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SPRINGER FIBERS AND SCHUBERT POINTS

MARTHA PRECUP AND JULIANNA TYMOCZKO

Abstract. Springer fibers are subvarieties of the flag variety parametrized by partitions; they

are central objects of study in geometric representation theory. Schubert varieties are subvarieties

of the flag variety that induce a well-known basis for the cohomology of the flag variety. This

paper relates these two varieties combinatorially. We prove that the Betti numbers of the Springer

fiber associated to a partition with at most three rows or two columns are equal to the Betti

numbers of a specific union of Schubert varieties.

1. Introduction

This paper proves an explicit combinatorial topological relationship between two families of

varieties: certain Springer fibers and certain Schubert varieties. Both are subvarieties of the flag

variety B, whose elements in Lie type A can be described as the collection of nested subspaces

V• = ({0} ⊆ V1 ⊆ · · · ⊆ Vn = V ) where each Vi is an i-dimensional subspace of a fixed complex

n-dimensional vector space V . The flag variety can also be written as the quotient B = GLn(C)/B

where B is the subgroup of upper-triangular matrices.

Springer fibers are the fibers of a particular desingularization of the nilpotent cone inside the

space of n × n matrices. Explicitly, if X is a nilpotent n × n matrix then the flag V• is in the

Springer fiber BX if and only if X(Vi) ⊆ Vi for all i = 1, ..., n. In other words BX consists of all

flags that are stable under the operator X. The cohomology of each Springer fiber carries a natural

action of the symmetric group that is one of the seminal constructions of geometric representation

theory. Let λ be the partition of n determined by the Jordan blocks of X. Springer showed that

the top-dimensional cohomology of BX is the irreducible representation of Sn corresponding to λ

[Sp, Sp2] and in fact every irreducible representation of Sn can be obtained this way.

Schubert varieties are subvarieties of the flag variety parametrized by permutations that induce

an important basis for the cohomology of the flag variety. Their geometry is intrinsically connected

to the combinatorics of the symmetric group [F, BL]. To start, permutations index the double-

coset decomposition B =
⊔
BwB/B. Each double coset is an affine cell Cw = BwB/B in the

flag variety that contains the permutation flag wB and is called a Schubert cell. The closure

relations between Schubert cells are determined by the Bruhat order on Sn and the dimension of

the Schubert variety Cw is given by the number of inversions of w. Moreover the cohomology classes

of Schubert varieties are given by the Schubert polynomials [BGG], which are important objects in

algebraic combinatorics and representation theory. The study of Schubert varieties and polynomials

fundamentally relates results in geometry, combinatorics, Lie theory, and representation theory;

see [BP, CK, K] for just a few examples.

The geometry of Springer fibers is much more complicated than Schubert varieties and little is

known in general. Springer fibers are pure dimensional [S] and there are combinatorial formulas

for their Betti numbers [Fr, T]. Because of the challenges of studying BX the rest of the literature

focuses on special cases, especially when the partition λ has two rows, two columns, or is a hook

[DH, Fu, Fr2, FM2]. Other work has analyzed the irreducible components of BX that are known

to be smooth [GZ]. However even in these special cases, Springer fibers are not fully understood.
1

ar
X

iv
:1

70
1.

03
50

2v
2 

 [
m

at
h.

C
O

] 
 1

0 
O

ct
 2

01
8



2 MARTHA PRECUP AND JULIANNA TYMOCZKO

For example, there is no general characterization for the closures of the cells paving BX even when

λ has two columns.

In this paper we show that if the partition λ has at most three rows or two columns then the

Betti numbers of BX coincide with the Betti numbers of a particular union of Schubert varieties.

We make this correspondence explicit using row-strict tableaux. The second author showed that

the Betti numbers of Springer fibers are enumerated by row-strict Young tableaux of shape λ and

gave a combinatorial rule to compute the Betti number corresponding to a given tableau T in [T].

The number computed from T by this combinatorial rule is called the dimension of T . Using work

of Garsia-Procesi and Mbirika [GP, M], we identify a unique permutation wT ∈ Sn associated to

each row-strict tableau T with the property that the length `(wT ) is the dimension of T . These

permutations are called Schubert points.

Our main result is that the Betti numbers of the Springer fibers are the same as the Betti

numbers of the union of Schubert varieties corresponding to Schubert points.

Theorem 1. Let X ∈ gln(C) be a nilpotent matrix with Jordan form corresponding to a partition

λ with at most three rows or two columns. There is an equality of Poincaré polynomials

P (BX , t) = P
(
∪wB∈BXCwT

, t
)

where T denotes the row-strict tableau associated to wB ∈ BX and wT ∈ Sn is the corresponding

Schubert point. The union simplifies as⋃
wB∈BX

CwT
=

⋃
T∈St(λ)

CwT

where St(λ) denotes the set of standard tableaux of shape λ.

This theorem proves a conjecture that arises out of work by Harada and the second author

[HT]. That paper proved that the Betti numbers of the Peterson variety are the same as the Betti

numbers of the Schubert variety corresponding to a specific permutation, which suggests a similar

result for a larger family of varieties called nilpotent Hessenberg varieties. This was confirmed

for regular nilpotent Hessenberg varieties in Lie type A by Mbirika (who described their Betti

numbers [M]) and Reiner (who noted that these Betti numbers agree with the Betti numbers of a

kind of Schubert variety called a Ding variety [D, DMR]). Springer fibers are another special case

of nilpotent Hessenberg varieties, so our theorem naturally extends these results.

The second part of Theorem 1 also recovers one of the key conclusions of Springer theory:

that the top-dimensional components of BX are indexed by standard tableaux, implied both by

Springer’s original work and geometrically by later work of Spaltenstein [S] and others.

In fact our main result is stronger: it is a bijection on all Betti numbers, not just the top-

dimensional ones. While this paper does not stress the geometric context, this is a dimension-

preserving bijection between the Schubert cells in the union
⋃
T∈St(λ) CwT

and a set of affine cells

Cw ∩ BX that partition the Springer variety.

This bijection is particularly simple for the standard tableaux, or top-dimensional case. To each

standard tableau T of shape λ we associate the following Schubert point wT . If i occurs in the kth

row of T set

wi−1 :=

{
si−k+1 · · · si−2si−1 if k > 1

e if k = 1

where si denotes the simple transposition (i, i+ 1). Then wT = wn−1wn−2 · · ·w2w1 is the product

of these strings. (Definition 3.2 describes Schubert points for general row-strict tableaux.)

Example 2. Consider the partition λ = (2, 2, 1) of 5. Below we list all standard tableaux of this

shape and the corresponding Schubert points.
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1 2
3 4
5

1 2
3 5
4

1 3
2 4
5

1 3
2 5
4

1 4
2 5
3

T ∈ St(2, 2, 1)

wT ∈ S5 s3s4s3s2 s4s2s3s2 s3s4s3s1 s4s2s3s1 s4s1s2s1

By Theorem 1, if X has Jordan blocks of dimensions (2, 2, 1) then the Betti numbers of the Springer

fiber BX are equal to those of the union Cs3s4s3s2 ∪ Cs4s2s3s2 ∪ Cs3s4s3s1 ∪ Cs4s2s3s1 ∪ Cs4s1s2s1 .

