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THE CLASSIFICATION OF V -TRANSVERSE KNOTS AND

LOOSE LEGENDRIANS

PATRICIA CAHN AND VLADIMIR CHERNOV

Abstract. We classify knots in a 3-manifold M that are transverse to a
nowhere zero vector field V up to the corresponding isotopy relation. When V

is the coorienting vector field of a contact structure, these knots are the same

as pseudo-Legendrian knots, which were introduced by Benedetti and Petro-
nio. We show that two loose Legendrian knots with the same overtwisted disk

in their complement are Legendrian isotopic if and only if they are pseudo-

Legendrian isotopic.
V -transverse knots are naturally framed. We show that each framed iso-

topy class corresponds to infinitely many V -transverse isotopy classes whose
elements are pairwise distinct up to V -transverse homotopy, provided that one

of the following conditions holds: V is a coorienting vector field of a tight con-

tact structure; the manifold M is irreducible and atoroidal; or, the Euler class
of a 2-dimensional bundle orthogonal to V is a torsion class.

We also give examples of infinite sets of distinct V -transverse isotopy classes

whose representatives are all V -transverse homotopic and framed isotopic.

1. Introduction

We work in the smooth category. All manifolds and mappings are C∞. Throughout
the paper M is an oriented manifold that is not necessarily compact or closed unless
explicitly stated otherwise.

A knot in M is an embedding K : S1 →M and a curve is an immersion c : S1 →M.
Suppose M is equipped with an oriented d-dimensional distribution C. We denote
the corresponding d-dimensional subspace of TpM by Cp. We say that K is C-
transverse if for all t the velocity vector K ′(t) is transverse to CK(t). An isotopy of
knots (resp. C-transverse knots) is a path in the space of knots (resp. C-transverse
knots). A homotopy of knots (resp. C-transverse knots) is a path in the space of
curves (resp. C-transverse curves).

When C is a contact structure on a 3-manifold, the C-transverse are just ordinary
transverse knots. Given a nowhere vanishing vector field V on M we say that a knot
is V -transverse if it is L-transverse, where L is an oriented line field spanned by V. In
particular, when V is a coorienting vector field of a contact structure, V -transverse
knots are the same as Pseudo-Legendrian knots, which were introduced by Benedetti
and Petronio [2, 3]. (Benedetti and Petronio distinguish strong pseudo-Legendrian
isotopy, which is the same as our V -transverse isotopy, and weak pseudo-Legendrian
isotopy, which is a path (Kt, Vt), where each Kt is Vt-transverse.) We show in
Theorem 11.2 that two loose Legendrian knots with the same overtwisted disk in
the complement are Legendrian isotopic exactly when they are pseudo-Legendrian
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2 P. CAHN AND V. CHERNOV

isotopic. Another nice fact about pseudo-Legendrian knots is that the groups of
Vassiliev invariants of Legendrian and of Pseudo-Legendrian knots are canonically
isomorphic [16].

Our goal is to classify V -transverse knots for a given nowhere vanishing vector field
V on M up to V -transverse isotopy.

A framed knot is a knot K equipped with a section of the normal bundle of K.
Each V -transverse knot in M has a natural framing, given by projecting V onto
the 2-plane orthogonal to the velocity vector of K. Therefore an isotopy in the
category of V -transverse knots is also an isotopy of framed knots. However we
will see examples of V -transverse knots that are isotopic as framed knots but not
isotopic as V -transverse knots. So, one natural question to ask is how many isotopy
classes of V -transverse knots are there in a given framed isotopy class?

Like knots, any V -transverse curve has a natural framing.

Consider V -transverse knots in R3 with respect to the vector field ∂
∂z . The pro-

jection of a V -transverse knot to the xy-plane is an immersed curve. Homotopy
classes of immersed curves c(t) in the plane are completely determined by their ro-
tation number, i.e., the degree of the map S1 → S1 determined by mapping t to the
direction of c′(t). During a framed homotopy or isotopy, the rotation number of the
projection of a blackboard-framed knot to the xy-plane can change by a multiple of
2. Therefore, in a given framed isotopy class, there are infinitely many V -transverse
homotopy classes, and hence also infinitely many V -transverse isotopy classes. Two
V -transverse knots in R3 are isotopic as V -transverse knots if and only if they are
isotopic as framed knots and homotopic as V -transverse curves. This theorem was
proven by Trace [18].

We would like to know whether the intersection of a framed isotopy class and a
connected component of the space of V -transverse curves in an arbitrary 3-manifold
can contain more than one isotopy class of V -transverse knots, and if so, how many.
To do this we study actions on following sets:

• The set of homotopy classes of V -transverse curves in a given connected
component of the space of framed curves;

• The set of isotopy classes of V -transverse knots in a given connected com-
ponent of the space of framed knots;

• The set of isotopy classes of V -transverse knots in the intersection of a
given connected component of the space of V -transverse curves and a given
connected component of the space of framed knots.

In particular, we show that for a fixed framed isotopy class Kf and any V -transverse
K ∈ Kf , every V -transverse isotopy class in Kf contains a representative of the
from Ki for some i ∈ Z, where Ki is obtained from K by adding i pairs of kinks as
pictured in Figure 1 (more detail is given in Section 3). We first ask which of the
Ki are in distinct V -transverse homotopy classes, and show that either all the Ki

are distinct as V -transverse curves, or there exists some (smallest) nonzero k ∈ Z
such that the knots Knk are V -transverse homotopic for all n ∈ Z. Then we ask
which of the knots Knk are V -transverse isotopic. Again, either these knots are all
distinct as V -transverse knots or there exists some (smallest) nonzero l ∈ Z, with
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Figure 1. In this figure V is pointing out of the page.

k|l, such that the knots Knl are V -transverse isotopic for all n ∈ Z. The integers
k and l depend on the Euler class of the 2-plane bundle V ⊥ on M , and the precise
formulation of the results described in this paragraph is given in Theorem 3.1.

If the knots Ki are all distinct as V -transverse curves (i.e., the integer k above
does not exist), or if the integers k and l described above exist and are equal,
then two V -transverse knots in Kf are V -transverse isotopic if and only if they
are V -transverse homotopic. Examples where the Ki are all distinct are given in
Theorem 5.2. In particular this occurs if the Euler class of V ⊥ is a torsion element
of H2(M), or if M is closed, irreducible, and atoroidal, or if V is the coorienting
vector field of a tight contact structure on M . Examples where k and l exist and
are equal are given in Theorem 8.1.

