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PHYSICAL REVIEW D, VOLUME 63, 103503

Development of equilibrium after preheating

Gary Felder
Department of Physics, Stanford University, Stanford, California 94305
and CITA, University of Toronto, 60 Saint George Street, Toronto, Ontario, Canada M5S 3H8

Lev Kofman
CITA, University of Toronto, 60 Saint George Street, Toronto, Ontario, Canada M5S 3H8
(Received 29 November 2000; published 12 April 2001

We present a fully nonlinear study of the development of equilibrium after preheating. Preheating is the
exponentially rapid transfer of energy from the nearly homogeneous inflaton field to fluctuations of other fields
and/or the inflaton itself. This rapid transfer leaves these fields in a highly nonthermal state with energy
concentrated in infrared modes. We have performed lattice simulations of the evolution of interacting scalar
fields during and after preheating for a variety of inflationary models. We have formulated a set of generic rules
that govern the thermalization process in all of these models. Notably, we see that once one of the fields is
amplified through parametric resonance or other mechanisms, it rapidly excites other coupled fields to expo-
nentially large occupation numbers. These fields quickly acquire nearly thermal spectra in the infrared, which
gradually propagates into higher momenta. Prior to the formation of total equilibrium, the excited fields group
into subsets with almost identical characteristiesy. group effective temperaturérhe way fields form into
these groups and the properties of the groups depend on the couplings between them. We also studied the onset
of chaos after preheating by calculating the Lyapunov exponent of the scalar fields.

DOI: 10.1103/PhysRevD.63.103503 PACS nunfer98.80.Cq

I. INTRODUCTION this thermalization stage depend on the constituents of the
fundamental Lagrangianl(é;,x;,#i,A,.h,,,...) and
The theory of inflation has been highly successful in ex-their couplings, so at first glance it would seem that a de-
plaining many of the initial conditions for the hot big bang scription of this process would have to be strongly model
model as well as providing a mechanism by which the seeddependent. We have found, however, that many features of
of large scale structure were formed. Typical models of in-this stage seem to hold generically across a wide spectrum of
flation are based on the slow-roll evolution of the homoge-nodels. This fact is understandable because the conditions at
neous inflaton scalar fiels ¢. Inflation ends when the the end of preheating are generally not qualitatively sensitive
slow-roll regime is dynamically terminated and the fig/d to the details of inflation. Indeed, at the end of preheating
begins to oscillate around the minimum of its effective po-and beginning of the turbulent stagdenoted byt, ), the
tential V() as in chaotic inflatiorf1] or “waterfalls” to-  fields are out of equilibrium. We have examined many mod-
wards the minimum ol as in hybrid inflation[2]. After  els and found that &, there is not much trace of the linear
inflation the homogeneous inflaton fiédildecays due to its Stage of preheating and conditionst atare not qualitatively
interactions with other fields or its self-interaction. If the sensitive to the details of inflation. We therefore expect that
inflaton decay into other fields were slow as in perturbatiorthis second, highly nonlinear, turbulent stage of preheating
theory, the created particles would settle into thermal equimay exhibit some universal, model-independent features.
librium as the inflaton decayed. However, the decay of the Although a realistic model would include one or more
inflaton typically occurs via rapid, non-perturbative mecha-Higgs-Yang-Mills sectors, we treat the simpler case of inter-
nisms collectively known as preheatif@]. The character of acting scalars. Within this context, however, we consider a
preheating may vary from model to model, e.g. parametrigiumber of different models including several chaotic and
excitation in chaotic inflatiori4] and another, specific type hybrid inflation scenarios with a variety of couplings be-
of preheating in hybrid inflatiofi5], but its distinct feature tween the inflaton and other matter fields.
remains the same: rapid amplification of one or more bosonic There are many questions about the thermalization pro-
fields to exponentially large occupation numbers. This am<cess that we set out to answer in our work. Could the turbu-
plification is eventually shut down by back reaction of thelent waves that arise after preheating be described by the
produced fluctuations. The end result of the process is a tutheory of (transient Kolmogorov turbulence or would they
bulent medium of coupled, inhomogeneous, classical wavedirectly approach thermal equilibrium? Could the relaxation
far from equilibrium([6]. time towards equilibrium be described by the naive estimate
Despite the development of our understanding of preheatF~ (noin) ~*, wheren is a density of scalar particles and
ing after inflation, the transition from this stage to a hotoj, iS @ cross section of their interaction? If the inflatén
Friedmann universe in thermal equilibrium has remainedvere decaying into a fielg, what effect would the presence
relatively poorly understood. A theory of the thermalization of a decay channet for the y field have on the thermaliza-
of the fields generated from preheating is necessary to bridg#n process? For that matter, would the presence sig-
the gap between inflation and the hot big bang. The details afificantly alter the preheating ¢f itself or even destroy it as
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suggested if7]? How strongly model dependent is the pro- mediately after inflation the background fiedgis moving
cess of thermalization; are there any universal features acro$ast and produces particles of the fields coupled to it. These
different models? Finally there is the question of chaos. It iscreated particles are mutually interacting and ultimately must
known that Higgs-Yang-Mills systems display chaotic dy-end up in thermal equilibrium. However, particles may be
namics during thermalizatio8]. The possibility of chaos in  created so fast that they spend some time in non-equilibrium
the case of a single, self-interacting inflaton was mentionedtates with very large occupation humbers.
in passing i 6], but when we began our work it was unclear  Consider chaotic inflation with the potential
at what stage of preheating chaos might appear, and in what
way. m N,
Because the systems we are studying involve strong, non- V(g)= 7¢ + Z¢ : @)
linear interactions far from thermal equilibrium, it is not pos-
sible to solve the equations of motion using linear analysis irSoon after the end of inflation the homogeneous inflaton field
Fourier space. Instead we solve the scalar field equations @(t) coherently oscillates around the minimum of its poten-
motion directly in position space using lattice simulations.tial with an amplitude on the order of a Planck mass. The
These simulations automatically take into account all nonlininflaton oscillations decay due to the creation of particles
ear effects of scattering and back reaction. Using these nunteracting with ¢. Let y be another scalar field coupling
merical results we have been able to formulate a set of enwith the inflaton field ag g?¢?y?. Particles of the field are
pirical rules that seem to govern thermalization afterproduced from the interaction of the quantum vacuum state
inflation. These rules qualitatively describe thermalization inof y with the coherently oscillating classical field. The
a wide variety of models. The features of this process are iglominant channel for this production is the non-perturbative
some cases very different from our initial expectations. mechanism of parametric excitation. Tjg mode functions
Section Il gives a brief review of preheating in different exponentially increase with time ag,= et where the
inflationary models. This review should serve to motivatecharacteristic exponent, is a model-dependent function
our study and place it in the broader context of inflationary[4, 9]. The copious production of particles constitutes the
cosmology. Sections Il and IV describe the results of ourfirst stage of preheating after inflati8]. This state can be
numerical calculations. Section Ill describes one simple chastudied with analytical methods developed4n9,10. How-
otic inflation model that we chose to focus on as a cleakver, very soon the amplitudes of the inhomogeneous modes
illustration of our results, while Sec. IV discusses how the(i_e_, the occupation numberk) of X become so |arge that
thermalization process occurs in a variety of other modelsthe back reaction of created particles must be taken into ac-
Section V describes the onset of chaos during preheating anghunt. The most important back-reaction effect will be the
includes a discussion of the measurement and interpretatiq@scattering of particley¢— x¢ [6], which is difficult to
of the Lyapunov exponent in this context. Section VI con-describe analyticallj4]. Thus, to follow the evolution of the
tains a list of empirical rules that we have formulated tojnteracting scalar fields after the first stage of preheating
describe thermalization after preheating. Section VII diS'(dominated by parametric resona}]cene must investigate
cusses these results and other aspects of non-equilibrium sG@e full non-linear dynamics of the interacting scalars.
lar field dynamics. Finally, there is an appendix that de- The Hartree approximation, which is often used for prob-
scribes our lattice simulations. lems of nonequilibrium quantum field theory, is insufficient
here for several reasons. It fails when field fluctuations have
amplitudes comparable with that of the background field,
which occurs exponentially fast in our case. It does not take
In this section we outline the context where the probleminto account the rescattering of particles. Moreover, in the
of thermalization after inflation arises. In the inflationary sce-context of preheating there are diagrams beyond the Hartree
nario, the very early universe expan@giasjexponentially —approximation that survive in thd— o limit and give com-
due to a vacuum-like equation of state. Such an equation gfarable contributions to those included in the Hartree ap-
state can arise in a number of different ways, most of whichproximation[4,9].
are based on a homogeneous condensate of one or more clas+ortunately, scalar fields with high occupation numbers
sical scalar fields. We will consider two types of inflationary can be interpreted as classical waves, and the problem can be
models. The first is chaotic inflatidr] with the single scalar treated with lattice simulationgl1]. Such simulations pro-
field potentialV(¢). The second is hybrid inflation, which Vide approximate solutions to nonequilibrium quantum field
involves several scalar field2]. The properties of these theory problems, and we believe they include the leading
models are widely discussed in the literature. We will bephysical effects.
dealing only with the decay of the homogeneous inflaton Hybrid inflation models involve multiple scalar fields.
condensate into inhomogeneous modes of the same or oth&he simplest potential for two-field hybrid inflation is
scalars and the subsequent interactions of these inhomoge-
neous modes as they approach thermal equilibrium. Any par-
ticles present before or during inflation are diluted by the
exponential expansion. Thus by the end of inflation all en-
ergy is contained in the potenti®l(¢, ...) of one ormore Inflation in this model occurs while the homogenequgeld
classical, slowly moving, homogeneous inflaton fields. Im-slow rolls from large¢ towards the bifurcation point ap