Our results also strengthen related work of Garsia-Procesi [GP]. Garsia and Procesi defined a

monomial basis for the cohomology ring of each Springer fiber BX that Mbirika later bijectively

associated to the row-strict tableaux of shape λ. In Mbirika’s bijection, the degree of each monomial

corresponds to the dimension of the corresponding tableau [M]. (Mbirika’s work also provides a

readable summary of Garsia-Procesi’s algorithm that uses the notation of this paper.) Schubert

points are related to Garsia-Procesi’s monomials by the rule

n∏
i=2

x
`i−1

i ←→ wT : `(wi−1) = `i−1.

For instance, the monomials in the previous example are x25x4x3, x5x
2
4x3, x

2
5x4x2, x5x

2
4x2, and

x5x
2
3x2. Garsia and Procesi proved that these monomials are closed under the partial order of

division: if xβ is a monomial corresponding to a row-strict tableau and xα|xβ then xα corresponds

to a row-strict tableau, too. Similarly, we prove that if wT is the Schubert point corresponding to

a row-strict tableau and w′ ≤ wT in Bruhat order then w′ is also the Schubert point corresponding

to a row-strict tableau. What makes our result more powerful is that Bruhat order is stronger

than the monomial order. For instance x3 6 |x5x24x2 but s2 < s4s2s3s1 in Bruhat order. Indeed,

the monomial order is equivalent to erasing some initial simple transpositions from the string wi
while Bruhat order permits erasing simple transpositions in arbitrary locations.

The methods and results in this paper are combinatorial. In a second paper we extend these

results to parabolic nilpotent Hessenberg varieties [PT]. Despite results in these cases and in the

regular nilpotent Hessenberg case, we see no straightforward way of extending these methods to

general nilpotent Hessenberg varieties or other Springer fibers. The fact that results of this nature

hold in so many cases may indicate some deeper geometric phenomenon, such as the degeneration

given by Knutson and Miller in [KM] from a Schubert variety to a collection of line bundles.

However, the geometry of Springer fibers is much less well understood than that of the Schubert

varieties, so new methods will be necessary to find such a degeneration.

The next section covers background information on the geometry of Springer fibers and the

dimensions of row-strict tableaux. Section 3 describes Schubert points and preliminary properties

relating them to the permutation flags in Springer fibers. We prove the main result, Theorem 4.4,

in Section 4 using a lemma that is proven for three-row tableaux in Section 5 and for two-column

tableaux in Section 6. Section 7 poses two open questions related to the constructions herein.

Acknowledgements. The first author was partially supported by an AWM-NSF mentoring

grant. The second author was partially supported by National Science Foundation grants DMS-

1248171 and DMS-1362855. The authors are grateful to an anonymous reviewer for insightful

questions, including the two open questions appearing in Section 7.

2. Geometric background on Schubert varieties and Springer fibers

This section establishes notation and key definitions about Springer fibers.

Let B be the Borel subgroup of GLn(C) consisting of upper-triangular matrices. The projective

variety B = GLn(C)/B is the flag variety. As noted in the introduction, the flag variety can be
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identified with the set of full flags V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ V in a complex n-dimensional vector

space V . The Weyl group W is the subgroup of permutation matrices in GLn(C). We can identify

W with the symmetric group on n letters Sn via the action on column vectors. The Weyl group

is generated by the simple transpositions si = (i, i+ 1). The Bruhat order on W is defined by the

rule that v ≤ w if v can be written as a subword of w when each is expressed in terms of the simple

transpositions. If w factors minimally into simple transpositions as w = si1si2 · · · si`(w)
then `(w)

is the length of w. The length of w is also equal to the number of inversions of w.

The Bruhat decomposition partitions the flag variety B =
⊔
w∈Sn

Cw into a union of Schubert

cells, each of which is induced by a double coset. The Schubert cell indexed by w ∈ Sn is the

collection of flags Cw = BwB/B. This is in fact a CW-decomposition and it can be proven that

Cw =
⊔
v≤w Cv where ≤ denotes the Bruhat order and Cv ∼= C`(v) for all v ∈ Sn. (See [BL] for a

more thorough introduction.)

This description of the Schubert cells allows one to calculate the Poincaré polynomial of Schubert

varieties using the combinatorics of permutations, as shown in the following example.

Example 2.1. Let G = GL5(C) and consider the union of Schubert varieties from Example 2,

Xs3s4s3s2 ∪Xs4s2s3s2 ∪Xs3s4s3s1 ∪Xs4s2s3s1 ∪Xs4s1s2s1 . The set of all permutations less than or

equal to each of s3s4s3s2, s4s2s3s2, s3s4s3s1, s4s2s3s1, and s4s1s2s1 respectively in Bruhat order

is

• s3s4s3s2, s3s4s3, s3s4s2, s4s3s2, s3s4, s4s3, s4s2, s3s2, s4, s3, s2, e,
• s4s2s3s2, s4s2s3, s2s3s2, s4s3s2, s4s2, s4s3, s3s2, s2s3, s4, s3, s2, e,
• s3s4s3s1, s3s4s3, s3s4s1, s4s3s1, s3s4, s4s3, s3s1, s4s1, s4, s3, s1, e,
• s4s2s3s1, s4s2s3, s4s2s1, s4s3s1, s2s3s1, s4s2, s4s3, s2s3, s4s1, s3s1, s2s1, s4, s3, s2, s1, e, and

• s4s1s2s1, s4s1s2, s4s2s1, s1s2s1, s4s2, s4s1, s2s1, s1s2, s4, s2, s1, e.
Therefore

P (Xs3s4s3s2 ∪Xs4s2s3s2 ∪Xs3s4s3s1 ∪Xs4s2s3s1 ∪Xs4s1s2s1 , t) = 5t4 + 11t3 + 9t2 + 4t+ 1.

We now define the subvariety of B that is the main focus of this manuscript.

Definition 2.2 (Springer fiber). Let X be an n × n nilpotent matrix. The Springer fiber BX
consists of all flags gB ∈ B such that g−1Xg is upper-triangular, or equivalently the flags V• ∈ B
with XVi ⊆ Vi for all i ∈ {1, 2, . . . , n}.

Instead of a CW-decomposition, Springer fibers have a partition called an affine paving. The

closure conditions are weaker in an affine paving than a CW-decomposition but the cells and their

dimensions still compute Betti numbers. (Surveys like Fulton’s text have more details [F2].) If X

is chosen appropriately in its conjugacy class, an affine paving of the Springer fiber BX is obtained

by intersecting with the Schubert cells. If wB is a permutation flag in BX then we call w a Springer

permutation.

