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1 INTERSECTIONS OF LOOPS AND THE

ANDERSEN-MATTES-RESHETIKHIN ALGEBRA

PATRICIA CAHN AND VLADIMIR CHERNOV

Abstract. Given two free homotopy classes α1, α2 of loops on an oriented
surface, it is natural to ask how to compute the minimum number of intersec-
tion points m(α1, α2) of loops in these two classes.

We show that for α1 6= α2 the number of terms in the Andersen-Mattes-
Reshetikhin Poisson bracket of α1 and α2 is equal to m(α1, α2). Chas found
examples showing that a similar statement does not, in general, hold for the
Goldman Lie bracket of α1 and α2.

The main result of this paper in the case where α1, α2 do not contain
different powers of the same loop first appeared in the unpublished preprint of
the second author. In order to prove the main result for all pairs of α1 6= α2

we had to use the techniques developed by the first author in her study of
operations generalizing Turaev’s cobracket of loops on a surface.

1. Basic definitions and main results

We work in the smooth category, where “smooth” means C∞. Throughout this
work F is an oriented two dimensional surface and π̂ is the set of free homotopy
classes of loops on F . For β ∈ π1(F ) we let 〈β〉 ∈ π̂ denote the free homotopy class
corresponding to β. Similarly for a loop a : S1 → F we denote by 〈a〉 ∈ π̂ the free
homotopy class containing a. We let Z[π̂] be the free abelian group of formal finite
linear combinations of the elements of π̂ with integer coefficients.

Goldman [15] constructed a Lie algebra structure on Z[π̂]. Turaev [22] later
defined a cobracket on the free Z-module generated by the set of nontrivial free ho-
motopy classes, and showed that his cobracket, together with the Goldman bracket,
forms a Lie bialgebra structure on this module. Given an element γ ∈ Z[π̂] with
γ =

∑
k jkωi, jk ∈ Z, ωk ∈ π̂ we put terms(γ) =

∑
k |jk| and call it the number of

terms of γ.
Given two smooth loops a1, a2 : S1 → F we let i(a1, a2) be the (possibly infinite)

number of intersection points of a1 and a2, i.e., the number of pairs (t1, t2) ∈ S1×S1

such that a1(t1) = a2(t2). For α1, α2 ∈ π̂ we put

(1.1) m(α1, α2) = min
a1∈α1,a2∈α2

i(a1, a2)

and we call it the minimal intersection number of the free homotopy classes α1 and
α2.

It is easy to see that terms([α1, α2]) ≤ m(α1, α2), where [·, ·] denotes the Gold-
man Lie bracket of two elements of Z[π̂]. Goldman [15] showed that if α1 con-
tains a simple loop and [α1, α2] = 0, then m(α1, α2) = 0 and thus there exist
a1 ∈ α1, a2 ∈ α2 such that a1 and a2 do not intersect.

Later Chas [8, Corollary, page 27] proved that the following two statements are
equivalent:

1
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2 CAHN & CHERNOV

I: α1 contains a power of simple loop,
II: terms([α1, α2]) = m(α1, α2) for all α2 ∈ π̂.

Thus if α1 contains a power of a simple loop, then for every α2 one can use
Goldman’s Lie bracket to compute the minimal number of intersection points of
loops in homotopy classes α1 and α2. On the other hand, if α1 does not contain a
power of a simple loop, then for some α2 we have terms([α1, α2]) < m(α1, α2). In
fact, it is even possible to have terms([α1, α2]) = 0 while m(α1, α2) 6= 0. The first
such examples were found by Chas [7, Example 5.6].

Andersen, Mattes and Reshetikhin [1], [2] constructed a Poisson algebra on a
Z−module generated by chord diagrams on F . An element α ∈ π̂ can be viewed as
a chord diagram with one circle and zero chords. For α1, α2 ∈ π̂ their Andersen-
Mattes-Reshetikhin Poisson bracket {α1, α2} =

∑
k jkτk is a finite integer linear

combination of chord diagrams τk consisting of two circles connected by a chord.
We put terms({α1, α2}) =

∑
k |jk| and call it the number of terms of {α1, α2}.

The main result of this work is the following theorem.

1. Theorem. Let α1 6= α2 be two free homotopy classes of loops on an oriented

surface F. Then terms({α1, α2}) = m(α1, α2), i.e. the number of terms in the

Andersen-Mattes-Reshetikhin Poisson bracket of α1 and α2 equals the minimum

number of intersection points of loops in the classes α1 and α2.

The proof of this theorem is contained in Section 4.
Since {·, ·} is skew symmetric and hence {α, α} is always zero, the statement

of this theorem is false for the case when α1 = α2. However the conditions of the
theorem allow the case where α1 = 〈δi〉 and α2 = 〈δj〉 for δ ∈ π1(F ) and i 6= j,
i.e. when α1 and α2 contain different powers of the same loop.

Of course when α1 = α2 we have that m(α1, α2) = m(α1, α
−1
1 ), where α−1

1

denotes the class containing the loops from α1 with orientation reversed. By Theo-
rem 1 we have m(α1, α

−1
1 ) = terms({α1, α

−1
1 }) and we see that m(α1, α2) can easily

be computed using the Andersen-Mattes-Reshetikhin Poisson bracket even in the
case where α1 = α2.

1.1. Remark. Garlands and some previously known cases of Theorem 1. In the
unpublished preprint of the second author [11, Theorem 1.4] we introduced a graded
Poisson algebra on the oriented bordism group of mappings into a manifold M of
garlands made out of a collection N of odd dimensional manifolds. In the case
when garlands are made out of circles and M is a two dimensional surface, zero-
dimensional bordisms form a Poisson subalgebra. We showed [11, Proposition 12.4
and Section 12.2] that this subalgebra is identified with a symmetrization of the
subalgebra of the Andersen-Mattes-Reshetkhin Poisson algebra formed by tree-like
chord diagrams. The study of garland algebras was initiated in the joint work of
Rudyak and the second author [12].

In [11, Theorem 1.8, Theorem 10.1 and Section 10.2] we provided the sketch of
the proof of the statement of Theorem 1 under the assumption that it is not true
that α1 = 〈δi〉 and α2 = 〈δj〉 for some δ ∈ π1(F ) and i, j ∈ Z. The technique used
in [11] does not seem to allow us to prove Theorem 1 in the case where α1 and α2

contain different powers of the same element of π1(F ).
The proof of Theorem 1 in this paper uses the techniques developed in the work

of the first author [5]. In that work it is proved [5, Theorem 1.1 and Theorem 1.2]
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that if one generalizes the Turaev cobracket in the spirit of the Andersen-Mattes-
Reshetikhin Poisson algebra, then the resulting operation gives a formula for the
minimum number of self intersection points of a loop in any given α ∈ π̂.

