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1. Introduction

The theory of cosmological phase transitions is usually associated with symmetry

restoration due to high temperature effects and the subsequent symmetry breaking

which occurs as the temperature decreases in an expanding universe [1]–[4]. A partic-

ularly important version of this theory is the theory of first order cosmological phase

transitions developed in [3]. It served as a basis for the first versions of inflationary

cosmology [5], as well as for the theory of electroweak baryogenesis [6].

Recently it was pointed out that preheating after inflation [7] may rapidly pro-

duce a large number of particles that for a long time remain in a state out of thermal

equilibrium. These particles may lead to specific non-thermal cosmological phase

transitions [8, 9]. In some cases these phase transitions are first order [10, 11]; they

occur by the formation of bubbles of the phase with spontaneously broken symmetry

inside the metastable symmetric phase. If the lifetime of the metastable state is large

enough for the energy density of fluctuations to be diluted, one may encounter a short

secondary stage of inflation after preheating [8]. Such a secondary inflation stage, if

it occurs late enough, could be important in solving the moduli and gravitino prob-

lems. In this respect secondary “non-thermal” inflation due to preheating may be

an alternative to the “thermal inflation” [12], suggested for solving these problems.
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In this paper we will briefly present the theory of such phase transitions and

then give the results of numerical lattice simulations that directly demonstrated the

possibility of such brief inflation. We will also discuss possible implications of our

results for the theory of formation of topological defects during non-thermal phase

transitions. A detailed description of numerical methods used in our work will be

given in the appendix.

2. Theory of the phase transition

Consider a set of scalar fields with the potential

V (φ, χ) =
λ

4
(φ2 − v2)2 + g

2

2
φ2χ2 . (2.1)

The inflaton field φ has a double-well potential and interacts with an N -component

scalar field χ; χ2 ≡∑N
i=1 χ

2
i . For simplicity, the field χ is taken to be massless and

without self-interaction. The fields couple minimally to gravity in a FRW universe

with a scale factor a(t).

The potential V (φ, χ) has minima at φ = ±v, χ = 0 and a local maximum in the
φ direction at φ = χ = 0 with curvature V,φφ = −λv2. The effective potential acquires
corrections due to quantum and/or thermal fluctuations of the scalar fields [1, 3, 4],

∆V =
3

2
λ〈φ2〉φ2 + g

2

2
〈χ2〉φ2 + g

2

2
〈φ2〉χ2 + · · · , (2.2)

where we have written only the leading terms depending on φ and χ. The effective

mass squared of the field φ is given by

m2φ = −m2 + 3λφ2 + 3λ〈φ2〉+ g2〈χ2〉 , (2.3)

where m2 = λv2. Symmetry is restored, i.e. φ = 0 becomes a stable equilibrium

point, when the fluctuations 〈φ2〉, 〈χ2〉 become sufficiently large to make the effective
mass squared positive at φ = 0.

For example, one may consider matter in thermal equilibrium. Then, in the large

temperature limit, one has 〈φ2〉 = 〈χ2i 〉 = T 2/12. The effective mass squared of the
field φ

m2φ,eff = −m2 + 3λφ2 + 3λ〈δφ2〉+ g2〈χ2〉 (2.4)

is positive and symmetry is restored (i.e. φ = 0 is the stable equilibrium point) for

T > Tc, where T
2
c =

12m2

3λ+Ng2
� m2. At this temperature the energy density of the

gas of ultrarelativistic particles is given by

ρ = N (Tc)π
2

30
T 4c =

24m4N (Tc)π2
5 (3λ+Ng2)2

. (2.5)
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Here N (T ) is the effective number of degrees of freedom at large temperature, which
in realistic situations may vary from 102 to 103. We will assume that Ng2 � λ, see
below. For g4 < 96N (Tc)π2

5N2
λ the thermal energy at the moment of the phase transition

is greater than the vacuum energy density V (0) = m4/4λ, which means that the

phase transition does not involve a stage of inflation.

In fact, the phase transition with symmetry breaking occurs not at T > Tc,

but somewhat earlier [3]. To understand this effect let us compare the temperature

Tc ∼ m/(
√
Ng) and the mass mχ = gφ of the χ particles in the minimum of the

zero-temperature effective potential at φ = v = m/
√
λ. One can easily see that

mχ � Tc for Ng
4 � λ. This means that for Ng4 � λ the temperature Tc is

insufficient to excite perturbations of the fields χi at φ = v. As a result, these

perturbations do not change the shape of the effective potential φ = v. Thus the

potential at T slightly above Tc has its old zero-temperature minimum at φ = v, as

well as the temperature-induced minimum at φ = 0. Symmetry breaking occurs as

a first-order phase transition due to formation of bubbles of the phase with φ ≈ v
at some temperature above Tc when the minimum at φ = v becomes deeper than

the minimum at φ = 0, and the probability of bubble formation becomes sufficiently

large. A more detailed investigation in the caseN = 1 shows that the phase transition

is first order under a weaker condition g3 � λ [3].
In the case Ng4 > 102λ the phase transition occurs after a secondary stage

of inflation. In this regime radiative corrections are important. They lead to the

creation of a local minimum of V (φ, χ) at φ = 0 even at zero temperature, and the

phase transition occurs from a strongly supercooled state [3]. That is why the first

models of inflation required supercooling at the moment of the phase transition [5].