On the other hand, if the integer k exists and l does not, or l 6= k, then there exist
V -transverse knots in Kf which are V -transverse homotopic but not V -transverse
isotopic. Such examples are given in Theorems 6.1 and 8.2. These examples il-
lustrate that the number of V -transverse isotopy classes corresponding to a given
V -transverse homotopy class can be infinite. In fact, our example in Theorems 8.1
and 8.2 show that the number of distinct V -transverse isotopy classes corresponding
to a single V -transverse homotopy class depends on the isotopy class of the knot,
and not just on its homotopy class.

2. The fundamental groups of the spaces of framed knots and curves

It follows from the existence of the self-linking number that the number |K| of
framed knots in S3 with given underlying knot K is infinite. The second author
previously defined affine self-linking invariants and used them [5, Theorem 2.4]
to show that |K| is infinite for every knot in an orientable manifold unless the
manifold contains a connected sum factor of S1 × S2. The knot K need not be
zero-homologous and the manifold is not required to be compact. In our work
with Sadykov [4] we used the results of McCullough [14] and strenthened the above
result. We showed that

2.1. Lemma. Let M be a not necessarily compact orientable 3-manifold. Given a
knot K in M we have |K| = ∞ unless K intersects a nonseparating 2-sphere at
exactly one point in which case |K| = 2.

Note that if K intersects a nonseparating sphere at exactly one point then M
contains S1 × S2 as a connected sum factor.
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2.1. Some important coverings. Let C be a connected component of the space
of curves in M . Let Cf be a connected component of the space of framed curves in
M which realize elements of C after one forgets their framing. Let K be a connected
component of the space of knots in M such that K ⊂ C and let Kf be a connected
component of the space of framed knots in M whose elements realize elements of
K as unframed knots, and such that Kf ⊂ Cf .

Let C̃f be the quotient space obtained from Cf by identifying framed curves which
agree as unframed curves and whose framings are homotopic as nowhere zero sec-

tions of the normal bundle of the curve. Then the map p : C̃f → C which forgets
the framing of an equivalence class of framed curves is a regular covering map [6,

Lemma 3.2]. We can restrict p to get another covering map p : K̃f → K. The proof
of the following Lemma is straightforward.

2.2. Lemma. p∗ : π1(K̃f ) → π1(K) is an isomorphism if and only if K does not
intersect some nonseparating 2-sphere at exactly one point.

3. Actions on the spaces of V -transverse knots and curves

Given a V -transverse knot or curve K, let Ki denote the V -transverse knot or curve
obtained by adding i pairs of the kinks on the left in Figure 1 if i > 0 and |i| pairs
of the kinks on the right in Figure 1 if i < 0. Let Kf be a framed isotopy class of
knots in M and let S be the set of isotopy classes of V -transverse knots contained
in Kf . There is a Z-action ActKf ,V : Z×S → S defined by ActKf ,V (i)([K]) = [Ki].
Here square brackets denote the V -transverse isotopy class of a knot. Note that
it takes a bit of effort to verify that ActKf ,V is a well-defined action and that it
is indeed a Z-action rather than separate actions of the semigroups of nonnegative
and nonpositive integers.

Similarly, we can define an action ActCf ,V : Z×S → S where S is the set of homo-
topy classes of V -transverse curves in Cf . The action is defined by ActCf ,V (i)(〈C〉) =

〈Ci〉 where 〈C〉 denotes the V -transverse homotopy class of C.

We will compute the stabilizers of the above Z-actions using the homomorphisms
below.

Let V be a nonvanishing vector field on M . Let K be a connected component of the
space of knots in M , and let Kf be a component of the space of framed knots in M
whose elements are elements of K when one forgets their framing. We will define
a homomorphism θKf ,V : H1(Kf ) → Z. Let α ∈ π1(Kf ). This gives rise to a map

α : S1×S1 →M where α|S1×t = α(t). Note also that we abuse notation and use α
to denote both a loop and its homotopy class. If α and α′ are homotopic loops in
π1(Kf ) then α and α′ are homotopic. Now define θKf ,V = 1

2eV ⊥(α∗[S
1×S1]) where

eV ⊥ ∈ H2(M) is the Euler class of the distribution V ⊥ of 2-planes orthogonal to
V and [S1 × S1] ∈ H2(S1 × S1) is the fundamental class of the torus. Note that
eV ⊥ ∈ H2(M) is even. One can verify that θKf ,V : π1(Kf )→ Z is a homomorphism.
Since Z is abelian we can regard θKf ,V as a homomorphism from H1(Kf ) to Z.

Now let C be a connected component of the space of curves in M and let Cf be a
component of the space of framed curves whose elements are elements of C when
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(1,1)

Figure 2. Four different types of kinks.

one forgets their framing. We define θCf ,V : π1(Cf ) → Z as above and regard it as
a map out of H1(Cf ).

Recall that a G-torsor is a set X equipped with an action of G such that for any
x, y ∈ X there exists a unique g ∈ G such that y = gx. Hence |X| = |G|.

The theorem below describes the number of homotopy (resp. isotopy) classes of V -
transverse curves (resp. knots) in a given homotopy (resp. isotopy) class of framed
curves (resp. knots). It also describes how many isotopy classes of V -transverse
curves there are in the intersection of a given framed isotopy class and a given
V -transverse homotopy class.

Let ΓCf ,V = Z/ Im θCf ,V and ΓKf ,V = Z/ Im θKf ,V . When C is a path connected
component of the space of curves such that Kf ⊂ C after forgetting the framing,

let ΓKf ,V = Im θCf ,V / Im θKf ,V .

3.1. Theorem. Let Cf be a connected component of the space of framed curves in
M and let Kf be a connected component of the space of framed knots in M such
that Kf ⊂ Cf . Let T be a connected component of the space of V -transverse curves
in M such that T ⊂ Cf .

(1) The set of homotopy classes of V -transverse curves in M that lie in Cf is
a ΓCf ,V -torsor, and the number of such classes is |ΓCf ,V |.

(2) The set of isotopy classes of V -transverse knots in M that lie in Kf is a
ΓKf ,V -torsor, and the number of such classes is |ΓKf ,V |.

(3) The set of isotopy classes of V -transverse knots in M that lie in Kf ∩ T is

a ΓKf ,V -torsor, and the number of such classes is |ΓKf ,V |.

3.2. Lemma. If K and L are V -transverse knots which are isotopic as framed
knots, then K is V -transversely isotopic to Li for some i ∈ Z.

Proof. We can choose a set of coordinate charts {(Ui, φi)}ni=1 for M such that
V = φ−1i∗ (∂/∂z) in each chart. We will imitate the framed isotopy Kt from K to

L by a V -transverse isotopy Kt in such a way that the knot K1 agrees with L
outside some coordinate chart (Ui, φi), and inside that chart L and K1 differ by a
collection of small kinks (see Figure 2). We will then argue that these kinks cancel
via an isotopy in such a way that K1 = Li.