The Springer fibers corresponding to X and to any conjugate of X are homeomorphic (this has

a one-line proof; see, for example, [T, Proposition 2.7]) so the Betti numbers of BX are an invariant

of the conjugacy class of X. When X is nilpotent its conjugacy class is given by the sizes of its

Jordan blocks, which we encode as a partition λ of n. For this reason we refer to the Betti numbers

of Bλ in much of this paper.

We now give a combinatorial description of the Springer permutations and the Betti numbers

of Bλ. We start with some basic definitions.

Definition 2.3 (Partitions and base fillings). Let λ = (λ1, λ2, . . . , λk) be a partition of n drawn

as a Young diagram, namely with k rows of boxes so that the ith row from the top has λi boxes.
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The base filling of λ is obtained as follows. Fill the boxes of λ with integers 1 to n starting at

the bottom of the leftmost column and moving up the column by increments of one. Then move to

the lowest box of the next column and so on.

Example 2.4. Let n = 5 and λ = (3, 2). The base filling of λ is:

2 4 5
1 3

In fact the row-strict tableaux of shape λ parameterize Springer permutations, and a quantity

like the inversions of a permutation describe the dimensions of the corresponding affine cell [T,

Theorem 7.1].

Lemma 2.5 (Tymoczko). Fix a partition λ of n and consider its base filling. Suppose that X is

the matrix such that Xkj = 1 if j fills a box directly to the right of k and Xkj = 0 otherwise. The

Springer fiber BX is paved by affines Cw ∩BX . The intersection Cw ∩BX is nonempty if and only

if wB ∈ BX or equivalently if and only if the filling of λ given by labeling the ith box in the base

filling of λ by w−1(i) is row-strict. If T denotes that row-strict tableau of shape λ, the dimension

of Cw ∩ BX is equal to the number of pairs (p, q) such that 1 ≤ p < q ≤ n and

(1) q occurs in a box below p and in the same column or in any column strictly to the left of

p in T , and

(2) if the box directly to the right of p in T is filled by rp, then q < rp.

The dimension formula for the intersection Cw∩BX generalizes the formula for `(w) = dim(Cw)

as the inversions of w. To see this, read the numbers in the Young diagram of shape λ in the order

given by the base filling: the pairs (p, q) described by Condition (1) are precisely the inversions of

w. These pairs (p, q) are used enough to warrant their own terminology.

Definition 2.6. If (p, q) is a pair with 1 ≤ p < q ≤ n that satisfies Conditions (1) and (2) of

Lemma 2.5 for a row-strict tableau T then we call (p, q) a Springer dimension pair of T .

If T is a row-strict tableau of shape λ, let T [i] be obtained from T by deleting the boxes labeled

by i+1, ..., n. Since T is row-strict there are no gaps in the rows of T [i], meaning if a box is deleted

then all boxes in the same row and to the right must also be deleted. Therefore the diagram of

T [i] forms a composition of i. This gives another way to count Springer dimension pairs.

Lemma 2.7. Let `q−1 denote the number of Springer dimension pairs of the form (p, q) where

2 ≤ q ≤ n. Then `q−1 is the sum of

• the number of rows in T [q] above the row containing q and of the same length, plus

• the total number of rows in T [q] of strictly greater length than the row containing q.

Proof. The tableau T [q] has no boxes filled with numbers greater than q so Condition (2) above

is satisfied only when p fills a box at the end of a row in T [q]. The rest of the claim follows from

imposing Condition (1). �

Remark 2.8. When T is a standard tableau, the formula above reduces even further. The entries

in both rows and columns are increasing so there are no rows below the row containing q in T [q]

of length greater than or equal to the row containing q. (In other words the diagram of T [q] is a

partition.) Therefore `q−1 simply counts the number of rows above the row containing q.
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3. Schubert Points and combinatorial results about Springer permutations

We begin by describing a canonical factorization of permutations and some of its properties.

Using this factorization, we define Schubert points, which are permutations corresponding to row-

strict fillings of Young diagrams in a different way than Springer permutations. We then give some

properties of Schubert points, including many that were observed by Garsia and Procesi and by

Mbirika in their earlier studies of essentially the same objects [GP, M].

Each element of the symmetric group can be factored canonically into monotone-increasing

strings of simple reflections, as detailed below [BB, Corollary 2.4.6].

Lemma 3.1. Each w ∈W can be written uniquely as w = wn−1wn−2 · · ·w2w1 where

wi = skiski+1 · · · si−1si for each i = 1, ..., n− 1

and either wi = e or ki is a fixed integer with 1 ≤ ki ≤ i. Moreover

• `(w) = `(wn−1) + `(wn−2) + · · ·+ `(w2) + `(w1) and

• if wi 6= e then `(wi) = i− ki + 1.

The monomial in Z[x1, x2, . . . , xn] associated to this factorization is x
`(wn−1)
n x

`(wn−2)
n−1 · · ·x`(w1)

2 .

We call wi the ith string of w. For example, the longest word in S4 can be written as s1s2s3s1s2s1.

In this case the strings are:

• w3 = s1s2s3
• w2 = s1s2
• w1 = s1

so ki = 1 for each i = 1, 2, 3.

Given a row-strict tableau T we construct the associated Schubert point wT by using Springer

dimension pairs to determine ki for each i. This produces a permutation wT whose length is the

dimension of the affine cell associated to T in the Springer fiber.

Definition 3.2 (Schubert points). Let wB ∈ BX and let T denote the corresponding row-strict

tableau as in Lemma 2.5. For each 2 ≤ q ≤ n let `q−1 be the number of Springer dimension pairs

of the form (p, q) of T . Define a string wq−1 by

wq−1 =

{
sq−`q−1sq−`q−1+1 · · · sq−2sq−1 if `q−1 6= 0

e if `q−1 = 0

so wq−1 is a string of length `q−1 by construction. Then

wT = wn−1wn−2 · · ·w2w1

is the Schubert point associated to wB ∈ BX . We also refer to wT as one of the Schubert points

associated to the partition λ.

Our definition together with the properties of the canonical factorization and Lemma 2.5 imply

that

`(wT ) = `n−1 + `n−2 + · · ·+ `1 = dim(Cw ∩ BX).

Example 2 gave one set of Schubert points. The next example lists Schubert points corresponding

to row-strict fillings other than the standard tableaux.

Example 3.3. As in Example 2, let λ = (2, 2, 1). Below are a few of the row-strict diagrams

of this shape and the corresponding Schubert points. Note that each of the following examples is

smaller in Bruhat order than one of the permutations in Example 2.
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2 3
1 4
5

1 3
4 5
2

3 4
1 2
5

1 5
2 4
3

2 4
1 3
5

2 5
3 4
1

3 5
1 4
2

3 5
2 4
1

T row-strict

wT ∈ S5 s3s4s3 s4s3s1 s3s4s2 s1s2s1 s3s4 s2 s1 e

The association between row-strict tableaux and Schubert points is unique, as Mbirika proved

[M, Section 2] using results of Garsia-Procesi [GP].

Lemma 3.4 (Mbirika). Given either wB ∈ BX or a row-strict tableau T the corresponding Schu-

bert point wT is unique.