In supersymmetric theories one may have Ng4 � 102λ and still have a potential
which is flat near the origin due to cancellation of quantum corrections of bosons and

fermions [12]. In such cases the thermal energy becomes smaller than the vacuum

energy at T < T0, where T
4
0 =

15
2Nπ2m

2v2. Then one may have a short stage of

inflation which begins at T ∼ T0 and ends at T = Tc. During this time the universe
may inflate by the factor

ac
a0
=
T0
Tc
∼ 10−1

(
g4

λ

)1/4
. (2.6)

Similar phase transitions may occur much more efficiently prior to thermaliza-

tion, due to the anomalously large fluctuations 〈φ2〉 and 〈χ2〉 produced during pre-
heating [8, 9]. These fluctuations can change the shape of the effective potential and

lead to symmetry restoration. Afterwards, the universe expands, the values of 〈φ2〉
and 〈χ2〉 drop down, and the phase transition with symmetry breaking occurs.
An interesting feature of non-thermal phase transitions is that they may occur

even in theories where the usual thermal phase transitions do not happen. The main

reason can be understood as follows. Suppose reheating occurs due to the decay of

3
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a scalar field with energy density ρ. If this energy is instantly thermalized, then one

obtains relativistic particles with energy density O(T 4) which in the first approxima-

tion can be represented as ρ ≈ E2(〈φ2〉+〈χ2〉). Here E ∼ T ∼ ρ1/4 is a typical energy
of a particle in thermal equilibrium. After preheating, however, one has particles φ

and χ with much smaller energy but large occupation numbers. As a result, the

same energy release may create much greater values of 〈φ2〉 and 〈χ2〉 than in the case
of instant thermalization. This may lead to symmetry restoration after preheating

even if the symmetry breaking occurs on the GUT scale, v ∼ 1016GeV [8, 9].
The main conclusions of [8, 9] have been confirmed by detailed investigation

using lattice simulations in [10, 13, 14, 11]. One of the main results obtained in [10]

was that for sufficiently large g2 non-thermal phase transitions are first order. They

occur from a metastable vacuum at φ = 0 due to the creation of bubbles with φ 6= 0.
This result is very similar to the analogous result in the theory of thermal phase

transitions [3]. According to [10], the necessary conditions for this transition to

occur and to be of the first order can be formulated as follows:

(i) At the time of the phase transition, the point φ = 0 should be a local minimum

of the effective potential. From (2.3), we see that this means that Ng2〈χ2i 〉 >
λv2.

(ii) At the same time, the typical momentum p∗ of χi particles should be smaller
than gv. This is the condition of the existence of a potential barrier. Particles

with momenta p < gv cannot penetrate the state with |φ| ≈ v, so they cannot
change the shape of the effective potential at |φ| ≈ v. Therefore, if both
conditions (i) and (ii) are satisfied, the effective potential has a local minimum

at φ = 0 and two degenerate minima at φ ≈ ±v.

(iii) Before the minima at φ ≈ ±v become deeper than the minimum at φ = 0, the
inflaton’s zero mode should decay significantly, so that it performs small oscil-

lations near φ = 0. Then, after the minimum at |φ| ≈ v becomes deeper than
the minimum at φ = 0, fluctuations of φ drive the system over the potential

barrier, creating an expanding bubble.

The investigation performed in [10] confirmed that for sufficiently large g2 and

N these conditions are indeed satisfied and the phase transition is first order. One

may wonder whether for g2 � λ one may have a stage of inflation in the metastable
vacuum φ = 0.

Analytical estimates of ref. [8] suggested that this is indeed the case, and the

degree of this inflation for N = 1 is expected to be

ac

a0
∼
(
g2

λ

)1/4
, (2.7)
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which is much greater than the number 10−1(g4/λ)1/4 in the thermal inflation sce-
nario. One could also expect that the duration of inflation, just like the strength of

the phase transition, increases if one considers N fields χi with N � 1.
However, the theory of preheating is extremely complicated, and there are some

factors which could not be adequately taken into account in the simple estimates

of [8]. The most important factor is the effect of rescattering of particles produced

during preheating [15]. This effect tends to shut down the resonant production of

particles and thus shorten or prevent entirely the occurrence of a secondary stage of

inflation. Thus the estimates above reflect the maximum degree of inflation possible

for a given set of parameter values, but in practice the expansion factor will be

somewhat smaller than these predictions. The only way to fully account for all the

effects of backreaction and expansion is through numerical lattice simulations. In our

paper we used a generalized version of the method of lattice simulations developed

in [15, 10]. In the next section we will describe the basic features of our method and

describe our main results. A detailed description of the lattice simulations will be

given in the appendix.

