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Development of equilibrium after preheating

Gary Felder
Department of Physics, Stanford University, Stanford, California 94305

and CITA, University of Toronto, 60 Saint George Street, Toronto, Ontario, Canada M5S 3H8

Lev Kofman
CITA, University of Toronto, 60 Saint George Street, Toronto, Ontario, Canada M5S 3H8

~Received 29 November 2000; published 12 April 2001!

We present a fully nonlinear study of the development of equilibrium after preheating. Preheating is the
exponentially rapid transfer of energy from the nearly homogeneous inflaton field to fluctuations of other fields
and/or the inflaton itself. This rapid transfer leaves these fields in a highly nonthermal state with energy
concentrated in infrared modes. We have performed lattice simulations of the evolution of interacting scalar
fields during and after preheating for a variety of inflationary models. We have formulated a set of generic rules
that govern the thermalization process in all of these models. Notably, we see that once one of the fields is
amplified through parametric resonance or other mechanisms, it rapidly excites other coupled fields to expo-
nentially large occupation numbers. These fields quickly acquire nearly thermal spectra in the infrared, which
gradually propagates into higher momenta. Prior to the formation of total equilibrium, the excited fields group
into subsets with almost identical characteristics~e.g. group effective temperature!. The way fields form into
these groups and the properties of the groups depend on the couplings between them. We also studied the onset
of chaos after preheating by calculating the Lyapunov exponent of the scalar fields.

DOI: 10.1103/PhysRevD.63.103503 PACS number~s!: 98.80.Cq

I. INTRODUCTION

The theory of inflation has been highly successful in ex-
plaining many of the initial conditions for the hot big bang
model as well as providing a mechanism by which the seeds
of large scale structure were formed. Typical models of in-
flation are based on the slow-roll evolution of the homoge-
neous inflaton scalar field~s! f. Inflation ends when the
slow-roll regime is dynamically terminated and the field~s!
begins to oscillate around the minimum of its effective po-
tential V(f) as in chaotic inflation@1# or ‘‘waterfalls’’ to-
wards the minimum ofV as in hybrid inflation@2#. After
inflation the homogeneous inflaton field~s! decays due to its
interactions with other fields or its self-interaction. If the
inflaton decay into other fields were slow as in perturbation
theory, the created particles would settle into thermal equi-
librium as the inflaton decayed. However, the decay of the
inflaton typically occurs via rapid, non-perturbative mecha-
nisms collectively known as preheating@3#. The character of
preheating may vary from model to model, e.g. parametric
excitation in chaotic inflation@4# and another, specific type
of preheating in hybrid inflation@5#, but its distinct feature
remains the same: rapid amplification of one or more bosonic
fields to exponentially large occupation numbers. This am-
plification is eventually shut down by back reaction of the
produced fluctuations. The end result of the process is a tur-
bulent medium of coupled, inhomogeneous, classical waves
far from equilibrium@6#.

Despite the development of our understanding of preheat-
ing after inflation, the transition from this stage to a hot
Friedmann universe in thermal equilibrium has remained
relatively poorly understood. A theory of the thermalization
of the fields generated from preheating is necessary to bridge
the gap between inflation and the hot big bang. The details of

this thermalization stage depend on the constituents of the
fundamental LagrangianL(f i ,x i ,c i ,Am ,hmn , . . . ) and
their couplings, so at first glance it would seem that a de-
scription of this process would have to be strongly model
dependent. We have found, however, that many features of
this stage seem to hold generically across a wide spectrum of
models. This fact is understandable because the conditions at
the end of preheating are generally not qualitatively sensitive
to the details of inflation. Indeed, at the end of preheating
and beginning of the turbulent stage~denoted byt* ), the
fields are out of equilibrium. We have examined many mod-
els and found that att* there is not much trace of the linear
stage of preheating and conditions att* are not qualitatively
sensitive to the details of inflation. We therefore expect that
this second, highly nonlinear, turbulent stage of preheating
may exhibit some universal, model-independent features.

Although a realistic model would include one or more
Higgs-Yang-Mills sectors, we treat the simpler case of inter-
acting scalars. Within this context, however, we consider a
number of different models including several chaotic and
hybrid inflation scenarios with a variety of couplings be-
tween the inflaton and other matter fields.

There are many questions about the thermalization pro-
cess that we set out to answer in our work. Could the turbu-
lent waves that arise after preheating be described by the
theory of ~transient! Kolmogorov turbulence or would they
directly approach thermal equilibrium? Could the relaxation
time towards equilibrium be described by the naive estimate
t;(ns int)

21, wheren is a density of scalar particles and
s int is a cross section of their interaction? If the inflatonf
were decaying into a fieldx, what effect would the presence
of a decay channels for the x field have on the thermaliza-
tion process? For that matter, would the presence ofs sig-
nificantly alter the preheating ofx itself or even destroy it as
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suggested in@7#? How strongly model dependent is the pro-
cess of thermalization; are there any universal features across
different models? Finally there is the question of chaos. It is
known that Higgs-Yang-Mills systems display chaotic dy-
namics during thermalization@8#. The possibility of chaos in
the case of a single, self-interacting inflaton was mentioned
in passing in@6#, but when we began our work it was unclear
at what stage of preheating chaos might appear, and in what
way.

Because the systems we are studying involve strong, non-
linear interactions far from thermal equilibrium, it is not pos-
sible to solve the equations of motion using linear analysis in
Fourier space. Instead we solve the scalar field equations of
motion directly in position space using lattice simulations.
These simulations automatically take into account all nonlin-
ear effects of scattering and back reaction. Using these nu-
merical results we have been able to formulate a set of em-
pirical rules that seem to govern thermalization after
inflation. These rules qualitatively describe thermalization in
a wide variety of models. The features of this process are in
some cases very different from our initial expectations.

Section II gives a brief review of preheating in different
inflationary models. This review should serve to motivate
our study and place it in the broader context of inflationary
cosmology. Sections III and IV describe the results of our
numerical calculations. Section III describes one simple cha-
otic inflation model that we chose to focus on as a clear
illustration of our results, while Sec. IV discusses how the
thermalization process occurs in a variety of other models.
Section V describes the onset of chaos during preheating and
includes a discussion of the measurement and interpretation
of the Lyapunov exponent in this context. Section VI con-
tains a list of empirical rules that we have formulated to
describe thermalization after preheating. Section VII dis-
cusses these results and other aspects of non-equilibrium sca-
lar field dynamics. Finally, there is an appendix that de-
scribes our lattice simulations.