Proof. For each 1 < q ≤ n let `q−1 be the number of dimension pairs (p, q) of T as in Definition 3.2.

Mbirika showed the map T 7→
∏n
i=2 x

`i−1

i from row-strict tableaux to monomials is an injection that

surjects onto a set of monomials defined by Garsia and Procesi [M, Theorem 2.2.9]. Each Schubert

point wT is uniquely determined by the numbers `q−1 for 2 ≤ q ≤ n so the claim follows. �

The main theorem in Section 4 proves that the set of Schubert points for various λ is closed

under the Bruhat order. We end this section with three results that prove special cases of this

main theorem.

The first of these results proves that Schubert points corresponding to standard tableaux are

maximal with respect to Bruhat order in the set of all Schubert points for a partition λ. (This is

independent of the partition λ.)

Theorem 3.5. Let St(λ) denote the set of standard tableaux of shape λ. Then the Schubert points

{wT : T ∈ St(λ)} are maximal with respect to Bruhat order in the set of all Schubert points for λ.

Proof. Let T be a row-strict tableau with corresponding Schubert point wT . We will construct a

standard tableau T ′ ∈ St(λ) such that wT ≤ wT ′ . In fact let T ′ be the tableau we obtain from T

by reordering the entries in each column so that they increase from top to bottom.

We first show that the tableau T ′ is row-strict. Suppose ri is the entry in row i and column

k > 1 of T ′. Then ri is greater than i−1 other entries of the kth column in T . Since T is row-strict

ri is greater than at least i distinct entries in the k− 1st column of T . Thus ri is greater than the

box to its immediate left in T ′. So T ′ is row-strict and by construction also standard.

We claim that wT ≤ wT ′ . Consider T [q] and T ′[q] for 2 ≤ q ≤ n. The number of rows of

each length is the same in T [q] as in T ′[q] because we obtained T ′ from T by reordering entries

within columns. In particular the rows in T [q] and T ′[q] containing q have equal length. Thus both

T [q] and T ′[q] have the same number of rows of strictly greater length than the row containing q.

Additionally any row in T [q] above the row containing q and of equal length will end in a box in

the same column of T as q and be labeled by a value p < q. Since T ′ reorders the entries of each

column of T to increase from top to bottom, this row will also occur above the row containing q

in T ′[q]— and there may be more rows of this type in T ′[q]. Lemma 2.7 implies that the number

of Springer dimension pairs (p, q) in T is at most the number of Springer dimension pairs (p, q) in

T ′. In other words `(wq−1) ≤ `(w′q−1) for all 2 ≤ q ≤ n. By construction wT ≤ wT ′ as desired. �

The second claim is a special case of our main theorem, and a slight modification of results of

Garsia-Procesi and Mbirika [GP, M].

Lemma 3.6. Let T be a row-strict tableau of shape λ and denote the corresponding Schubert point

by wT = wn−1wn−2 · · ·w2w1. Suppose that w′ is a permutation of the form w′ = w′n−1w
′
n−2 · · ·w′2w′1

where w′i ≤ wi in Bruhat order for all i = 1, .., n− 1. Then w′ is a Schubert point associated to λ.
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Proof. We have only to show that there exists a row-strict diagram T ′ of shape λ such that

wT ′ = w′. The monomials associated to w′ and wT according to Lemma 3.1 are

x
`(w′n−1)
n x

`(w′n−2)

n−1 · · ·x`(w
′
2)

3 x
`(w′1)
2 and x`(wn−1)

n x
`(wn−2)
n−1 · · ·x`(w2)

3 x
`(w1)
2

The assumption that w′i ≤ wi implies `(w′i) ≤ `(wi) for all i = 1, .., n − 1 so the first monomial

divides the second. Garsia and Procesi proved that it follows that x
`(w′n−1)
n x

`(w′n−2)

n−1 · · ·x`(w
′
2)

3 x
`(w′1)
2

is an element in their monomial basis for the cohomology of BX where X is a nilpotent matrix

with Jordan blocks of size λ [GP, Proposition 4.2]. Let T ′ denote the row-strict tableau of shape λ

associated to this monomial by Mbirika [M, Theorem 2.2.9]. Lemma 3.4 thus gives wT ′ = w′. �

The final result of this section uses dominance order on partitions, which we define below.

Definition 3.7 (Dominance order). Suppose that λ and µ are two partitions of n. We say λ ≥ µ
if for each row i we have

λ1 + λ2 + · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi

Garsia and Procesi showed that divisibility of their monomials respects the dominance order

[GP, Proposition 4.1], which we restate in our notation below.

Lemma 3.8. Suppose λ, µ are partitions of n with λ ≥ µ. If T is a row-strict tableau of shape λ

associated to Schubert point wT then there exists a row-strict tableau T ′ of shape µ whose Schubert

point satisfies wT ′ = wT .

Proof. Let xα denote the monomial corresponding to wT . Garsia and Procesi proved that if λ ≥ µ
then xα is also a monomial in the basis for the cohomology of BX where X is a nilpotent matrix

with Jordan blocks of size µ [GP, Proposition 4.1]. Mbirika showed how to construct a row-strict

tableau T ′ of shape µ with monomial xα [M, Proof of Theorem 2.2.9]. Let wT ′ be the unique

Schubert point associated to the tableau T ′ of shape µ by Lemma 3.4. Then wT ′ = wT since both

have the same monotone-increasing factorization. �

4. Outlining the main theorem

In this section we outline and prove the essential lemmas of the main theorem. The key step

in the proof of the main theorem is to carefully follow what happens after one simple reflection

is erased from the monotone-increasing factorization of a Schubert point. In general erasing one

simple reflection produces an extra monotone-increasing string and a factorization that no longer

has the form wn−1wn−2 · · ·w1 as in Lemma 3.1. This is the basic situation the following lemma

addresses; we keep track of what happens when a monotone-increasing string is conjugated past

another.

Lemma 4.1. Let i be a positive integer such that 1 ≤ i ≤ n and suppose 1 ≤ p′i ≤ pi ≤ i−1. Then

(
sp′isp′i+1 · · · spi

) (
si−`i−1

si−`i−1+1 · · · si−1
)

=
(
si−`′i−1

si−`′i−1+1 · · · si−1
)(

sp′i−1
sp′i−1+1 · · · spi−1

)
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where `′i−1, p
′
i−1, pi−1 are given by the following table:

Case Condition `′i−1 = p′i−1 = pi−1 =

1 pi < i− `i−1 − 1 `i−1 p′i pi
2 pi = i− `i−1 − 1 `i−1 + (pi − p′i + 1) N/A N/A

3 p′i ≤ i− `i−1 ≤ pi `i−1 − 1 p′i pi − 1

4 i− `i−1 < p′i `i−1 p′i − 1 pi − 1

Proof. If pi < i− `i−1−1 then each simple reflection in sp′isp′i+1 · · · spi commutes with each simple

reflection in si−`i−1
si−`i−1+1 · · · si−1 which proves the first line of the table. If pi = i − `i−1 − 1

then the strings glue together to form sp′i · · · si−1 proving the second line of the table. If sj is a

simple reflection with i− `i−1 < j ≤ i− 1 then

sj
(
si−`i−1

si−`i−1+1 · · · si−1
)

