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Abstract: A theory of gravitational production of light scalar particles during and

after inflation is investigated. We show that in the most interesting cases where

long-wavelength fluctuations of light scalar fields can be generated during inflation,

these fluctuations rather than quantum fluctuations produced after inflation give

the dominant contribution to particle production. In such cases a simple analytical

theory of particle production can be developed. Application of our results to the

theory of quantum creation of moduli fields demonstrates that if the moduli mass

is smaller than the Hubble constant then these fields are copiously produced during

inflation. This gives rise to the cosmological moduli problem even if there is no

homogeneous component of the classical moduli field in the universe. To avoid this

version of the moduli problem it is necessary for the Hubble constant H during the

last stages of inflation and/or the reheating temperature TR after inflation to be

extremely small.
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1. Introduction

Recently there has been a renewal of interest in gravitational production of particles

in an expanding universe. This was a subject of intensive study many years ago, see

e.g. [1]. However, with the invention of inflationary theory the issue of the production

of particles due to gravitational effects became less urgent. Indeed, gravitational

effects are especially important near the cosmological singularity, at the Planck time.

But the density of the particles produced at that epoch becomes exponentially small

due to inflation. New particles are produced only after the end of inflation when the

energy density is much smaller than the Planck density. Production of particles due

to gravitational effects at that stage is typically very inefficient.

There are a few exceptions to this rule that have motivated the recent interest

in gravitational particle production. First of all, there are some models where the

main mechanism of reheating during inflation is due to gravitational production.

Even though this mechanism is very inefficient, in the absence of other mechanisms

of reheating it may do the job. For example, one may consider the class of theories

where the inflaton potential V (φ) gradually decreases at large φ and does not have

any minima. In such theories the inflaton field φ does not oscillate after inflation, so

the standard mechanism of reheating does not work [2, 3]. To emphasize this unusual

feature of such theories we call them non-oscillatory models, or simply NO models [3].

Usually gravitational particle production in such models lead to dangerous cosmo-

logical consequences, such as large isocurvature fluctuations and overproduction of

gravitinos [3]. In order to overcome these problems, it was necessary to modify the

NO models [3] and to use the non-gravitational mechanism of instant preheating for

the description of particle production [4].

There are some other cases where even very small but unavoidable gravitational

particle production may lead either to useful or to catastrophic consequences [5, 6, 7,

1



J
H
E
P
0
2
(
2
0
0
0
)
0
2
7

8, 9]. For example, it has recently been found that the production of gravitinos by the

oscillating inflaton field is not suppressed by the small gravitational coupling. As a

result, gravitinos can be copiously produced in the early universe even if the reheating

temperature always remains smaller than 108 GeV [8, 9]. Another important example

is related to moduli production. 15 years ago Coughlan et al. realized that string

theory and supergravity give rise to a cosmological moduli problem associated with

the existence of a large homogeneous classical moduli field in the early universe [10].

Soon afterwards Goncharov, Linde and Vysotsky showed that quantum fluctuations

of moduli fields produced at the last stages of inflation lead to the moduli problem

even if initially there were no classical moduli fields [7]. Thus the cosmological

moduli problem may appear either because of the existence of a large long-living

homogeneous classical moduli field or because of quantum production of excitations

(particles) of the moduli fields. In [3] it was pointed out that the problem of moduli

production is especially difficult in the context of NO models, where moduli are

produced as abundantly as usual particles.

Recently the problem of moduli production in the early universe was studied by

numerical methods in [9], with conclusions similar to those of ref. [7]. As we are

going to demonstrate, the main source of gravitational production of light moduli

in inflationary cosmology is very simple, and one can study the theory of moduli

production not only numerically but also analytically by the methods developed

in [7, 3]. This will allow us to generalize and considerably strengthen the results of

refs. [7, 9].