II. INFLATION AND PREHEATING

In this section we outline the context where the problem
of thermalization after inflation arises. In the inflationary sce-
nario, the very early universe expands~quasi!exponentially
due to a vacuum-like equation of state. Such an equation of
state can arise in a number of different ways, most of which
are based on a homogeneous condensate of one or more clas-
sical scalar fields. We will consider two types of inflationary
models. The first is chaotic inflation@1# with the single scalar
field potentialV(f). The second is hybrid inflation, which
involves several scalar fields@2#. The properties of these
models are widely discussed in the literature. We will be
dealing only with the decay of the homogeneous inflaton
condensate into inhomogeneous modes of the same or other
scalars and the subsequent interactions of these inhomoge-
neous modes as they approach thermal equilibrium. Any par-
ticles present before or during inflation are diluted by the
exponential expansion. Thus by the end of inflation all en-
ergy is contained in the potentialV(f, . . . ) of one ormore
classical, slowly moving, homogeneous inflaton fields. Im-

mediately after inflation the background field~s! is moving
fast and produces particles of the fields coupled to it. These
created particles are mutually interacting and ultimately must
end up in thermal equilibrium. However, particles may be
created so fast that they spend some time in non-equilibrium
states with very large occupation numbers.

Consider chaotic inflation with the potential

V~f!5
m2

2
f21

l

4
f4. ~1!

Soon after the end of inflation the homogeneous inflaton field
f(t) coherently oscillates around the minimum of its poten-
tial with an amplitude on the order of a Planck mass. The
inflaton oscillations decay due to the creation of particles
interacting withf. Let x be another scalar field coupling
with the inflaton field as12 g2f2x2. Particles of thex field are
produced from the interaction of the quantum vacuum state
of x with the coherently oscillating classical fieldf. The
dominant channel for this production is the non-perturbative
mechanism of parametric excitation. Thexk mode functions
exponentially increase with time asxk.emkt, where the
characteristic exponentmk is a model-dependent function
@4,9#. The copious production ofx particles constitutes the
first stage of preheating after inflation@3#. This state can be
studied with analytical methods developed in@4,9,10#. How-
ever, very soon the amplitudes of the inhomogeneous modes
~i.e., the occupation numbernk) of x become so large that
the back reaction of created particles must be taken into ac-
count. The most important back-reaction effect will be the
rescattering of particlesxf→xf @6#, which is difficult to
describe analytically@4#. Thus, to follow the evolution of the
interacting scalar fields after the first stage of preheating
~dominated by parametric resonance!, one must investigate
the full non-linear dynamics of the interacting scalars.

The Hartree approximation, which is often used for prob-
lems of nonequilibrium quantum field theory, is insufficient
here for several reasons. It fails when field fluctuations have
amplitudes comparable with that of the background field,
which occurs exponentially fast in our case. It does not take
into account the rescattering of particles. Moreover, in the
context of preheating there are diagrams beyond the Hartree
approximation that survive in theN→` limit and give com-
parable contributions to those included in the Hartree ap-
proximation@4,9#.

Fortunately, scalar fields with high occupation numbers
can be interpreted as classical waves, and the problem can be
treated with lattice simulations@11#. Such simulations pro-
vide approximate solutions to nonequilibrium quantum field
theory problems, and we believe they include the leading
physical effects.

Hybrid inflation models involve multiple scalar fields.
The simplest potential for two-field hybrid inflation is

V~f,s!5
l

4
~s22v2!21

g2

2
f2s2. ~2!

Inflation in this model occurs while the homogeneousf field
slow rolls from largef towards the bifurcation point atf
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5(Al/g)v ~due to the slight lift of the potential inf direc-
tion!. Oncef(t) crosses the bifurcation point, the curvature
of the s field, ms

2[]2V/]s2, becomes negative. This nega-
tive curvature results in exponential growth ofs fluctuations.
Inflation then ends abruptly in a ‘‘waterfall’’ manner. It was
recently found@5# that there is strong preheating in hybrid
inflation, but its character is quite different from preheating
based on parametric resonance.

One reason to be interested in hybrid inflation is that it
can be easily implemented in supersymmetric theories. In
particular, for illustration we will use supersymmetricF-term
inflation as an example of a hybrid model.

III. CALCULATIONS IN CHAOTIC INFLATION

In this section we present the results of our numerical
lattice simulations of the dynamics of interacting scalars af-
ter inflation. We discuss in detail one simple model that we
have chosen to illustrate the general properties of thermali-
zation after preheating. The next section will discuss ther-
malization in the context of other models.

A. Model

The example we have chosen to focus on is chaotic infla-
tion with a quartic inflaton potential. The inflatonf has a
four-leg coupling to another scalar fieldx, which in turn can
couple to one or more other scalarss i . The potential for this
model is

V5
1

4
lf41

1

2
g2f2x21

1

2
hi

2x2s i
2 . ~3!

The equations of motion for the model~3! are given by

f̈13
ȧ

a
ḟ2

1

a2¹2f1~lf21g2x2!f50 ~4!

ẍ13
ȧ

a
ẋ2

1

a2¹2x1~g2f21hi
2s i

2!x50 ~5!

s ï13
ȧ

a
s i̇2

1

a2 ¹2s i1~hi
2x2!s i50. ~6!

We also included self-consistently the evolution of the scale
factor a(t). The model described by these equations is a
conformal theory, meaning that the expansion of the universe
can be~almost! eliminated from the equations of motion by
an appropriate choice of variables@9#. See the Appendix for
more information on the lattice simulations we used to solve
these equations, including information on the initial condi-
tions and the rescaled units we used in the calculations and in
the plots we show here.

Preheating in this theory in the absence of thes i fields
was described in@9#. For g2*l the fieldx will experience
parametric amplification, rapidly rising to exponentially
large occupation numbers. In the absence of thex field ~or
for sufficiently small g) f will be resonantly amplified
through its own self-interaction, but this self-amplification is

much less efficient than the two-field interaction. The results
shown here are forl59310214 @for Cosmic Background
Explorer ~COBE! normalization# and g25200l. When we
add a third field we useh1

25100g2 and when we add a fourth
field we useh2

25200g2.

B. Output variables

There are a number of ways to illustrate the behavior of
scalar fields, and different ones are useful for exploring dif-
ferent phenomena. The raw data are the value of the field
f (t,xW ) or, equivalently, its Fourier transformf k(t). One of
the simplest quantities one can extract from these values is
the variance

^@ f ~ t !2 f̄ ~ t !#2&5
1

~2p!3E d3ku f k~ t !u2, ~7!

where the integral does not include the contribution of a
possible delta function atkW50, representing the mean value
f̄ .