We also use some of the ideas from the papers of Turaev [23] and of Turaev-
Viro [24], who constructed algebraic operations that compute the minimal number
of self-intersection points and the minimal number of intersection points of loops in
given free homotopy classes. We are not aware of any relation between Turaev-Viro
operations and the Poisson algebra of Andersen-Mattes-Reshetikhin.

Our results allow one to compute the minimal intersection number, and we give
an example in the last section of the paper which illustrates this for surfaces with
boundary. However, we do not place much emphasis on algorithmic methods of
computing the minimal intersection number in this paper. For algorithmic methods
of computing the minimal intersection number, we refer the reader to the works of
Lustig [19], Cohen-Lustig [13].

In this work we do not address the question of finding out the minimal number
of self-intersection points of a curve on a surface.

2. The Goldman Lie Algebra

Goldman [15] introduced a Lie algebra on Z[π̂]. Given two free loop homotopy
classes α1, α2 ∈ π̂, their Goldman’s Lie bracket [α1, α2] ∈ Z[π̂] is defined as follows.
Take two transverse representatives a1, a2 of α1, α2 that are generic in the sense
that intersection points of a1 and a2 are transverse double points and they do not
happen at the self intersection points of a1 or a2.

Put P = a1 ∩ a2. For each p ∈ P we construct a two-frame at TpF whose first
vector is the velocity vector of a1 at p and whose second vector is the velocity vector
of a2 at p. Put sign(p) to be +1 if the orientation of TpF given by the above frame
is positive and put sign(p) = −1 if the orientation of TpF given by the above frame
is negative.

After an orientation preserving reparameterization, the loops a1 and a2 can be
considered as loops based at p. We denote by 〈a1 ·p a2〉 the element of π̂ realized by
the class of the product a1a2 ∈ π1(F, p).

Goldman Lie bracket [α1, α2] is defined by

(2.1) [α1, α2] =
∑

p∈P

sign(p)〈a1 ·p a2〉 ∈ Z[π̂],

and it can be extended to Z[π̂] by linearity.
Turaev [22] introduced a cobracket on the quotient of Z[π̂] by the Z-submodule

generated by the class of the trivial loop. Together Goldman’s bracket and the
Turaev’s cobracket make this quotient into an involutive Lie bialgebra.

3. The Andersen-Mattes-Reshetikhin Poisson Algebra

We now summarize the construction of the Andersen-Mattes-Reshetikhin Poisson
algebra given in [1], [2].

A chord diagram is a topological space that consists of some number of disjoint
oriented circles S1

i , i = 1, · · · , q, and disjoint arcs Aj , j = 1, · · · , r, such that the
end points of the arcs are distinct and ∪j∂Aj = (∪iS

1
i ) ∩ (∪jAj). The circles S1

i

are called core components and the arcs Aj are called chords of the diagram.
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A geometric chord diagram on an oriented surface F is a smooth map of a chord
diagram to the surface that maps each chord to a point. A generic geometric chord

diagram on F is a geometric chord diagram such that all the circles are immersed
and all the multiple points between them are transverse double points. A chord

diagram on F is an equivalence class of geometric chord diagrams modulo homotopy.
The commutative multiplication of two chord diagrams on F is defined to be their
union.

Consider the complex vector space X whose basis is the set of chord diagrams
on F. Let Y be the subspace of X generated by linear combinations called 4T -
relations. One of the 4T -relations is depicted in Figure 1. The others are obtained
by reversing the orientations of strands in Figure 1, by following the rule that for
each chord that intersects a component whose orientation is reversed we get a factor
of (−1) in front of the diagram.

−�
�
�
�

��

��

��

��

��

��

��

− + +

Figure 1. 4T -relation. The diagrams are identical outside of the
dotted circles, and the parts that are drawn are embedded in F.

The subspace Y is an ideal with respect to multiplication, and the Andersen-

Mattes-Reshetikhin chord algebra is ch(F ) = X/Y.
Given two chord diagrams [D1], [D2] on F, pick two geometric chord diagrams

D1, D2 representing them so that D1 ∪ D2 is a generic chord diagram. Put P =
D1 ∩ D2 to be the set of intersection points of D1 and D2. Each p ∈ P is the
intersection point of a curve from D1 with a curve from D2. For each p ∈ P we
construct a 2-frame in TpF whose first vector is the velocity vector of D1 at p and
whose second vector is the velocity vector of D2 at p. We put sign(p) = +1 if this
2-frame gives a positive orientation of TpF, and we put sign(p) = −1 otherwise. For

p ∈ P we put D1 ∪p D2 to be the chord diagram on F obtained by joining D−1
1 (p)

and D−1
2 (p) by a chord.

The Andersen-Mattes-Reshetikhin Poisson bracket {·, ·} of two chord diagrams

[D1], [D2] on F is given by

(3.1) {[D1], [D2]} =
∑

p∈D1∩D1

sign(p)[D1 ∪p D2],

where a geometric diagram in square brackets denotes the chord diagram equiva-
lence class realized by it.

Note that the Andersen-Mattes-Reshetikhin Poisson bracket can be viewed as
a generalization of Goldman’s bracket. Namely, if one computes {α1, α2} for two
free homotopy classes, and then smoothes the resulting diagrams at their chords
according to the orientations on the core circles, one recovers the Goldman bracket
[α1, α2] of the two loops. Thus the bound on the minimal intersection number given
by the Andersen-Mattes-Reshetikhin bracket must be at least as good as the bound
given by Goldman’s bracket. Our main theorem says that the first bound is in fact
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an equality, while the results of Chas [7] say that in general the second bound is
not an equality.

4. Proof of Theorem 1

If α1 contains contractible loops, then {α1, α2} = 0. Thus terms({α1, α2}) = 0.
Furthermore, two loops from the homotopy classes α1, α2 can be made disjoint by
a homotopy. Thus m(α1, α2) = 0 = terms({α1, α2}), so from now on we assume
that α1 and α2 do not contain contractible loops.

We begin by assuming that F is a compact surface. (Later, we will
consider the case where F is not compact.) If F is S2 or the annulus A, then every
two loops on F can be made disjoint by homotopy. Thus m(α1, α2) = 0. We also
have terms({α1, α2}) = terms(0) = 0, which proves the theorem for F = S2, A.

First we consider the case where F 2 is the torus T 2. Clearly terms({α1, α2})
is at least the absolute value of the intersection number [α1] • [α2] of the classes
in H1(F

2) realized by α1 and α2. Since H1(T
2) = π1(T

2) = Z ⊕ Z, we get that
α1 = i1(m1, l1) for some i1 ∈ Z and coprime m1, l1 ∈ Z. Take m2, l2 ∈ Z such that
m1l2− l1m2 = 1. Then α2 = i2(m1, l1)+ j2(m2, l2), for some i2, j2 ∈ Z. Put {i, j} to
be the standard orthonormal frame in R

2 and take µ to be the simple loop on T 2

that lifts to a straight line ~r1(t) = m1ti+ l1tj in the total space R2 of the universal
cover R2 → R

2/(Z⊕ Z) = T 2. Take a1 ∈ α1 to be µi1.