II. INFLATION AND PREHEATING

2
V(g0)= 3 (02?2 T s @

103503-2



DEVELOPMENT OF EQUILIBRIUM AFTER PREHEATING PHYSICAL REVIEW 363 103503

=(Ng)v (due to the slight lift of the potential igp direc-  much less efficient than the two-field interaction. The results
tion). Onceq(t) crosses the bifurcation point, the curvature shown here are fok =9x 10" * [for Cosmic Background

of the o field, m>=2V/do?, becomes negative. This nega- Explorer (COBE) normalizatiod and g®=200n. When we
tive curvature results in exponential growthoofluctuations. ~ add a third field we usk?= 10092 and when we add a fourth
Inflation then ends abruptly in a “waterfall” manner. It was field we useh3=200g2.

recently found[5] that there is strong preheating in hybrid

inflation, but its character is quite different from preheating B. Output variables

based on parametric resonance. ) .
One reason to be interested in hybrid inflation is that it 1Nere are a number of ways to illustrate the behavior of

can be easily implemented in supersymmetric theories. iscalar fields, and different ones are useful for exploring d_if-
particular, for illustration we will use supersymmetfigerm  ferent phenomena. Th? raw dgta are the value of the field
inflation as an example of a hybrid model. f(t,x) or, equivalently, its Fourier transform(t). One of

the simplest quantities one can extract from these values is

IIl. CALCULATIONS IN CHAOTIC INFLATION the variance

In this section we present the results of our numerical —n 1 3 2
lattice simulations of the dynamics of interacting scalars af- (fH-fO19)= (2m)3 d*kI (O] (@)
ter inflation. We discuss in detail one simple model that we
have chosen to illustrate the general properties of thermaliwvhere the integral does not include the contribution of a

zation after preheating. The next section will discuss ther'possible delta function &=0, representing the mean value

malization in the context of other models. T

One of the most interesting variables to calculate is the
(comoving number density of particles of tHefield,
The example we have chosen to focus on is chaotic infla-

A. Model

tion with a quartic inflaton potential. The inflatap has a = 1 Bt 8
four-leg coupling to another scalar field which in turn can ni(t)= (2m)° (), (8)
couple to one or more other scalars. The potential for this
model is wheren, is the (comoving occupation number of particles:
1 1 1 1
N A 2242020 " h2, 2,2 . o
k
The equations of motion for the mod@) are given by
w = k2 +mZ; (10
. a. 1
+3-¢— ZV2h+ (N p*+9%°x?) ¢=0 4 92V
a a Mz = —= (11)
. a1
Y+ 35)(_ ;V2X+(92¢2+ h?¢?)x=0 (5  For the model?3) this effective mass is given by
L 3N(¢?)+g%(x?)
oi+3 01— V20 + (hx?) =0, (6) mZ;=4 9% %) +hi(o?) (12)
h(x?)

We also included self-consistently the evolution of the scale
factor a(t). The model described by these equations is &or ¢, x, ando;, respectively. For the classical wavesfof
conformal theory, meaning that the expansion of the universghat we are dealing withp, corresponds to an adiabatic in-
can be(almos} eliminated from the equations of motion by variant of the waves. Formulé®) can be interpreted as a
an appropriate choice of variablgs]. See the Appendix for particle occupation number in the limit of large amplitude of
more information on the lattice simulations we used to solvethe f field. As we will see below this occupation number
these equations, including information on the initial condi-spectrum contains important information about thermaliza-
tions and the rescaled units we used in the calculations and tion. Notice that the effective mass of the particles depends
the plots we show here. on the variances of the fields and may be significant and time
Preheating in this theory in the absence of thefields  dependent. The momenta of the particles do not necessarily
was described ifi9]. For g?=\ the field y will experience always exceed their masses, meaning the interacting scalar
parametric amplification, rapidly rising to exponentially waves are not necessarily always in the kinetic regime. In
large occupation numbers. In the absence ofhieeld (or  particular this means that in general we cannot calculate the
for sufficiently smallg) ¢ will be resonantly amplified energies of the fields simply a&l*kw,n, because interac-
through its own self-interaction, but this self-amplification is tion terms between fields can be significant.
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From here on we will use without a subscript to denote would remain constant as the universe expanded. Note also
the total number density for a field, and will use the subscripthat for most of our discussion we consider field spectra only
only to specify a particular field, e.qi,. We usen,,; t0 as a function of|k], defined by averaging over spherical
mean the sum of the total number density for all fields comshells ink space. For a Gaussian field these spectra contain
bined. The occupation number will always be writghand  a|| the information about the field, and even for a non-
it should be clear from context which field is being referred Gaussian field most useful information is in these averages.

