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Abstract

Mesothelin is a protein expressed at high levels on the cell surface in a variety of cancers, with 

limited expression in healthy tissues. The presence of mesothelin on tumor tissue correlates with 

increased invasion and metastasis, and resistance to traditional chemotherapies, through 

mechanisms that remain poorly understood. Molecules that specifically recognize mesothelin and 

interrupt its contribution to tumor progression have significant potential for targeted therapy and 

targeted drug delivery applications. A number of mesothelin-targeting therapies are in pre-clinical 

and clinical development, although none are currently approved for routine clinical use. In this 

work, we report the development of a mesothelin-targeting protein based on the fibronectin type-

III non-antibody protein scaffold, which offers opportunities for applications where antibodies 

have limitations. We engineered protein variants that bind mesothelin with high affinity and 

selectively initiate apoptosis in tumor cells expressing mesothelin. Interestingly, apoptosis does not 

occur through a caspase-mediated pathway, and does not require downregulation of cell-surface 

mesothelin, suggesting a currently unknown pathway through which mesothelin contributes to 

cancer progression. Importantly, simultaneous treatment with mesothelin-binding protein and 

chemotherapeutic mitomycin C had a greater cytotoxic effect on mesothelin-positive cells 

compared to either molecule alone, underscoring the potential for combination therapy including 

biologics targeting mesothelin.
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INTRODUCTION

Mesothelin (MSLN) is a cell surface protein that is overexpressed in numerous cancers, 

including ovarian (K Chang & Pastan, 1996; Kai Chang, Pastan, & Willingham, 1992, p. 

199; Hilliard, 2018), triple negative and other breast (Bayoglu et al., 2015; Hassan et al., 

2016; Parinyanitikul et al., 2013; Tchou et al., 2012), lung (Mitchell Ho et al., 2007; Kachala 

et al., 2014; Thomas et al., 2015, p. 201), liver (Ordóñez, 2003; Yu et al., 2010), pancreatic 

(Argani et al., 2001; Chen, Hung, Wang, Paul, & Konstantopoulos, 2013; Hassan et al., 

2016; Shimizu et al., 2012), and mesothelioma (Servais et al., 2012). The aberrant 

expression of MSLN is known to promote tumor cell survival, progression, and metastasis in 

vitro and in vivo (Kai Chang et al., 1992; Gubbels et al., 2006; Rump et al., 2004; Wang et 

al., 2012). MSLN expression is limited in normal tissue, with only low levels expressed on 

the mesothelial cells of the pleura, peritoneum, and pericardium (Hassan, Bera, & Pastan, 

2004). The role of MSLN in normal development is currently still unknown. Mice with an 

inactivated MSLN gene display no distinct phenotype and are capable of producing healthy 

offspring, suggesting that MSLN is not essential for mammalian development (Bera & 

Pastan, 2000). The differential expression pattern between cancer and healthy tissue, and 

apparent non-essential role for MSLN in normal tissue, makes MSLN a promising 

biomarker for cancer diagnosis and therapeutic targeting.

Previous studies have proposed a variety of mechanisms by which MSLN promotes tumor 

progression (Zhewei Tang, Qian, & Ho, 2013). Growing evidence indicates that MSLN aids 

in cell motility, implantation, and metastasis through its interaction with another tumor 

surface protein, CA125, also known as MUC16 (Chen et al., 2013; Gubbels et al., 2006; 

Rump et al., 2004). The interaction of these two cell surface proteins has been observed to 

facilitate metastasis in ovarian tumors (Hilliard, 2018; Pastan & Hassan, 2014), and promote 

cancer cell motility and invasion in pancreatic cancer (Chen et al., 2013). The interaction 

between MSLN and CA125 mediates heterotypic cell adhesion, important for tumor cell 

invasion and metastasis (Rump et al., 2004). Moreover, blocking the interaction of MSLN 

and CA125 with anti-MSLN antibodies blocks the observed adhesion (Rump et al., 2004). 

Overexpression of CA125 has been shown to induce metastasis, but only when mediated by 

binding to MSLN (Comamala et al., 2011). MSLN expression may also promote cancer cell 

survival and proliferation through the NF-κB signaling pathway. MSLN expression in 

pancreatic cancer cells was correlated with constitutive activation of the transcription factor 

STAT3, which lead to increased formation of the cyclin E/cyclin-dependent kinase 2 

complex, as well as increased G1-S transitions (Bharadwaj, Li, Chen, & Yao, 2008). Several 

studies suggest MSLN expression is associated with chemoresistance, and shorter 

progression-free survival and overall survival (Cheng et al., 2009). MSLN-induced NF-κB 

pathway activation has been shown to mediate resistance to several chemotherapeutics 

through upregulation of anti-apoptotic proteins, including Bcl-2 and Mcl-1 (Bharadwaj, 

Marin-muller, Li, Chen, & Yao, 2011; M.-C. Chang et al., 2009). Altering MSLN 

biochemical signaling pathways or interrupting the binding of MSLN and CA125 are viable 

therapeutic strategies to reduce cancer progression and metastasis.