In particular, we will see that in the leading approximation the problem of over-

production of light moduli particles is equivalent to the problem of large homoge-

neous classical moduli fields [7]. We will show that the ratio of the number density of

light moduli produced during inflation to the entropy of the universe after reheating

satisfies the inequality

nχ

s
& TRH

2
0

3mM2p
. (1.1)

Here m is the moduli mass, Mp ∼ 2.4 × 1018GeV is the reduced Planck mass, and
H0 is the Hubble constant at the moment corresponding to the beginning of the last

60 e-foldings before the end of inflation.

In the simplest versions of inflationary theory with potentials M2φ2/2 or λφ4/4

one has H0 ∼ 1014GeV. In such models our result implies that in order to satisfy the
cosmological constraint nχ/s . 10−12 one needs to have an abnormally small reheat-
ing temperature TR . 1GeV. Alternatively one may consider inflationary models
where the Hubble constant at the end of inflation is very small. But we will argue

that even this may not help, so one may need either to invoke thermal inflation or

to use some other mechanisms which can make the moduli problem less severe, see

e.g. [11, 12].
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In the next section we outline the classical and quantum versions of the moduli

problem and explain how each of them can arise in inflationary theory. In section 3

we describe the results of our numerical simulations of gravitational production of

light scalar fields during and after preheating. In particular we verify our prediction

that the dominant contribution to particle production comes from long-wavelength

modes which are indistinguishable from homogeneous classical moduli fields. Finally

in section 4 we analytically compute the production of these long wavelength modes

and derive eq. (1.1). This section also contains our concluding discussion.

2. Moduli problem

String moduli couple to standard model fields only through Planck scale suppressed

interactions. Their effective potential is exactly flat in perturbation theory in the

supersymmetric limit, but it may become curved due to nonperturbative effects or

because of supersymmetry breaking. If these fields originally are far from the min-

imum of their effective potential, the energy of their oscillations will decrease in an

expanding universe in the same way as the energy density of nonrelativistic matter,

ρm ∼ a−3(t). Meanwhile the energy density of relativistic plasma decreases as a−4.
Therefore the relative contribution of moduli to the energy density of the universe

may quickly become very significant. They are expected to decay after the stage of

nucleosynthesis, violating the standard nucleosynthesis predictions unless the initial

amplitude of the moduli oscillations χ0 is sufficiently small. The constraints on the

energy density of the moduli field ρχ and the number of moduli particles nχ depend

on details of the theory. The most stringent constraint appears because of the pho-

todissociation and photoproduction of light elements by the decay products of the

moduli fields. For m ∼ 102 − 103GeV one has
nχ

s
. 10−12 − 10−15 . (2.1)

see [13, 14] and references therein. In this paper we will use a conservative version

of this constraint, nχ/s . 10−12.
If the field χ is a classical homogeneous oscillating scalar field, then this con-

straint applies to it as well if one defines the corresponding number density of non-

relativistic particles χ by the following obvious relation:

nχ =
ρχ

m
=
mχ2

2
. (2.2)

Let us first consider moduli χ with a constant mass m ∼ 102 − 103GeV and
assume that reheating of the universe occurs after the beginning of oscillations of the

moduli. This is indeed the case if one takes into account that in order to avoid the

gravitino problem one should have TR < 10
8GeV. We will also assume for definiteness

that the minimum of the effective potential for the field χ is at χ = 0; one can always

achieve this by an obvious redefinition of the field χ.

3



J
H
E
P
0
2
(
2
0
0
0
)
0
2
7

Independent of the choice of inflationary theory, at the end of inflation the main

fraction of the energy density of the universe is concentrated in the energy of an

oscillating scalar field φ. Typically this is the same field which drives inflation, but

in some models such as hybrid inflation this may not be the case. We will consider

here the simplest (and most general) model where the effective potential of the field

φ after inflation is quadratic,

V (φ) =
M2

2
φ2 . (2.3)

After inflation the field φ oscillates. If one keeps the notation φ for the amplitude

of oscillations of this field, then one can say that the energy density of this field is

given by ρ(φ) = M2

2
φ2.