3. Simulation results and their interpretation

In our paper we will take λ ≈ 10−13, which gives the proper magnitude of inflationary
perturbations of density [4, 16]. We assume that g2 � λ, and consider v ≈ 1016GeV,
which corresponds to the GUT scale. A numerical investigation of preheating in the

model (2.1) was first performed in [10]. The authors found a strongly first order

phase transition. The strength of the phase transition increased with an increase of

g2/λ and of the number N of the fields χi. However, for the parameters of the model

studied in [10] (g2/λ ≈ 200) there was no inflation during symmetry restoration.
This is not unexpected because the estimates discussed above indicated that the

expansion of the universe during the short stage of non-thermal inflation cannot be

greater than (g2/λ)1/4.

Keeping in mind that λ in this model is extremely small, one would expect that

in realistic versions of this model one may have g2/λ as large as 1010, which could lead

to a relatively long stage of inflation. However, for very large g2/λ our analytical

estimates are unreliable, and lattice simulations become extremely difficult: one

needs to have enormously large lattices to keep both infrared and ultraviolet effects

under control.

To mimic the effects of large g2, we considered a large number of the fields χi.

We have performed simulations for g2/λ = 800 and N = 19. With these parameters

the strength of the phase transition became much greater, and there was a short

stage of inflation prior to the phase transition. The details of our calculation and

an explanation of our methods are given in the appendix. Here we only present the

main results.

5



J
H
E
P
0
8
(
2
0
0
0
)
0
1
0

0 1·1012 2·1012 3·1012 4·1012 5·1012

t

-2

-1

0

1

2

3

Figure 1: The spatial average of the inflation field φ as a function of time. The field φ is

shown in units of v, the symmetry breaking parameter. Time is shown in Planck units.

The simulation showed that the oscillations of the inflaton field decreased until

the field was trapped near zero. It remained there until the moment of the phase tran-

sition when it rapidly jumped to its symmetry breaking value, as shown in figure 1.

The trapping of the field occurred because of the corrections to the effective

potential induced by the particles φ and χ produced during preheating, just like in

the theory of high-temperature phase transitions. In our case, however, this effect

has some unusual features.

To first order in g2, the leading contribution to the equation of motion φ̈ = −V ′
is given by g2φ〈χ2〉, where

〈χ2〉 ≈ N
2π2

∫ ∞
0

nk k
2 dk

ωk(φ)
. (3.1)

Here ωk =
√
k2 + g2(φ2 + 〈φ2〉) is the energy of χi particles with momentum k and

nk is their occupation number; φ is the homogeneous component of the field. For

φ�√〈φ2〉, one has
〈χ2〉

φ=0
≈ N
2π2

∫ ∞
0

nk k
2 dk√

k2 + g2〈φ2〉 . (3.2)

This quantity does not depend on φ; it can be evaluated using our lattice simulations

when the field φ oscillates near φ = 0. It leads to the usual quadratic correction to the

effective potential, see eq. (2.2). This correction adequately describes the change of
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Figure 2: The spatial average of the inflation field φ as a function of time in the vicinity

of the phase transition. The left figure shows the field just before the phase transition

and at the moment of the transition. The field oscillates with an amplitude approaching

10−3v. The right figure shows the field φ after the phase transition, when it oscillates near
the (time-dependent) position of the minimum of the effective potential at φ ≈ v. Time is
shown in Planck units.

the shape of the effective potential for φ smaller than the amplitude of the oscillations

of this field, because most of the time prior to the moment of the phase transition

this amplitude is much smaller than
√〈φ2〉.

However, if we want to evaluate the effective potential at all values of |φ| from 0 to
v, rather than for φ similar to the amplitude of the oscillations, then one should take

into account that for sufficiently large |φ| the term g|φ| becomes greater than g√〈φ2〉
and than the typical momentum k of particles χi. In this case the main contribution

to 〈χ2〉 is given by non-relativistic particles with ωk ≈ +g|φ|, and one has

〈χ2〉 ≈ N
2π2

∫ ∞
0

nk k
2 dk

g|φ| =
nχ

g|φ| , (3.3)

where nχ is the total density of all types of χi particles. This implies that at large

|φ| the effective potential acquires a correction

δV ≈ g|φ|nχ . (3.4)

Thus, instead of being quadratic or cubic in |φ|, as one could expect from the analogy
with the high-temperature theory [3, 11], the corrections to the effective potential at

large |φ| are proportional to |φ| [7].
The combination of these two types of corrections to the effective potential

(quadratic at small |φ| and linear at large |φ|) leads to the symmetry restoration
that we have found in our lattice simulations.