to. o _ ~ This issue is discussed in more detail in Sec. V.
In practice it is not very important whether you consider

the spectrunf, and the variance dfor the spectrunm, and

the number density. Both sets of quantities qualitatively C. Results

show the same behavior in the systems we are considering. The key results for this model are shown in Figs. 1-8,
The variance and number density grow exponentially duringvhich show the evolution ofi(t) with time for each field
preheating and evolve much more slowly during the subseand the spectrum, for each field at a time long after the end
quent stage of turbulence. Most of our results are shown igf preheating. These results are shown for runs with one field
terms of number density; and occupation number, be- (¢ only), two fields (¢ andy), and three and four fieldsne
cause these quantities have obvious physical interpretationgnd twoo; fields respectively We will begin by discussing

at least in certain limiting cases. We shall occasionally shovsome general features common to all of these runs and then

plots of variance for comparison purposes.
We will follow the evolution ofn(t) andn,(t). The evo-
lution of the total number density;,, is an indication of the

comment on the runs individually.
All of the plots ofn(t) show an exponential increase dur-
ing preheating, followed by a gradual decrease that asymp-

physical processes taking place. In the weak interaction limitotically slows down. See for example Fig. 9. This exponen-
the scattering of classical waves via the interaction termjal increase is a consequence of explosive particle
39°¢°x* can be treated using a perturbation expansion witfproduction due to parametric resonance. This regime is fairly
respect tag?. The leading four-leg diagrams for this interac- well understood9]. After preheating the fields enter a tur-
tion corresponds to a two-particle collisionpt— ¢x),  bulent regime, during which(t) decreases. This initial, fast
which conserves,;. The regime where such interactions decrease can be interpreted as a consequence of the many-
dominate corresponds to “weak turbulence” in the terminol-particle interactions discussed abovenashifts from low to

ogy of the theory of wave turbulendd2]. If we seen,,;  high momenta the overall number decreases. Realistically,
conserved, it will be an indication that these two-particlehowever, the onset of weak turbulence should be accompa-
collisions constitute the dominant interaction. Converselynied by the development of a compensating flow towards
violation of ny,(t)=const will indicate the presence of infrared modes, which we would be unable to see because of
strong turbulence, i.e., the importance of many-particle colour finite box size. Thus the continued, slow decreaseih
lisions. Such higher order interactions may be significant dewell into the weak turbulent regime is presumably a conse-

spite the smallness of the coupling parametefand others
because of the large occupation numbegs Later, when

quence of the lack of very long wavelength modes in our
lattice simulations.

these occupation numbers are reduced by rescattering, the To see why this shift is occurring look at the speatga

two-particle collision should become dominant ang,;
should be conserved.

(Figs. 5-8; see alspr,13)). Even long after preheating the
infrared portions of some of these spectra are tilted more

For a bosonic field in thermal equilibrium with a tempera- sharply than would be expected for a thermal distribution

tureT and a chemical potential the spectrum of occupation
numbers is given by

1

= Qo mlT—1 - (13

(We use units in whichh=1.) Preheating generates large
occupation humbers for which EQL3) reduces to its classi-
cal limit

-

o= p'

n=

14

which in turn reduces toyoc1/k for k>m,x andn,~const
for k<m, u. We will compare the spectrum, to this form

(14). Even more importantly, many of them show a cutoff at
some momenturk, above which the occupation number falls
off exponentially. Both of these features, the infrared tilt and
the ultraviolet cutoff, indicate an excess of occupation num-
ber at lowk relative to a thermal distribution. This excess
occurs because parametric resonance is typically most effi-
cient at exciting low momentum modes, and becomes com-
pletely inefficient above a certain cutdf . A clear picture

of how the flow to higher momenta reduces these features
can be seen in Fig. 10, which shows the evolution of the
spectrumn, for y in the two field model.

Figure 10 illustrates the initial excitation of modes in par-
ticular resonance bands, followed by a rapid smoothing out
of the spectrum. The ultraviolet cutoff is initially at the mo-
mentum k, where parametric resonance shuts down, but

to judge how the fields are thermalizing. Here we consideover time the cutoff moves to high&ras more modes are
the chemical potential of an interacting scalar fields as a frebrought into the quasi-equilibrium of the infrared part of the

parameter.

spectrum. Meanwhile the infrared section is gradually flat-

Unless otherwise indicated all of our results are shown irtening as it approaches a true thermal distribution. During
comoving coordinates that, in the absence of interactiongyreheating the excitation of the infrared modes drives this
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NUMBER DENSITY VS TIME

Number Density
1.x10'®

1.x10%*
1.x10%
1.x10%?
1.x10%

1.x108

1.x10° £
0 500 1000 1500 2000

FIG. 1. V=1/4\ ¢*. (Note that the vertical scale is larger than
for the subsequent plojs.

Number Density

1.x10%

1.x10%?

1.x10%0

1.0 5 0°

J

1.x108 L2 £
0 500 1000 1500 2000

FIG. 2. V=1/4\ ¢*+ 1/29°$?x?, g?/x=200. The upper curve
represents, .

=]

Number Density

1.x10% P
1.x10%?
1.x10%°
1.x108
1.x10° J
500

0

t

1000 1500 2000

FIG. 3. V=1/4\¢*+ 11297 %X+ 1/2h%x%a?, g2\ =200, h?
=100y2. The highest curve i84. The number density of dimin-
ishes whem,, grows.

n Number Density

oy

1% 10t

1.x10

1.x10°

1.x10’

100000. .
0 500 1000 1500 2000

FIG. 4. V=1/4\ ¢p*+ 1/29%¢*x*+ 1/2h*x?c?, g?/\=200, h?
=200g%, h3=100g>. The pattern is similar to the three-field case
until the growth ofo,.

OCCUPATION NUMBER VS MOMENTUM

Occupation Number: t=2400.
1.x10%
1.x10%
1.x10"
1.x10%°
k
0.2 0.5 1 2 5

FIG. 5. V=1/4\ ¢*.

Occupation Number: t=2400.

j k
2 5 10 20 50

FIG. 6. V=1/4\ ¢*+ 1/29%p?x?%, g?/x=200. The spectra op
and y are nearly identical.