One of the most interesting variables to calculate is the
~comoving! number density of particles of thef field,

nf~ t ![
1

~2p!3E d3knk~ t !, ~8!

wherenk is the ~comoving! occupation number of particles:

nk~ t ![
1

2vk
u ḟ ku21

vk

2
u f ku2 ~9!

vk[Ak21me f f
2 ~10!

me f f
2 [

]2V

] f 2 . ~11!

For the model~3! this effective mass is given by

me f f
2 5H 3l^f2&1g2^x2&

g2^f2&1hi
2^s i

2&

hi
2^x2&

~12!

for f, x, ands i , respectively. For the classical waves off
that we are dealing with,nk corresponds to an adiabatic in-
variant of the waves. Formula~9! can be interpreted as a
particle occupation number in the limit of large amplitude of
the f field. As we will see below this occupation number
spectrum contains important information about thermaliza-
tion. Notice that the effective mass of the particles depends
on the variances of the fields and may be significant and time
dependent. The momenta of the particles do not necessarily
always exceed their masses, meaning the interacting scalar
waves are not necessarily always in the kinetic regime. In
particular this means that in general we cannot calculate the
energies of the fields simply as*d3kvknk because interac-
tion terms between fields can be significant.
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From here on we will usen without a subscript to denote
the total number density for a field, and will use the subscript
only to specify a particular field, e.g.nf . We usentot to
mean the sum of the total number density for all fields com-
bined. The occupation number will always be writtennk and
it should be clear from context which field is being referred
to.

In practice it is not very important whether you consider
the spectrumf k and the variance off or the spectrumnk and
the number density. Both sets of quantities qualitatively
show the same behavior in the systems we are considering.
The variance and number density grow exponentially during
preheating and evolve much more slowly during the subse-
quent stage of turbulence. Most of our results are shown in
terms of number densitynf and occupation numbernk be-
cause these quantities have obvious physical interpretations,
at least in certain limiting cases. We shall occasionally show
plots of variance for comparison purposes.

We will follow the evolution ofn(t) andnk(t). The evo-
lution of the total number densityntot is an indication of the
physical processes taking place. In the weak interaction limit
the scattering of classical waves via the interaction term
1
2 g2f2x2 can be treated using a perturbation expansion with
respect tog2. The leading four-leg diagrams for this interac-
tion corresponds to a two-particle collision (fx→fx),
which conservesntot . The regime where such interactions
dominate corresponds to ‘‘weak turbulence’’ in the terminol-
ogy of the theory of wave turbulence@12#. If we seentot
conserved, it will be an indication that these two-particle
collisions constitute the dominant interaction. Conversely,
violation of ntot(t)5const will indicate the presence of
strong turbulence, i.e., the importance of many-particle col-
lisions. Such higher order interactions may be significant de-
spite the smallness of the coupling parameterg2 ~and others!
because of the large occupation numbersnk . Later, when
these occupation numbers are reduced by rescattering, the
two-particle collision should become dominant andntot
should be conserved.

For a bosonic field in thermal equilibrium with a tempera-
tureT and a chemical potentialm the spectrum of occupation
numbers is given by

nk5
1

e(vk2m)/T21
. ~13!

~We use units in which\51.! Preheating generates large
occupation numbers for which Eq.~13! reduces to its classi-
cal limit

nk'
T

vk2m
, ~14!

which in turn reduces tonk}1/k for k@m,m andnk'const
for k!m,m. We will compare the spectrumnk to this form
to judge how the fields are thermalizing. Here we consider
the chemical potential of an interacting scalar fields as a free
parameter.

Unless otherwise indicated all of our results are shown in
comoving coordinates that, in the absence of interactions,

would remain constant as the universe expanded. Note also
that for most of our discussion we consider field spectra only
as a function ofuk uW , defined by averaging over spherical
shells ink space. For a Gaussian field these spectra contain
all the information about the field, and even for a non-
Gaussian field most useful information is in these averages.
This issue is discussed in more detail in Sec. V.

C. Results

The key results for this model are shown in Figs. 1–8,
which show the evolution ofn(t) with time for each field
and the spectrumnk for each field at a time long after the end
of preheating. These results are shown for runs with one field
(f only!, two fields (f andx), and three and four fields~one
and twos i fields respectively!. We will begin by discussing
some general features common to all of these runs and then
comment on the runs individually.

All of the plots ofn(t) show an exponential increase dur-
ing preheating, followed by a gradual decrease that asymp-
totically slows down. See for example Fig. 9. This exponen-
tial increase is a consequence of explosive particle
production due to parametric resonance. This regime is fairly
well understood@9#. After preheating the fields enter a tur-
bulent regime, during whichn(t) decreases. This initial, fast
decrease can be interpreted as a consequence of the many-
particle interactions discussed above; asnk shifts from low to
high momenta the overall number decreases. Realistically,
however, the onset of weak turbulence should be accompa-
nied by the development of a compensating flow towards
infrared modes, which we would be unable to see because of
our finite box size. Thus the continued, slow decrease inn(t)
well into the weak turbulent regime is presumably a conse-
quence of the lack of very long wavelength modes in our
lattice simulations.

To see why this shift is occurring look at the spectrank
~Figs. 5–8; see also@7,13#!. Even long after preheating the
infrared portions of some of these spectra are tilted more
sharply than would be expected for a thermal distribution
~14!. Even more importantly, many of them show a cutoff at
some momentumk, above which the occupation number falls
off exponentially. Both of these features, the infrared tilt and
the ultraviolet cutoff, indicate an excess of occupation num-
ber at lowk relative to a thermal distribution. This excess
occurs because parametric resonance is typically most effi-
cient at exciting low momentum modes, and becomes com-
pletely inefficient above a certain cutoffk* . A clear picture
of how the flow to higher momenta reduces these features
can be seen in Fig. 10, which shows the evolution of the
spectrumnk for x in the two field model.

Figure 10 illustrates the initial excitation of modes in par-
ticular resonance bands, followed by a rapid smoothing out
of the spectrum. The ultraviolet cutoff is initially at the mo-
mentum k* where parametric resonance shuts down, but
over time the cutoff moves to higherk as more modes are
brought into the quasi-equilibrium of the infrared part of the
spectrum. Meanwhile the infrared section is gradually flat-
tening as it approaches a true thermal distribution. During
preheating the excitation of the infrared modes drives this
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FIG. 1. V51/4lf4. ~Note that the vertical scale is larger than
for the subsequent plots.!

