotic because of bubble forma-
tion and bubble wall collisions, which we could see in the
previous figure.

One should note that the numerical investigation of this
model involved specific complications due to the necessity
of performing renormalization. Lattice simulations involve

the study of modes with large momenta that are limited by
the inverse lattice spacing. These modes give an additional
contribution to the effective parameters of the model. In the
limit of zero lattice spacing these corrections would become
infinite, but they are regularized by the lattice cutoff. In our
simulations of the simple model~1! these corrections gave a
contribution to the effective mass of the fieldf that was
much smaller thanm and therefore did not affect our results.
Meanwhile, in the cubic model similar corrections induce a
~fictitious! linear termlvf^f2&. This term should be sub-
tracted by the proper renormalization procedure, which
brings the effective potential back to its form~27!. See the
Appendix for more details. This was the first time in our
simulations when a careful treatment of high frequency
modes was necessary. A similar situation may occur in any
theory whereV9(0)50, such as the theory2lf4 discussed
in the previous section.

Figure 14 shows the occupation numbers of produced par-
ticles in the model~27! with l51022. These occupation

FIG. 12. Field values on a 2D
slice through the lattice forV5
2(l/3)vf31(l/4)f4 ~27!. The
growth of quantum fluctuations of
f looks like bubble formation.
Remarkably, the bubbles expand
and collide even before the aver-
age field value reaches the mini-
mum. Preheating occurs due to a
combined effect of bubble produc-
tion, tachyonic instability and
bubble wall collisions. This figure
should be compared with Fig. 4
for the theory V52(m2/2)f2

1(l/4)f4 ~1!.
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numbers grow up to 104–105 within a single oscillation,
which is in good agreement with our estimate~29!.

IX. CONCLUSIONS

In this paper we studied the dynamics of spontaneous
symmetry breaking, which occurs when a scalar field falls
down from the top of its effective potential. We have found,
in agreement with@1#, that the main part of this process
typically completes within a single oscillation of the distri-
bution of the scalar field. This is a very unexpected conclu-
sion that may have important cosmological implications.

One of the most efficient mechanisms for the creation of
matter after inflation in theories with convex effective poten-
tials @V9(f).0# is the mechanism of parametric amplifica-
tion of vacuum fluctuations in the process of homogeneous
oscillations of the inflaton field, which was called preheating

@2#. It has also been noted that in the case where potentials
become concave@V9(f),0#, preheating may become more
efficient @33#. Now we see that this effect is very generic. In
many theories with concave potentials the energy of an un-
stable vacuum state is transferred to the energy of inhomo-
geneous classical waves of scalar fields within a single os-
cillation of the field distribution. We emphasize here that we
are talking about the oscillations of the field distribution
rather than about the oscillations of a homogeneous fieldf
because quite often the homogeneous component^f& of the
field f remains zero during the process of spontaneous sym-
metry breaking.

One of the important consequences of our results is the
observation@1# ~see also@35#! that in many models of hybrid
inflation @34# the first stage of reheating occurs not due to
homogeneous oscillations of the scalar field but due to tachy-
onic preheating@1#. A detailed discussion of this effect will
be contained in@9#.

The process of preheating and symmetry breaking may
take an especially unusual form in the theory of brane infla-
tion @36–38# based on the hybrid inflation scenario and the
mechanism of tachyon condensation on the brane antibrane
system@39#.

The situation in models of the type used in the new infla-
tion scenario is somewhat more complicated. In these models
the potential is also concave. However, the expansion of the
universe stretches inhomogeneities of the field rolling down
from the top of the effective potential and makes it homoge-
neous on an exponentially large scale. Therefore to evaluate
a possible significance of tachyonic instability in this regime
one must compare the amplitude of the homogeneous com-
ponent of the field with the amplitude of the quantum fluc-
tuations. The result appears to be very sensitive to the scale
of spontaneous symmetry breaking in such models. A pre-
liminary investigation of this issue indicates that in small-
field models where the scale of spontaneous symmetry
breaking is much smaller thanM p , the leading mechanism
of preheating typically is tachyonic. If correct, this would be
a very interesting conclusion indicating that in large-field
models the leading mechanism of preheating typically is re-
lated to parametric resonance, whereas in small-field models
the main mechanism of preheating is typically tachyonic, at
least at the first stages of the process. We will return to the
discussion of this issue in a coming publication@8#.

Finally we should mention that an interesting application
of our methods can be found in the recently proposed ekpy-
rotic and pyrotechnic scenario@40,41#. Even though we are
very skeptical with respect to the ekpyrotic/pyrotechnic sce-
nario for many reasons explained in@41#, it is still interesting
that the methods developed in the theory of tachyonic pre-
heating provide us with a very simple theory of the genera-
tion of density perturbations in these models@41#.
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APPENDIX A: THE LATTICE CALCULATIONS

1. Overview

The lattice calculations reported on in this article were all
done using the programLATTICEEASY, developed by Gary
Felder and Igor Tkachev. The program records the value of
the fields and derivatives at each point on a spatial grid with
evenly spaced points. The fields are then evolved using their
classical equations of motion

f̈2¹xW
2
f1V850. ~A1!

The use of the classical equations is justified because the
instability discussed rapidly drives the fields to a state with
exponentially large occupation numbers, meaning they effec-
tively act as classical fields@10#. Although LATTICEEASY is
designed to~optionally! include the effects of cosmological
expansion on field evolution, all of the simulations reported
here were done in a flat spacetime background. The effects of
expansion will be discussed in subsequent publications
@8,9#.