1.x10%°
1.x108
1.x10°
10000

100
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Occupation Number: t=2400. Occupation Number: t=2400.
1.x10"
1.x10° 1.x10"
1.x10°
1.x10’
1.x10°
100000. 1. %107
k k
2 5 10 20 50 1.x10 2 5 10 20
FIG. 7. V=1/4\ ¢*+ 112922 x>+ 1/2h2x 202, g%\ =200, h? FIG. 8. V=1/4\ ¢*+ 1/292 % x>+ 1/2hZx?a?, g?/\=200, h?
=100g2. The y and o spectra are similar, but rises in the infra-  =200g2, h3=100g2. All fields other than the inflaton have nearly
red. The spectrum op is markedly different from the others. identical spectra.
slope to large, negative values. From then on it gradually ny~n,. (15)

approaches thermal equilibriuith.e., a slope of—1 to 0
depending on the chemical potential and the maBise re-
laxation time for the equilibrium is significantly shorter than This matching of the two spectra occurs shortly after pre-
that given by formula Ho,,. This estimate is valid for heating and from then on the two fields evolve identically
dilute gases of particles, but in our case the large occupatiotexcept for the remaining homogeneous componemt)ofA
numbers amplify the scattering amplitudes. posteriorithis result can be understood as follows. Looking
Figure 11 shows the evolution of the variancéd  at the potential ¢*+g?¢?x?, the second term dominates
—f)?) for the two field model. As indicated above it shows Pecause of the hierarchy of coupling strengifis 200\ So
all the same qualitative features as the evolution fifr that ~ the potentialV~g“¢°x~ is symmetric with respect to the
model. two fields, and therefore they act as a single effective field.
We can now go on to point out some differences between Figures 3 and 7 show .the effe_cts of adding an additional
the models, i.e., between runs with different numbers ofl€cay channel fox. The interaction ofy and o does not
fields. The one field modépure ¢*) shows the basic fea- 2ffect the preheating of, but does dragr exponentially
tures discussed above, but the tilt in the spectrum is still verglUickly into an excited state. The field is exponentially
large at the end of the simulation ang is decreasing very ~amplified not by parametric resonance, but by its stimulated
slowly compared to the spectral tilt and changeniwe see interactions with the amplifiegy field. Unlike amplification
in the two field case. This difference occurs because the in@Y Preheating, this direct decay nearly conserves particle
teractions betweer and y greatly speed up the thermaliza- Number, with the result that, decreases as grows, and the
tion of both fields. In the one field cagkcan only thermal- ~ SPectra ofé and x are no longer identical. Insteadand o
ize via its relatively weak self-interaction. develop nearly identical spectra,
The spectra in the two field run also show a novel feature,
namely that the spectra fof anq;( are essentially identical, n,~n,<ng. (16)
which means, among other things, X

n

6X1014 1.x10%
s5x10™*
1.x10°
ax10™*
3x10™] 100000.
14
2X10 100
1x10™
k
. 2 5 10 20 50
500 1000 1500 2000 ) )
FIG. 10. Evolution of the spectrum of in the modelV
FIG. 9. Number density for V= 3\ ¢*+ 3g24%x2. The plots =\ ¢*+ 2g2¢%x% Red plots correspond to earlier times and blue
are, from bottom to top at the right of the figure,, n, , andn,. plots to later ones. For black and white viewing: The sparse, lower

The dashed horizontal line is simply for comparison. The end ofplots all show early times. In the thick bundle of plots higher up the
exponential growth and the beginning of turbulerice., the mo-  spectrum is rising on the right and falling on the left as time
mentt, ) occurs around the time when,, reaches its maximum.  progresses.
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Field masses
i M‘"’“‘~~ i
A il 2afl
0.0001 \
12
1.x107°
1.x1078
1.x107°

I
t
500 1000 1500 2000

FIG. 11. Variances folV= 3\ ¢*+ 2g24?x. The upper plot |
shows((¢— ¢)?) and the lower plot show&(x— x)?). 500 1000 1500 2000

) ] FIG. 13. Time evolution of the effective masses for the model
and they both thermalizeogethey much more rapidly than /= 1\ 444 14242y2+ 1h2)252. From bottom to top on the right

x did in the absence of. There is a looser relationship, hand side the plots shom,,, m,,, andm,.

~n,+n,, whose accuracy depends on the couplings. The

inflaton, meanwhile, thermalizes much more slowly; note theanothero field once again sped up the thermalizationyof
low k of the cutoff in the¢ spectrum in Fig. 7. By contrast, and theo fields. The three fieldg, o;, ando, once again
there is no visible cutoff in the spectra pfando and the tilt  have identical spectra

is relatively mild. The most striking property of this chain of

interaction is the grouping of fieldg and o behave identi- Ny~Ny1~Ngo<Ngy, (17
cally to each other and differently frow. This again can be

understood by the hierarchy of coupling Constarhg, but in the four field case by the end of the run they look
=100y2=20000. The termh2y2¢2 is dominant and putg  indistinguishable from thermal spectra. If there is an ultra-

and o on an equal footing. violet cutoff for these spectra, it is at momenta higher than

Varying the couplingh did not change the overall behav- can be seen on _the lattice we were l_Jsing. Again, we notice a
ior of the system, but it changed the time at whicgrew. In ~ 100se relationshim,~n, +n,,+n,,. in this case. _
the limiting caseh>g, o grew with y during preheating and We close this section with a few words about the effective

remained indistinguishable from it right from the staiive =~ Masses of the fields, E¢L1). All the masses are scaled in
found this, for example, fon?=10 00@?.) the comoving frame; i.e., we consid@%mﬁff, andmis mea-
When we added a secondfield we found that ther field ~ sured in units of momenturtsee the Appendix Figure 12
most strongly coupled tg would grow very rapidly and the shows the evolution of the effective masses in the two field
more weakly coupled one would then grow relatively slowly. model. Note that the vertical axis of these plots is in the same
Note for example that,, in Fig. 8 grows more slowly than €Omoving units as the horizonte) axes of the spectra plots.
n, in Fig. 7 despite the fact that they have the same couplingince the momentum cutoff was of order5—10(see Fig.
to x. In the four field casen, is reduced when the more 10) the mass ok was consistently smaller than the typical
strongly coupledr field grows and this slows the growth of momenta of the field. By contrast, started out much larger

the more weakly coupled one. Nonetheless, the addition cind only gradually decreased. The fluctuationg eémained
massive through preheatinglthough with a physical mass

~1/a) and for quite a while afterwards the typical momen-
tum of these fluctuations wads~m.