Put µ to be a small parallel shift of µ and put λ to be a simple loop such
that λ and µ have the same base point and such that λ lifts to a straight line
r2(t) = m2ti + l2tj in the universal cover R

2 of T 2. Put a2 = µi2
1 λj2 ∈ α2. It is

easy to see that the number of intersection points of a1 and a2 is |i1j2| and that
i1j2 = [α1] • [α2].

Thusm(α1, α2) ≤ |[α1]•[α2]|. Clearly |[α1]•[α2]| ≤ m(α1, α2) and som(α1, α2) =
|[α1] • [α2]|.

Since terms({α1, α2}) ≤ m(α1, α2) = |[α1] • [α2]| and terms({α1, α2}) ≥ |[α1] •
[α2] we have that m(α1, α2) = terms({α1, α2}) and this finishes the proof of Theo-
rem 1 for F = T 2.

Next we consider the case where F is a compact surface, with or

without boundary, other than S2, T 2, or A. After this, we will consider the
case where F is a noncompact surface.

We use a decomposition of F into pairs of pants to construct a Riemannian
metric g of constant negative curvature −1 on F such that the boundary of F is
geodesic. Throughout the proof we will use the following two facts about π1(F ):

1. All nontrivial abelian subgroups of π1(F ) for such F are infinite cyclic, and

moreover for each α 6= 1 ∈ π1(F ) there is a unique maximal infinite cyclic subgroup

containing α. For closed F this follows from the Preissman Theorem [14, Theorem
3.2 page 260], [20]. For compact F with ∂F 6= ∅ this holds since π1(F ) is free.

2. Every nontrivial free homotopy class on (F, g) is realizable by a geodesic loop

that is unique up to reparameterization; see [3, Lemma B.4.5] for the case ∂F = ∅,
or see [4, Theorem 1.6.6] for the general case. For closed F this is a result of
Hadamard [16] which is a particular case of the Cartan Theorem [6], [18, Theorem
3.8.14] that holds for closed negative sectional curvature manifolds of all dimensions.

Let ai be the closed geodesic realizing αi, i = 1, 2. Let βi, i = 1, 2, be the gener-
ator of the maximal infinite cyclic group containing the class of ai ∈ π1(F

2, ai(1)),
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so that αi = 〈βki

i 〉 for some ki ∈ Z. Choosing β−1
i instead of βi, if needed, we can

assume that ki > 0.
The free homotopy class 〈βi〉 is realizable by a unique (up to reparameterization)

closed geodesic bi i = 1, 2. Thus αi is realizable by a closed geodesic that travels
along the oriented closed geodesic bi a total of ki times. Furthermore this choice
of ai is the unique closed geodesic realizing αi. Observe that 〈bi〉 ∈ π1(F

2) is not
realizable as a power of another element. Hence bi is injective on the complement of
a finite set of points in S1 that are the preimages of the transverse self-intersection
points of bi, i = 1, 2.

If one of b1, b2 is a boundary curve and b1 6= b±1
2 then {α1, α2} = {〈bk1

1 〉, 〈bk2

2 〉} =

0, so terms{α1, α2} = 0. On the other hand, i(bk1

1 , bk2

2 ) = 0, and hence m(α1, α2) =
0. Thus the statement of the theorem holds in this case. If b1 = b±1

2 then we
can take a representative of α1 located in the thin neighborhood of the boundary
component and such that this representative does not touch the boundary. Taking
a representative of α2 located in an even thinner neighborhood of the boundary we
get that m(α1, α2) = 0 = terms({α1, α2}).

Now in the remainder of the proof we may assume that the geodesics b1, b2 are
located in F \ ∂F.

In Subsection 4.2 we prove the theorem in the cases where α1 and α2 do not
contain powers of the same loop. This means that b1 and b2 intersect at a finite
number of points and these intersections are transverse. In Subsection 4.3 we prove
the theorem in the case where α1 and α2 contain powers of the same loop δ.

To present the proof we will need to introduce the chord diagrams b1 •p b2 and

bk1

1 •p b
k2

2 , and we do this in the following subsection.

4.1. b1 •p b2 and its properties. Note that in this section and in the remainder
of the paper, we abuse notation slightly and refer to the homotopy class of a path
or a loop b by b rather than 〈b〉. It should be clear from context whether we are
referring to a loop or path, or to the class of a loop or the class of a path. Assume
that b1, b2 are two transverse immersed closed curves that are not necessarily in
general position. This means that their intersection points could have multiplicity
greater than two. (In our proof, the bi are closed geodesics, so we cannot assume
all intersection points are double points.) For p′, p′′ ∈ S1 such that b1(p

′) = b2(p
′′),

we let p = b1(p
′) = b2(p

′′) and we let sign(p) be the sign of the intersection point
of the branches of b1 and b2 containing p and p′ respectively.

Note that this is a slight abuse of notation since p could be an intersection point
of multiplicity greater than 2. However, it will be clear from context which pair of
preimages of an intersection point of b1 and b2 we are talking about.

We let b1 •p b2 be the homotopy class of a geometric chord diagram with two
circles and one chord connecting them, such that the map on one circle is b1, the
map on the other circle is b2, and the chord connects the points p′ and p′′ on the
two circles.

For nonzero integers k1, k2, we let b
k1

1 •p b
k2

2 be the homotopy class of a geometric
chord diagram with two circles and one chord connecting them, such that the map
on one circle is bk1

1 , and the map on the second circle is bk2

2 . We can view bki

i as
a composition of bi with the covering map S1 → S1, e2πit → eki2πit of degree ki.
Recall that p is an intersection point of b1 and b2 with preimages p′ and p′′. The
points p′ and p′′ have k1 and k2 preimages each under the covering maps of degree
ki. The chord of the diagram bk1

1 •p b
k2

2 connects any pair of preimages of the points
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p′ and p′′ on the two circles under the covering maps. Note that the homotopy
class bk1

1 •p b
k2

2 does not depend on the choices of the preimages of p′ and p′′ that
are to be connected by a chord.