It is instructive to look in a more detailed way at the small region near the time

of the phase transition. The first of the graphs in figure 2 shows the oscillations

of the field φ soon before the phase transition, whereas the second one shows these

oscillations soon afterwards.
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Figure 3: These plots show the region of space in which symmetry breaking has occurred

at four successive times labeled by the value of the conformal time tpr.

First of all, one can see that just before the phase transition the field oscillates

with an amplitude three orders of magnitude smaller than v, which is a clear sign

of symmetry restoration. Another interesting feature is that the frequency of os-

cillations does not vanish as we approach the phase transition, but remains nearly

constant. Moreover, this frequency is only about two times smaller than the fre-

quency of oscillations after the phase transition, which is equal to
√
2m. Note that

the frequency of the oscillations is determined by the effective mass of the scalar

field, which is given by the curvature of the effective potential: m2φ = V
′′. This

means that at the moment of the phase transition the effective potential has a deep

minimum at φ = 0 with curvature V ′′ ∼ +m2, i.e. the phase transition is strongly
first order. Such phase transitions should occur due to the formation of bubbles

containing non-vanishing field φ.

Indeed, we have found that this transition occurred in a nearly spherical region

of the lattice that quickly grew to encompass the entire space. The growth of this

region of the new phase is shown in figure 3. The nearly perfect sphericity of this

region is an additional indication that the transition was strongly first order. In

comparison, the bubble observed in the lattice simulations of [10] for g2/λ ≈ 200 was
not exactly spherically symmetric.
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Figure 4: The scale factor a as a function of time. In the beginning a ∼ √t, which is a
curve with negative curvature, but then at some stage it begins to turn upwards, indicating

a short stage of inflation.

The first order phase transition and bubble formation seen in our simulations can

be understood as a result of gradual accumulation of classical fluctuations δφ(t, ~x).

These fluctuations stochastically climb up from φ = 0 towards the local maximum

φ∗ of the effective potential. Consider the regions in which δφ(t, ~x) > φ∗. If the
probability of formation of such regions is small because they correspond to high

peaks of the random field φ, then these regions will have a nearly spherical shape

and can be represented by spherical surfaces of radius R∗ (bubbles). If the radius R∗
is small, gradient terms will prevent the field φ inside the region from rolling down

towards the global minimum at φ = v (subcritical bubble). If R∗ is large enough,
the gradient terms cannot push the field back to the metastable state φ = 0 and

the field inside the bubble rolls towards the global minimum, forming a bubble of

ever increasing radius. This process can be described within the stochastic approach

to tunneling proposed in [17]. Typically, the gradient terms cannot win over the

potential energy terms if R∗ > O(|m−1φ |), where mφ corresponds to the effective mass
of the scalar field in the interior of the bubble. This provides an estimate for the

initial size of the bubble R∗ ∼ O(|m−1φ |).
The phase transition occurs from a state with energy density dominated by the

vacuum energy density V (0). Figure 4 shows the scale factor a as a function of time.

The curvature becomes slightly positive at the time before the phase transition,

which indicates a short stage of exponential growth of the universe. Because the

curvature is hard to see in figure 4 we have also plotted the second derivative ä in

figure 5. While the inflaton is trapped in the false vacuum state, ä becomes positive,

indicating a brief stage of inflation.

Another signature of inflation is an equation of state with negative pressure.

Figure 6 shows the parameter α= p/ρ, which becomes negative during the metastable

phase. At the moment of the phase transition the universe becomes matter domi-

nated and the pressure jumps to nearly 0.
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Figure 5: The second derivative of the scale factor, ä. A universe dominated by ordinary

matter (relativistic or non relativistic) will always have ä < 0, whereas in an inflationary

universe ä > 0. We see that starting from the moment t ∼ 2× 1012 (in Planck units) the
universe experiences accelerated (inflationary) expansion.

0 1·1012 2·1012 3·1012 4·1012 5·1012
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-0.4

-0.2

0

0.2

0.4

Figure 6: The ratio of pressure to energy density p/ρ. (Values were time averaged over

short time scales to make the plot smoother and more readable.)