Field masses

14 Figure 13 shows the evolution of the effective masses for
iB the three field model. Once agamn, remains small. Al-
thoughm, grows large briefly it quickly subsides. However,
10 m, , with contributions fromo and ¢, remains relatively
. large. Note, however, that the spectrum yothas no clear
cutoff aftero has grown, so it is difficult to say whether this
6 mass exceeds a “typical” momentum scale or not.
4 IV. OTHER MODELS OF INFLATION
2 AND INTERACTIONS

The model(3) was chosen to illustrate our basic results
because ¢* inflation and preheating is relatively simple and

FIG. 12. Effective masses for= 1\ ¢*+3g242x? as a func-  Well studied. Our main interest, however, is in universal fea-
tion of time in units of comoving momentum. The lower plonis, ~ tures of thermalization. In this section we therefore more
and the upper one is, . briefly discuss our results for a variety of other models. First

500 1000 1500 2000

103503-7



GARY FELDER AND LEV KOFMAN PHYSICAL REVIEW D 63 103503

we continue withk ¢# inflation by discussing variants on the parametric resonance similar to the resonance in quartic in-
interaction potential described above. Next we discuss thefflation [4], which results in the rapid growth af seen in
malization inm?¢? models of chaotic inflation. Finally we these figures. The spectra produced in this way are once
discuss hybrid inflation. again tilted towards the infrared. In the two field cageand
x do not have identical spectra as they did for quartic infla-
tion. This is because the coupling term g722x? redshifts
We looked at several simple variants of the poter{®!  more rapidly than the mass term @242, so the latter re-
We considered a model with a further decay channebfsb  mains dominant in the potential, which is therefore not sym-
that the total potential was metric betweenp andy. In the three field case we again see
1 1 1 1 s_imilqr spectra fory and o, although they are nqt as indis-
V=gt —gz¢2X2+—h§X202+ _hgazyz_ (18) tinguishable as they were i¢* theory. The basic features
4 2 2 2 of rapid growth ofn, high occupation of infrared modes, and

A. Variations of chaotic inflation with a quartic potential

then a flux of number density towards ultraviolet modes and
a slow decrease in,, are all present as they were fogp*
theory. The shape of thé spectrum does not appear ther-
mal, but it is unclear if this spectrum is compatible with
Kolmogorov turbulence.

Settingh;=h, we found that for this four field model the
evolution of the field fluctuations, spectra, and number den
sity were qualitatively similar to those in the four field model
(3). We found that at late times

n,~n,~n,<n,. (19

. . . . C. Hybrid inflation
The fieldsy, o, andy formed a group with nearly identical

spectra and evolution and rapid thermalization, wikflee- Preheating has been studied in many different versions of

mained distinct and thermalized more slowly. Compare thesBYPrid inflation, mostly only at the early stages when the

results to the four field model results in Figs. 4 and 8. equations for the fluctuations can be linearized. It had been
We also considered parallel decay channelsdfor thought until recently that preheating was not a universal

process in hybrid inflation. In our recent studj, however,
1 1 1 1 we found that there is generally a very strong preheating in
V= 27\¢4+ Egi¢2X2+§9§¢272+ §h2X202- (200 hybrid models, but its character is quite different from pre-
heating based on parametric resonance. We discuss in detail
Settingg; =g, and h2=100g§ we found that, at late times, in a separate publicatiofb] our recent analytical and nu-
merical studies of preheating in hybrid inflation models, in-
ng~n,>n,~n,. (21 cluding a simple two-field modgR) as well as more com-
] ) plex supersymmetricSUSY) F-term andD-term models. As
In other words the four fields formed into two groups of two, with parametric resonance, the result of the instability is the
with each group having a characteristic number density evoexponential growth of long-wavelength modes of the fields.
lution. In this paper we are mostly interested in preheating in the
Finally we looked at adding a self-interaction term far  non-inflaton sector and the nonlinear stage after preheating.
In [5] we studied the instability in the inflaton sector of the
V= E)\¢¢4+ Egzd)zxz_,_ E)\ Yt (22) hyb_rid .model, i.e.., the decgy of the homogeneous fields and
4 2 4°X excitations of their fluctuations. Here we take a complemen-
tary approach and consider the dynamics of the model with
“an additional scalar fielg coupled to the fields of the hybrid
inflation model. The potential is

with )\X=gz, and found that the results were essentially un
changed from those of the two field runs with g6 term.
The y self-coupling caused the spectradfand y to deviate

slightly from each other, but their overall evolution pro- N — - ) T b orro
ceeded very similarly to the case with noself-interaction V= 43E v PH AN RS2+ [X]%) + h*X 2[5
term. (24)

B. Chaotic inflation with a quadratic potential 5 ) —
wherex =2.5X 10> andh“=2\. Here®, X andX are the

,We also considered chaotic inflation models with ancomplex scalar fields of the inflaton sector apds an addi-
m”¢“ inflaton potential. Figures 14-17 show results for thegjonal matter field. Inflation occurs along of tide direction

model for (®)>v, whenX=3%=0. When the magnitude of the
1,01, 1, slow-rolling field® reaches the valug® |)=uv/2 spontane-
V=omigtt Sgidx T+ Shx o’ (23)  ous symmetry breaking occurs and thefields become ex-
cited. It can be shown that at the end of inflation and the start

with m=10"°M,~1.22x10" GeV (for COBE), g?=2.5 of symmetry breaking the complicated potenti2#) can be

><105m2/M§, andh2=10032. (See the Appendix for more effectively reduced to the simple two field potentic)

details) We considered separately the case of two fields (where ¢ and o are combinations ofb and ¥, 3 and g?

and xy and three fieldsp, x, and o. This model exhibits = 3\) plus the coupling term wit?y?|3 |2.
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NUMBER DENSITY VS TIME

2 Number Density 2 Number Density
1.x10% 1. x1013

1.x10" 1. x10L

1.x10° 1.x10°
1.x10’ 1.x10’
100000. t 100000. t
0 100 200 300 400 500 0 100 200 300 400 500
FIG. 14. V=1/2m*¢*+ 1/2g%¢?x?, g?M3/m?=2.5x10°. The FIG. 15. v=1/2m2¢2+1/_2g2¢2;(2+1/2t_12X202, g?MfD/m2
upper curve represents, . =2.5x10°, h?=100y%. The highest curve i®,. The field that

grows the latest igr.

NUMBER DENSITY VS MOMENTUM

Number Spectra: t=499.996643 Number Spectra: t£=499.996643
5.x10° 2.x10°
1.5x10°
8
1 x10° 1.x10
5 7.x107
5.X10 ;
5.X10
o 3.x10’
1.X10 ;
% . i 2.X 107
1.5x10" b
1.x10’
1.x10’
2 5 10 20
— 2 42 242 2 2,2, 2 2\ 2 2
FIG. 16. V=1/2m2¢+ 1/2g°¢°x%, g*M2/m?=2.5x 1%, The FIG. 17. V=1/2m" ¢"+1/29°¢"x"+ UN"x"0", g"My/m
upper curve represents the spectrunyof =2.5x10°, h?=100y2. The y ando spectra are similar, while the

spectrum of¢ rises much higher in the infrared.