Assume that bk1

1 •p b
k2

2 and bk3

3 •p b
k4

4 are homotopy classes of two chord diagrams
for which the chord is mapped to the same point p on the surface. It is easy to see
that these homotopy classes of chord diagrams are equal if and only if there exists
s ∈ π1(F, p) such that one of the following conditions holds

1. s(bk1

1 )s−1 = bk3

3 ∈ π1(F, p) and s(bk2

2 )s−1 = bk4

4 ∈ π1(F, p)

2. s(bk2

2 )s−1 = bk3

3 ∈ π1(F, p) and s(bk1

1 )s−1 = bk4

4 ∈ π1(F, p).
(4.1)

That is these two homotopy classes of chord diagrams are equal exactly when the
two loops in one diagram, taken in either order, can be simultaneously conjugated
by some element of π1(F ) to obtain the two loops in the other diagram.

4.2. The proof of Theorem 1 in the case where α1 and α2 do not contain

powers of the same loop. It is easy to observe that for such α1, α2 we have
{α1, α2} = k1k2

∑
p∈b1∩b2

sign(p)(bk1

1 •p b
k2

2 ).
To prove the Theorem it suffices to show that for p1 6= p2 in b1 ∩ b2 we have that

the geometric chord diagrams bk1

1 •p1
bk2

2 and bk1

1 •p2
bk2

2 are not homotopic.
Recall that curves b1, b2 could have intersection points of multiplicity greater

than two, so here and below by p1 6= p2 we mean that the two pairs of preimages
of the intersection points p1 and p2 that are hidden in the definition of p1 and p2
are different.

We argue by contradiction and assume that the chord diagrams bk1

1 •p1
bk2

2 and

bk1

1 •p2
bk2

2 are homotopic.
There are two possible cases for the mutual position of chords corresonding to

p1 and p2. They are shown in Figure 2.A and Figure 2.B, respectively. Note that
some of the circle arcs between the chord ends on these figures could be trivial.
However the two chords are really different, since we assumed p1 6= p2.

We consider the two cases depicted in Figure 2 separately.
First we consider the case described in Figure 2.A In this case we get

(4.2) bk1

1 •p1
bk2

2 = (cd)k1 •p1
(fe)k2

and

(4.3) bk1

1 •p2
bk2

2 = (dc)k1 •p2
(ef)k2 .

We first deform the second chord diagram so that its chord is mapped to the point
p1:

(4.4) (dc)k1 •p2
(ef)k2 = c(dc)k1c−1 •p1

c(ef)k2c−1 = (cd)k1 •p1
c(ef)k2c−1.

Now both chord diagrams can be considered as pairs of loops based at p1; see
Equation (4.1). Since we assumed that bk1

1 •p1
bk2

2 = bk1

1 •p2
bk2

2 and α1 6= α2, we
get that there exists µ ∈ π1(F, p1) such that

(4.5) µ(cd)k1µ−1 = (cd)k1 ∈ π1(F, p1)

and

(4.6) µc(ef)k2c−1µ−1 = (fe)k2 ∈ π1(F, p1).
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Since the centralizer of (cd)k1 ∈ π1(F, p1) is the infinite cyclic group generated
by (cd) ∈ π1(F, p1), we have that µ = (cd)k ∈ π1(F, p1) for some k ∈ Z. Substitute
this into equation (4.6) to get

(4.7) (cd)kc(ef)k2c−1(cd)−k = (fe)k2 = f(ef)k2f−1 ∈ π1(F, p1).

Thus the paths f−1(cd)kc(ef)k2 and (ef)k2f−1(cd)kc are homotopic as paths
with fixed ends at p2. Thus f−1(cd)kc and (ef)k2 are commuting elements of
π1(F, p2). Since (ef) ∈ π1(F, p2) generates the centralizer of (ef)k2 ∈ π1(F, p2), we
get that f−1(cd)kc = (ef)l ∈ π1(F, p2) for some l ∈ Z. Hence (cd)kc and f(ef)l are
homotopic as arcs with fixed end points. Now one considers four possible cases of
signs of k and l.

We consider the case when both k and l are negative. The other cases are
considered in a similar fashion and are a bit simpler. When both k and l are
negative, the above arcs are homotopic to (d−1c−1)|k+1|d−1 and (f−1e−1)|l+1|e−1

respectively. The last two arcs are geodesic arcs with common end points that are
homotopic as arcs with common end points.

Assume for now that both arcs d and e are not the constant arcs. In this case
the first geodesic arc at its starting point has the velocity vector proportional to
the velocity vector of d−1 at its start. The second geodesic arc at its starting point
has the velocity vector proportional to the velocity vector of e−1 at its start. Since
b1 and b2 intersect transversally, the velocity vectors of the above geodesic arcs
are linearly independent and hence they are different geodesic arcs. However for
hyperbolic surfaces the two different geodesic segments with common ends are not
homotopic, see [4, Theorem 1.5.3].

Assume that the arc d is a constant arc while the arc e is not a constant arc.
In this case the first geodesic arc at its starting point has the velocity vector pro-
portional to the velocity vector of c−1 at its start. The second geodesic arc at its
starting point has the velocity vector proportional to the velocity vector of e−1 at
its start. Since b1 and b2 intersect transversally, we use the argument similar to the
one above to get the contradiction.

The case where e is a constant arc while d is not a constant arc is considered
similarly. Note that we do not have to consider the case where both arcs d and
e are constant, since in this case the two chord corresponding to p1 and p2 will
coincide, contradicting our assumptions.

d

p
1

p
2

p
1

p
2

A. B.

e fc e fcd

Figure 2. Two possible mutual positions for chords correspond-
ing to intersection points of b1 and b2

The case described in Figure 2.B In this case we get

(4.8) bk1

1 •p1
bk2

2 = (cd)k1 •p1
(ef)k2
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and

(4.9) bk1

1 •p2
bk2

2 = (dc)k1 •p2
(fe)k2 .

Now, we deform the second chord diagram so that its chord is mapped to p1:

(4.10) (dc)k1 •p2
(fe)k2 = c(dc)k1c−1 •p1

c(fe)k2c−1 = (cd)k1 •p1
c(fe)k2c−1.

Now both chord diagrams can be considered as pairs of loops based at p1; see
Equation (4.1). Since we assumed that bk1

1 •p1
bk2

2 = bk1

1 •p2
bk2

2 and α1 6= α2, we
get that there exists µ ∈ π1(F, p1) such that

(4.11) µ(cd)k1µ−1 = (cd)k1 ∈ π1(F, p1)

and

(4.12) µc(fe)k2c−1µ−1 = (ef)k2 ∈ π1(F, p1).

Since the centralizer of (cd)k1 ∈ π1(F, p1) is the free abelian group generated by
(cd) ∈ π1(F, p1) we have that µ = (cd)k ∈ π1(F, p1) for some k ∈ Z. We substitute
this into equation (4.12) to get

(4.13) (cd)kc(fe)k2c−1(cd)−k = (ef)k2 = e(fe)k2e−1 ∈ π1(F, p1).