=
(
si−`i−1

si−`i−1+1 · · · si−1
)
sj−1

using the braid relations. Repeating this proves the fourth line of the table. Combining this with

the fact that

si−`i−1

(
si−`i−1

si−`i−1+1 · · · si−1
)

=
(
si−`i−1+1 · · · si−1

)
proves the third line of the table. �

We will prove the main theorem by deleting a simple reflection and then rewriting the resulting

permutation in monotone-increasing form, one step at a time. Indeed suppose T is a row-strict

tableau of shape λ with Schubert point wT = wn−1wn−2 · · ·w1. When we delete a simple reflection

spn+1 from the initial monotone-increasing string in wT we obtain

(4.2) sn−`n−1
· · · spn ŝpn+1spn+2 · · · sn−1wn−2 · · ·w2w1 = w′n−1Fn−1 wn−2 · · ·w2w1

where w′n−1 = spn+2 · · · sn−2sn−1 andFn−1 = sn−`n−1
sn−`n−1+1 · · · spn . On the one hand, if there

is a row-strict tableau T ′ of shape λ corresponding to this permutation, it must have n in the box

at the end of row

`(w′n−1) + 1 = `(spn+2 · · · sn−2sn−1) + 1 = (n− 1)− (pn + 2) + 2 = n− pn − 1.

Lemma 4.1 then allows us to write Fn−1wn−2 = w′n−2Fn−2 for (possibly empty) monotone-

increasing strings w′n−2 and Fn−2. The length of w′n−2 determines the box in T ′ where n−1 must

go, if possible. Continuing this process, the ith step produces the permutation

w′n−1w
′
n−2 · · ·w′i Fi wi−1 · · ·w2w1

where

Fi = sp′isp′i+1 · · · spi−1spi
for some pi, p

′
i determined by this process. In the proofs in the next two sections we show that this

process terminates and that it results in a row-strict tableau T ′ of the same shape as T , namely

that T ′ is large enough to accommodate each i according to the specifications of w′i−1.

We now prove our main result given the following lemma, which will be proven in the next two

sections.

Lemma 4.3. Fix a Schubert point w associated to a partition λ with at most three rows or two

columns. Suppose that w′ is a permutation obtained from w by erasing one simple reflection sj.

Then w′ is also a Schubert point associated to the partition λ.
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The main theorem shows that this lemma implies our claim.

Theorem 4.4. Suppose that w is a Schubert point associated to a partition λ with at most three

rows or two columns and v ≤ w. Then v is also a Schubert point associated to the partition λ.

Proof. Since v ≤ w we can find a string of simple reflections sj1 , sj2 , . . . , sjk so that

• for each 1 ≤ i ≤ k the permutation vi is obtained from vi−1 by erasing one simple reflection

sji and

• the initial and terminal permutations are v0 = w and vk = v respectively.

Lemma 4.3 says that if vi−1 is a Schubert point associated to the partition λ then so is vi. Inducting

on i we conclude that vk = v is a Schubert point associated to λ as well. �

Corollary 4.5. Let X ∈ gln(C) be a nilpotent matrix whose Jordan type is given by the partition

λ with at most three rows or two columns. Then the Poincaré polynomial of the Springer fiber BX
equals the Poincaré polynomial of the union of Schubert varieties for Schubert points corresponding

to standard tableaux of shape λ:

P (BX , t) = P (∪wB∈BXCwT
, t) = P (∪T∈St(λ)CwT

, t).

Proof. Theorem 4.4 shows that the set of Schubert points corresponding to λ is a lower order ideal

with respect to Bruhat order, so the set of these permutations corresponds to a union of Schubert

varieties in the flag variety G/B. The second equality follows from Theorem 3.5. �

Example 4.6. When λ = (2, 2, 1) we have

P (BX , t) = 5t4 + 11t3 + 9t2 + 4t+ 1

by Corollary 4.5 together with Example 2.1. The reader can independently verify this fact using

the inductive formula for the Poincaré polynomial given in [S] or [Fr].

The following example shows that Lemma 4.3 does not hold if λ is a partition containing the

shape µ = (3, 1, 1, 1) as a subdiagram.

Example 4.7. Let T be following standard tableau of shape µ.

1 3 5

2

4

6

T has associated Schubert point wT = s3s4s5s2s3s1. Let w′ = s3ŝ4s5s2s3s1 = s5s2s3s2s1 so by

construction w′ ≤ wT . However there exists no row-strict filling of µ corresponding to w′! While

Lemma 4.3 fails, it is still possible that the Springer fibers have the same Poincaré polynomials

as a union of other Schubert varieties. We have attempted computer calculations to confirm or

refute this in the case of λ = (3, 1, 1, 1) but so far have not found an algorithm that terminates

in reasonable time. This is the next step in testing whether Theorem 1 generalizes to arbitrary

Springer fibers. All components of Bλ are smooth in this case, so one might also consider each of

the irreducible components of Bλ separately (see the discussion in Section 7).

Finally the following example demonstrates that these results do not always hold in arbitrary

Lie type, not even for partitions with at most two rows.

Example 4.8. Let sp6(C) denote the symplectic Lie algebra of Lie type C3. The corresponding root

system has three simple roots so its Weyl group is generated by three simple reflections. This means

there are precisely three Schubert cells of dimension 1 in B. However a well-known result states
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that if X ∈ g is a subregular nilpotent element, then BX is a Dynkin curve [H, Theorem 6.11].

For Lie type C3 the Dynkin curve consists of 4 projective lines (because the associated Dynkin

diagram is a path with four edges). In particular the Poincaré polynomial of BX is 1 + 4t. There

is no Schubert variety or union of Schubert varieties in this flag variety with the same Poincaré

polynomial. Therefore our results in this paper do not extend exactly as stated to all Springer fibers

in arbitrary Lie type.

5. The three row case

The following theorem proves Lemma 4.3 for the three row case. Recall that if T denotes a

row-strict filling of λ then T [i] denotes the diagram obtained from T by deleting the boxes labeled

by i + 1, ..., n. We let λ[i] denote the partition of i obtained from the composition corresponding

to T [i] by reordering the rows in decreasing order. In this section, we consider the case in which T

has at most three rows. A key feature of this case is that `i−1 ≤ 2 by Lemma 2.7 since T [i] has at

most three rows for all 2 ≤ i ≤ n, and therefore `(wi−1) ≤ 2. We use this fact in the proof below.

Theorem 5.1. Let λ be a partition of n with at most three rows and T be a row-strict tableau

of shape λ. Suppose w′ is obtained from wT by deleting a simple reflection. Then there exists a

row-strict tableau T ′ of shape λ such that w′ = wT ′ .