From the beginning of this inflationary stage (roughly when the pressure becomes

negative) to the moment of the phase transition the total expansion factor is 2.1. As

expected this is of the same order but somewhat lower than the predicted maximum,

(g2/λ)1/4 ≈ 5.3. We can thus conclude that it is possible to achieve inflation for
parameters for which this would not have been possible in thermal equilibrium (g4 �
λ). In our simulation we have shown the occurrence of a very brief stage of inflation.

The duration of this stage is strongly model dependent. It may be much longer

for larger (realistic) values of g2/λ. However, to check whether this is indeed the

case one would need to perform a more detailed investigation on a lattice of a much

greater size.
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4. Non-thermal phase transitions and production

of topological defects

In this section we would like to discuss possible implications of our investigation for

the theory of production of topological defects after preheating [10, 13, 14].

The bubbles that appear after the phase transition can contain either positive

or negative field, φ = ±v. If bubbles of either type are formed with comparable
probability, then after the phase transition the universe becomes divided into nearly

equal numbers of domains with φ = ±v, separated by domain walls. Such domain
walls would lead to disastrous cosmological consequences, which would rule out the

models where this may happen [8, 9].

In general, the number of bubbles with φ = +v may be much greater (or much

smaller) than the number of bubbles with φ = −v. Then the domain wall prob-
lem does not appear because the bubbles with φ = +v would rapidly eat all their

competitors with φ = −v (or vice versa). This may happen, for example, if the
moment of the bubble production is determined by the coherently oscillating scalar

field φ. In such a case, after oscillating a bit near the top of the effective potential,

the field φ may wind up in the same minimum of the effective potential everywhere

in the universe.

To investigate the domain wall problem in our model one would need to repeat

the calculation many times with slightly different initial conditions or to make them in

a box of a much greater size that would allow one to see many bubbles simultaneously.

Fortunately, the results obtained in our study may be sufficient to give an answer to

this question without extremely large simulations.

First of all, according to the stochastic approach [17] to the theory of tunneling

with bubble formation [18, 19], the bubbles of the field φ are created as a result of

the accumulation of long-wavelength fluctuations of the scalar field with momenta k

smaller than the typical mass scale mφ associated with this field, see section 3. In

our case this mass scale is related to the frequency of oscillations of the scalar field

at the moment of the phase transition. At that moment the leading contribution to

the fluctuations 〈φ2〉 is given by fluctuations with momenta much smaller than mφ.
We calculated the value of the long-wavelength component of

√〈φ2〉 and found that
it is (approximately) of the same order as the amplitude of oscillations of the field φ

at the moment of the phase transition. The existence of a first-order phase transi-

tion suggests that the probability of bubble formation must have been exponentially

suppressed during the metastable stage. Such suppression would only occur only if

the amplitude of fluctuations required to form a bubble of the new phase was much

larger than
√〈φ2〉 [17], which would in turn mean the required amplitude was much

greater than the amplitude of oscillations of φ. This suggests that the probability of

the bubble formation is almost entirely determined by the incoherent fluctuations of

the field φ rather than by the small coherent oscillations of this field. Consequently,
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the probability of formation of bubbles containing φ = +v in the first approximation

must be equal to the probability of formation of bubbles containing φ = −v.
To make this statement more reliable one would need to estimate the amplitude

of the long-wavelength fluctuations of the field φ in a more precise way, which would

involve using lattices of a greater size. However, there is additional evidence suggest-

ing that the number of bubbles with positive and negative φ must be approximately

equal to each other.

Indeed, as we have seen, the curvature of the effective potential remained ap-

proximately constant during dozens of oscillations of the field φ prior to the moment

of the phase transition. This suggests that the shape of the effective potential and,

consequently, the probability of the tunneling, did not change much during a single

oscillation. Therefore one may expect that, within a single oscillation, the probabil-

ity of a bubble forming when the oscillating field φ was negative was approximately

the same as the probability of the bubble forming when it was positive.

If the number of bubbles with positive and negative φ is approximately equal to

each other, the phase transition leads to the formation of dangerous domain walls,

which rules out our model [20]. If correct, this is a rather important conclusion which

shows that the investigation of non-thermal phase transition may rule out certain

classes of inflationary models which otherwise would seem quite legitimate [8, 9].

But this conclusion does not imply that all theories where the non-thermal phase

transition is strongly first order are ruled out. For example, one may consider a

model (2.1) with φ being not a real but a complex field, φ = 1√
2
(φ1 + iφ2), |φ|2 =

1
2
(φ21+φ

2
2). Since the main contribution to the effective potential of the field φ in the

theory (2.1) is given not by the field(s) φ but by the fields χi, we expect that this

generalization will not lead to a qualitative modification of our results. In particular,

we expect that for sufficiently large N and g2/λ the phase transition will be strongly

first order and there will be a short stage of inflation after preheating. However, in

the new model we will have strings instead of domain walls.