To simplify our notation, we will take the scale factor at the end of inflation to be

a0 = 1. The amplitude of the oscillating field in the theory with the potential (2.3)

changes as

φ(t) = φ0 a
−3/2(t) . (2.4)

The field χ does not oscillate and almost does not change its magnitude until

the moment t1 when H
2(t) = ρφ/3M

2
p becomes smaller than m

2/3. At that time one

has
ρχ

ρφ
∼ m2χ20
6H2(t)M2p

∼ χ20
2M2p

. (2.5)

This ratio, which can also be obtained by a numerical investigation of oscillations of

the moduli fields, does not change until the time tR when reheating occurs because

ρχ and ρφ decrease in the same way: they are proportional to a
−3.

At the moment of reheating one has ρφ(tR) = π
2N(T )T 4R/30, and the entropy of

produced particles s = 2π2N(T )T 3R/45, where N(T ) is the number of light degrees

of freedom. This yields
nχ
s
∼ ρχ
ms
∼ χ

2
0TR
3mM2p

. (2.6)

Usually one expects TR � m ∼ 102GeV. Then in order to have nχ/s < 10−12
one would need χ0 � 10−6Mp. However, it is hard to imagine why the value of the
moduli field at the end of inflation should be so small. If one takes χ0 ∼ Mp, which
looks natural, then one violates the bound nχ/s < 10

−12 by more than 12 orders of
magnitude. This is the essence of the cosmological moduli problem [10].

In general, the situation is more complex. During the expansion of the universe

the effective potential of the moduli acquires some corrections. In particular, quite

often the effective mass of the moduli (the second derivative of the effective potential)

can be represented as

m2χ = m
2 + c2H2 , (2.7)

where c is some constant and H is the Hubble parameter [15]. Higher derivatives
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of the effective potential may acquire corrections as well. This leads to a different

version of the moduli problem discussed in [7], see also [16]. The position of the

minimum of the effective potential of the moduli field in the early universe may

occur at a large distance from the position of the minimum at present. This may fix

the initial position of the field χ and lead to its subsequent oscillations.

A simple toy model illustrating this possibility was given in [11]:

V =
1

2
m2χχ

2 +
c2

2
H2 (χ− χ0)2 . (2.8)

At large H the minimum appears at χ = χ0; at small H the minimum is at χ = 0.

Thus one would expect that initially the field should stay at χ0, and later, when H

decreases, it should oscillate about χ = 0 with an initial amplitude approximately

equal to χ0. The only natural value for χ0 in supergravity is χ0 ∼ Mp. This may
lead to a strong violation of the bound (2.1).

A more detailed investigation of this situation has shown [12] that one should

distinguish between three different possibilities: c� 1, c ∼ 1 and c� 1.
If c > O(10), the field χ is trapped in the (moving) minimum of the effective

potential, its oscillations have very small amplitudes, and the moduli problem does

not appear at all [12]. This is the simplest resolution of the problem, but it is not

simple to find realistic models where the condition c > O(10) is satisfied.

The most natural case is c ∼ 1. It requires a complete study of the behavior of
the effective potential in an expanding universe. There may exist some cases where

the minimum of the effective potential does not move in this regime, but in general

the effects of quantum creation of moduli in this scenario [7, 9] are subdominant with

respect to the classical moduli problem discussed above [7, 16], so we will not discuss

this regime in our paper.

Here we will study the case c� 1. In this case the effective mass of the moduli
at H � m is always much smaller than H , so the field does not move towards its
minimum, regardless of its position. Thus if there is any classical field χ0 it simply

stays at its initial position until H becomes smaller than m, just as in the case

considered above, and the resulting ratio nχ/s is given by eq. (2.6).

The moduli problem in this scenario has two aspects. First of all, in order to

avoid the classical moduli problem one needs to explain why χ0 ∼ 10−6
√
m/TRMp,

which is necessary (but not sufficient) to have nχ/s < 10
−12. Then one should

study quantum creation of moduli in an expanding universe and check whether their

contribution to nχ violates the bound nχ/s < 10
−12. This last aspect of the moduli

problem was studied in [7, 9].