Figure 18 shows the evolution of the six degrees of free-
dom of the inflaton sector as well as the figldWe see that the features of wave turbulence. In this section we address
all of the inflaton fields except Ind§) are excited very the question if, how and when the onset of chaos takes place
quickly. Later the fieldsy and Im(@) are dragged into ex- after preheating.
cited states as well. This dragging corresponds to preheating The scalar field fluctuations produced during preheating
in the non-inflaton sector. The fielgs and Im(@) are ex- ~ are generated in squeezed stdfss4] that are characterized
cited by their stimulated interactions with the rest of theby correlations of phases between moklesd — k. Because
fields. The result of this amplification is a turbulent state thatof their large amplitudes, we can consider these fluctuations
evolves towards equilibrium very similarly to the chaotic to be standing classical waves with definite phases. During
models. Although the details of inflation and preheating arghe linear stage of preheating, before interactions between
very different in hybrid and chaotic models, we found thatmodes become significant, the evolution of these waves may
once a matter field has been amplified, the thermalizatiotve or may not show chaotic sensitivity to initial conditions.

process proceeds in the same way. Indeed, for wide ranges of coupling parameters parametric
resonance has stochastic featuy®], and the issue of the

V. ONSET OF CHAOS, LYAPUNOV EXPONENTS numerical stability of parametric resonance has not been in-
AND STATISTICS vestigated. When interactiotrescatterin between waves

becomes important, the waves become decoherent. At this

Interacting waves of scalar fields constitute a dynamicaktage the waves have well-defined occupation numbers but
system, meaning there is no dissipation and the system camt well-defined phases, and the random phase approxima-
be described by a Hamiltonian. Dynamical chaos is one ofion can be used to describe the system. This transition sig-
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Field Variances: F-Term model At
0.01
0.001
0.0001
0.00001
2000 4000 6000 8000 10000
. . . . t
FIG. 18. Evolution of variances of fields in the moda#). The 100 200 300 400 500
two fields that grow at late times, in order of their growth, grand , .
Im(®). FIG. 20. The Lyapunov exponent’ for the fields ¢ and y

using the normalized distance functidn
nals the onset of turbulence, following which the system will
gradually evolve towards thermal equilibrium. o
To investigate the onset of chaos in this system we have D(t)2=>, (Ifa—faD?+ (| fa—fah? (26)
to follow the time evolution of two initially nearby points in A
the phase space; see €8]. Consider two configurations of

a scalar fieldf and f’ that are identical except for a small where we definef,=f(t,x,) and the summation is taken
difference of the fields at a set of poini. We use over all the points where the configurations initially differed.
f(t,xa),f(t,xa) to indicate the unperturbed field amplitude  For illustration we present the calculations for the model
and field velocity at the poink, and f'(t,x,),f'(t,x4) to  V=1\¢*+39°¢°x* We did two lattice simulations of this
indicate S||ght|y perturbed values at this point_ In OthermOdel with initial conditions that were identical except that

words, the field configurations witti(t,x,),f(t,x,) and Tl%rj‘z ;’tf Sthee\SZn\lNes rgléléiglieginttzeor?r?hp;ittﬁteicg Fbiyu:e 19
f/(t,x,),f'(t,x,) are initially close points in the field phase Y SP P Tl

space. We then independently evolve these two syste shows the Lyapunov exponent for both fielisand . Note

. SMRat the vertical axis isvt rather than jusi\. During the
(phase space pointand observe how the perturbed field turbulent stage the paramet@(t) is artificially saturated to

\{alues diverge from the unperturbed ones. Chac_)s can be doefconstant because of the limited phase space volume of the
fined as the tendency of such nearby configurations in phase

. . . S -system. Fortunately, the most interesting moment araynd
space to diverge exponentially over time. This divergence IS here the chaotic motion begins, is covered by this simple

parametrized by the Lyapunov exponent for the system, Oleé1pproach. Certainly, the field dynamics continue to be cha-

fined as otic in subsequent stages of the turbulence, and one can use
1 D(t) more sophisticated methods to calculate the Lyapunov expo-
A= f'OQD— (25  nent during these stag¢$5,8]. However, this issue is less
0 relevant for our study.
whereD is a distance between two configurations &nglis Both fields show roughly the same rate of growthaof
the initial distance at time 0. Here we define the distancdut A, grows much earlier thak, and therefore reaches a
D(t) simply as higher level. The reason for this is simple. The amplitude of
N x is initially very small and grows exponentially, so even in

the absence of chaos we would expect that during preheating

the differencey’ (t,x,) — x(t,Xa) must grow exponentially,
proportionally toy~ exd fdtu(t)] itself. So this exponential
growth is not a true indicator of chaos.

To get around this problem and define the onset of chaos
in the context of preheating more meaningfully we introduce
a normalized distance function

(27)

t
100 200 200 400 200 which is well regularized even while the fielg is being
FIG. 19. The Lyapunov exponent for the fields¢ (lower  amplified exponentially. Figure 20 shows the Lyapunov ex-

curve and y (upper curve The vertical axis is\t. ponent
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. g 3 5 Gaussianity Plot for x
0.012
0.01
0.008
0.006
P W
0.004
0.002
50 100 150 200 250
FIG. 21. The probability distribution function for the fielg
after preheating. Dots show a histogram of the field and the solid 500 1000 1500 2000
curve shows a best-fit Gaussian. FIG. 23. Deviations from Gaussianity for the fiejdas a func-
tion of time. The solid line shows(Fx?)/(5x*) and the dashed
1 A(t) line shows 35x2)2/(5x*).
N'=—log——
t CA(to)

ity distribution of the fieldy during the weak turbulence

for x. In this case we see the onset of chaos only at the engf@ge after preheating, and indeed the distribution is nearly

of preheating. The plot for the field is nearly identical. The ~€xactly Gaussian. Thus, at this stage we can treat the super-

Lyapunov exponents for the fields wexg~\!~0.2(in the position of classical scalar waves with large occupation num-
1~0.

units of time adopted in the simulatipriThis corresponds to P€rs and random phases as random Gaussian fields.
a very fast onset of chaos. During preheating, however, this Gaussian distribution is

Thus we see that chaotic turbulence starts abruptly at th@!t€red. A simple measure of the Gaussianity of a field comes
end of preheating. Initially wave turbulence is strong angdlfom examining its moments. For a Gaussian field there is a

rescattering does not conserve the total number of particldé<ed relationship between the two lowest nonvanishing mo-

Neot. The fastest variation in., occurs at the same time as MenNts, namely
the onset of chaog,, ~100-200. We conjecture that the

entropy of the system of interacting waves is generated

around the momert, . As the particle occupation number
drops, the turbulence will become weak ang; will be
conserved. Figure 9 clearly shows this evolution of the tota

number of particlesi, in the model. tion for ¢ and y and their time derivatives using spatial

t\'N € allso por;mdered _thtehstans:)l::al p;?ﬁef“?f IOf thg.,:.merélverages over the lattice. The results are shown in Figs. 22
acting classical waves in the problem. Ihe iniial conaiions, , 4 53 ag expected, the fields are initially Gaussian, deviate
of our lattice simulations correspond to random Gaussia

X rom it during preheating, and rapidly return to it afterwards.
noise. In thermal equilibrium, the field velocifyhas Gauss-  The plots for the moments of the field velocities are similar,
ian StatistiCS, Wh”e the f|e|ﬂ|tse|f departs from that Unless it a|though the f|e|d Ve|ocities remain Closer to Gaussianity_
has high occupation numbers. Figure 21 shows the probabil- |t js quite important to notice that Gaussianity is broken

around the end of preheating and the beginning of the strong
Gaussianity Plot for ¢ turbulence. In particular, it makes invalid the use of the Har-
tree approximation beyond this point.