FIG. 2. V51/4lf411/2g2f2x2, g2/l5200. The upper curve
representsnx .

FIG. 3. V51/4lf411/2g2f2x211/2h2x2s2, g2/l5200, h2

5100g2. The highest curve isnf . The number density ofx dimin-
ishes whenns grows.

FIG. 4. V51/4lf411/2g2f2x211/2hi
2x2s i

2 , g2/l5200, h1
2

5200g2, h2
25100g2. The pattern is similar to the three-field case

until the growth ofs2.

FIG. 5. V51/4lf4.
FIG. 6. V51/4lf411/2g2f2x2, g2/l5200. The spectra off

andx are nearly identical.

OCCUPATION NUMBER VS MOMENTUM

NUMBER DENSITY VS TIME
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slope to large, negative values. From then on it gradually
approaches thermal equilibrium~i.e., a slope of21 to 0
depending on the chemical potential and the mass!. The re-
laxation time for the equilibrium is significantly shorter than
that given by formula 1/ns int . This estimate is valid for
dilute gases of particles, but in our case the large occupation
numbers amplify the scattering amplitudes@4#.

Figure 11 shows the evolution of the variances^( f

2 f̄)2& for the two field model. As indicated above it shows
all the same qualitative features as the evolution ofn for that
model.

We can now go on to point out some differences between
the models, i.e., between runs with different numbers of
fields. The one field model~purelf4) shows the basic fea-
tures discussed above, but the tilt in the spectrum is still very
large at the end of the simulation andnf is decreasing very
slowly compared to the spectral tilt and change inn we see
in the two field case. This difference occurs because the in-
teractions betweenf andx greatly speed up the thermaliza-
tion of both fields. In the one field casef can only thermal-
ize via its relatively weak self-interaction.

The spectra in the two field run also show a novel feature,
namely that the spectra forf andx are essentially identical,
which means, among other things,

nf'nx . ~15!

This matching of the two spectra occurs shortly after pre-
heating and from then on the two fields evolve identically
~except for the remaining homogeneous component off). A
posteriori this result can be understood as follows. Looking
at the potentiallf41g2f2x2, the second term dominates
because of the hierarchy of coupling strengthsg25200l. So
the potentialV'g2f2x2 is symmetric with respect to the
two fields, and therefore they act as a single effective field.

Figures 3 and 7 show the effects of adding an additional
decay channel forx. The interaction ofx and s does not
affect the preheating ofx, but does drags exponentially
quickly into an excited state. The fields is exponentially
amplified not by parametric resonance, but by its stimulated
interactions with the amplifiedx field. Unlike amplification
by preheating, this direct decay nearly conserves particle
number, with the result thatnx decreases ass grows, and the
spectra off andx are no longer identical. Insteadx ands
develop nearly identical spectra,

nx'ns,nf , ~16!

FIG. 7. V51/4lf411/2g2f2x211/2h2x2s2, g2/l5200, h2

5100g2. Thex ands spectra are similar, buts rises in the infra-
red. The spectrum off is markedly different from the others.

FIG. 8. V51/4lf411/2g2f2x211/2hi
2x2s i

2 , g2/l5200, h1
2

5200g2, h2
25100g2. All fields other than the inflaton have nearly

identical spectra.

FIG. 9. Number densityn for V5
1
4 lf41

1
2 g2f2x2. The plots

are, from bottom to top at the right of the figure,nf , nx , andntot .
The dashed horizontal line is simply for comparison. The end of
exponential growth and the beginning of turbulence~i.e., the mo-
ment t* ) occurs around the time whenntot reaches its maximum.

FIG. 10. Evolution of the spectrum ofx in the model V
5

1
4 lf41

1
2 g2f2x2. Red plots correspond to earlier times and blue

plots to later ones. For black and white viewing: The sparse, lower
plots all show early times. In the thick bundle of plots higher up the
spectrum is rising on the right and falling on the left as time
progresses.
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and they both thermalize~together! much more rapidly than
x did in the absence ofs. There is a looser relationshipnf
'ns1nx , whose accuracy depends on the couplings. The
inflaton, meanwhile, thermalizes much more slowly; note the
low k of the cutoff in thef spectrum in Fig. 7. By contrast,
there is no visible cutoff in the spectra ofx ands and the tilt
is relatively mild. The most striking property of this chain of
interaction is the grouping of fields;x ands behave identi-
cally to each other and differently fromf. This again can be
understood by the hierarchy of coupling constants,h2

5100g2520 000l. The termh2x2s2 is dominant and putsx
ands on an equal footing.

Varying the couplingh did not change the overall behav-
ior of the system, but it changed the time at whichs grew. In
the limiting caseh@g, s grew withx during preheating and
remained indistinguishable from it right from the start.~We
found this, for example, forh2510 000g2.!

When we added a seconds field we found that thes field
most strongly coupled tox would grow very rapidly and the
more weakly coupled one would then grow relatively slowly.
Note for example thatns2 in Fig. 8 grows more slowly than
ns in Fig. 7 despite the fact that they have the same coupling
to x. In the four field casenx is reduced when the more
strongly coupleds field grows and this slows the growth of
the more weakly coupled one. Nonetheless, the addition of

anothers field once again sped up the thermalization ofx
and thes fields. The three fieldsx, s1, ands2 once again
have identical spectra

nx'ns1'ns2,nf , ~17!

but in the four field case by the end of the run they look
indistinguishable from thermal spectra. If there is an ultra-
violet cutoff for these spectra, it is at momenta higher than
can be seen on the lattice we were using. Again, we notice a
loose relationshipnf'nx1ns11ns2. in this case.

We close this section with a few words about the effective
masses of the fields, Eq.~11!. All the masses are scaled in
the comoving frame; i.e., we considera2me f f

2 , andm is mea-
sured in units of momentum~see the Appendix!. Figure 12
shows the evolution of the effective masses in the two field
model. Note that the vertical axis of these plots is in the same
comoving units as the horizontal~k! axes of the spectra plots.
Since the momentum cutoff was of orderk;5 – 10~see Fig.
10! the mass off was consistently smaller than the typical
momenta of the field. By contrastmx started out much larger
and only gradually decreased. The fluctuations ofx remained
massive through preheating~although with a physical mass
;1/a) and for quite a while afterwards the typical momen-
tum of these fluctuations wask;m.