In inflationary cosmology these two contributions (the contributions to nχ from

the classical field χ and from its quantum fluctuations) are almost indistinguish-

able. Indeed, the dominant contribution to the number of moduli produced in an

expanding universe is given by the fluctuations of the moduli field produced during

5
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inflation. These fluctuations have exponentially large wavelengths and for all prac-

tical purposes they have the same consequences as a homogeneous classical field of

amplitude χ0 =
√〈χ2〉.

To be more accurate, these fluctuations behave in the same way as the homoge-

neous classical field φ only if their wavelength is greater than H−1. During inflation
this condition is satisfied for all inflationary fluctuations, but after inflation the size

of the horizon grows and eventually becomes larger than the wavelength of some

of the modes. Then these modes begin to oscillate and their amplitude begins to

decrease even if at that stage m < H . To take this effect into account one may

simply exclude from consideration those modes whose wavelengths become smaller

than H−1 prior to the moment t ∼ m−1 when H drops down to m. It can be shown
that in the context of our problem this is a relatively minor correction, so we can

use the simple estimate χ0 =
√〈χ2〉.

In order to evaluate this quantity we will assume that c� 1 and m� H during
and after inflation. This reduces the problem to the investigation of the production of

massless (or nearly massless) particles during and after inflation. In the next section

we study this issue and show that in the most interesting cases where inflationary

long-wavelength fluctuations of a scalar field can be generated during inflation, they

give the dominant contribution to particle production. This allows us to reduce a

complicated problem of gravitational particle production to a simple problem which

can be easily solved analytically.

3. Generation of light particles from and after inflation

In this section we will present the results of a numerical study of the gravitational

creation of light scalar particles in the context of inflation. Consider a scalar field χ

with the potential

V (χ) =
1

2

(
m2 − ξR)χ2 , (3.1)

where R is the Ricci scalar. In a Friedmann universe R = − 6
a2
(äa+ ȧ2). The scalar

field operator can be represented in the form

χ(x, t) =
1

(2π)−3/2

∫
d3k

[
âkχk(t)e

ikx + â†kχ
∗
k(t)e

−ikx
]
, (3.2)

where the eigenmode functions χk satisfy

χ̈k + 3
ȧ

a
χ̇k +

[(
k

a

)2
+m2 − ξR

]
χk = 0 . (3.3)

By introducing conformal time and field variables defined as η ≡ ∫ dt/a, fk ≡ aχk
eq. (3.3) can be simplified to

f ′′k + ω
2
kfk = 0 , (3.4)

6
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where primes denote differentiation with respect to η and

ω2k = k
2 + a2m2 +

(
1

6
− ξ
)
a′′

a
. (3.5)

The growth of the scale factor is determined by the evolution of the inflaton field φ

with potential V (φ). In conformal time

a′′ =
a′2

a
− 8πa
3

(
φ′2 − a2V (φ))

φ′′ + 2
a′

a
φ′ + a2

∂V (φ)

∂φ
= 0 . (3.6)

For initial conditions for the modes fk, in the first approximation one can use

positive frequency vacuum fluctuations fk =
1√
2k
e−ikt, see e.g. [6]. However, when

describing fluctuations produced at the last stages of a long inflationary period, one

should begin with fluctuations which have been generated during the previous stage

of inflation. For example, for massless scalar fields minimally coupled to gravity

instead of fk =
1√
2k
e−ikt one should use Hankel functions [17]:

fk(t) =
ia(t) H

k
√
2 k

(
1 +

k

iH
e−H t

)
exp

(
i k

H
e−H t

)
, (3.7)

where H is the Hubble constant at the beginning of calculations. To make the

calculations even more accurate, one should take into account that long-wavelength

perturbations were produced at early stages of inflation when H was greater than

at the beginning of the calculations. If the stage of inflation is very long, then the

final results do not change much if instead of the Hankel functions (3.7) one uses

fk =
1√
2k
e−ikt. However, if the inflationary stage is short, then using the functions

fk =
1√
2k
e−ikt considerably underestimates the resulting value of 〈χ2〉.