Proof. Our proof is by induction on n. We start with the base cases n ≤ 2. The cases when λ is a

single row are trivial, since the Springer fibers in those cases consist of the single flag eB and the

only Schubert point is e. The cases when λ is a single column are also trivial, since every filling

of the diagram is row-strict and hence every permutation flag is in the Springer fiber. Indeed, the

Springer fiber in that case is the full flag variety. Therefore the Schubert points are also the set of

all permutations, namely {e, s1} in the case n = 2.

Fix a diagram λ = (λ1, λ2, λ3) with n boxes and a row-strict tableau T of shape λ with corre-

sponding Schubert point wT . Consider the following cases:

• Suppose we do not delete a simple reflection from wn−1. We have wT = wn−1wT [n−1].

Deleting a simple reflection from wT results in a Schubert point for λ if and only if deleting

a simple reflection from wT [n−1] results in a Schubert point for λ[n− 1]. The latter holds

by induction.

• Suppose we delete the first simple reflection in the string wn−1 reading from the left. Then

the permutation obtained after deleting is w′n−1wn−2 · · ·w1 where w′n−1 ≤ wn−1 has either

length zero or one. In all cases w′n−1wn−2 · · ·w1 is the Schubert point for a row-strict

tableau of shape λ by Lemma 3.6.

The only case left is when wn−1 = sn−2sn−1 and we delete sn−1. We now prove that this

produces a Schubert point corresponding to a row-strict tableau of shape λ.

• Suppose that wn−2 = e so that w′n−2 = sn−2. This means we put n−1 into the second row

of λ′[n−1] and into the first row of λ[n−1]. The diagram for λ[n−2] thus has (unordered)

row-lengths {λ1−1, λ2, λ3−1} while the diagram for λ′[n−2] has (unordered) row-lengths

• {λ1 − 1, λ2 − 1, λ3} if λ1 = λ2 = λ3 or if λ1 > λ2, and

• {λ1 − 2, λ2, λ3} if λ1 = λ2 > λ3.

Figure 1 gives schematics of λ in these situations; erasing the boxes with dots gives

λ[n− 2] while erasing the boxes with stars gives λ′[n− 2]. In all cases the diagrams satisfy

λ′[n− 2] ≤ λ[n− 2]
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· · · ?•
· · ·
· · · ?•

· · · ?•
· · · ?

· · · •

· · · ? ?•
· · ·
· · · •

λ1 = λ2 = λ3 λ1 > λ2 ≥ λ3 λ1 = λ2 > λ3

Figure 1. Schematics for λ′[n − 2] and λ[n − 2]. Stars mark boxes erased from

λ′[n− 2] and dots mark boxes erased from λ[n− 2].

and by Lemma 3.8 the product wn−3 · · ·w1 corresponds to a row-strict filling of the shape

λ′[n−2]. Inserting n−1 and n at the end of the rows described above produces a row-strict

filling T ′ of shape λ such that w′ = wT ′ .

• Suppose that wn−2 = sn−2 so that w′n−2 = e. Then w′ = wn−3wn−4 · · ·w1 and by Lemma

3.6 we know w′ is the Schubert point corresponding to some row-strict tableau of shape λ.

• Suppose that wn−2 = sn−3sn−2 so that w′n−2 = wn−2. Thus the claim holds if the

permutation w′ = wn−2sn−3wn−3wn−4 · · ·w1 corresponds to a row-strict filling of λ.

Suppose that λ1 6= λ3. The row-strict filling T [n−1] of shape λ[n−1] = (λ1, λ2, λ3−1)

corresponds to the Schubert point wn−2wn−3 · · ·w1. By the inductive hypothesis, there

exists a row-strict diagram T ′′[n− 1] of shape λ[n− 1] corresponding to the permutation

wT ′′[n−1] = sn−3ŝn−2wn−3wn−4 · · ·w1 = sn−3wn−3wn−4 · · ·w1

Moreover n − 1 occurs at the end of the first row of T ′′[n − 1] since wT ′′[n−1] does not

contain a monotone-increasing string ending in sn−2. Let T ′ be the row-strict diagram of

shape λ obtained from T ′′[n− 1] by adding the box corresponding to n back to the third

row, filling it with n− 1, and replacing the label at the end of the first row with n. Then

wT ′ = wn−2sn−3wn−3wn−4 · · ·w1 as desired.

Finally if λ1 = λ2 = λ3 then let i be the largest number so that wi = si−1si and

wi−1 6= si−2si−1. Note that

w′ = sn−2 (wn−2wn−3 · · ·w1) = (wn−2wn−3 · · ·wi) si−1 (wi−1wi−2 · · ·w1)

so in particular w′j = wj for each j with i ≤ j ≤ n− 2. Also note that

λ′[i] = λ[i] = (λ1, λ2, λ3 − (n− i))

since λ1 = λ3. If wi−1 = si−1 then w′i−1 = e while if wi−1 = e then w′i−1 = si−1. In both

cases

λ′[i− 1] = λ[i− 1] = (λ1, λ2 − 1, λ3 − (n− i))
since λ1 = λ2. The permutation wi−2 · · ·w1 corresponds to a row-strict filling of λ[i − 1]

by hypothesis. Since w′i−2 · · ·w′1 = wi−2 · · ·w1 and λ′[i− 1] = λ[i− 1] we conclude that w′

corresponds to a row-strict filling of λ.

�

6. The two column case

In this final section we prove Lemma 4.3 in the case of partitions with two columns. Let T be

a row-strict tableau corresponding to such a partition. Throughout this section we consider each

row of λ[i] to be labeled with a simple reflection in decreasing order. Our labeling of the rows of

λ[i] is inspired and informed by Mbirika’s arguments in [M, Section 2.2]. We label the second row

of λ[i] by si−1, the third row by si−2, the fourth row by si−3, and so on, with the top row labeled
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e. The string Fi is associated to a subset of boxes, namely those at the end of the rows in λ[i]

corresponding to the simple reflections in Fi. We refer to the boxes in these rows as shaded boxes,

omitting specific references to Fi. If a row contains a shaded box, we refer to it as a shaded row.

With this labeling, our algebraic results can be transformed into a claim about boxes in the

diagram λ. We say that the rightmost box of λ[i] in the row labeled by the simple reflection

with the lowest index in wi−1 is the box corresponding to the string wi−1. Note that there is a

bijection between the rows of λ[i] and T [i] given as follows. The row in λ[i] labeled by si−k for

some 1 ≤ k ≤ i− 1 corresponds to the row in T [i] having the property that there are k rows above

it of greater or equal length, namely the row containing i. The row labeled by e in λ[i] corresponds

to the top row of length 2 in T [i]. This also defines a bijection between between the boxes of λ[i]

and T [i]. We will use this bijection, and the analogous bijection between the boxes of λ′[i] and

T ′[i], throughout this section.

The simple reflections labeling the rows shift every time λ[i] loses a box to become λ[i− 1]. In

particular, the row labeled sj in λ[i] is labeled sj−1 in λ[i−1]. The next table uses this observation

to interpret the conditions of Lemma 4.1 graphically. We say a box touches the shaded boxes if its

row is immediately above or below a shaded row. The table below makes use of the identification

between the boxes of T [i] and λ[i] established in the paragraph above.