Figure 13 shows the evolution of the effective masses for
the three field model. Once againmf remains small. Al-
thoughms grows large briefly it quickly subsides. However,
mx , with contributions froms and f, remains relatively
large. Note, however, that the spectrum ofx has no clear
cutoff afters has grown, so it is difficult to say whether this
mass exceeds a ‘‘typical’’ momentum scale or not.

IV. OTHER MODELS OF INFLATION
AND INTERACTIONS

The model~3! was chosen to illustrate our basic results
becauself4 inflation and preheating is relatively simple and
well studied. Our main interest, however, is in universal fea-
tures of thermalization. In this section we therefore more
briefly discuss our results for a variety of other models. First

FIG. 11. Variances forV5
1
4 lf41

1
2 g2f2x2. The upper plot

shows^(f2f̄)2& and the lower plot showŝ(x2x̄)2&.

FIG. 12. Effective masses forV5
1
4 lf41

1
2 g2f2x2 as a func-

tion of time in units of comoving momentum. The lower plot ismf

and the upper one ismx .

FIG. 13. Time evolution of the effective masses for the model
V5

1
4 lf41

1
2 g2f2x21

1
2 h2x2s2. From bottom to top on the right

hand side the plots showmf , ms , andmx .
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we continue withlf4 inflation by discussing variants on the
interaction potential described above. Next we discuss ther-
malization inm2f2 models of chaotic inflation. Finally we
discuss hybrid inflation.

A. Variations of chaotic inflation with a quartic potential

We looked at several simple variants of the potential~3!.
We considered a model with a further decay channel fors so
that the total potential was

V5
1

4
lf41

1

2
g2f2x21

1

2
h1

2x2s21
1

2
h2

2s2g2. ~18!

Settingh15h2 we found that for this four field model the
evolution of the field fluctuations, spectra, and number den-
sity were qualitatively similar to those in the four field model
~3!. We found that at late times

nx'ns'ng,nf . ~19!

The fieldsx, s, andg formed a group with nearly identical
spectra and evolution and rapid thermalization, whilef re-
mained distinct and thermalized more slowly. Compare these
results to the four field model results in Figs. 4 and 8.

We also considered parallel decay channels forf:

V5
1

4
lf41

1

2
g1

2f2x21
1

2
g2

2f2g21
1

2
h2x2s2. ~20!

Settingg15g2 andh25100g1
2 we found that, at late times,

nf'ng.nx'ns . ~21!

In other words the four fields formed into two groups of two,
with each group having a characteristic number density evo-
lution.

Finally we looked at adding a self-interaction term forx,

V5
1

4
lff41

1

2
g2f2x21

1

4
lxx4 ~22!

with lx5g2, and found that the results were essentially un-
changed from those of the two field runs with nox4 term.
Thex self-coupling caused the spectra off andx to deviate
slightly from each other, but their overall evolution pro-
ceeded very similarly to the case with nox self-interaction
term.

B. Chaotic inflation with a quadratic potential

We also considered chaotic inflation models with an
m2f2 inflaton potential. Figures 14–17 show results for the
model

V5
1

2
m2f21

1

2
g2f2x21

1

2
h2x2s2, ~23!

with m51026M p'1.2231013 GeV ~for COBE!, g252.5
3105m2/M p

2 , andh25100g2. ~See the Appendix for more
details.! We considered separately the case of two fieldsf
and x and three fieldsf, x, and s. This model exhibits

parametric resonance similar to the resonance in quartic in-
flation @4#, which results in the rapid growth ofn seen in
these figures. The spectra produced in this way are once
again tilted towards the infrared. In the two field case,f and
x do not have identical spectra as they did for quartic infla-
tion. This is because the coupling term 1/2g2f2x2 redshifts
more rapidly than the mass term 1/2m2f2, so the latter re-
mains dominant in the potential, which is therefore not sym-
metric betweenf andx. In the three field case we again see
similar spectra forx ands, although they are not as indis-
tinguishable as they were inlf4 theory. The basic features
of rapid growth ofn, high occupation of infrared modes, and
then a flux of number density towards ultraviolet modes and
a slow decrease inntot are all present as they were forlf4

theory. The shape of thef spectrum does not appear ther-
mal, but it is unclear if this spectrum is compatible with
Kolmogorov turbulence.

C. Hybrid inflation

Preheating has been studied in many different versions of
hybrid inflation, mostly only at the early stages when the
equations for the fluctuations can be linearized. It had been
thought until recently that preheating was not a universal
process in hybrid inflation. In our recent study@5#, however,
we found that there is generally a very strong preheating in
hybrid models, but its character is quite different from pre-
heating based on parametric resonance. We discuss in detail
in a separate publication@5# our recent analytical and nu-
merical studies of preheating in hybrid inflation models, in-
cluding a simple two-field model~2! as well as more com-
plex supersymmetric~SUSY! F-term andD-term models. As
with parametric resonance, the result of the instability is the
exponential growth of long-wavelength modes of the fields.

In this paper we are mostly interested in preheating in the
non-inflaton sector and the nonlinear stage after preheating.
In @5# we studied the instability in the inflaton sector of the
hybrid model, i.e., the decay of the homogeneous fields and
excitations of their fluctuations. Here we take a complemen-
tary approach and consider the dynamics of the model with
an additional scalar fieldx coupled to the fields of the hybrid
inflation model. The potential is

V5
l

4
u4S̄S2v2u214luFu2~ uSu21uS̄u2!1h2x2uSu2,

~24!

wherel52.531025 andh252l. HereF, S andS̄ are the
complex scalar fields of the inflaton sector andx is an addi-
tional matter field. Inflation occurs along of theF direction

for ^F&@v, when S5S̄50. When the magnitude of the
slow-rolling fieldF reaches the valuêuFcu&5v/2 spontane-
ous symmetry breaking occurs and theS fields become ex-
cited. It can be shown that at the end of inflation and the start
of symmetry breaking the complicated potential~24! can be
effectively reduced to the simple two field potential~2!

~wheref and s are combinations ofF and S, S̄ and g2

5 1
2 l) plus the coupling term withh2x2uSu2.
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Figure 18 shows the evolution of the six degrees of free-
dom of the inflaton sector as well as the fieldx. We see that
all of the inflaton fields except Im(F) are excited very
quickly. Later the fieldsx and Im(F) are dragged into ex-
cited states as well. This dragging corresponds to preheating
in the non-inflaton sector. The fieldsx and Im(F) are ex-
cited by their stimulated interactions with the rest of the
fields. The result of this amplification is a turbulent state that
evolves towards equilibrium very similarly to the chaotic
models. Although the details of inflation and preheating are
very different in hybrid and chaotic models, we found that
once a matter field has been amplified, the thermalization
process proceeds in the same way.