Thus the paths e−1(cd)kc(fe)k2 and (fe)k2e−1(cd)kc are homotopic as paths
with fixed ends. Thus e−1(cd)kc and (fe)k2 are commuting elements of π1(F, p2).
Since (fe) ∈ π1(F, p2) generates the centralizer of (fe)k2 ∈ π1(F, p2), we get that
e−1(cd)kc = (fe)l ∈ π1(F, p2) for some l ∈ Z. Hence (cd)kc and e(fe)l are homo-
topic as arcs with fixed end points. Now one considers four possible cases of signs
of k and l, as in the proof for Figure 2.A.

4.3. The proof of Theorem 1 in the case where α1 and α2 do contain pow-

ers of the same loop. In this case let b be the unique (up to reparameterization)
closed geodesic loop such that α1 contains bk1 and α2 contains bk2 .

Choose a representative a1 of α1 that is located locally to the left of b, and that
travels k1 times along b. (Here if k1 < 0 then this representative is oriented in the
direction opposite from the direction of b.) Choose a representative a2 of α2 that
is located locally to the right of b, and that travels k2 times along b. See Figure 3.
By changing the orientation of b if necessary, we can assume that k1 > 0.

It is easy to see that if p is a self intersection point of b subdividing b into two
arcs h1,p, h2,p then the are 2|k1k2| intersection points of a1 and a2 located in a small
neighborhood of p. These intersection points can be partitioned into two sets of
|k1k2| points each, such that the intersection points in one set have one sign and
the points in the other set have the opposite sign. The total input into the bracket
of these terms is:

±k1k2
(
(h1,ph2,p)

k1 •p (h2,ph1,p)
k2

)
−±k1k2

(
(h2,ph1,p)

k1 •p (h1,ph2,p)
k2

)
.

We have three cases to consider. First, we show a positive term and negative
term corresponding to the same self-intersection point of b cannot cancel. Then we
show terms corresponding to different self-intersection points of b cannot cancel,
and this case has two subcases which depend on the Gauss diagram of b.

The case where two terms correspond to the same self-intersection

point of b. Let c = h1,p and d = h2,p be the two loops based at p in the image of b,
ordered according to the positively oriented frame formed by the tangent vectors to
b at p. Then two terms of the bracket of opposite signs are of the form (cd)k1•p(dc)

k2
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a =b  is the dashed curve

1
2a =b  is the solid curveb is the thick curve

2
3

Figure 3. The curves b, a1 = b2 and a2 = b3 and the intersection
points of a1 and a2.

and (dc)k1 •p (cd)k2 . We suppose these terms cancel. After conjugating the first of
these terms by the class of the loop d, we have the following equations:

(4.14) µ(dc)k1µ−1 = (dc)k1 ,

and

(4.15) µd(dc)k2d−1µ−1 = (cd)k2 .

Since (dc) ∈ π1(F, p) generates the centralizer of (dc)k1 , then µ = (dc)n for
n ∈ Z. Substituting this into Equation (4.15), we have

(4.16) (dc)nd(dc)k2 = (cd)k2(dc)nd,

which implies that (dc)ndc−1(cd)k2c = (cd)k2(dc)nd. Therefore (dc)ndc−1 and
(cd)k2 are commuting elements of π1(F, p). Since (cd) generates the centralizer
of (cd)k2 , we have that (dc)ndc−1 = (cd)m for some m ∈ Z. Hence the geodesics
(dc)nd and (cd)mc are homotopic as paths with common ends. This can only hap-
pen if either c or d is trivial, or if one of c or d is a power of the other, which is
impossible, because p is a transverse self-intersection point of the geodesic b.

The cases where the two terms correspond to different self-intersection

points of b.
The terms corresponding to two distinct self intersection points p1 and p2 of b

are

ǫk1k2
(
(h1,p1

h2,p1
)k1 •p1

(h2,p1
h1,p1

)k2

)
− ǫk1k2

(
(h2,p1

h1,p1
)k1 •p1

(h1,p1
h2,p1

)k2

)
,

and

δk1k2
(
(h1,p2

h2,p2
)k1 •p2

(h2,p2
h1,p2

)k2

)
− δk1k2

(
(h2,p2

h1,p2
)k1 •p2

(h1,p2
h2,p2

)k2

)
,
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for ǫ, δ = ±1, where, for each j = 1, 2, h1,pj
and h2,pj

are the two loops in b based
at pj . For this part of the proof, it does not matter which loop we label h1,pj

and
which loop we label h2,pj

.

By symmetry, it suffices to show that the geometric chord diagrams (h1,p1
h2,p1

)k1•p1

(h2,p1
h1,p1

)k2 and (h2,p2
h1,p2

)k1 •p2
(h1,p2

h2,p2
)k2 are not homotopic, and that the

geometric chord diagrams (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 and (h1,p2

h2,p2
)k1 •p2

(h2,p2
h1,p2

)k2 are not homotopic. We argue by contradiction and assume that one
of these pairs is formed by homotopic chord diagrams.

There are two possible cases for the mutual position of chords of b corresponding
to p1 and p2. They are shown in Figure 4.A and Figure 4.B respectively. We consider
these two cases separately.

e

2
p

1

p
1

p
2

A. B.
e

d

c

f
f

d

c

p

Figure 4. Two possible mutual positions for chords correspond-
ing to selfintersection points of b

As we already stated, for our proof it does not matter which of the two loops
corresponding to the point pj we label h1,pj

and which loop we label h2,pj
. So for

the case described on Figure 4.A we assume that h1,p1
= cde, h2,p1

= f , h1,p2
= efc,

and h2,p2
= d. For the case described on Figure 4.B we assume that h1,p1

= cd,
h2,p1

= ef , h1,p2
= fc, and h2,p2

= de.
The case described in Figure 4.A:

First, we show the pair of chord diagrams (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2

and (h2,p2
h1,p2

)k1•p2
(h1,p2

h2,p2
)k2 cannot cancel. Suppose these terms do cancel.

In this case we get that

(4.17) (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 = (cdef)k1 •p1

(fcde)k2

and

(4.18) (h2,p2
h1,p2

)k1 •p2
(h1,p2

h2,p2
)k2 = (defc)k1 •p2

(efcd)k2

We deform the second chord diagram, so that its chord is mapped to p1:
(4.19)

(defc)k1 •p2
(efcd)k2 = c(defc)k1c−1 •p1

c(efcd)k2c−1 = (cdef)k1 •p1
c(efcd)k2c−1.

Now both chord diagrams can be considered as pairs of loops based at p1; see
Equation (4.1). Since we assumed that

(4.20) (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 = (h2,p2

h1,p2
)k1 •p2

(h1,p2
h2,p2

)k2
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and α1 6= α2, we get that there exists µ ∈ π1(F, p1) such that

(4.21) µ(cdef)k1µ−1 = (cdef)k1 ∈ π1(F, p1)

and

(4.22) µc(efcd)k2c−1µ−1 = (fcde)k2 ∈ π1(F, p1).