3(8¢%)2=(54"), (28)

where §¢=¢—(¢) and angular brackets denote ensemble
verages or, equivalently, large spatial averages. We mea-
ured the ratio of the left and right hand sides of this equa-

VI. RULES OF THERMALIZATION

This paper is primarily an empirical one. We have nu-
merically investigated the processes of preheating and ther-
malization in a variety of models and determined a set of
rules that seem to hold generically. These rules can be for-
0.5} mulated as follows:

(1) In many, if not all viable models of inflation there
exists a mechanism for exponentially amplifying fluctuations
of at least one fielgy. These mechanisms tend to excite long-
wavelength excitations, giving rise to a highly infrared spec-

FIG. 22. Deviations from Gaussianity for the fiefdas a func-  trum.
tion of time. The solid line shows(@$?)%(5¢*) and the dashed The mechanism of parametric resonance in single-field
line shows 36¢2)%/(5¢). models of inflation has been studied for a number of years.

500 1000 1500 2000
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Contrary to the claims of some authors, this effect is quiteesiduals of the inflaton oscillations as dark matter or quin-
robust. Adding additional field¢e.g. ouro fields) or self-  tessence, but these require a great deal of fine tynirige
couplings (e.g. x*) has little or no effect on the resonant problem of residual inflaton oscillations can be easily cured
period. Moreover, in many hybrid models a similar effectby three-leg interactions. In the scalar sector three-leg inter-
occurs due to other instabilities. The qualitative features ofctions of the typey?v ¢x? may result in stronger preheat-
the fields arising from these processes seem to be large|yg. Yukawa couplingéw@bz// will lead to parametric exci-
independent of the details of inflation or the mechanismsgations of fermiong16].
used to produce the fields. There are subtle theoretical issues related to the develop-
(2) Exciting one fieldy is sufficient to rapidly drag all ment of precise thermal equilibrium in quantum and classical
other light fields with whichy interacts into a similarly ex-  field theory due to the large number of degrees of freedom;
cited state. see, e.g.[17]. In our simulations we see the flattening of the
We have seen this effect when multiple fields are COUp'eqbartide Spectrmk and we describe this as an approach to
directly to x and when chains of fields are coupled indirectly thermal equilibrium, but in light of these subtleties we

to x. All it takes is one field being excited to rapidly amplify should clarify that we meampproximatethermal equilib-
an entire sector of interacting fields. These second generatiqium.

amplified fields will inherit the basic features of tiefield; Often classical scalar fields in the kinetic regime display
i.e., they will have spectra with more energy in the infraredtransient Kolmogorov turbulence, with a cascade towards
than would be expected for a thermal distribution. both infrared and ultraviolet mod¢$2,18. In our systems it

(3) The excited fields will be grouped into subsets withappears that the flux towards ultraviolet modes is occurring
identical characteristics (spectra, occupation numbers, effecin such a way as to bring the fields closer to thermal equi-
tive temperatures) depending on the coupling strengths.  librium (14). Indeed, the slope of the spectiaat the end of

We have seen this effect in a variety of models. For expur simulations is close te-1. However, given the size of
ample in the model3) and(18) the x and o fields formed  the box in these simulations we can little say about the phase
such a group. In general, fields that are interacting in a grougpace flux in the direction of infrared modes. This question
such as this will thermalize much more quickly than othercould be addressed, for example, with the complementary
fields, presumably because they have more potential to intefethod of chains of interacting oscillators; §48]. This is
act and scatter particles into high momentum states. an interesting problem because an out-of-equilibrium Bose

(4) Once the fields are amplified, they will approach ther-system of interacting scalars with a conserved number of
mal equilibrium by scattering energy into higher momentumparticles can, in principle, develop a Bose condensate. It
modes. would be interesting to see how the formation of this con-

This process of thermalization involves a slow redistribu-densate would or would not take place in the context of
tion of the particle occupation number as low momentumpreheating in an expanding universe. One highly speculative
particles are scattered and combined into higher momentumossibility is that a cosmological Bose condensate could play
modes. The result of this scattering is to decrease the tilt ofhe role of a late-time cosmological constant.
the infrared portion of the spectrum and increase the ultra- The highlights of our study for early universe phenom-
violet cutoff of the spectrum. Within each field group the enology are the following. The mechanism of preheating af-
evolution proceeds identically for all fields, but different ter inflation is rather robust and works for many different
groups can thermalize at very different rates. systems of interacting scalars. There is a stage of turbulent
classical waves where the initial conditions for preheating
are erased. Initially, before all the fields have settled into
equilibrium with a uniform temperature, the reheating tem-

We investigated the dynamics of interacting scalar fieldgperature may be different in different subgroups of fields.
during post-inflationary preheating and the development offhe nature of these groupings is determined by the coupling
equilibrium immediately after preheating. We used three di-strengths.
mensional lattice simulations to solve the non-linear equa-
tions of motion of the classical fields.

There are a number of problems both from the point of ACKNOWLEDGMENTS
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model, which develops a three-leg interaction after symme-

try breakmg) This meant that' we still had a reS|d'ue}I homo- APPENDIX: THE LATTICE CALCULATIONS

geneous or inhomogeneous inflaton field. In realistic models

of inflation and preheating we expect the complete decay of All of the numerical calculations reported here were pro-
the inflaton field.(There are radical suggestions to use theduced with the programATTICEEASY, developed by Gary

VIl. DISCUSSION
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Felder and Igor TkacheVIn this appendix we merely sum- PP 92V
marize the basics of the calculation; more details can be o=k +m =k +0.,—fz-- (A8)
found on the website. All quantities are measured in Planck

units (M,~1.22<10" GeV) and we usé to denote a ge- In simulations it is useful to use energy conservation as a

neric scalar field. . . check of accuracy. Energy conservation in an expanding uni-
The equations of motion for the fields and the scale factogerse is described by the equation

a are solved on a three-dimensional lattice using finite dif-
ferencing for spatial derivatives and a second-order stag- . a
gered leapfrog algorithm for time evolution. The evolution p+3(p+p)=0. (A9)
equation for a scalar field in an expanding universe is
In principle one could verify that this equation was being