A similar model in the absence of interaction of the fields φ with the fields χ

was studied in [13, 14]. It was argued that even in this case infinite strings may

be formed. The theory of galaxy formation due to cosmic strings is currently out

of favor, but it is certainly true that cosmic strings produced after inflation may

add new interesting features to the standard theory of formation of the large-scale

structure of the universe [21].

The possibility of strongly first order phase transitions induced by preheating in

models with g2 � λ adds new evidence that infinite strings can be produced after
non-thermal phase transitions. Indeed, infinite strings may not be produced if the

direction in which the field φ falls from the point φ = 0 at the moment of the phase

transition is determined by the oscillations of the field φ. If, just as in the case

discussed above, the amplitude of these oscillations are much smaller than
√〈φ2〉 at

the moment of the phase transition, then infinite strings are indeed formed.

12
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5. Conclusions

The results of our lattice simulation confirm our expectations that preheating may

lead to non-thermal phase transitions even in those theories where spontaneous sym-

metry breaking occurs at the GUT scale, v ∼ 1016GeV. Some time ago this question
was intensely debated in the literature. Some authors claimed that non-thermal

phase transitions induced by preheating are impossible, and the notion of the effec-

tive potential after preheating is useless. In our opinion, figures 1, 2 and 3 give a

clear answer to this question. In particular, figure 1 shows that 90% of the time from

the end of inflation to the moment of symmetry breaking the field φ oscillates about

φ = 0 with an amplitude much smaller than v. This could happen only because the

corrections to the effective potential induced by particles φ and χ change the shape

of V (φ) near φ = 0, turning its maximum into a deep local minimum.

In some theories, this effect may lead to production of superheavy strings, which

may have important cosmological implications for the theory of formation of the

large scale structure of the universe. In some other theories, these phase transitions

may lead to excessive production of monopoles and domain walls. This may rule out

a broad class of otherwise acceptable inflationary models.

In this paper we have shown that under certain conditions a non-thermal phase

transition may lead to a short secondary stage of inflation. It would be interesting

to study the possibility that a secondary stage of inflation induced by preheating

could help solve the moduli and gravitino problems. The answer to this question will

be strongly model-dependent because gravitinos can be produced by the oscillating

scalar field even after the secondary inflation [22, 23]. Independently of all practical

implications, the possibility of a secondary stage of inflation induced by preheating

seems very interesting because it clearly demonstrates the potential importance of

non-perturbative effects in post-inflationary cosmology.
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A. The numerical calculations

Our lattice program solves the classical equations of motion for a set of scalar fields

in a Friedman-Robertson-Walker universe. These fields include an inflaton φ coupled

to a set of matter fields χi. The scale factor a is also solved for self-consistently. In

this appendix we describe the exact equations being solved and the method used to

solve them.
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Figure 7: The spectrum |χk|2 as a function of momentum, shown in the late stages
of preheating. The momenta k are shown in units of the Hubble constant at the end

of inflation.

Unless otherwise specified, all variables names refer to their bare physical values

measured in Planck units. The quantities as they appear in the program have been

rescaled in several ways, and these values will be indicated with pr, as in φpr. The

relations between the rescaled variables and their bare values are given below. Also,

when we want to refer to a general property of the fields φ and χi we will use σ to

indicate a generic scalar field.

The simulations we discuss here used a grid of 1283 points. The spacing of the

points was chosen so as to ensure that the ultraviolet cutoff imposed by the grid

was higher than all physically relevant momenta in the problem. To check this we

monitored the power spectra |φk|2 and |χk|2 throughout the run. On a log plot
you can see that there is a momentum above which the slope of the power spectrum

decreases sharply (i.e. becomes more negative), and we set our grid spacing to ensure

that this cutoff was well below the cutoff of the grid. A sample spectrum for χ, taken

from the late stages of preheating, is shown in figure 7. The kink that can be seen

at k ≈ kmax/2 persisted from preheating through the phase transition, and a similar
feature can also be seen in the φ spectrum.

The grid spacing we used was

dx = 0.133
1√
λφ0
≈ 1.26× 106M−1P (A.1)

measured in comoving coordinates with a = 1 at the beginning of the simulation.

The total box size, L = 128dx, was equal to slightly more than 10 Hubble radii at

the end of inflation.

As a further check that the ultraviolet grid cutoff was not affecting the physics

we did some smaller runs (i.e. with fewer fields) using these same parameters and

another run using a grid of 643 points with twice as large a grid spacing. Both the

14



J
H
E
P
0
8
(
2
0
0
0
)
0
1
0

643 and 1283 runs had the same total box size and they showed essentially identical

behavior for the fields, suggesting that the 1283 grid has more than enough modes

in the ultraviolet.