(Remark: The above framed and V -transverse isotopies can be made C0-close.)
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Figure 3. Creation and cancelation of a pair of opposite kinks

In each chart (Ui, φi), the projection of the framed isotopy Kt to the xy-plane (after
forgetting the framing) can be viewed as a sequence of type 1, 2 and 3 Reidemeister
moves, in addition to ambient isotopy.

The type 2 and 3 Reidemeister may appear in the projection of a V -transverse
isotopy to the xy-plane, but type 1 does not appear, because the projection of a
V -transverse isotopy to the xy-plane is always an immersed curve.

There are four different kinds of kinks that may appear in a type 1 Reidemeister
move, and these kinks are pictured in Figure 2. Each kink is labeled by an ordered
pair, where the first number is the contribution of the kink to the rotation number
of the projection to the xy-plane, and the second is the local writhe number.

Pairs of kinks with opposite rotation number and opposite local writhe number can
be created or cancelled by a V -transverse isotopy, see Figure 3.

Therefore if a type 1 move creates a kink of type (ε1, ε2) during Kt, we instead
create a pair of kinks (ε1, ε2) and (−ε1,−ε2) in Kt. Then we make the extra kink
of type (−ε1,−ε2) very small and carry it along during the V -transverse isotopy.

If there is a type 1 move in Kt which deletes a kink, we do not delete that kink in
Kt and instead make it small and carry it along during the V -transverse isotopy.

At the end of the isotopy Kt we see L with many extra kinks. We may slide these
kinks along L using a V -transverse isotopy so that they all appear in the same
chart, and in an unknotted portion of L in that chart.

Let a be the number of (1, 1) kinks, b the number of (−1,−1) kinks, c the number
of (−1, 1) kinks, and d the number of (1,−1) kinks. Possibly by sliding kinks past
one another, we cancel all pairs of kinks that have both opposite rotation number
and opposite writhe.

Now we have a or b = 0, and c or d = 0. For all t the knots Kt and Kt are
contained in a thin solid torus Tt, which we can identify with the standard solid
torus in R3. Since both Kt and Kt are framed isotopies, we can compare their self-
linking numbers at each time t after identifying Tt with the standard solid torus
in R3. The difference between their self-linking numbers does not depend on the
choice of identification of Tt with the standard solid torus. We call this number
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s(t). Since s(0) = 0, we must have s(1) = 0. On the other hand each kink of type
(ε1, ε2) in K1 contributes ε2 to the value of s(1). Hence a+ c = b+ d.

In the case where a and c are equal to 0, we have b+ d = 0. But both b and d are
nonnegative, so a = b = c = d = 0. In this case K1 = L. This also occurs in the
case where b and d are equal to 0.

In the case where a and d equal 0, we have b = c. In this case K1 = L−b. In the
case where b and c equal 0, we have a = d and K1 = La. �

We get a similar theorem by approximating a framed homotopy by a V -transverse
homotopy. First we must classify the connected components of the space of framed
curves in M . Let K be an unframed curve in M . Given two framed curves K1

and K2 in M that coincide pointwise with K as unframed knots, one can regard
their framings as simple closed curves c1 and c2 on a thin torus neighborhood of
K. Put m(K1,K2) to be the intersection number of c1 and c2. The second author
[17, Proposition 5.1.10] proved that the Ki are homotopic as framed curves if and
only if m(K1,K2) is even. One can check that if K1 and K2 differ by one of the
four kinks in Figure 2 then after performing a small V -transverse isotopy to K2 so
that it coincides with K1 as an unframed knot, we have m(K1,K2) = ±1.

3.3. Lemma. Suppose that K and L are V -transverse curves which are in the
same connected component Cf of the space of framed curves in M . Then K is
V -transversely isotopic to Li for some i ∈ Z.

Proof. Again, we cover M with charts (Ui, φi) such that in each chart V = φ−1i∗ ∂/∂z.
Second and third Reidemeister moves, and crossing changes are V -transverse. We
adjust the first Reidemeister move as in the proof of Lemma 3.2. At the end of
our V -transverse homotopy, we are left with a copy of L with extra kinks. One
can pass through a double point of a kink using a V -transverse homotopy, so we
may cancel all pairs of kinks with opposite contributions to the rotation number,
i.e., pairs of types (ε1, ε2) and (−ε1,±ε2). We are left with kinks which all have the
same rotation number. Because K and L are in the same component of the space
of framed curves the number of kinks remaining must be even. Now, we can pass
through double points to obtain Li for some i ∈ Z. �

We will use the theorem below to prove Theorem 3.1.

3.4. Theorem. Let K be a V -transverse knot, let Kf be the component of the space
of framed knots in M containing K, and let Cf be the component of the space of
framed curves in M containing K. Then [Ki] = [Kj ] if and only if i−j ∈ Im(θKf ,V )

and 〈Ki〉 = 〈Kj〉 if and only if i− j ∈ Im(θCf ,V ).

Proof. First we show that if [Ki] = [Kj ] then i − j ∈ Im(θKf ,V ). We write K :

([0, 1], ∂)→M . We assume that Ki(s) = Kj(s) for all s ∈ [ε, 1] for some 0 < ε < 1,
and the image Ki([0, ε]) consists of i pairs of kinks in Figure 1, where the type of
kink depends on the sign of i. Similarly Kj([0, ε]) consists of j pairs of kinks. A
chart containing Ki([0, ε]) and Kj([0, ε]) is shown in Figure 4. Let α = Ki([0, ε])
and let β = Kj([0, ε]). In this chart V points out of the page.
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Figure 4. A chart containing the paths α (left) and β (right),
with an isotopy between them. In this chart V points out of the
page. Of course if i or j are negative we use the kinks on the right
hand side of Figure 1.

Suppose we have a V -transverse isotopyKt takingKi toKj . SinceKi andKj agree
pointwise with K on the interval [ε, 1], this isotopy yields a map ψ : T ∗ →M , where
T ∗ is a torus with one hole and ψ(∂T ∗) = αβ−1. More precisely, we first define ψ
on [0, 1]× [0, 1] by ψ(s, t) = Kt(s). Note ψ(s, 0) = Ki(s) and ψ(s, 1) = Kj(s). Let

T ∗ =
[0, 1]× [0, 1]

s× 0 ∼ s× 1 for s ∈ [ε, 1], and 0× t ∼ 1× t for all t ∈ [0, 1]
.

Since Ki(t) = Kj(t) for all t ∈ [ε, 1] we may view ψ as a map out of T ∗.