Since the centralizer of (cdef)k1 ∈ π1(F, p1) is the free abelian group generated
by (cdef) ∈ π1(F, p1), we have that µ = (cdef)k ∈ π1(F, p1) for some k ∈ Z.
Substitute this into equation (4.22) to get

(4.23) (cdef)kc(efcd)k2c−1(cdef)−k = (fcde)k2 ∈ π1(F, p1).

It follows from the previous equation that

(4.24) (cdef)kce(fcde)k2e−1c−1(cdef)−k = (fcde)k2 ∈ π1(F, p1).

Note that this holds even if k2 is negative.
Thus (cdef)kce(fcde)k2 = (fcde)k2(cdef)kce ∈ π1(F, p1) and the loops (cdef)kce

and (fcde)k2 commute. Since the centralizer of (fcde)k2 is generated by fcde we
have that (cdef)kce = (fcde)l ∈ π1(F, p1) for some l ∈ Z.

We consider the case when both k and l are negative, the other cases are consid-
ered in a similar fashion and are a bit simpler. We have that (f−1e−1d−1c−1)|k|c =
(f−1e−1d−1c−1)|k|−1f−1e−1d−1 and (e−1d−1c−1f−1)|l|e−1 are geodesic arcs with
the same start and end points and they are homotopic as paths with fixed starting
and ending points.

Note that f and d are never constant loops because they correspond to transverse
self-intersection points of the geodesic b. On the other hand, since we assumed that
the self intersection points p1, p2 are different, exactly one of the arcs e or c could
be trivial. Assume for now that both arcs c and e are not the constant arcs. In this
case the first geodesic arc at its starting point has the velocity vector proportional to
the velocity vector of f−1 at its start. The second geodesic arc at its starting point
has the velocity vector proportional to the velocity vector of e−1 at its start. Since
the branches of b intersect transversally at the self intersection points the velocity
vectors of the above geodesic arcs are linearly independent and hence they are
different geodesic arcs. However for hyperbolic surfaces the two different geodesic
segements with common ends are not homotopic, see [4, Theorem 1.5.3]. If e is
a constant arc, while d is nontrivial, then one can check that the velocity vectors
of the above geodesic arcs at the end points are still linearly independent and we
again get a contradiction. The case where d is a trivial arc, while e is nontrivial is
considered similarly.

Next, we show the pair of chord diagrams (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2

and (h1,p2
h2,p2

)k1•p2
(h2,p2

h1,p2
)k2 cannot cancel. Suppose these terms do cancel.

In this case we get that

(4.25) (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 = (cdef)k1 •p1

(fcde)k2

and

(4.26) (h1,p2
h2,p2

)k1 •p2
(h2,p2

h1,p2
)k2 = (efcd)k1 •p2

(defc)k2

Now we deform the second chord diagram so that its chord is mapped to p1:

(efcd)k1 •p2
(defc)k2 = cd(efcd)k1d−1c−1 •p1

cd(defc)k2d−1c−1

= (cdef)k1 •p1
cd(defc)k2d−1c−1.

(4.27)
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Now both chord diagrams can be considered as pairs of loops based at p1; see
Equation (4.1). Since we assumed that

(h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 = (h1,p2

h2,p2
)k1 •p2

(h2,p2
h1,p2

)k2(4.28)

and α1 6= α2, we get that there exists µ ∈ π1(F, p1) such that

(4.29) µ(cdef)k1µ−1 = (cdef)k1 ∈ π1(F, p1)

and

(4.30) µcd(defc)k2d−1c−1µ−1 = (fcde)k2 ∈ π1(F, p1).

Since the centralizer of (cdef)k1 is the free abelian group generated by cdef ∈
π1(F, p1), we get that µ = (cdef)k for some k ∈ Z. We substitute this into Equation
(4.30) to get

(cdef)kcd(defc)k2d−1c−1(cdef)−k = (fcde)k2 ∈ π1(F, p1).

We can rewrite this equation to get

(4.31) c−1f−1(cdef)kcd(defc)k2 = (defc)k2c−1f−1(cdef)kcd ∈ π1(F, p2).

Therefore c−1f−1(cdef)kcd commutes with (defc)k2 in π1(F, p2), so

(4.32) c−1f−1(cdef)kcd = (defc)l ∈ π1(F, p2)

for some l ∈ Z. Hence the paths (cdef)kcd and fc(defc)l are homotopic as paths
with fixed ends. The arcs f and d cannot be trivial, but one of the arcs d or e
might be trivial.

Now we consider the cases of various possible signs of k and l.
For example if both k and l negative, we get that the paths (f−1e−1d−1c1)|k|cd =

(f−1e−1d−1c1)|k|−1f−1e−1 and fc(c−1f−1e−1d−1)|l| = (e−1d−1c−1f−1)|l|−1e−1d−1

are homotopic as geodesic arcs with fixed end points. We observe that the velocity
vectors of these arcs at the starting points are linearly independent, hence these
are different geodesic arcs and they can not be homotopic by [4, Theorem 1.5.3].

The cases of other signs for k and l are considered similarly.
The case described in Figure 4.B.

First we show the pair chord diagrams (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 and

(h2,p2
h1,p2

)k1 •p2
(h1,p2

h2,p2
)k2 cannot cancel. Suppose these terms do cancel. In

this case we get that

(4.33) (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 = (cdef)k1 •p1

(efcd)k2

and

(4.34) (h2,p2
h1,p2

)k1 •p2
(h1,p2

h2,p2
)k2 = (defc)k1 •p2

(fcde)k2

Now we deform the second diagram so that its chord is mapped to p1:
(4.35)
(defc)k1 •p2

(fcde)k2 = c(defc)k1c−1 •p1
c(fcde)k2c−1 = (cdef)k1 •p1

c(fcde)k2c−1

Now both chord diagrams can be considered as pairs of loops based at p1; see
Equation (4.1). Since we assumed that

(4.36) (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 = (h2,p2

h1,p2
)k1 •p2

(h1,p2
h2,p2

)k2

and α1 6= α2, we get that there exists µ ∈ π1(F, p1) such that

(4.37) µ(cdef)k1µ−1 = (cdef)k1 ∈ π1(F, p1)
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and

(4.38) µc(fcde)k2c−1µ−1 = (efcd)k2 ∈ π1(F, p1).

Since the centralizer of (cdef)k1 ∈ π1(F, p1) is the free abelian group generated
by (cdef) ∈ π1(F, p1), we have that µ = (cdef)k ∈ π1(F, p1) for some k ∈ Z.
Substitute this into equation (4.22) to get

(4.39) (cdef)kc(fcde)k2c−1(cdef)−k = (efcd)k2 ∈ π1(F, p1).