V. ONSET OF CHAOS, LYAPUNOV EXPONENTS
AND STATISTICS

Interacting waves of scalar fields constitute a dynamical
system, meaning there is no dissipation and the system can
be described by a Hamiltonian. Dynamical chaos is one of

the features of wave turbulence. In this section we address
the question if, how and when the onset of chaos takes place
after preheating.

The scalar field fluctuations produced during preheating
are generated in squeezed states@14,4# that are characterized
by correlations of phases between modeskW and2kW . Because
of their large amplitudes, we can consider these fluctuations
to be standing classical waves with definite phases. During
the linear stage of preheating, before interactions between
modes become significant, the evolution of these waves may
be or may not show chaotic sensitivity to initial conditions.
Indeed, for wide ranges of coupling parameters parametric
resonance has stochastic features@4,9#, and the issue of the
numerical stability of parametric resonance has not been in-
vestigated. When interaction~rescattering! between waves
becomes important, the waves become decoherent. At this
stage the waves have well-defined occupation numbers but
not well-defined phases, and the random phase approxima-
tion can be used to describe the system. This transition sig-

FIG. 14. V51/2m2f211/2g2f2x2, g2M p
2/m252.53105. The

upper curve representsnx .
FIG. 15. V51/2m2f211/2g2f2x211/2h2x2s2, g2M p

2/m2

52.53105, h25100g2. The highest curve isnx . The field that
grows the latest iss.

FIG. 16. V51/2m2f211/2g2f2x2, g2M p
2/m252.53105. The

upper curve represents the spectrum ofx.

FIG. 17. V51/2m2f211/2g2f2x211/2h2x2s2, g2M p
2/m2

52.53105, h25100g2. Thex ands spectra are similar, while the
spectrum off rises much higher in the infrared.

NUMBER DENSITY VS TIME

NUMBER DENSITY VS MOMENTUM
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nals the onset of turbulence, following which the system will
gradually evolve towards thermal equilibrium.

To investigate the onset of chaos in this system we have
to follow the time evolution of two initially nearby points in
the phase space; see e.g.@8#. Consider two configurations of
a scalar fieldf and f 8 that are identical except for a small
difference of the fields at a set of pointsxA . We use
f (t,xWA), ḟ (t,xWA) to indicate the unperturbed field amplitude
and field velocity at the pointxWA and f 8(t,xWA), ḟ 8(t,xWA) to
indicate slightly perturbed values at this point. In other
words, the field configurations withf (t,xWA), ḟ (t,xWA) and
f 8(t,xWA), ḟ 8(t,xWA) are initially close points in the field phase
space. We then independently evolve these two systems
~phase space points! and observe how the perturbed field
values diverge from the unperturbed ones. Chaos can be de-
fined as the tendency of such nearby configurations in phase
space to diverge exponentially over time. This divergence is
parametrized by the Lyapunov exponent for the system, de-
fined as

l[
1

t
log

D~ t !

D0
~25!

whereD is a distance between two configurations andD0 is
the initial distance at time 0. Here we define the distance
D(t) simply as

D~ t !2[(
A

~ u f A82 f Au!21~ u ḟ A82 ḟ Au!2, ~26!

where we definef A[ f (t,xWA) and the summation is taken
over all the points where the configurations initially differed.

For illustration we present the calculations for the model
V5 1

4 lf41 1
2 g2f2x2. We did two lattice simulations of this

model with initial conditions that were identical except that
in one of them we multiplied the amplitude ofx by 1
11026 at 8 evenly spaced points on the lattice. Figure 19
shows the Lyapunov exponent for both fieldsf andx. Note
that the vertical axis islt rather than justl. During the
turbulent stage the parameterD(t) is artificially saturated to
a constant because of the limited phase space volume of the
system. Fortunately, the most interesting moment aroundt* ,
where the chaotic motion begins, is covered by this simple
approach. Certainly, the field dynamics continue to be cha-
otic in subsequent stages of the turbulence, and one can use
more sophisticated methods to calculate the Lyapunov expo-
nent during these stages@15,8#. However, this issue is less
relevant for our study.

Both fields show roughly the same rate of growth ofl,
but lx grows much earlier thanlf and therefore reaches a
higher level. The reason for this is simple. The amplitude of
x is initially very small and grows exponentially, so even in
the absence of chaos we would expect that during preheating
the differencex8(t,xWA)2x(t,xWA) must grow exponentially,
proportionally tox; exp@*dtm(t)# itself. So this exponential
growth is not a true indicator of chaos.

To get around this problem and define the onset of chaos
in the context of preheating more meaningfully we introduce
a normalized distance function

D~ t ![(
A

S f A82 f A

f A81 f A
D 2

1S ḟ A82 ḟ A

ḟ A81 ḟ A
D 2

, ~27!

which is well regularized even while the fieldx is being
amplified exponentially. Figure 20 shows the Lyapunov ex-
ponent

FIG. 18. Evolution of variances of fields in the model~24!. The
two fields that grow at late times, in order of their growth, arex and
Im(F).

FIG. 19. The Lyapunov exponentl for the fields f ~lower
curve! andx ~upper curve!. The vertical axis islt.

FIG. 20. The Lyapunov exponentl8 for the fieldsf and x
using the normalized distance functionD.

GARY FELDER AND LEV KOFMAN PHYSICAL REVIEW D 63 103503

103503-10



l8[
1

t
log

D~ t !

D~ t0!

for x. In this case we see the onset of chaos only at the end
of preheating. The plot for thef field is nearly identical. The
Lyapunov exponents for the fields werelf8 'lx8'0.2 ~in the
units of time adopted in the simulation!. This corresponds to
a very fast onset of chaos.

Thus we see that chaotic turbulence starts abruptly at the
end of preheating. Initially wave turbulence is strong and
rescattering does not conserve the total number of particles
ntot . The fastest variation inntot occurs at the same time as
the onset of chaos,t* ;100–200. We conjecture that the
entropy of the system of interacting waves is generated
around the momentt* . As the particle occupation number
drops, the turbulence will become weak andntot will be
conserved. Figure 9 clearly shows this evolution of the total
number of particlesntot in the model.