Since the isotopy is V -transverse, we get a section of V ⊥ on ψ(T ∗) by projecting
the tangent vector of the knot to V ⊥. We can extend ψ to a map of a torus T using
a framed isotopy from Ki to Kj . We can assume this isotopy takes place within
a chart (U, φ) on M such that V = φ−1∗ ∂/∂z on U . We choose a trivialization of
V ⊥ on U . We have a section of V ⊥ on the loop αβ−1 given by the tangent vectors
to Ki and Kj . The Euler class of ψ(T ), which is the obstruction to extending our
section on ψ(T ∗) to a section on ψ(T ), is the degree of the map αβ−1 → S1 that
sends a point on α or β−1 to the corresponding velocity vector of Ki or (Kj)−1, is
2i − 2j (because of our choice of trivialization the Euler class is just the rotation
number of the projection of αβ−1 to D2). Hence i− j is in the image of θKf ,V .

Conversely suppose that i − j ∈ Im(θKf ,V ). We will show [Ki] = [Kj ]. Let

γ ∈ π1(Kf ,Ki) such that θKf ,V (γ) = i− j. Suppose that Ki and Kj agree on the
interval [ε, 1], so the additional kinks are added in the interval [0, ε]. We can choose
a representative g ∈ γ such that

• g0(s) = Ki(s) and gδ(s) = Kj(s) for some small δ ∈ (0, 1)

• gt(s) = Ki(s) for all s ∈ [ε, 1] and all t ∈ [0, δ]

Then for t ∈ [δ, 1], gt(s) is a framed isotopy from Kj(s) to Ki(s).
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For t ∈ [δ, 1], we imitate the framed isotopy gt(s) by a V -transverse isotopy gV,t(s)
as in the proof of Lemma 3.2, so that gV,δ(s) = Kj(s) and gV,1(s) = Ki+k(s) for
some k ∈ Z.

As before, we have a map of a punctured torus ψ : T ∗ → M , and extend this to a
map of a torus T using a framed isotopy from Ki+k(s) to Kj(s). We have a section
of V ⊥ on ψ(T ∗). The obstruction to extending this section to ψ(T ), i.e. the value
of eV ⊥(ψ(T )), is now 2(i+ k− j). Therefore θKf ,V (γ) = i+ k− j. But we assumed

that θKf ,V (γ) = i− j so k = 0. Hence Ki and Kj are V -transverse isotopic.

The next step is to show 〈Ki〉 = 〈Kj〉 if and only if i− j ∈ Im θC,V .

The proof that 〈Ki〉 = 〈Kj〉 implies i − j ∈ Im θC,V is similar to the proof that
[Ki] = [Kj ] then i− j ∈ Im(θKf ,V ).

Now we assume i − j ∈ Im θCf ,V and show 〈Ki〉 = 〈Kj〉. Let γ ∈ π1(Cf ,Ki) such

that θCf ,V (γ) = i−j. We can choose a representative g ∈ γ such that g0(s) = Ki(s)

and gx(s) = Kj(s) for some x ∈ (0, 1). Then for t ∈ [x, 1], gt(s) is a homotopy from
Kj(s) to Ki(s) through framed curves in M .

For t ∈ [x, 1], we imitate the framed homotopy gt(s) by a V -transverse homotopy
gV,t(s) as in the proof of Lemma 3.3, so that gV,x(s) = Kj(s) and gV,1(s) = Ki+k(s)
for some k ∈ Z. As before, we see θCf ,V (γ) = i+ k− j, but we assumed θCf ,V (γ) =

i− j so k = 0. Hence 〈Ki〉 = 〈Kj〉. �

4. Proof of Theorem 3.1

Now we prove:

The set of homotopy classes of V -transverse curves in M that lie in Cf is a ΓCf ,V -
torsor, and the number of such classes is |ΓCf ,V |.

Proof. Recall ΓCf ,V = Z/ Im θCf ,V . We have an action of Z on the set S of V -
transverse homotopy classes of V -transverse curves in Cf , which is given by i ·
〈K〉 = 〈Ki〉. Now we show that we have an action of Z/ Im θCf ,V on S given by

i · 〈K〉 = 〈Ki〉. Let i = j ∈ Z/ Im θCf ,V . Then i−j ∈ Im θCf ,V . By Theorem 3.4, we

have i · 〈K〉 = j · 〈K〉, so the action of Z/ Im θCf ,V on S is well-defined. Theorem 3.4
also implies the action is free. This action is transitive by Lemma 3.3. �

The proof of the statement below is similar.

The set of isotopy classes of V -transverse knots in M that lie in Kf is a ΓKf ,V -
torsor, and the number of such classes is |ΓKf ,V |.

Proof. The action of Z/ Im θKf ,V on the set S of V -transverse isotopy classes of

V -transverse knots in Kf defined by i · [K] = [Ki] is well-defined and free by
Theorem 3.4 and transitive by Lemma 3.2. �

Let Cf be a component of the space of framed curves such that the elements of the
framed isotopy class Kf are contained in Cf . Let T be a connected component of
the space of V -transverse curves contained in Cf . Recall that Im θKf ,V is a subgroup

of Im θCf ,V and ΓKf ,V = Im θCf ,V / Im θKf ,V .
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The set of isotopy classes of V -transverse knots in M that lie in Kf ∩T is a ΓKf ,V -

torsor, and the number of such classes is |ΓKf ,V |.

Proof. Let T be the set of isotopy classes of V -transverse knots that lie in T ∩ Kf .
There is an action of Im θCf ,V on T given by i · [K] = [Ki]. This gives us a
well-defined free action of Im θCf ,V / Im θKf ,V on T by Theorem 3.4. The action is

transitive because [L] ∈ Kf implies [L] = [Ki] for i ∈ Z by Lemma 3.2, and since
[L] ∈ T , we have i ∈ Im θCf ,V . �

5. Cases when V -transverse knot theory is simple

Let us recall a few classical definitions.

5.1. Definition. A 3-manifold M is irreducible if every 2-sphere embedded into M
bounds a ball.

A closed irreducible 3-manifold is atoroidal if it does not admit essential mappings
µ : S1 × S1 →M , i.e. mappings such that µ∗ : π1(S1 × S1)→ π1(M) is injective.

The 2-dimensional subbundle C ⊂ TM is called a contact structure if it can be
locally presented as kerα, for some 1-form α with α∧dα 6= 0. All contact manifolds
(M,C) have a natural orientation given by α ∧ dα. If C can be globally presented
as kerα with α ∧ dα 6= 0, then it is called a coorientable (transversely orientable)
contact structure. Clearly, if α1, α2 are two forms such that C = kerα1 = kerα2,
then α1 = gα2, for some nowhere zero smooth function g.