From the previous equation we have

(4.40) (cdef)kce−1(efcd)k2ec−1(cdef)−k = (efcd)k2 ∈ π1(F, p1).

Thus (cdef)kce−1(efcd)k2 = (efcd)k2(cdef)kce−1 ∈ π1(F, p2) and the loops
(cdef)kce−1 and (efcd)k2 commute. Since the centralizer of (efcd)k2 is generated
by efcd we have that (cdef)kce−1 = (efcd)l ∈ π1(F, p2) for some l ∈ Z.

Therefore the arcs (cdef)kc and (efcd)le are homotopic as arcs with fixed end
points. Similarly to the proof in the case described on Figure 4.A, we consider
possible signs for k and l. For all the possible pairs of signs, the expressions for
the arcs above simplify to expressions for homotopic geodesic arcs. Considering the
velocity vectors at the starting points, we see that these homotopic geodesic arcs
are distinct. This contradicts to [4, Theorem 1.5.3].

Finally, we suppose the chord diagrams (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 and

(h1,p2
h2,p2

)k1 •p2
(h2,p2

h1,p2
)k2 cancel. In this case we get that

(4.41) (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 = (cdef)k1 •p1

(efcd)k2

and

(4.42) (h1,p2
h2,p2

)k1 •p2
(h2,p2

h1,p2
)k2 = (fcde)k1 •p2

(defc)k2

Now we deform the first chord diagram so that its chord is mapped to p2:
(4.43)
(cdef)k1 •p1

(efcd)k2 = f(cdef)k1f−1•p2
f(efcd)k2f−1 = (fcde)k1 •p2

f(efcd)k2f−1

Now both chord diagrams can be considered as pairs of loops based at p2; see
Equation (4.1). Since we assumed that

(4.44) (h1,p1
h2,p1

)k1 •p1
(h2,p1

h1,p1
)k2 = (h1,p2

h2,p2
)k1 •p2

(h2,p2
h1,p2

)k2

and α1 6= α2, we get that there exists µ ∈ π1(F, p2) such that

(4.45) µ(fcde)k1µ−1 = (fcde)k1 ∈ π1(F, p2)

and

(4.46) µf(efcd)k2f−1µ−1 = (defc)k2 ∈ π1(F, p2).

Since the centralizer of (fcde)k1 is the free abelian group generated by fcde ∈
π1(F, p2), we get that µ = (fcde)k for some k ∈ Z. We substitute this into Equation
(4.46) to get

(fcde)kf(efcd)k2f−1(fcde)−k = (defc)k2 ∈ π1(F, p2).

We can rewrite this equation to get

(4.47) d−1(fcde)kf(efcd)k2 = (efcd)k2d−1(fcde)kf ∈ π1(F, p2).

Therefore d−1(fcde)kf commutes with (efcd)k2 in π1(F, p2), so d−1(fcde)kf =
(efcd)l ∈ π1(F, p2) for some l ∈ Z. Thus (fcde)kf and d(efcd)l are homotopic as
paths with fixed end points. Now the end of the proof is similar to how we finished
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the proof in the case on Figure 4.B; equality of chord diagrams (h1,p1
h2,p1

)k1 •p1

(h2,p1
h1,p1

)k2 and (h2,p2
h1,p2

)k1 •p2
(h1,p2

h2,p2
)k2 .

This finishes the proof of Theorem 1 for all compact surfaces F with or without
boundary.

Now we consider the case where F is any noncompact surface. Note
that F may be much more complicated than a compact surface with the boundary
deleted.

Given two different free homotopy classes α1 and α2 of curves on F , we choose
generic curves b1 ∈ α1 and b2 ∈ α2 on F such that i(b1, b2) = m(α1, α2). We argue
by contradiction and assume that terms({α1, α2}) is strictly less than m(α1, α2).
Then there are two different intersection points p, p′ of b1 and b2 such that the signs
of the intersection points are opposite but the corresponding two chord diagrams,
each one been of the form two circles connected by a chord, are homotopic.

Let F̃ ⊂ F be a compact surface with boundary that contains b1, b2 and the
image of the homotopy between the two chord diagrams described above. Put α̃i

to be the free homotopy class of bi, i = 1, 2 on the surface F̃ .

Clearly m(α̃1, α̃2) computed with respect to the surface F̃ equals to m(α1, α2)
computed with respect to the surface F. Moreover i(b1, b2) = m(α̃1, α̃2). By our

choice of F̃ , the two chord diagrams coming from the intersection points p, p′ of

b1, b2 are homotopic within F̃ and the signs of these intersection points are different.

Thus for the compact surface F̃ we have terms({α̃1, α̃2}) < i(b1, b2) = m(α̃1, α̃2).
This contradicts the statement of our theorem that is already proved for all compact

surfaces F̃ .
This finishes the proof of Theorem 1 for all surfaces. �

5. Computing the Minimal Intersection Number Explicitly Using {·, ·}

In this section we show how to compute the minimal number of intersection
points of loops in two given free loop homotopy classes α1, α2 using the Andersen-
Mattes-Reshetkhin Poisson bracket {α1, α2}. The pair α1, α2 of homotopy classes
we use was found by Chas [7, Example 5.5]. Chas showed that in this example
the Goldman Lie bracket vanishes, while m(α1, α2) 6= 0. In particular, in this
example the Goldman Lie bracket does not allow one to compute the minimal
number of intersection points of loops in two given free homotopy classes. She used
an algorithm [7, Theorem 3.13, Remark 3.14] for finding the minimal number of
intersection points on a surface with boundary to show that the minimal number
of intersection points in this example is 2. ( Chas used an algorithm similar to the
one constructed by M. Cohen and M. Lustig [13].) We get the same answer using
the Andersen-Mattes-Reshetikhin Poisson bracket {α1, α2}.

The problem of finding the minimal number of intersection points is trivial if
F = S2, A (annulus) or if one of α1, α2 is the class 1 of the constant loop.

For F = T 2 the numberm(α1, α2) is easy to compute, since it equals the absolute
value of the intersection number of the classes in H1(T

2) realized by α1, α2; see, for
example, the proof of Theorem 1 for F = T 2. Of course for F = T 2 we also have
m(α1, α2) = terms({α1, α2}), again by Theorem 1.

Let us outline the general procedure of how one uses {α1, α2} to find m(α1, α2),
for F 6= A,S2, T 2 and distinct α1, α2 6= 1.

By Theorem 1 terms({α1, α2}) = m(α1, α2).
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For h1, h2 ∈ π1(F, p) we denote by h1 •h2 the homotopy class of a chord diagram
as described in Subsection 4.1.