We also considered the statistical properties of the inter-
acting classical waves in the problem. The initial conditions
of our lattice simulations correspond to random Gaussian
noise. In thermal equilibrium, the field velocityḟ has Gauss-
ian statistics, while the fieldf itself departs from that unless it
has high occupation numbers. Figure 21 shows the probabil-

ity distribution of the fieldx during the weak turbulence
stage after preheating, and indeed the distribution is nearly
exactly Gaussian. Thus, at this stage we can treat the super-
position of classical scalar waves with large occupation num-
bers and random phases as random Gaussian fields.

During preheating, however, this Gaussian distribution is
altered. A simple measure of the Gaussianity of a field comes
from examining its moments. For a Gaussian field there is a
fixed relationship between the two lowest nonvanishing mo-
ments, namely

3^df2&25^df4&, ~28!

wheredf[f2^f& and angular brackets denote ensemble
averages or, equivalently, large spatial averages. We mea-
sured the ratio of the left and right hand sides of this equa-
tion for f and x and their time derivatives using spatial
averages over the lattice. The results are shown in Figs. 22
and 23. As expected, the fields are initially Gaussian, deviate
from it during preheating, and rapidly return to it afterwards.
The plots for the moments of the field velocities are similar,
although the field velocities remain closer to Gaussianity.

It is quite important to notice that Gaussianity is broken
around the end of preheating and the beginning of the strong
turbulence. In particular, it makes invalid the use of the Har-
tree approximation beyond this point.

VI. RULES OF THERMALIZATION

This paper is primarily an empirical one. We have nu-
merically investigated the processes of preheating and ther-
malization in a variety of models and determined a set of
rules that seem to hold generically. These rules can be for-
mulated as follows:

(1) In many, if not all viable models of inflation there
exists a mechanism for exponentially amplifying fluctuations
of at least one fieldx. These mechanisms tend to excite long-
wavelength excitations, giving rise to a highly infrared spec-
trum.

The mechanism of parametric resonance in single-field
models of inflation has been studied for a number of years.

FIG. 21. The probability distribution function for the fieldx
after preheating. Dots show a histogram of the field and the solid
curve shows a best-fit Gaussian.

FIG. 22. Deviations from Gaussianity for the fieldf as a func-
tion of time. The solid line shows 3^df2&2/^df4& and the dashed

line shows 3̂dḟ2&2/^dḟ4&.

FIG. 23. Deviations from Gaussianity for the fieldx as a func-
tion of time. The solid line shows 3^dx2&2/^dx4& and the dashed

line shows 3̂dẋ2&2/^dẋ4&.
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Contrary to the claims of some authors, this effect is quite
robust. Adding additional fields~e.g. ours fields! or self-
couplings ~e.g. x4) has little or no effect on the resonant
period. Moreover, in many hybrid models a similar effect
occurs due to other instabilities. The qualitative features of
the fields arising from these processes seem to be largely
independent of the details of inflation or the mechanisms
used to produce the fields.

(2) Exciting one fieldx is sufficient to rapidly drag all
other light fields with whichx interacts into a similarly ex-
cited state.

We have seen this effect when multiple fields are coupled
directly tox and when chains of fields are coupled indirectly
to x. All it takes is one field being excited to rapidly amplify
an entire sector of interacting fields. These second generation
amplified fields will inherit the basic features of thex field;
i.e., they will have spectra with more energy in the infrared
than would be expected for a thermal distribution.

(3) The excited fields will be grouped into subsets with
identical characteristics (spectra, occupation numbers, effec-
tive temperatures) depending on the coupling strengths.

We have seen this effect in a variety of models. For ex-
ample in the models~3! and ~18! the x ands fields formed
such a group. In general, fields that are interacting in a group
such as this will thermalize much more quickly than other
fields, presumably because they have more potential to inter-
act and scatter particles into high momentum states.

(4) Once the fields are amplified, they will approach ther-
mal equilibrium by scattering energy into higher momentum
modes.

This process of thermalization involves a slow redistribu-
tion of the particle occupation number as low momentum
particles are scattered and combined into higher momentum
modes. The result of this scattering is to decrease the tilt of
the infrared portion of the spectrum and increase the ultra-
violet cutoff of the spectrum. Within each field group the
evolution proceeds identically for all fields, but different
groups can thermalize at very different rates.

VII. DISCUSSION

We investigated the dynamics of interacting scalar fields
during post-inflationary preheating and the development of
equilibrium immediately after preheating. We used three di-
mensional lattice simulations to solve the non-linear equa-
tions of motion of the classical fields.

There are a number of problems both from the point of
view of realistic models of early universe preheating and
from the point of view of non-equilibrium quantum field
theory that we have not so far addressed. In this section we
shall discuss some of them.

Although we considered a series of models of inflation
and interactions, we mostly restricted ourselves to four-leg
interactions.~The sole exception was the hybrid inflation
model, which develops a three-leg interaction after symme-
try breaking.! This meant that we still had a residual homo-
geneous or inhomogeneous inflaton field. In realistic models
of inflation and preheating we expect the complete decay of
the inflaton field.~There are radical suggestions to use the

residuals of the inflaton oscillations as dark matter or quin-
tessence, but these require a great deal of fine tuning.! The
problem of residual inflaton oscillations can be easily cured
by three-leg interactions. In the scalar sector three-leg inter-
actions of the typeg2vfx2 may result in stronger preheat-
ing. Yukawa couplingshc̄fc will lead to parametric exci-
tations of fermions@16#.

There are subtle theoretical issues related to the develop-
ment of precise thermal equilibrium in quantum and classical
field theory due to the large number of degrees of freedom;
see, e.g.,@17#. In our simulations we see the flattening of the
particle spectrank and we describe this as an approach to
thermal equilibrium, but in light of these subtleties we
should clarify that we meanapproximatethermal equilib-
rium.

Often classical scalar fields in the kinetic regime display
transient Kolmogorov turbulence, with a cascade towards
both infrared and ultraviolet modes@12,18#. In our systems it
appears that the flux towards ultraviolet modes is occurring
in such a way as to bring the fields closer to thermal equi-
librium ~14!. Indeed, the slope of the spectrank at the end of
our simulations is close to21. However, given the size of
the box in these simulations we can little say about the phase
space flux in the direction of infrared modes. This question
could be addressed, for example, with the complementary
method of chains of interacting oscillators; see@18#. This is
an interesting problem because an out-of-equilibrium Bose
system of interacting scalars with a conserved number of
particles can, in principle, develop a Bose condensate. It
would be interesting to see how the formation of this con-
densate would or would not take place in the context of
preheating in an expanding universe. One highly speculative
possibility is that a cosmological Bose condensate could play
the role of a late-time cosmological constant.