The choice of the class of such α up to multiplication by a smooth positive function
g is called a coorientation of C. A coorienting vector field of a cooriented contact
structure C is a vector field V transverse to C such that for all x ∈ M the vector
Vx ∈ TxM points into the half-space of TxM \ Cx where αx is positive. In this
paper all contact structures are assumed to be cooriented.

A contact structure is said to be overtwisted if there exists a 2-disk D embedded
into M such that the boundary ∂D is tangent to C while the disk D is transverse
to C along ∂D. Non-overtwisted contact structures are called tight .

A knot f in a contact (M,C) is Legendrian if df maps TpS
1 to Cf(p) for all p. A

Legendrian knot is loose if its complement contains an overtwisted disk.

5.2. Theorem. Assume that V is a nowhere zero vector field on M satisfying one
of the following three conditions.

(1) The Euler class eV ⊥ ∈ H2(M) is a torsion element (in particular if eV ⊥ =
0.)

(2) The manifold M is closed, irreducible and atoroidal.

(3) V is a coorienting vector field of a contact structure C such that (M,C) is a
total space of a (not necessarily finite) covering of a tight contact 3-manifold
(in particular if (M,C) is itself a tight contact 3-manifold).

Let Cf be a connected component of the space of framed curves and let Kf be a
connected component of the space of framed knots such that Kf ⊂ Cf . Then θKf ,V

and θCf ,V are zero homomorphisms, so ΓCf ,V = Z,ΓKf ,V = Z,ΓKf ,V = 0. In
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particular each framed knot corresponds to infinitely many V -transverse knots and
they are pairwise not V -transverse homotopic.

Proof. It suffices to show that if any one of these three conditions holds, then for
every α : S1 × S1 → M we have eV ⊥(α∗[S

1 × S1]) = 0. If condition 1 holds then
this is certainly true. If condition 2 holds then this true because α∗([S

1×S1]) = 0,
see for example [6, pages 2784-2785]. If condition 3 holds then eV ⊥ = eC and the
desired statement was proved in [6, Corollary 3.10]. (Note that if α : S1×S1 →M
is an embedding, then eC(α∗[S

1×S1]) = 0 by the Bennequin type inequality proved
by Eliashberg [10, Theorem 2.2.1].) �

6. Examples where θKf ,V = 0 and θCf ,V 6= 0.

Let F be a nonorientable surface of genus bigger than one. Let pr : M → F to
be a locally trivial S1-bundle with an oriented total space M. Let µ be a curve in
M that projects to the dashed curve in Figure 5. Take k ∈ N and let C = C2k

be a cooriented contact structure on M whose Euler class is the Poincaré dual
of 2k[µ] ∈ H1(M). The fact that such C exists is proved, for example, in [17,
Propopsition 4.0.1] and follows from the results of Lutz [13]. Take V to be the
vector field that coorients C. Let Kf be any framed knot that projects to a loop
homotopic to the solid loop ν in Figure 5, let Kf be the connected component of
the space of framed knots that contains Kf , and let Cf be the connected component
of the space of framed curves that contains Kf .

Figure 5.

6.1. Theorem. Let M,V,Kf , Cf be as described above. Then Im(θCf ,V ) = kZ < Z
and Im(θKf ,V ) = {0} < Z. So ΓCf ,V = Zk,ΓKf ,V = Z, and ΓKf ,V = kZ.

For the proof of Theorem 6.1 see Section 7. The properties of this example used
in the proof of Theorem 6.1 are that the curve µ intersects ν transversely in one
point, and the two curves obtained by smoothing ν at its one self-intersection point
are orientation reversing.
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6.2. Remark. Let K be a V -transverse knot that realizes the class Kf described in
Theorem 6.1 and let i, j ∈ Z be such that i− j is divisible by k. Then Theorem 3.1
implies that [Ki] 6= [Kj ] even though 〈Ki〉 = 〈Kj〉. Thus we have constructed
examples where regular knot theory does not reduce to the framed knot theory and
the classification of the connected components of the space of V -transverse curves.

7. Proof of Theorem 6.1

We first show that Im θCf ,V = kZ. This requires understanding the groups π1(Cf )
and π1(C).

7.1. The loops γ1, γ2, γ3 in C. Let C be a connected component of the space of
unframed curves in M obtained by forgetting the framing on curves from Cf and
let K ∈ C be the unframed knot obtained by forgetting the framing on Kf .

We introduce three loops γi, i = 1, 2, 3 following [5].

Let γ1 be the isotopy of K to itself induced by a full rotation of its parameterizing
circle.

Let γ2 be the deformation of K described in Figure 6.

Figure 6. The loop γ2.

Since M is orientable, we get that the S1-fibration over S1 (parameterizing the knot
K) induced from pr by pr ◦K : S1 → F is trivializable. Hence we can coherently
orient the fibers of the induced fibration pr : S1 × S1 → S1. The orientation of
the S1-fiber of pr over t ∈ S1 induces the orientation of the S1-fiber of pr that
contains K(t). Let γ3 be the homotopy of K that slides every point K(t) of K
around the fiber that contains K(t) with unit velocity in the direction specified by
the orientation of the fiber of pr over t ∈ S1.

7.1. Lemma. Every element α ∈ π1(C,K) can be written as γr1γ
s
2γ
t
3 for some

r, s, t ∈ Z.
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Proof. In [5, Proof of Lemma 6.11 page 808] we proved that for each α there exists i
such that αi = γr1γ

s
2γ
t
3. Analyzing the proof we see that if pr(K) ∈ π1(F,pr(K(1)))

is not a nontrivial power of another element of π1(F,pr(K(1))), then i can be taken
to be 1. �

7.2. Remark. The statement of Lemma 7.1 remains true for every K in M such
that prK is an orientation preserving loop on the surface F and pr(K) 6= 1 ∈
π1(F,pr(K(1))) is not a nontrivial power of another element of π1(F,pr(K(1))).

Let α ∈ π1(Cf ,Kf ), and regard α as an element of π1(C,K) by forgetting the
framing. By Lemma 7.1 we have α = γr1γ

s
2γ
t
3 for some r, s, t ∈ Z. Define a homo-

morphism δ1 : π1(C,K) → Z given by the lifting correspondence for the covering

p : C̃f → C where we identify 0 ∈ Z with the equivalence class of Kf in C̃f . Note
that δ1(γi) is 0 for i = 1, 3 and is 2 for i = 2. Since α is a loop in the space of
framed curves, we must have δ1(α) = 0. Hence s = 0 and α = γr1γ

t
3.

Now to compute the value of θCf ,V on α, we only need to know the value of eC on
γ1 and γ3. Generically the torus corresponding to the loop γ1 does not intersect
µ so eC(γ1∗[S

1 × S1]) = 0. On the other hand, the torus corresponding to the
loop γ3 intersects µ transversely at one point, so eC(γ3∗[S

1 × S1]) = 2k. Hence
Im θCf ,V = kZ.