Assume that the terms +1(h1 •p h2) and −1(h̃1 •p h̃2) cancel, i.e. that h1 •p h2 =

h̃1•p h̃2. We have assumed that the free homotopy classes α1, α2 are different. Thus

by Equation (4.1) we may assume that 〈h1〉 = 〈h̃1〉 = α1, while 〈h2〉 = 〈h̃2〉 = α2.

Since 〈h1〉 = 〈h̃1〉 = α1 we choose g ∈ π1(F, p) such that gh̃1g
−1 = h1. We get

that

(5.1) h̃1 •p h̃2 = gh̃1g
−1 •p gh̃2g

−1 = h1 •p gh̃2g
−1 = h1 •p h2.

Thus by equation (4.1) there exists s̃ ∈ π1(F, p) such that

(5.2) s̃h1s̃
−1 = h1 and s̃(gh̃2g

−1)s̃−1 = h2.

The nontrivial abelian subgroups of π1(F ) are infinite cyclic, and each β 6=
1 ∈ π1(F, p) is contained in a unique, maximal infinite cyclic group. For closed
F 6= S2, T 2 this follows from the Preissman Theorem [14, Theorem 3.2 page 260],
since such surfaces admit a hyperbolic Riemannian metric. For general noncompact
surfaces (and hence for compact surfaces with boundary) this is true, since π1(F )
is free [21, pages 142-144], [17].

Let s be a generator of the maximal infinite cyclic group containing h1. Equa-
tion (5.2) says that s̃ and h1 commute, so s̃ = si ∈ π1(F, p) for some i ∈ Z. Now

one checks if there exists some i ∈ Z such that si(gh̃2g
−1)s−i = h2. If such i exists,

then the terms +1(h1 •p h2) and −1(h̃1 •p h̃2) cancel; if such i does not exist, then
the terms do not cancel.

As an example, consider the oriented surface F with boundary obtained from
the 8-gon shown in Figure 5 by gluing the side a1 to a1 and the side a2 to a2, in
such a way that the points corresponding to the arrow heads on ai and on ai are
identified. We put p to be the center of the 8-gon. Clearly π1(F, p) is a free group on
two generators. We denote the generators by a1 and a2 according to the following
convention introduced in [7]: ai ∈ π1(F ) is the class of the loop that starts from
p, goes to the side ai, passes through the image of this side on F, reappears in the
8-gon from the side denoted by ai and returns back to p.

Let b1 and b2 be respectively the solid and the dashed curves in Figure 5 and
α1, α2 be the free homotopy classes realized by them. The numbers in the circles
(respectively in the boxes) in this Figure indicate the points of b1 (respectively of
b2) on the sides of the 8-gon that have to be identified. The numbers 1, 2, 3, 4 in
the middle of the 8-gon enumerate the 4 intersection points between the loops b1
and b2.

From Figure 5 we get that

{α1, α2} = a−2
2 a1 •p a1a

−1
2 − a1a

−2
2 •p a

−1
2 a1 − a1a

−2
2 •p a1a

−1
2 + a−1

2 a1a
−1
2 •p a1a

−1
2 ,

(5.3)

where the 4 terms of the expression are given in the order of the enumerated inter-
section points of b1 and b2.

Conjugating both loops by a1a
−1
2 we get that the 4-th term of (5.3) is

(5.4) (a1a
−1
2 )(a−1

2 a1a
−1
2 )(a1a

−1
2 )−1•p (a1a

−1
2 )(a1a

−1
2 )(a1a

−1
2 )−1 = a1a

−2
2 •pa1a

−1
2 .

Thus the third and the fourth term of (5.3) cancel and

(5.5) {α1, α2} = a−2
2 a1 •p a1a

−1
2 − a1a

−2
2 •p a

−1
2 a1.
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Figure 5.

Let us show that the chord diagrams a−2
2 a1 •p a1a

−1
2 and a1a

−2
2 •p a

−1
2 a1 are not

homotopic.
Conjugate by a22 to get that a−2

2 a1 •p a1a
−1
2 = a22(a

−2
2 a1)a

−2
2 •p a22(a1a

−1
2 )a−2

2 =

a1a
−2
2 •p a22a1a

−3
2 . If a−2

2 a1 •p a1a
−1
2 = a1a

−2
2 •p a22a1a

−3
2 and a1a

−2
2 •p a−1

2 a1 are
equal, then there exists s̃ ∈ π1(F, p) such that

(5.6) s̃(a1a
−2
2 )s̃−1 = a1a

−2
2 and s̃(a22a1a

−3
2 )s̃−1 = a−1

2 a1.

The class inH1(F ) realized by a1a
−2
2 is not realizable as a nontrivial integer multiple

of any element other than itself. Hence the maximal infinite cyclic group containing
a1a

−2
2 is generated by s = a1a

−2
2 .

Equation (5.6) says that s̃ and a1a
−2
2 commute. As we discussed above, this

implies that s̃ and a1a
−2
2 are in the same infinite cyclic group. Hence s̃ = si =

(a1a
−2
2 )i, for some i ∈ Z.

Thus by Equation (5.6) we should have (a1a
−2
2 )i(a22a1a

−3
2 )(a1a

−2
2 )−i = a−1

2 a1,
for some i ∈ Z. Since a1 and a2 are generators of the free group π1(F ), it is easy
to see that this identity could not hold for any i ∈ Z. We got a contradiction and
hence the chord diagrams a−2

2 a1 •p a1a
−1
2 and a1a

−2
2 •p a

−1
2 a1 are not homotopic.

Hence terms({α1, α2}) = terms
(
a−2
2 a1•pa1a

−1
2 −a1a

−2
2 •pa

−1
2 a1

)
= |1|+|−1| = 2.

Thus by Theorem 1 any two loops in the free homotopy classes α1 and α2 have
at least 2 intersection points and moreover there are two such loops that do have
exactly two intersection points.

Let us now show the Goldman Lie bracket [α1, α2] = 0 and hence it does not

allow one to compute m(α1, α2).
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[α1, α2] = 〈a−2
2 a1a1a

−1
2 〉 − 〈a1a

−2
2 a−1

2 a1〉 − 〈a1a
−2
2 a1a

−1
2 〉+ 〈a−1

2 a1a
−1
2 a1a

−1
2 〉

= 〈(a1a
−1
2 )(a−2

2 a21a
−1
2 )(a1a

−1
2 )−1〉 − 〈a1a

−3
2 a1〉

−〈a1a
−2
2 a1a

−1
2 〉+ 〈(a1a

−1
2 )(a−1

2 a1a
−1
2 a1a

−1
2 )(a1a

−1
2 )−1〉 = 0,

(5.7)

since the first term cancels with the second one and the third term cancels with the
fourth one.
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