A.1 The field equations

We work in a FRW universe with metric gµν = diag{1,−a2,−a2,−a2}. The equations
of motion for the scalar fields φ and χi derive from the potential

V =
λ

4

(
φ2 − v2)2 + 1

2
g2φ2χ2i , (A.2)

where v, λ, and g are constant parameters and χ2i is understood to include a sum-

mation over i. The results reported here used v = 7 × 10−4, λ = 9 × 10−14, and
g2 = 800λ, and took χ to be a 19-component field. This potential gives rise to the

equations of motion

φ̈+ 3
ȧ

a
φ̇− 1
a2
∇2φ+ (λ (φ2 − v2)+ g2χ2i )φ = 0 ,
χ̈i + 3

ȧ

a
χ̇i − 1

a2
∇2χi + g2φ2χi = 0 . (A.3)

These equations can be simplified by the following variable redefinitions

φpr =
a

φ0
φ ; χi,pr =

a

φ0
χi ; vpr =

1

φ0
v ;

~xpr =
√
λφ0~x ; τpr =

√
λφ0

∫
dt

a
; ge ≡ g

2

λ
, (A.4)

where φ0 is the initial (bare) value of the field φ and all other parameters come from

the original equations of motion. These then give the rescaled equations of motion

φ′′pr −∇2prφpr +
(
φ2pr − a2v2pr + ge χ2i,pr −

a′′

a

)
φpr = 0 , (A.5)

χ′′i,pr −∇2prχi,pr +
(
ge φ2pr −

a′′

a

)
χi,pr = 0 , (A.6)

where derivatives are with respect to the rescaled time and distance variables defined

above. Note that all first derivative terms have been eliminated, and the dependence

on the coupling constants λ and g is now only through the ratio g2/λ, denoted here

by ge. The value of λ itself appears only in setting the initial conditions (described

below). The rescalings involving φ0 do not affect the equations of motion.

A.2 The scale factor equation

Our simulations calculate a single scale factor at each time, neglecting metric fluctua-

tions. The equation for the scale factor a is derived from the following two equations

ä = −4π
3
(ρ+ 3p)a , (A.7)(

ȧ

a

)2
=
8π

3
ρ , (A.8)
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where ρ and p are the total energy density and pressure, respectively. For simplicity

we will first solve these for a single scalar field σ. The energy density and pressure

can be derived from the energy momentum tensor

Tµν = σ,µσ,ν − 1
2
gµνg

αβσ,ασ,β + gµνV (σ) . (A.9)

Assuming the fields are isotropic this equation can be solved and compared to the

usual energy momentum tensor of matter

T µν = diag{ρ,−p,−p,−p} (A.10)

to give

ρ =
1

2
σ̇2 +

1

2a2
|∇σ|2 + V (σ) ,

p =
1

2
σ̇2 − 1

6a2
|∇σ|2 − V (σ) . (A.11)

Plugging these expressions into eq. (A.7) and using eq. (A.8) to eliminate the σ̇

term gives

ä = −2 ȧ
2

a
+ 8πa

(
1

3a2
|∇σ|2 + V (σ)

)
. (A.12)

Switching now to the fields φ and χi and to the potential in eq. (A.2),

ä = −2 ȧ
2

a
+ 8πa

(
1

3a2
(|∇φ|2 + |∇χi|2)+ λ

4

(
φ2 − v2)2 + 1

2
g2φ2χ2i

)
. (A.13)

Finally we rescale all variables according to eq. (A.4) and take a spatial average

(denoted by “〈 〉”) over the grid

a′′ = −a
′2

a
+
8πφ20
a

〈
1

3

(|∇prφpr|2 + |∇prχi,pr|2) +
+
1

4

(
φ2pr − a2v2pr

)2
+
1

2
ge φ2prχ

2
i,pr

〉
. (A.14)

A.3 Initial conditions

Although the field equations are solved in configuration space with each lattice point

representing a position in space, the initial conditions are set in momentum space and

then Fourier transformed to give the initial values of the fields and their derivatives

at each grid point. It is assumed that no significant particle production has occurred

before the beginning of the program, so Minkowski space quantum fluctuations are

used for setting the initial values of the modes.1

1This approximation is usually very good for fluctuations with momenta greater than H . For

smaller momenta one can find a better approximation after performing the field quantization in

curved space, see e.g. [24], but in our case the corresponding corrections only slightly modify the

final result.
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The calculation of these modes is given in detail in [15]. The result is that each

mode σk has a probability distribution given by

P (σk, σ
∗
k) ∝ e−2ωkσkσ

∗
k , (A.15)

where ωk ≡
√
k2 +m2. Separating σk into a magnitude and a phase, the phase has

a uniform probability distribution and the magnitude has a Rayleigh distribution

P (|σk|) ∝ |σk|e−2ωk|σk|2 . (A.16)