At late times the solutions to eq. (3.4) can be represented in terms of WKB

solutions as

fk(η) =
αk(η)√
2ωk
e−i

∫ η
ωkdη +

βk(η)√
2ωk
e+i

∫ η
ωkdη , (3.8)

where αk(η) and βk(η) play the role of coefficients of a Bogolyubov transformation.

This form is often used to discuss particle production because the number density

of particles in a given mode is given by nk = |βk(η)|2 and their energy density is
ωknk. As we will see, though, the main contribution to the number density of χ

particles at late times comes from long-wavelength modes which are far outside the

horizon during reheating. As long as they remain outside the horizon these modes

do not manifest particle-like behaviour, i.e. the mode functions do not oscillate. In

this situation the coefficients α and β have no clear physical meaning. We therefore

present our results in terms of the mode amplitudes |fk(η)|2, which as we will show
contain all the information relevant to number density and energy density at late

times.

7
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Figure 1: Fluctuations vs. mode frequency at a late time. The lower plots show runs which

started close to the end of inflation, with initial conditions fk =
1√
2k
e−ikt. The starting

times range from φ0 = 1.5Mp (lowest curve) up through φ0 = 2Mp. The highest curve

shows the Hankel function solutions given by eqs. (3.10) and (3.11) As we see, calculations

with fk =
1√
2k
e−ikt produce the correct spectrum at large k but underestimate the level of

quantum fluctuations at small k.

At late times when a′′/a ∼ H < m the long wavelength modes of χ will be
nonrelativistic and their number density will simply be given by eq. (2.2). Moreover

the very long wavelength modes which are still outside the horizon at late times

(e.g. at nucleosynthesis) will act like a classical homogeneous field whose amplitude

is given by

〈χ2〉 = 1

2π2a2

∫
dkk2|fk|2 . (3.9)

It is these very long wavelength modes which will dominate and therefore the quantity

of interest for us is the amplitude of these fluctuations.

In our calculations we assumed that m2 = c2H2 with c � 1; the results shown
are for c = 0 but we also did the calculations with c = .01 and found that the results

were independent of c in this range.

Figure 1 shows the results of solving eq. (3.4) for a model with the inflaton poten-

tial V (φ) = 1
4
λφ4. These data were taken after ten oscillations of the inflaton field.

The vertical axis shows k2|fk|2 as a function of the momentum k. The momentum
is shown in units of the Hubble constant at the end of inflation.

The different plots represent runs with different starts of inflation, i.e. with dif-

ferent initial values of φ. They all coincide in the ultraviolet part of the spectrum,

but the runs which started towards the end of inflation show a significant suppres-

sion in the infrared. This shows that fluctuations produced during inflation are the

primary source of the infrared modes, which in turn dominate the number density.

8
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The curve on top shows the Hankel function solutions (3.7), which give

|fk|2 = a
2H2

2k3
(3.10)

for de Sitter space, i.e. for a constant H . In the figure, we have corrected this

expression by using for each mode the value of the Hubble constant at the moment

when that mode crossed the horizon. For the λφ4 model shown here the appropriate

Hubble parameter for each mode can be approximated as

Hk =

√
2πλ

3

(
φ2e −

1

π
ln

(
k

He

))
, (3.11)

where φe and He are the values of the inflaton and the Hubble parameter respectively

at the end of inflation.

Note that if the Hankel function solutions (3.7) are used as initial conditions

for a numerical run then they do not change as the modes cross the horizon, so the

upper curve of the plot can also be obtained from such a run. Relative to this upper

curve it’s easy to see how the numerical runs show suppression in the infrared due

to starting inflation at late times and choosing the initial conditions in the form

fk =
1√
2k
e−ikt, and suppression in the ultraviolet due to the end of inflation. The

latter suppression is physically realistic. The infrared suppression should occur at a

wavelength corresponding to the Hubble radius at the beginning of inflation.