Time evolution is done with a staggered leapfrog algo-
rithm using a fixed time step. The initial conditions for the
fields and derivatives are set in momentum space and then
Fourier transformed to give the initial spatial distribution.
The initial values of the modes are given by quantum fluc-
tuations. Each mode has a random phase and a Gaussian
random amplitude with expectation value

^ufku2&5
1

2k
. ~A2!

The exception to this is the Coleman-Weinberg potential for
which the initial conditions were set by the instanton con-
figuration described in the text. Note that ordinarily the equa-
tions for quantum fluctuations would haveAk21m2 in the
place ofk in the formula above. For the models discussed
here, however, we were simulating a quench in which the
effective squared mass of the fields is presumed to have rap-
idly become negative. Thus we used initial conditions corre-
sponding to massless fluctuations. For some of the runs here
we imposed a momentum cutoff, settingfk50 for all modes
above a certain momentumk. Such cutoffs eliminated un-
physical effects from quantum fluctuations that were not ex-
cited to large values. In each such case we also ran without
the cutoff and found the results to be qualitatively similar
except for the addition of high frequency noise in the field
distribution.

The plots shown in this paper show either field values
~which are self-explanatory!, probability distribution func-
tions ~PDF!, or occupation number spectra. The PDF of a
field is obtained by dividing the field values on the grid into
evenly spaced bins and simply counting the number of grid
points in which the field value was in each bin. The occupa-
tion number is defined by Fourier transforming the field and
computing for each mode by Eq.~6!, where m2[V9, vk

[Ak21m2 for m2.0. For m2,0 one can use eithervk

[uku or vk[Ak21um2u. All plots shown in this paper except
Fig. 1 and Fig. 2 usevk5uku when m2,0 but the results
were qualitatively similar using either definition. The occu-
pation numbernk is given by averaging over a spherical shell
in Fourier space. This definition coincides with the standard
one in the end of the process, where the mass squared be-
comes positive and topological defects disappear.

The full details of these lattice calculations can be found
in the documentation available on theLATTICEEASY website
at http://physics.stanford.edu/latticeeasy. Moreover, these
calculations have been discussed in previous publications of
ours ~e.g. @10,11#!. This is our first publication where we
discuss simulations that used renormalization, however, so
we will discuss this procedure in the next section. The last
section of the Appendix lists the parameters used for each of
the runs illustrated in the paper.

2. Renormalization

As we have discussed, the justification for doing a classi-
cal calculation for quantum fields is that once the field fluc-
tuations are amplified sufficiently quantum effects are negli-
gible. There are some cases, however, when these quantum
effects may be important, and in such cases they may be
~partially! accounted for through a simple form of renormal-
ization.

Consider how this applies to the lattice calculations dis-
cussed here. Initially the field fluctuations are only those rep-
resenting quantum vacuum states. These fluctuations affect
couplings, masses, and the total energy of the system in a
way that is dependent on the lattice spacing. For example,
consider the theory

V5
1

4
lf42

1

3
lvf31

1

12
lv4 ~A3!

and rewrite the fieldf(x,t) as the sum of a homogeneous
componentf(t) and fluctuationsdf. The effective potential
felt by the homogeneous fieldf will receive a correction
~among others! from the fluctuations equal to

dV'2lv^df2&f. ~A4!

~The 1/3 is canceled by a coefficient arising from combina-
torics.! This correction represents an unphysical effect in the
sense that its strength depends on the ultraviolet cutoff im-
posed by the lattice. In the limit of zero lattice spacing where
arbitrarily large momenta would be included on the lattice
this correction would become infinite. This would add an
unphysical termCf to the effective potential. This effect can
be eliminated, however, by adding a counterterm

DV5lv^df2&f ~A5!

or equivalently by adding the term

lv^df2& ~A6!

to the equation of motion forf. Note that̂ df2& in this case
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refers to the value that arises from initial quantum fluctua-
tions, not to a dynamic quantity that changes as the field
evolves and fluctuations grow. Such changes represent physi-
cal effects and should not be eliminated. In effect this cor-
rection eliminates the linear term in the potential atf50
when the field is in the vacuum state.

The above example illustrates how a simple form of
renormalization can be implemented on the lattice. This pro-
cedure could in principle be used to renormalize any mass,
coupling constant, or energy term in the theory. Ordinarily
these corrections are not important~unless one uses a very
large value of the momentum cutoff! because the quantum
effects are quickly swamped as the fluctuations become am-
plified. We did not find it necessary to use renormalization
for any models except the cubic one, where we used it as

described here to prevent the field from artificially rolling
away fromf50 due to the induced linear term.

3. List of parameters

In this section we list the parameters used for the lattice
simulations from which all of the figures in the paper were
drawn. The models discussed in the paper will be referred to
here simply as Quadratic@model ~1!#, Complex ~model 1
with f2 replaced byufu2), Quartic@model ~18!#, and Cubic
@model ~27!#. The parametersN, L, dt, andkcut refer to the
number of grid points, the width of the box, the time step,
and the initial momentum cutoff respectively. Lengths and
times are measured in units ofAlv. The coupling constantl
is also given for each run, as well as any information specific
to the particular plot. All runs are assumed to be three di-
mensional unless otherwise indicated.
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