The momentum k is simply the Fourier transform variable and the mass is given by

m2σ =
∂2V

∂σ2
≈
{
3λφ20 , φ

g2φ20 , χi .
(A.17)

Taking into account the finite size of the box, L, and the discretization of the

spatial points with spacing dx and converting to the rescaled variables defined above

yields for the initial magnitudes

|φk,pr| =
√
λL
3/2
pr√

2dx3pr
(
k2pr + 3

)1/4 ,
|χik,pr| =

√
λL
3/2
pr√

2dx3pr
(
k2pr + ge

)1/4 . (A.18)

times a Rayleigh distributed random number with standard deviation 1. Note that

the program values of L, dx, and k are defined by the rescaling of x, and recall that

ge ≡ g2/λ. Finally the zero mode, which appears as a value uniformly added to all
grid points at the beginning of the calculation, is set to 0 for χi and 1 for φ (since

φpr = φ/φ0).

In order to set the field derivatives it is necessary to know the time dependence of

the vacuum fluctuations being considered. In Minkowski space this time dependence

is given simply by the term e−iωt which suggests

σ̇k = −iωkσk . (A.19)

Converting to rescaled values of time, mass, and momentum gives

φ′k,pr = iφk,pr
√
k2pr + 3 ,

χ′ik,pr = iχik,pr
√
k2pr + ge . (A.20)

The initial derivatives of the zero modes of φ and χi are set to 0.

Note that having been eliminated from the equations of motion, the only place

λ shows up in the calculations at all aside from the ratio g2/λ is in the
√
λ term in
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the magnitude of the initial fluctuations. The coupling constant g appears nowhere

except in g2/λ. Meanwhile the initial value of the field φ, i.e. φ0, is used in the

rescaling of the field and spacetime variables but it appears neither in the equations

of motion for the fields nor in the amplitude of their initial fluctuations. In fact

it appears in two places in the calculation. The first is in the evolution equation

for the scale factor, eq. (A.14). The second way the initial value of φ enters the

calculations is subtler. We said that the zero mode of φ′pr is initially set to 0. At first
this may seem like a poor choice since the field φ initially must be rolling towards

0. In fact the beginning of the program is supposed to represent the end of inflation

when the slow roll approximation is no longer valid, so why should φ′pr be set to 0?
The answer comes from the use of the conformal field φpr ∝ aφ. As time goes on
φ is decreasing but a is increasing, and there is a moment when these two balance

and φ′pr is momentarily 0. By setting φ
′
pr = 0 the program automatically sets the

beginning of the calculation at this moment. For the potential described here this

moment occurs when φ ≈ .35Mp, so the initial conditions implicitly use the value
of φ0. In the one place in the program where it does appear (in the scale factor

evolution) this parameter is set to .35. This value is also useful in converting the

output of the program to physically meaningful units.

A.4 The calculational method: staggered leapfrog

The differential equations derived above are solved using a staggered leapfrog algo-

rithm in which the field values and their time derivatives are calculated at alternating

times separated by a half time-step. The time step is kept constant throughout the

calculation. (Since the program uses conformal time the physical time elapsed dur-

ing each time step changes as the program progresses.) This method is stable for

second order equations involving no first time derivatives such as the field equations

we use, see e.g. [25]. However, extra care must be taken in solving the equation

for the scale factor, eq. (A.14), since this does contain a first derivative term a′. A
naive calculation using the leapfrog algorithm as described above would mean that

a′′ would be calculated at time τ as a function of a(τ) and a′(τ − dτ/2). There is a
solution for this, although in practice the evolution of a is so slow and smooth that

this problem makes no practical difference. We avoid this problem, though, by using

the two following equations2

a′
(
τ +
dτ

2

)
≈ a′

(
τ − dτ

2

)
+ dτ a′′(τ) , (A.21)

a′(τ) ≈ 1
2

(
a′
(
τ +
dτ

2

)
+ a′

(
τ − dτ

2

))
. (A.22)

2G.F. would like to thank Julian Borrill, who suggested this solution.
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Solving these simultaneously, using eq. (A.14) for a′′, gives

a′
(
t+
dτ

2

)
≈ −a′

(
τ − dτ

2

)
+
2a

dτ

(
−1 +

√
1 + 2

a′(τ − dτ/2)
a

dτ +
f

a
dτ 2

)
,

(A.23)

where

f(a(τ)) =
8πφ20
a

〈
1

3

(|∇φpr|2 + |∇χi,pr|2) +
+
1

4

(
φ2pr − a2v2pr

)2
+
1

2
ge φ2prχ

2
i,pr

〉
. (A.24)

Since eq. (A.14) needs to be solved only once per time step this correction involves

virtually no added computational time.
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