The different regions of the graph illustrate effects which occurred at different

times. During inflation long wavelength modes crossed the horizon at early times.

Thus the far left portion of the plot shows the modes which crossed earliest. They

have the highest amplitudes both because they were frozen in earliest and because

the Hubble constant was higher at earlier times when they were produced. The

lower plots don’t show these high amplitudes because inflation began too late for

these modes to cross outside the horizon and be amplified. Farther to the right

the curve shows modes which were only slightly if at all amplified during inflation.

The far right modes were produced during the fast rolling and oscillatory stages.

These modes are not frozen and can be described meaningfully in terms of α and β

coefficients. The regularized expression

|fk|2 = 1
ωk

[
|βk|2 +Re

(
αkβ

∗
ke
−2i ∫ ωkdη

)]
(3.12)

shows why the amplitudes of these modes oscillate as a function of k.

In short inflationary fluctuations are primarily responsible for producing infrared

modes and post-inflationary effects account for ultraviolet modes, but it is the in-

frared modes that were outside the horizon at the end of inflation which dominate

the number density at late times. The earlier inflation began the farther this distri-

bution will extend into the infrared, and the long wavelength end of this spectrum

will always give the greatest contribution to the number density of χ particles.

9
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Our numerical calculations are similar to those of Kuzmin and Tkachev [6].

However, they took a rather small initial value of the classical scalar field φ, which

resulted in less than 60 e-folds of inflation. As initial conditions for the fluctuations

they used fk =
1√
2k
e−ikt. They pointed out that the results of such calculations can

give only a lower bound on the number of χ particles produced during inflation.

Consequently, similar calculations performed in [9] could give only a lower bound on

the number of moduli fields produced in the early universe.

Our goal is to find not a lower bound but the complete number of particles

produced at the last stages of inflation in realistic inflationary models, where the

total duration of inflation typically is much greater than 60 e-foldings. One result

revealed by our calculations is that the effects of an arbitrarily long stage of inflation

can be mimicked by the correct choice of “initial” conditions chosen for the modes

χk after inflation. Instead of using the Minkowski space fluctuations fk =
1√
k
e−ikt

used in [6] as well as in our numerical calculations, one should use the de Sitter space

solutions (3.7), withH corrected to the value it had for each mode at horizon crossing.

Using these modes at the end of inflation is equivalent to running a simulation with

a long stage of inflation.

Our numerical calculations confirmed the result that we are going to derive

analytically in the next section (see also [3]): The number of χ particles (nχ ∼ m〈χ2〉)
produced during the stage of inflation beginning at φ = φ0 in the simplest model

M2φ2/2 is proportional to φ40, whereas in the model λφ
4/4 it is proportional to φ60.

Thus the total number of particles produced during inflation is extremely sensitive to

the choice of initial conditions. If one considers φ0 corresponding to the beginning of

the last 60 e-folds of inflation, the total number of particles produced at that stage

appears to be much greater than the lower bound obtained in [6]. As we will see,

this will allow us to put a much stronger constraint on the moduli theories than the

constraint obtained in [9].

4. Light moduli from inflation

The numerical results obtained in the previous section confirm our expectation that

in the most interesting cases where long-wavelength inflationary fluctuations of light

scalar fields can be generated during inflation, they give the dominant contribution

to particle production. In particular, in the case of c� 1, m� H most moduli field
fluctuations are generated during inflation rather than during the post-inflationary

stage. These fluctuations grow at the stage of inflation in the same way as if the

moduli field χ were massless [17]:

d〈χ2〉
dt
=
H3

4π2
. (4.1)
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If the Hubble constant does not change during inflation, one obtains the well-known

relation

〈χ2〉 = H
3 t

4π2
. (4.2)

However, in realistic inflationary models the Hubble constant changes in time, and

fluctuations of the light fields χ with m� H behave in a more complicated way.
As an example, let us consider the case studied in the last section. Here inflation

is driven by a field φ with an effective potential V (φ) = λ
4
φ4 at φ > 0. This potential

could be oscillatory or flat for φ < 0. We consider a light scalar field χ which is not

coupled to the inflaton field φ, and which is minimally coupled to gravity.