LA 1 isfied duri in practipe i
fraof— 5V2f+r=0 (A1) satisfied during the run, but in practipeis more difficult to
a a evaluate thamp. Fortunately there is another way to accom-
plish the same thing. Equatig@A9) can be derived from the
while the evolution of the scale factor is given by the Fried-two Friedmann equation6A2) and (A3), so checking that

mann equations those two equations are being simultaneously satisfied is
equivalent to checking EqA9). Since the actual equation

a\? s for the evolution of the scale factor is a combination of these

5) =3 (A2)  two Friedmann equations, we were able to check energy con-

servation by calculating the ratio afa to (87/3)p as the
) ppu program progressedWe verified that checking EqA3)
a=— ?(p—}—‘?,p)a (A3) gave the same resultgzor the\ ¢* runs the theory is nearly
conformal, so almost the same behavior is obtained with or
) i without the expansion of the univer§éone uses conformal
where the energy density and pressure of a scalar field afg,japles. So we duplicated a number of our runs without
given by expansion and directly checked energy conservation. In all
cases the results of these two methods of checking our accu-
p= £f2+ E|Vf|2+v (A4) racy were nearly id_entical. In every run we did, includi_ng
2 2 cases where we did the run with and without expansion,
energy was conserved to within half a percent over the entire
1. ) 1 ) run.
p= §f - g|Vf| -V (AS) We also did a number of trials to ensure that our results
were not sensitive to our time step, box size, or number of

In a leapfrog scheme the field values and derivatives ar@fdpoints. _ S _ -
known at different times, so it is convenient to combine Eqs. e field equations were simplified by variable redefini-

(A2) and (A3) to eliminate the field derivatives, giving tions. The redefinitions used and the resulting field equations
for the chaotic inflation models described in the paper are

given below.(Details on the hybrid inflation model can be
, (A6)  found in[5].) The units for the fields, times, and momenta in
all the plots in the paper are measured in Planck units res-
S ) caled as indicated below. Before these rescalings, time was
where the gradient is summed over all fields. in physical units and distances in comoving coordinates. The

The initial conditions were set in momentum space andnomentak are also measured in comoving coordinates and
then Fourier transformed to give the initial field values on‘:[jIhey are changed by the rescalings below as 1/

the grid. Starting at the end of inflation we gave each mode
random phase and a Gaussian distributed amplitude with rms

1

-2
a“ 8w
§|Vf|2—a2V

A 87
a 2a 3

Equations for A ¢*

value
For the model(3) we redefined the field and spacetime
e 1 variables as
(Ifl5)= (A7)
\/2(1)k a N N dt
fpr:%fv Xpr= \/XﬁboX, dtpr: \/X‘/’OE (A10)
where

where¢o=0.342M, is the value of the inflaton at the end of
inflation (i.e., at the start of our simulationsThis value was
The program and documentation are available on the web dd€termined from linear numerical calculations as the point at
http://physics.stanford.edu/gfelder/latticeeasy/ The site also inWhich dgp,/dt,=0. Fora=9x10"** one unit of program
cludes all the files needed to implement the particular models discconforma) time isa(yA o) Mtpianck—al0 *® sec and one
cussed in this paper so anyone can easily reproduce our results. unit  of program momentum is a‘l\/Xq’)oEp,anck
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~a 110" GeV, wherea is the scale factor. In these vari- program time corresponded to™ *Tp;anc~10 3 sec and

ables the evolution equations became a unit of program momentum corresponded to
a MmEpjanc—a 110 GeV. The evolution equations be-
g’ a’ came
¢I|;r_V;2)r¢pr+ ¢§r+ TXiZ,pr_ E) (ﬁpr:o (Al11)
1\ 2 ”
2 h2 ” d)"_a*ZVZ(ﬁ _§a_ d) _§a_¢ +¢
" g2 9", N, a B pr prPpr™ 2l 5| PorT 5 g PorT Por
Xpr Vpr)(pr+ T‘fbpr_’_ro-i,pr a Xpr=0
2
Al2 g _
(A12) + o 3o =0 (A16)
h2 a’
"o w2 o2 = ) —
Ui,pr Vpra-l,pr"— )\Xpr a i,pr 0 ) s 3/a’ 2 33" -
(A13) Xpr—@ Verpr_Z a Xpr_ngpr+¢oa
12 2 2
a 877(1)0 1 2 1 2 gz h:
n— _ _ _ 2 I 2
a = a + a <3fie%js(|vmfpr| )+4¢pr X W¢pf+ Wo-i,pr Xpr
192 1h? =0 (A17)
+ 2 TQS;Z)rX;Z)r"_ 2 TXSrUiz,pr (A14)
3 a/ 2 3 a/l
. . .. . " —-2yp2
where primes denote differentiation with respect p and Oipr— @ V00 pr— 2\ a ) TierT 5 g Tipr
angular brackets denote spatial averages over the grid. ,
9" 2. 32 _
Equations for m?¢? m?2 b0 “Xpr0i,pr=0 (A18)

For the model23) we used the following redefinitions:

12 2
a 8 1 1
a3’2 - - a'=—2—+ fo a 2 (|Vprfpr|z)+_a2¢;23r
for="gofr Xpr=mx  dtp=mdt  (AL5) a a3 fields 2
; ; O : 1 -1 92 2 .2 IZ 2 2
where in this casebo=0.193M,. Form=10 °M, a unit of + Egboa ngpr)(pr_'—WXprUi,pr . (A19)

[1] A. D. Linde, Particle Physics and Inflationary Cosmology [10] D. Boyanovsky, H. deVega, R. Holman, D. Lee, A. Singh, and

(Harwood, Chur, Switzerland, 1990 J. Salgado, Phys. Rev. B4, 7570(1996.

[2] A. Linde, Phys. Lett. B259, 38 (1991); Phys. Rev. D49, 748  [11] G. Felder and I. Tkachev, Latticeasy software, 2008Qprepa-
(19949. ration).

[3] L. Kofman, A. Linde, and A. Starobinsky, Phys. Rev. L&,  [12] V. Zakharov, V. L'vov, and G. FalkovichWave Turbulence
3195(1994. (Springer-Verlag, Berlin, 1992

[4] Iézé(g;)(fga;n?) A. Linde, and A. Starobinsky, Phys. Rev.9B,  [13] J. Garcia-Bellido, D. Grigoriev, A. Kusenko, and M. Shaposh-

nikov, Phys. Rev. 060, 123504(1999.

[5] 3. Garcia—BeIIidp, G. Felde_r, P. Greene, L. Kofman, A. Linde, [14] D. Polarski and A. Starobinsky, Class. Quantum G377
and |. Tkache\in preparation (1996

[6] S. Yu. Khlebnikov and I. Tkachev, Phys. Rev. L&, 219 [15] J. Garriga and A. Vilekin, Phys. Rev. B6, 2464 (1997.

(1996.
[16] P. Greene and L. Kofman, Phys. Lett.488 6 (1999; Phys.
[7] T. Prokopec and T. Roos, Phys. Rev5B, 3768(1997). Rev. D62, 123516(2000.

[8] T. Biro, S. Matinyan, and B. Miler, Chaos and Gauge Field

Theory(World Scientific, Singapore, 1994 [17] G. Aarts, G. Bonini, and C. Wetterich, Nucl. Phyg587, 403
[9] P. Greene, L. Kofman, A. Linde, and A. Starobinsky, Phys. (2000. )
Rev. D56 6175(199D [18] D. Semikoz and I. TkaCheV, Phys Rev.35, 489 (1993

103503-14



	Development of Equilibrium After Preheating
	Recommended Citation

	USING STANDARD SYSTE