Next we show Im θKf ,V = {0}, so suppose α ∈ π1(Kf ,Kf ). Again α = γr1γ
t
3, but

now t = 0 as the following lemma shows.

7.3. Lemma. The loop α = γr1γ
t
3 is homotopic to a loop in K if and only if t = 0.

Proof. Let Ks be a singular knot with one double point at s ∈M and view Ks as a
pair of maps (Ks,1,Ks,2) ∈ π1(M, s). Let σ(Ks) = 1 if both Ks,i are noncontratible
and let σ(Ks) = 0 otherwise. We say a loop or path γ : [0, 1] → C is generic if,
whenever γ(t) is a singular knot, γ(t) has exactly one transverse double point and
no other multiple points, and the set of times such that γ(t) is singular is a discrete
set {t1, . . . , tn}. In particular any loop in π1(C,K) has a generic representative.

A transverse double point s of a singular knot can be resolved in two essentially
different ways. We say that a resolution of a double point is positive (resp. negative)
if the tangent vector to the first strand, the tangent vector to the second strand,
and the vector from the second strand to the first form the positive 3-frame. (This
does not depend on the order of the strands).

We assign a sign to each singular knot γ(ti) as follows: if, for ti < t+ < ti+1,
γ(t+) is obtained from the singular knot γ(ti) by a positive resolution of its double
point, put ε(ti) = 1. Otherwise ε(ti) = −1. For any generic γ : [0, 1] → C define
δ2(γ) =

∑n
i=1 ε(ti)σ(γ(ti)).

The set of singular knots forms the discriminant D in C. The codimension two
(with respect to D) stratum of the discriminant consists of singular knots with
two distinct transverse double points. It is easy to see that δ2(α′) = 0, for every
small generic loop α′ going around the codimension two stratum. This implies (cf.
Arnold [1]) that if γ is a generic loop in C that starts at a nonsingular knot K, then
δ2(α) depends only on the element of π1(C,K) realized by a generic loop α.



14 P. CAHN AND V. CHERNOV

Clearly δ2(γ) = 0 for any γ which is homotopic to a loop in K. However δ2(γ3) = 2.
The knot K = γ3(0) crosses the fiber over the self-intersection point p of ν twice.
During the homotopy γ3(t), these two points move along the fiber at unit speed
in opposite directions because the two loops in F one gets by smoothing ν at p
are orientation reversing. Therefore γ3(t) is singular at two times t1 and t2, and
δ2(γ3) = 2 because ε(t1) and ε(t2) are equal and σ(γ3(t1)) = σ(γ3(t2)) = 1. The
last identity holds because the two loops adjacent to a double point of singular
knots γ3(ti), i = 1, 2 project to orientation reversing loops on F and hence are not
contractible in M.

Hence γ3 is not homotopic to a loop in K.

Now we have δ2(α) = rδ2(γ1) + tδ2(γ3). But δ2(γ1) = 0, so δ2(α) = 2t. Thus α is
not homotopic to a loop in K unless t = 0. �

Now θKf ,V (α) = rθKf ,V (γ1) = r · 12eC(γ1∗[S
1 × S1]) = 0. This finishes the proof of

Theorem 6.1.

8. Examples where θKf ,V depends on Kf and not just on Cf .

Let M be a 3-manifold which is a locally-trivial S1-fibration pr : M → F over a
closed orientable surface F of at least two. Let µ be an oriented curve that projects
to the dashed curve in Figure 7.

Take C to be the contact structure such that the Poincaré dual of its Euler class
is 2k[µ] ∈ H1(M). The fact that such C exists is proved, for example, in [17,
Propopsition 4.0.1] and follows from the results of Lutz [13].

Let V be the coorienting vector field of C. Let K1,f be a component of the space of
framed knots in M that contains the framed knot which is the S1-fiber of pr with
some framing, and call this knot K1,f .

Let λ : S1 → F be the solid curve in Figure 7. Let K2,f be a framed knot whose
projection pr ◦K is λ, and assume that K2,f is obtained from K1,f by an isotopy
and one passage through a transverse double point. Let K2,f be the component
of the space of framed knots that contains K2,f . Let Cf be the component of the
space of framed curves that contains K1,f and K2,f .

pr

Figure 7.
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8.1. Theorem. Let M,k, V,K1,f ,K1,f , and Cf be as defined above. Then Im(θCf ,V ) =
kZ < Z and Im(θK1,f ,V ) = kZ < Z. Therefore ΓCf ,V = Zk,ΓK1,f ,V = Zk, and

ΓK1,f ,V = {0}.

8.2. Theorem. Let M,k, V,K2,f , and K2,f , be as defined above. Then Im(θK2,f ,V ) =

{0} < Z and hence ΓK2,f ,V = {0}, and ΓK2,f ,V = kZ.

For the proof of Theorem 8.1 see Section 9.

For the proof of Theorem 8.2 see Section 10.

9. Proof of Theorem 8.1

Assume that K is the knot homotopic to the i-th power of the S1-fiber of pr : M →
F . Let C is the connected component of the space of curves containing K. Take
ρ : S1 → F to be a loop based at pr(K(1)).

We introduce the loop γρ following [5]. Put γρ to be the loop in C based at K
constructed as follows. First apply a homotopy φ (that fixes K(1)) so that K
becomes the (1, i) knot on the surface of the torus boundary of pr−1(D2). Here
D2 is the small disk centered at pr(K(1)). Transport the disk D along the curve ρ
via a path Dρ(t). Consider the isotopy Iρ of the knot such that at each moment it

is the (1, i) knot on the boundary torus of pr−1(Dρ(t)). Now apply the homotopy

φ−1. So the loop γρ is φ−1Iρφ.

9.1. Lemma. Every element α ∈ π1(C,K) can be written as γs2γ
t
3γρ for some

s, t ∈ Z and ρ a loop on F based at pr(K(1)).

9.2. Remark. In the above Lemma, γρ can in fact be any loop in π1(C,K) such
that the projection of trace of the basepoint of the knot is ρ. Similarly γ3 can be
any loop in π1(C,K) such that the trace of the basepoint is homotopic to the fiber.

Proof. In [5, Proof of Lemma 6.11 page 809] we proved that when the surface F is
not necessarily orientable, then there exist ρ, s, t such that α2 = γs2γ

t
3γρ2 . (Note that

there is a typo in the formula proved in [5] and the term γt3 is missing.) Analyzing
the proof we see that if the surface F is orientable then the desired statement holds
true. �

Let α ∈ π1(Cf ,Kf ), and regard α as an element of π1(C,K) by forgetting the
framing. By Lemma 9.1 we have α = γs2γ

t
3γρ for some s, t ∈ Z and loop ρ on F .