The field φ during inflation obeys the following equation:

3Hφ̇ = −λφ3 . (4.3)

Here

H =
1

2

√
λ

3

φ2

Mp
. (4.4)

These two equations yield the solution [17]

φ = φ0 exp

(
−2
√
λ

3
Mpt

)
, (4.5)

where φ0 is the initial value of the inflaton field φ. In this case eq. (4.1) reads:

d〈χ2〉
dt
=
λ
√
λ

96
√
3π2
φ60
M3p
exp

(
−12

√
λ

3
Mpt

)
(4.6)

The result of integration at large t converges to

〈χ2〉 = λ
2

(
φ30

24πM2p

)2
. (4.7)

This result agrees with the results of our numerical investigation described in the

previous section.

From the point of view of the moduli problem, these fluctuations lead to the

same consequences as a classical scalar field χ which is homogeneous on the scale

H−1 and which has a typical amplitude

χ0 =
√
〈χ2〉 =

√
λ

2

φ30
24πM2p

. (4.8)

A similar result can be obtained in the model V (φ) = M2

2
φ2. In this case one

has [17]

φ(t) = φ0 −
√
2

3
MpMt . (4.9)
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The time-dependent Hubble parameter is given by

H =
M√
6Mp
φ(t) , (4.10)

which yields

χ0 =
√
〈χ2〉 = Mφ20

8π
√
3M2p

. (4.11)

As we see, the value of χ0 depends on the initial value of the field φ. This result

has the following interpretation. One may consider an inflationary domain of initial

size H−1(φ0). This domain after inflation becomes exponentially large. For example,
its size in the model with V (φ) = M2

2
φ2 becomes [17]

l ∼ H−1(φ0) exp
(
φ20
4M2p

)
. (4.12)

In order to achieve 60 e-folds of inflation in this model one needs to take φ0 ∼ 15Mp.
This implies that a typical value of the (nearly) homogeneous scalar field χ in a

universe which experienced 60 e-folds of inflation in this model is given by

χ0 =
√
〈χ2〉 ∼ 5M . (4.13)

In realistic versions of this model one has M ∼ 5× 10−6Mp ∼ 1013GeV [17]. Substi-
tution of this result into eq. (2.6) gives

nχ
s
∼ 2× 10−10 TR

m
. (4.14)

This implies that the condition nχ/s . 10−12 requires that the reheating temperature
in this model should be at least two orders of magnitude smaller thanm. For example,

for m ∼ 102GeV one should have TR . 1GeV, which looks rather problematic.
This result confirms the basic conclusion of ref. [7] that the usual models of

inflation do not solve the moduli problem. Our result is similar to the result ob-

tained in [9] by numerical methods, but it is approximately two orders of magnitude

stronger. The reason for this difference is that the authors of ref. [9] used a much

smaller value of φ0 in their numerical calculations. Consequently, they took into

account only the particles produced at the very end of inflation, whereas the leading

effect occurs at earlier stages of inflation, i.e. at larger φ.

In general one can get a simple estimate of χ0 =
√〈χ2〉 by assuming that the

universe expanded with a constant Hubble parameter H0 during the last 60 e-folds

of inflation. To make this estimate more accurate one should take the value of the

Hubble constant not at the end of inflation but approximately 60 e-foldings before it,

at the time when the fluctuations on the scale of the present horizon were produced.

The reason is that the largest contribution to the fluctuations is given by the time

12
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when the Hubble constant took its greatest values. Also, at that stage the rate of

change of H was relatively slow, so the approximation H = H0 = const. is reasonable.