Case 1 box containing i is above and delete that box from λ[i] and

does not touch shaded boxes slide shaded boxes up one row

Case 2 box containing i is above and gluing step:

touches shaded boxes un-shade all boxes

Case 3 box containing i is a shaded box delete that box from λ[i] and

un-shade the lowest shaded box

Case 4 box containing i is below delete box from λ[i]

shaded boxes

We note in particular that in Cases 3 and 4 the shaded boxes do not slide up when passing from

λ[i] to λ[i − 1]. The process described in the chart above terminates after all the shaded boxes

have been un-shaded. This occurs after an application of Case 2 (in which the Fi-string glues to

wi−1) or after several applications of Case 3 (in which case the Fi-string dissolves).

Since a two-column tableau with n boxes is determined by the length of its second column, we

write ci for the length of the second column of λ[i]. Note that either ci−1 = ci or ci−1 = ci − 1 for

each i = 2, 3, . . . , n. With this notation `(wi−1) = ci − 1 is equivalent to saying that i fills the box

at the end of the second column of T [i].

We prove below that we can fill the boxes corresponding to w′n−1, w
′
n−2, . . . in λ with n, n−1, . . .,

respectively, up until the gluing step. We create diagrams λ′[n − 1], λ′[n − 2], . . . at each step by

erasing the labeled boxes. The next lemma shows that the partition λ′[i] cannot differ much from

λ[i].

Lemma 6.1. Let T be a row-strict tableau of shape λ with two columns. It is always possible to fill

a row-strict diagram T ′ according to the length of w′i−1 for each i before the gluing step. Moreover

ci = c′i or ci = c′i + 1 for each i up until the gluing step, according to the following table:
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ci = c′i ci = c′i + 1

Case 1 ci−1 = c′i−1 ci−1 = c′i−1 + 1

unless `(wi−1) = ci − 1

in which case ci−1 = c′i−1
Case 3 ci−1 = c′i−1 ci−1 = c′i−1 + 1

unless `(w′i−1) = ci − 1

in which case ci−1 = c′i−1 + 1

Case 4 ci−1 = c′i−1 ci−1 = c′i−1 + 1

unless `(wi−1) = ci − 1

in which case ci−1 = c′i−1

Proof. We start with the case when i = n. After deleting a simple reflection from wn−1 the box

containing n in T ′ must move to a row above the row containing n in T . Either both boxes are in

the same column so cn−1 = c′n−1 or the boxes are in different columns so cn−1 = c′n−1 + 1.

Next we show that this process can be repeated, namely that we can put i in the box of T ′[i]

that is in bijection with the box corresponding to the string w′i−1 in λ′[i]. The diagram λ′[i] has

at least as many rows as λ[i] since c′i ≤ ci. In Cases 1 and 4 we know `(w′i−1) = `(wi−1) while in

Case 3 we know `(w′i−1) = `(wi−1)− 1. In both cases `(w′i−1) ≤ `(wi−1) so the diagram λ′[i] has

a box corresponding to w′i−1.

Finally we show that if ci = c′i or ci = c′i + 1 then either ci−1 = c′i−1 or ci−1 = c′i−1 + 1 in

Cases 1, 3, and 4. Lemma 4.1 shows that either i goes in the same row in λ′[i] as in λ[i] or in

the row of λ′[i] immediately above where i went in λ[i]. Consider the diagrams for ci = c′i and

ci = c′i + 1, with an example of the latter sketched below.

λ[i] = λ′[i] =

The equation relating ci and c′i changes only when i fills a box in a different column of λ[i] than

in λ′[i]. There are only two ways this can happen:

• if ci = c′i + 1 and the box containing i is at the end of the second column of λ[i] and just

below the second column in λ′[i] or

• if ci = c′i and we remove a higher box from λ′[i] than from λ[i].

The first situation happens in Cases 1 and 4 when `(wi−1) = ci − 1 and the second happens in

Case 3 when `(w′i−1) = ci − 1 as claimed. This resolves all the cases in the table. �

Example 6.2. Let T be the following row-strict tableau of shape λ = (24, 13)

1 2

3 5

4 10

6 8

7

11

9
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i 10 9 8 7 6 5 T ′

T [i]
1 2

3 5

4 10

6 8

7

9

1 2

3 5

4

6 8

7

9

1 2

3 5

4

6 8

7

1 2

3 5

4

6

7

1 2

3 5

4

6

1 2

3 5

4

1 2

3 11

5 10

6 8

7

9

4

λ[i]

10

9

8

7

6

5

Figure 2. Diagrams for T [i] and λ[i].

with associated Schubert point

wT = s6s7s8s9s10 s8s9 s4s5s6s7s8 s6s7 s3s4s5s6 s3s4s5 s4 s2s3 s2

and let w′ be the permutation obtained by deleting s9 from the initial string w10 = s6s7s8s9s10.

The table below shows the steps we take to simplify w′. Notice that the process ends with the strings

gluing at step i = 5. At each step the Fi-string is bold.

i w′ wi−1 ci w′i−1 c′i
11 s6s7s8ŝ9s10 s8s9 s4s5s6s7s8 s6s7 s3s4s5s6 s3s4s5 s4 s2s3 s2 s6s7s8s9s10 4 s10 4

10 s10 s6s7s8 s8s9 s4s5s6s7s8 s6s7 s3s4s5s6 s3s4s5 s4 s2s3 s2 s8s9 4 s9 3

9 s10 s9 s6s7 s4s5s6s7s8 s6s7 s3s4s5s6 s3s4s5 s4 s2s3 s2 s4s5s6s7s8 3 s4s5s6s7s8 2

8 s10 s9 s4s5s6s7s8 s5s6 s6s7 s3s4s5s6 s3s4s5 s4 s2s3 s2 s6s7 3 s7 2

7 s10 s9 s4s5s6s7s8 s7 s5 s3s4s5s6 s3s4s5 s4 s2s3 s2 s3s4s5s6 2 s3s4s5s6 1

6 s10 s9 s4s5s6s7s8 s7 s3s4s5s6 s4s3s4s5 s4 s2s3 s2 s3s4s5 2 s3s4s5 1

5 s10 s9 s4s5s6s7s8 s7 s3s4s5s6 s3s4s5 s3 s4 s2s3 s2 s4 1 s3s4 1

4 s10 s9 s4s5s6s7s8 s7 s3s4s5s6 s3s4s5 s3s4 s2s3 s2 s2s3 1 s2s3 1

Case 3 is applied in steps 10 and 8 , Case 4 is applied in step 9, 7, and 6, and Case 2 is applied

in step 5 after which the monotone-increasing strings of w′ match those of w. Figure 2 lists the

diagrams T [i] and λ[i] when i is 10, 9, 8, 7, 6, and 5. The shaded boxes correspond to the bold

strings above. The box of wi is bolded for each i.

In the previous example, notice that the first row of length one is shaded in λ[n − 1] = λ[10]

and remains shaded in the rest of the steps. The next lemma proves this holds more generally.