Define a homomorphism δ1 : π1(C,K1)→ Z given by the lifting correspondence for

the covering p : C̃f → C where we identify 0 ∈ Z with the equivalence class of K1,f

in C̃f . Note that δ1(γ3) = δ1(γρ) = 0 and δ1(γ2) = 2. Since α is a loop in the space
of framed curves, we must have δ1(α) = 0. Hence s = 0 and α = γt3γρ.

Now to compute the value of θCf ,V on α, we only need to know the value of eC
on γ3 and γρ. The torus corresponding to the loop γ3 does not intersect µ so
eC(γ3∗[S

1 × S1]) = 0. On the other hand, the intersection index of the torus
corresponding to the loop γρ with µ equals to the intersection index of ρ and
pr(µ). It is easy to construct ρ which has one intersection point with pr(µ)). So
Im θCf ,V = kZ.
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Figure 8. The projection of the homotopy φ−1. In this picture p
is K2,f (1), the point 1 is the image of x1 ∈ S1, and the point 2 is
the image of x2 ∈ S1.

Now γ3 is an isotopy and γρ is an isotopy when it is based at K1. So Im θKf ,V =
kZ. �

10. Proof of Theorem 8.2

Let β ∈ π1(F,pr(K2,f (1))) be the embedded loop in F that wraps one time clock-
wise around the left hole in Figure 8.1 and is equal to the boundary component of
a regular neighborhood of the image of the projection of K2,f to F which contains
the point K2,f (1).

By Lemma 9.1 every element α ∈ π1(C,K2,f ) can be written as γs2γ
t
3γρ for some

s, t ∈ Z and ρ a loop on F based at pr(K(1)), and we have shown that s = 0 for
a loop in the space of framed curves. We would like to know which such α = γt3γρ
contain representatives in π1(K2,f ,K2,f ). We will prove that if ρ does not commute
with β, then α does not contain such a representative. Note that if ρ and β do
commute, and since β is not a power of another class, then ρ = βk and thus
has algebraic intersection 0 with prµ. Therefore θK2,f ,V (α) = 0 for any α in
π1(K2,f ,K2,f ).

Our definition of γρ requires a choice of homotopy φ (that fixes K2,f (1)) so that
K2,f becomes the (1, i) knot on the surface of the torus boundary of pr−1(D2). In
the case where our basepoint is K2,f we can describe φ as in Figure 8: φ is the
homotopy which pulls a small arc of the knot K1,f around a loop whose projection
to F is β−1, and passes this arc through one transverse double point of the knot
near p.

10.1. Lemma. Let ρ be any loop in π1(F,prK2,f (1)) that does not commute with
β. There is no representative of the homotopy class γρ ∈ π1(Cf ,K2,f ) which is
contained in K2,f .

Proof. The loop γρ = φ−1Iρφ gives rise to a map of a cylinder C : S1 × I →M × I
given by C(x, t) = γρ(t)(x) × t. Because γρ(t) is a singular knot with one double
point at two distinct values of t and the images of these two singular knots coincide,
the image of C(x, t) intersects itself transversely at two points p × t1 and p × t2.
We assume p = pr(K2,f (1)).
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Let x1 and x2 be the elements of S1 which are the preimages of the double points
of the two singular knots γρ(t1) and γρ(t2) (we can assume the preimages of the
double points at both times t1 and t2 are equal).

Now x1 × t1 and x2 × t1 are the preimages under C of p× t1, and similarly x1 × t2
and x2 × t2 are the preimages of p× t2.

If there is a homotopy from the loop γρ = φ−1Iρφ to a loop η in K2,f based at K2,f

then C : S1 × I → M × I is regularly and properly homotopic to an embedding.
Our strategy is to show no such embedding exists.

To prove that C is not regular homotopic to an embedding, we will use an adap-
tation of Wall’s self-intersection invariant µ for properly embedded annuli, defined
by Schneiderman [15, Section 4.1]. First we recall the definition of µ, and use the
notation of [15].

Let X be a 4-manifold and let A : S1 × [0, 1], S1 × {0, 1} → (X, ∂X) be a properly
immersed annulus. Let x be a basepoint of X and let a be a basepoint of ImA.
A whisker for A is a choice of path from x to a; fix some whisker ω. For each
self-intersection point p of A, the sheets at p are the two transversely intersecting
immersed 2-disks in a small neighborhood of p in A. For each self-intersection p
define a loop gp ∈ π1(X,x) as follows: go along ω to a, go along a path in A to p,
switch sheets, return to a without passing through any other double points of A,
and then return to x along ω−1. The loop gp is well defined up to powers the loop
κ = ωA∗(S

1 × ta)ω−1 where a ∈ A(S1 × ta). Define a sign ε(p) by comparing the
orientation of X at p with the orientation given by the two sheets of A at p. Now

µ(A) =
∑

p∈A∩A
ε(p)[gp].

Let Λκ = Z[π1(X,x)]/{g − κng±1κm} where Z[π1(X,x)] denotes the free abelian
group generated by the elements of π1(X,x). Note that if one wants an invariant
of homotopy rather than just regular homotopy one should add Z[1] to the denom-
inator of the quotient; for our purposes a regular homotopy invariant is enough.

Following Wall [19], Schneiderman [15, Proposition 4.1.2] proves that µ(A), when
viewed as an element of the quotient Λκ, is an invariant of regular homotopy, and
whenever µ vanishes on A, the double points of A can be paired off with Whitney
disks. In higher dimensions, because of the Whitney trick, µ vanishes if and only
if A is regularly homotopic to an embedding; in dimension 4, µ vanishing is just a
necessary condition for A to be regularly homotopic to an embedding.

Now we compute µ(C). To do this, we let K2,f (1) × 0 be both our basepoint of
M × I = X our basepoint of C, so that our whisker is the trivial path. Now
we define several paths in S1 × [0, 1] which are pictured in Figure 9. We assume
that if one begins at 1 ∈ S1 and moves along S1 according to its orientation, one
encounters x1 before x2. Let σ(x) denote the corresponding path in S1 × 0 from
1×0 to x1×0 (which does not cross x2×0). Let τ(x) denote the path in S1×0 that
begins at x1, continues in the direction of the orientation of S1, and ends at x2. Let
y1(t) denote the path in S1 × I corresponding to fixing x1 ∈ S1 and letting t vary
from 0 to t1. Let y2(t) denote the path in S1 × I corresponding to fixing x1 ∈ S1

and letting t vary from t1 to t2. Let y3(t) denote the path in S1 × I corresponding
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σ

τ

1x0 x1 x 0

x2 x 0
y1

y2

y3

y4

x1 x t1

x1 x t2

x2 x t1

x2 x t2

p x t1

p x t2

Figure 9. The track of the homotopy γρ in M × [0, 1]. Note that
only the singular knots γρ(t1)× t1 and γρ(t2)× t2 are pictured.