The highlights of our study for early universe phenom-
enology are the following. The mechanism of preheating af-
ter inflation is rather robust and works for many different
systems of interacting scalars. There is a stage of turbulent
classical waves where the initial conditions for preheating
are erased. Initially, before all the fields have settled into
equilibrium with a uniform temperature, the reheating tem-
perature may be different in different subgroups of fields.
The nature of these groupings is determined by the coupling
strengths.
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APPENDIX: THE LATTICE CALCULATIONS

All of the numerical calculations reported here were pro-
duced with the programLATTICEEASY, developed by Gary
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Felder and Igor Tkachev.1 In this appendix we merely sum-
marize the basics of the calculation; more details can be
found on the website. All quantities are measured in Planck
units (M p'1.2231019 GeV) and we usef to denote a ge-
neric scalar field.

The equations of motion for the fields and the scale factor
a are solved on a three-dimensional lattice using finite dif-
ferencing for spatial derivatives and a second-order stag-
gered leapfrog algorithm for time evolution. The evolution
equation for a scalar field in an expanding universe is

f̈ 13
ȧ

a
ḟ 2

1

a2 ¹2f 1
]V

] f
50 ~A1!

while the evolution of the scale factor is given by the Fried-
mann equations

S ȧ

a
D 2

5
8p

3
r ~A2!

ä52
4p

3
~r13p!a ~A3!

where the energy density and pressure of a scalar field are
given by

r5
1

2
ḟ 21

1

2
u¹ f u21V ~A4!

p5
1

2
ḟ 22

1

6
u¹ f u22V. ~A5!

In a leapfrog scheme the field values and derivatives are
known at different times, so it is convenient to combine Eqs.
~A2! and ~A3! to eliminate the field derivatives, giving

ä522
ȧ2

a
1

8p

3 S 1

3
u¹ f u22a2VD , ~A6!

where the gradient is summed over all fields.
The initial conditions were set in momentum space and

then Fourier transformed to give the initial field values on
the grid. Starting at the end of inflation we gave each mode a
random phase and a Gaussian distributed amplitude with rms
value

^u f ku2&5
1

A2vk

~A7!

where

vk
25k21m25k21

]2V

] f 2 . ~A8!

In simulations it is useful to use energy conservation as a
check of accuracy. Energy conservation in an expanding uni-
verse is described by the equation

ṙ13
ȧ

a
~r1p!50. ~A9!

In principle one could verify that this equation was being
satisfied during the run, but in practiceṙ is more difficult to
evaluate thanr. Fortunately there is another way to accom-
plish the same thing. Equation~A9! can be derived from the
two Friedmann equations~A2! and ~A3!, so checking that
those two equations are being simultaneously satisfied is
equivalent to checking Eq.~A9!. Since the actual equation
for the evolution of the scale factor is a combination of these
two Friedmann equations, we were able to check energy con-
servation by calculating the ratio ofȧ/a to (8p/3)r as the
program progressed.@We verified that checking Eq.~A3!
gave the same results.# For thelf4 runs the theory is nearly
conformal, so almost the same behavior is obtained with or
without the expansion of the universe~if one uses conformal
variables!. So we duplicated a number of our runs without
expansion and directly checked energy conservation. In all
cases the results of these two methods of checking our accu-
racy were nearly identical. In every run we did, including
cases where we did the run with and without expansion,
energy was conserved to within half a percent over the entire
run.

We also did a number of trials to ensure that our results
were not sensitive to our time step, box size, or number of
gridpoints.

The field equations were simplified by variable redefini-
tions. The redefinitions used and the resulting field equations
for the chaotic inflation models described in the paper are
given below.~Details on the hybrid inflation model can be
found in @5#.! The units for the fields, times, and momenta in
all the plots in the paper are measured in Planck units res-
caled as indicated below. Before these rescalings, time was
in physical units and distances in comoving coordinates. The
momentak are also measured in comoving coordinates and
they are changed by the rescalings below as 1/xW .

Equations for lf4

For the model~3! we redefined the field and spacetime
variables as

f pr5
a

f0
f , xW pr5Alf0xW , dtpr5Alf0

dt

a
~A10!

wheref050.342M p is the value of the inflaton at the end of
inflation ~i.e., at the start of our simulations!. This value was
determined from linear numerical calculations as the point at
which ]fpr /]tpr50. Forl59310214 one unit of program
~conformal! time isa(Alf0)21tPlanck;a10236 sec and one
unit of program momentum is a21Alf0EPlanck

1The program and documentation are available on the web at
http://physics.stanford.edu/gfelder/latticeeasy/ The site also in-
cludes all the files needed to implement the particular models dis-
cussed in this paper so anyone can easily reproduce our results.
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;a211012 GeV, wherea is the scale factor. In these vari-
ables the evolution equations became

fpr9 2¹pr
2 fpr1S fpr

2 1
g2

l
x i ,pr

2 2
a9

a Dfpr50 ~A11!

xpr9 2¹pr
2 xpr1S g2

l
fpr

2 1
hi

2

l
s i ,pr

2 2
a9

a Dxpr50

~A12!

s i ,pr9 2¹pr
2 s i ,pr1S hi

2

l
xpr

2 2
a9

a Ds i ,pr50

~A13!

a952
a82

a
1

8pf0
2

a K 1

3 (
f ields

(u¹pr f pru2)1
1

4
fpr

4

1
1

2

g2

l
fpr

2 xpr
2 1

1

2

hi
2

l
xpr

2 s i ,pr
2 L ~A14!

where primes denote differentiation with respect totpr and
angular brackets denote spatial averages over the grid.

Equations for m2f2

For the model~23! we used the following redefinitions:

f pr5
a3/2

f0
f , xW pr5mxW , dtpr5mdt ~A15!

where in this casef050.193M p . For m51026M p a unit of

program time corresponded tom21TPlanck;10230 sec and
a unit of program momentum corresponded to
a21mEPlanck;a211013 GeV. The evolution equations be-
came

fpr9 2a22¹pr
2 fpr2

3

4S a8

a D 2

fpr2
3

2

a9

a
fpr1fpr

1
g2

m2 f0
2a23xpr

2 fpr50 ~A16!

xpr9 2a22¹pr
2 xpr2

3

4S a8

a D 2

xpr2
3

2

a9

a
xpr1f0

2a23
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