Lemma 6.3. Assume that the step from λ[i] to λ[i − 1] is not the gluing step. The first row of

length one is shaded in λ[i− 1] only if the first row of length one is shaded in λ[i].



16 MARTHA PRECUP AND JULIANNA TYMOCZKO

Proof. Assume that the first row of length one is not shaded in λ[i]. There are two ways for the

top row of length one to become shaded in λ[i− 1]: either

• the shaded boxes slide up or

• the last row of length 2 was shaded, the shaded boxes stay in the same place, and i is

placed at the end of the second column of λ[i], so ci−1 = ci − 1.

Shaded boxes only slide in Case 1. In this case, the box containing i is above and separated

by at least one row from the shaded boxes. If the box containing i is in the first column then the

shaded boxes are at least two rows below the second column. Since the first row of length one is

not shaded in λ[i] either the bottommost shaded box is in a row of length 2 or the topmost shaded

box must be at least one row below the top row of length one. The latter case is the only one

where the top row of length one could become shaded, and it can only happen if i is in a box in

the second column in λ[i]. Thus deleting the box containing i from λ[i] increases the number of

rows of length one in λ[i − 1]. The shaded boxes slide up, but the additional row of length one

above the shaded boxes means the top row of length one is not shaded.

Shaded boxes stay in the same place in Cases 3 and 4. In Case 4 the box containing i is strictly

below the shaded boxes, which cannot occur if this box is in the second column and the last row of

length 2 is shaded. So we are reduced to Case 3. In this case, the box containing i is in the second

column, so we delete this box leaving an additional shaded row of length one. The assumption

that the top row of length one is not shaded in λ[i] implies that the box we just shaded in fact

becomes the lowest shaded box. We un-shade this box, which is precisely the top row of length

one in λ[i− 1]. �

The previous lemmas bring us directly to the main theorem. The crux of the argument is that

the only way that gluing could pose a problem is if both λ′[i] = λ[i] and the shaded boxes contain

the top row of length one. We will show that that cannot happen under our hypotheses.

Theorem 6.4. Assume that λ is a Young diagram with two columns, that T is a row-strict filling

of λ, and that w′ is obtained from wT by deleting a simple reflection. There exists a row-strict

tableau T ′ of shape λ such that w′ = wT ′ .

Proof. As in the proof of Theorem 5.1, we may assume w′ is obtained from wT by deleting a

simple reflection from wn−1 as in Equation (4.2), else the claim follows by induction on n. If Case

2 (gluing) never applies then w′i−1 ≤ wi−1 for all i by Lemma 4.1 and the claim holds by Lemma

3.6. So suppose that Case 2 is used at the ith step, namely that the Fi-string glues with wi−1.

By Lemma 6.1, we can fill a row-strict diagram T ′ according to the length of w′k−1 for each

k < i. At the i-th step, note that the lowest shaded row in λ[i] is labeled by the simple reflection

sp′i and this is the simple reflection of lowest index in w′i−1 = Fiwi−1. Such a box exists because

λ′[i] has at least as many rows as λ[i] since c′i ≤ ci by Lemma 6.1. We then place i in the box of

T ′ that corresponds to the rightmost box in the row labeled by sp′i in λ′[i]. This is exactly the box

corresponding to the string w′i−1 in λ′[i].

The rest of this proof shows that after gluing we have λ[i − 1] ≥ λ′[i − 1]. The remaining

monotone-increasing strings of w′ are w′i−2 = wi−2, w
′
i−3 = wi−3, . . . , w

′
1 = w1. Lemma 3.8 shows

that there is a row-strict filling of shape λ′[i− 1] corresponding to w′i−2w
′
i−3 · · ·w′1. This allows us

to complete the row-strict filling of T ′[i− 1] using the bijection between the boxes of λ′[i− 1] and

T ′[i− 1]. We thus conclude that there is a row-strict tableau T ′ of shape λ corresponding to w′.

We now prove that λ[i − 1] ≥ λ′[i − 1] after gluing. First suppose that the first row of length

one in λ[i] is not shaded. In this case the shaded boxes are either all above or all below the top

row of length one so gluing means that either
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• the boxes containing i in λ[i] and λ′[i] are both in the first column, or

• the boxes containing i in λ[i] and λ′[i] are both in the second column.

We know c′i ≤ ci or equivalently λ′[i] ≤ λ[i] so deleting a box from the same column in each

diagram gives λ′[i− 1] ≤ λ[i− 1].

Now suppose that the top row of length one in λ[i] is shaded, implying that the box containing

i in λ[i] is in the second column and the box containing i in λ′[i] is in the first column since we

are in the gluing case. If ci = c′i + 1 then after deleting a box from the second column of λ[i] and

a box from the first column of λ′[i] we obtain ci−1 = c′i−1 so λ[i− 1] = λ′[i− 1].

By Lemma 6.1 the only other option is that the top row of length one in λ[i] is shaded and

that ci = c′i or equivalently λ[i] = λ′[i]. We show that this is in fact impossible. Indeed, Lemma

6.3 says that the top row of length one in λ[i] is shaded only if the top row in λ[n− 1] is shaded.

This means that the box containing n is in the first column of T and the box containing n is in

the second column of T ′ so cn−1 = c′n−1 + 1. Thus there exists a j with i ≤ j ≤ n − 1 such that

cj = c′j +1 while cj−1 = c′j−1. Inspecting the table in Lemma 6.1, we see that this can only happen

under very special circumstances.

By Lemma 6.3 the top row of length one in λ[j] must be shaded. The first possibility is that we

are in Case 1 and the box containing j is at the bottom of the second column of λ[j]. But in Case

1 the box containing j must be above the shaded boxes with at least one row between them, so the

first row of length one cannot be shaded. This contradicts our hypotheses. The second possibility

is that we are in Case 4 and the box containing j is at the bottom of the second column of λ[j].

But in Case 4, the shaded rows are above the box containing j, and the top row of length one is

below this box so the first row of length one cannot be shaded which is again a contradiction.

This proves the case impossible, so after gluing λ[i− 1] ≥ λ′[i− 1] as desired. �

7. Open Questions

We conclude with two open questions and thank an anonymous referee for bringing these to our

attention.

Question 7.1. Springer fibers are known to have a unimodal distribution of Betti numbers in both

the two row and two column cases [FM]. Can techniques involving Schubert points be used to give

an alternative proof of this fact and extend unimodality to the three row case?

The arguments in this manuscript define a correspondence between irreducible components of

the Springer fiber and particular Schubert varieties via the bijection between standard tableaux

and Schubert points. In general, the Betti numbers of a given irreducible component of BX need

not match those of the corresponding Schubert variety. However, these numbers do agree in the

two-row case, in which every irreducible component of the Springer fiber is smooth [FM2]. This

motivates the following question.

Question 7.2. Do the Betti numbers of a smooth irreducible component of a given Springer fiber

agree with those of the corresponding Schubert variety in the two-column and three row cases?
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