Figure 10. The term gp×t1 projects to β−1 on F .

to fixing x2 ∈ S1 and letting t vary from 0 to t1. Let y4(t) denote the path in S1×I
corresponding to fixing x2 ∈ S1 and letting t vary from t1 to t2.

Now the term gp×t1 of µ(C) corresponding to p× t1 is

C∗(σy1)C∗(y
−1
3 )C∗(τ

−1σ−1).

This loop is illustrated in Figure 10. Similarly gp×t2 is

C∗(σy1y2)C∗(y
−1
4 y−13 )C∗(τ

−1σ−1).

Finally we show µ(C) 6= 0. Suppose gp×t1 = gp×t2 ∈ ΛK2,f
. Then substituting into

one of the relations for ΛK2,f
we have gp×t1 = Kn

2,fgp×t2K
m
2,f .

Let pr : M × I → F denote the composition of the projections M × I → M and
pr : M → F . Since pr∗(K2,f ) = 1, we have pr∗(gp×t1) = pr∗(gp×t2). One can check
that pr∗(gp×t1) = β−1, and this is illustrated in Figure 10.
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We will now compute pr∗(gp×t2) and show it not equal to β−1.

Now observe that prC∗(y2) = ρ and prC∗(y4) = βρβ−1. This is because during
the homotopy φ−1, the track of the projection pr(K2,f (x1)) is the trivial loop, the
track of the projection pr(K2,f (x2)) is β, and during the homotopy Iρ, the track of
both pr(K2,f (xi)) for i = 1, 2 is ρ. See Figure 8.

Therefore pr gp×t2 = pr(C∗(σy1y2)C∗(y
−1
4 y−13 )C∗(τ

−1σ−1)) = ρβρ−1β−1β−1. This
cannot be equal to β−1, since β and ρ do not commute in π1(F,K2,f (1)). �

11. V -transverse knots and loose Legendrian knots

First we recall some definitions and results from Cieliebak and Eliashberg’s book [7].

Consider a contact manifold (M2n+1, C) and a manifold Λn of dimension n. A
formal Legendrian embedding of Λ into (M,C) is a pair (f, F s) where f : Λ→M is
a smooth embedding and F s : TΛ→ TM is a homotopy of monomorphisms over f
starting at F 0 = df and ending at an isotropic monomorphism F 1 : TΛ → C cov-
ering f. A genuine Legendrian embedding f can be viewed as a formal Legendrian
embedding (f, F s = df).

Two formal Legendrian embeddings are called formally isotopic if they are isotopic
as formal Legendrian embeddings.

The following Theorem [7, Theorem 7.19 part b] is attributed to Dymara [8] and
Eliashberg-Fraser [11].

11.1. Theorem. Let (M,C) be a closed connected overtwisted 3-manifold and D ⊂
M be an overtwisted disk.

Let (ft, F
s
t ), s, t ∈ [0, 1] be a formal Legendrian isotopy in M connecting two genuine

Legendrian embeddings f0, f1 : S1 →M \D. Then there exists a Legendrian isotopy

f̃t : S1 → M \ D connecting f̃0 = f0 and f̃1 = f1 which is homotopic to (ft, F
s
t )

through formal Legendrian isotopies with fixed endpoints.

Let (M,C) be a not necessarily overtwisted contact structure and let V be a coori-
enting vector field of the contact structure. Clearly every Legendrian knot is V -
transverse and a Legendrian isotopy is a V -transverse isotopy.

We use Theorem 11.1 to obtain the following result.

11.2. Theorem. Let (M,C) be a closed overtwisted contact manifold with an over-
twisted disk D, let V be the coorienting vector field of C. Let f1, f2 be Legendrian
knots in M \D that are V -transverse isotopic. Then they are Legendrian isotopic
in M \D.

Proof. Take an auxiliary Riemannian metric so that V is orthogonal to C.

We use the V -transverse isotopy gt from f1 to f2 to produce a formal Legendrian
isotopy from f1 to f2. Let ḡ′t(u) be the normalized orthogonal projection of g′t(u)
to the contact plane Cgt(u). Let V t(u) denote the element of the vector field V at
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gt(u), which again is orthogonal to Cgt(u). Let αu be the angle between g′t(u) and
ḡ′t(u). Let

V s,t(u) = cos((1− s)αu)ḡ′t(u) + sin((1− s)αu)V t(u),

which is a unit vector in Tgt(u)M . Then V 0,t(u) is equal to g′t(s) and V 1,t(u) is tan-
gent to Cgt(s). Hence for each t, (gt(u), V s,t(u)) is a formal Legendrian embedding.

Note that we abuse notation and let V s,t(u) denote the map from TS1 → TM
that sends the unit vector (giving the desired orientation of the circle) at u ∈ S1

to V s,t(u). �

Dymara [9, Theorem 4.1] proved the following result.

11.3. Theorem. Let (M,C) be a contact manifold with an overtwisted disk D
and trivializable contact bundle. Let K be a connected component of the space of
unframed knots, and let f0, f1 ∈ K be two Legendrian knots in M \D. Assume that
the following three conditions hold.

a: |K| =∞ for K ∈ K (see Lemma 2.1)

b: f1 and f2 are isotopic as framed knots

c: the rotation numbers of f1 and f2 with respect to some trivialization of C
are equal.

Then f1 and f2 are isotopic as Legendrian knots.

This Theorem of Dymara in the case of closed (M,C) can be viewed as a straight-
forward Corollary of our Theorem 11.2 and Theorem 5.2 part 1. Note that for
trivializable C the V -transverse homotopy classes of knots in Cf (the connected
component of the space of framed immersions containing f0, f1) are enumerated by
the rotation number of the V -transverse knot obtained by projecting the velocity
vectors of the knots to the planes of C.

The following classification of loose knots up to contactomorphism was given in the
work of Etnyre [12, Theorem 1.4]. (According to [12] different proofs of this result
were independently obtained by Geiges and Klukas.) Zero homologous framed
knots corresponding to a given unframed knot K are enumerated by the self-linking
number, which is the Thurston-Bennequin invariant tb of a Legendrian knot with
the natural framing; and the sum of the tb and rot of a Legendrian knot is always
odd.

11.4. Theorem. Let (M,C) be an overtwisted contact manifold. For each null
homologous knot type K and a pair of integers (t, s) satisfying (t+s) is odd, there is
a unique, up to contactomorphism, loose Legendrian knot in K satsifying tb(K) = t
and rot(K) = r.
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