Thus one can write

χ0 =
√
〈χ2〉 & H0

2π

√
H0t ∼ H0

2π

√
60 ∼ H0 . (4.15)

This gives
nχ

s
& TRH

2
0

3mM2p
. (4.16)

In the simplest versions of chaotic inflation with potentials M2φ2/2 or λφ4/4 one

has H0 ∼ 1014GeV, which leads to the requirement TR . 1GeV. But this equation
shows that there is another way to relax the problem of the gravitational moduli

production: one may consider models of inflation with a very small value of H0 [7].

For example, one may have nχ/s ∼ 10−12 for TR ∼ H0 ∼ 107GeV.
However, this condition is not sufficient to resolve the moduli problem; the situ-

ation is more complicated. First of all, it is very difficult to find inflationary models

where inflation occurs only during 60 e-foldings. Typically it lasts much longer, and

the fluctuations of the light moduli fields will be much greater. This is especially

obvious in the theory of eternal inflation where the amplitude of fluctuations of the

light moduli fields can become indefinitely large [17]. In particular, if the condition

m2χ ∼ m2 + c2H2 with c � 1 remains valid for χ & Mp, then one may expect the
generation of moduli fields χ > Mp. This should initiate inflation driven by the light

moduli [3]. Then the situation would become even more problematic: we would need

to find out how one could produce baryon asymmetry of the universe after the light

moduli decay and how one could obtain density perturbations δρ/ρ ∼ 10−4 in such
a low-scale inflationary model.

One may expect that the region of values of χ where its effective potential has

small curvature m2 � H2 may be limited, and may even depend on H . Then the
existence of a long stage of inflation would push the fluctuations of the field χ up

to the region where its effective potential becomes curved, and instead of our results

for χ0 one should substitute the largest value of χ for which m
2
χ < H

2. In such a

situation one would have a mixture of problems which occur at c� 1 and at c ∼ 1.
Finally, we should emphasize that all our worries about quantum creation of

moduli appear only after one makes the assumption that for whatever reason the

initial value of the classical field χ in the universe vanishes, i.e. that the classical

version of the moduli problem has been resolved. We do not see any justification for

this assumption in theories where the mass of the moduli field in the early universe is

much smaller than H . Indeed, in such theories the classical field χ initially can take

any value, and this value is not going to change until the moment t ∼ H−1 ∼ m−1.
The main purpose of this paper was to demonstrate that even if one finds a solution

to the light moduli problem at the classical level, the same problem will appear again

because of quantum effects.
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This does not mean that the moduli problem is unsolvable. One of the most

interesting solutions is provided by thermal inflation [11]. The Hubble constant

during inflation in this scenario is very small, and the effects of moduli production

there are rather insignificant. Another possibility is that moduli are very heavy in the

early universe, m2χ = m
2 + c2H2, with c > O(10), in which case the moduli problem

does not appear [12]. The main question is whether we really need to make the theory

so complicated in order to avoid the cosmological problems associated with moduli.

Is it possible to find a simpler solution? One of the main results of our investigation

is to confirm the conclusion of ref. [7] that the simplest versions of inflationary theory

do not help us to solve the moduli problem but rather aggravate it.

In conclusion we would like to note that the methods developed in this paper

apply not only to the theory of moduli production but to other problems as well. For

example, one may study the theory of gravitational production of superheavy scalar

particles after inflation [5, 6]. If these particles are minimally coupled to gravity

and have mass m � H during inflation, then one can use our eqs. (4.8), (4.11) to
calculate the number of produced particles. These equations imply that the final

result will strongly depend on φ0, i.e. on the duration of inflation. If inflation occurs

for more than 60 Hubble times, the production of particles with m � H is much
more efficient than was previously anticipated. As we just mentioned, if φ0 is large

enough then the production of fluctuations of the field χ may even lead to a new

stage of inflation driven by the field χ [3]. On the other hand, if m is greater than the

value of the Hubble constant at the very end of inflation, then quantum fluctuations

are produced only at the early stages of inflation (when H > m). These fluctuations

oscillate and decrease exponentially during the last stages of inflation. In such cases

the final number of produced particles will not depend on the duration of inflation

and can be unambiguously calculated. We hope to return to this question in a

separate publication.
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