Promising results from pre-clinical and clinical trials to target MSLN with antibodies, 

antibody derivatives, immunotoxins, antibody-drug conjugates, and CAR-T cells for therapy 
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demonstrate the promise of MSLN-targeting methods (El-Behaedi et al., 2018; Golfier et al., 

2014; Mitchell Ho, Feng, Fisher, Rader, & Pastan, 2011; Quanz et al., 2018; Z Tang et al., 

2013; Adusumilli et al., 2014; Morello, Sadelain, & Adusumilli, 2016). However, no MSLN-

targeting molecules are currently approved for routine clinical use. Targeted therapeutics 

have made significant impacts in cancer treatment, resulting in increased efficacy and 

reduced toxicity compared to traditional chemotherapies. Novel targeted therapy approaches 

for MSLN-positive tumors have potential for substantial impact in the clinic for patients who 

currently do not have a targeted therapy option.

We have recently reported engineering protein variants based on the fibronectin type III 

(Fn3) non-antibody protein scaffold that bind to MSLN with moderate affinities (KD = 100’s 

nM) (Sirois, Deny, Baierl, George, & Moore, 2018). Fn3 variants that specifically bound to 

MSLN on human cancer cells were internalized, and co-localized to early endosomes, 

indicating their promise for drug delivery applications. MSLN has been previously shown to 

readily internalize bound ligands, underscoring the potential of MSLN as a cell-surface 

target to mediate intracellular drug delivery (Zhang & Pastan, 2012). While antibody-based 

therapies have found great success for a variety of clinical needs, there are some applications 

where other protein structures may be advantageous and complement clinical contributions 

from antibodies, motivating the development of non-antibody protein scaffolds for 

engineering molecular recognition, including the Fn3 scaffold (Koide, Bailey, Huang, & 

Koide, 1998; Moore, Leung, & Cochran, 2012; Fiedler & Skerra, 2014; Simeon & Chen, 

2018; Vazquez-Lombardi et al., 2015).

Here, we describe further evolved Fn3 variants with enhanced binding affinity for MSLN. 

Our data show that treatment of MSLN-positive tumor cells with engineered MSLN-binding 

Fn3 protein has cytotoxic effects on MSLN-expressing cancer cells, leading to tumor cell 

apoptosis. Our results indicate that apoptosis is by a caspase-independent pathway, and that 

the cytotoxic effects are not due to downregulation of MSLN on the surface of cancer cells, 

revealing that a novel signaling pathway is potentially being targeted by the engineered 

MSLN-binding protein, with implications for future drug development efforts. Importantly, 

when MSLN-positive cells are simultaneously treated with MSLN-binding Fn3 protein and 

established chemotherapeutic mitomycin C (MMC), the tumor cells exhibit enhanced 

sensitivity to the chemotherapeutic agent with increased apoptosis compared to MSLN-

positive cells treated with MMC alone. These results highlight the potential of targeting 

MSLN with biologic therapeutics in combination therapy with traditional chemotherapeutics 

for selective, synergistic treatment of tumors expressing MSLN.

MATERIALS AND METHODS

Reagents and cell lines

PBSA buffer was composed of phosphate buffered saline (PBS) and 0.1% bovine serum 

albumin (BSA). A431/H9 cells (gift of M. Ho, National Cancer Institute, 2016) (M. Ho et 

al., 2005) were cultured in RPMI-1640 supplemented with 10% FBS, 1% penicillin-

streptomycin and 700 μg/mL Geneticin selective antibiotic (G418) (Thermo Fisher). KB-3-1 

cells (gift of M. Gottesman, National Cancer Institute, 2016) (Shen et al., 1986) were 

cultured in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin. T-47D 
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cells (gift of S. Smith-Schneider, Pioneer Valley Life Sciences Institute, 2019) (Keydar et al., 

1979) were cultured in DMEM supplemented with 10% FBS, 0.2 units/mL human insulin 

(Sigma # I9278-5ML) and 1% penicillin-streptomycin. OVCAR-3 cells (ATCC #HTB-161, 

2015) were cultured in RPMI-1640 supplemented with 20% FBS, 1% penicillin-

streptomycin, and 0.01 mg/mL human insulin. All cells were grown at 37°C in a humidified 

atmosphere containing 5% CO2.

Maturation and evolution of Fn3 variant 3.4.4 by yeast surface display

A Gr2 library that we had previously evolved for MSLN-binding Fn3 variants was further 

sorted and affinity matured as a third generation library using yeast surface display (Boder & 

Wittrup, 1997; Sirois et al., 2018). Briefly, following error-prone PCR with nucleotide 

analogs, the library was sorted twice by magnetic bead selection (MACS) using biotinylated, 

Fc-tagged recombinant human MSLN (Acro Biosystems #MSN-H826x) followed by a 

fluorescence activated cell sorting (FACS) selection for full-length clones using an antibody 

against the C-terminal c-myc epitope tag. Full-length clones were incubated with a chicken 

anti-c-myc antibody and the biotinylated Fc-tagged MSLN. To increase the sorting 

stringency, concentrations of MSLN were decreased over four iterative rounds of 

enrichment, from 20 nM in the first sort to 5 nM in the fourth sort. Cells were washed and 

incubated with a goat anti-chicken Alexa Fluor 647 (AF647) conjugate and Alexa Fluor 488 

(AF488)-conjugated streptavidin. Cells were washed and double-positive yeast cells were 

collected on a BD BioSciences FACSAria II. Plasmid DNA from the enriched library was 

recovered using a Zymoprep Yeast Plasmid Miniprep II kit (Zymo Research) following 

manufacturer’s protocol, transformed into bacteria, and individual clones were sequenced by 

standard Sanger DNA sequencing methods.

Engineered Fn3 protein production and purification

MSLN-binding Fn3 variant 3.4.4 and negative control protein Fn3 RDG, in which the RGD 

integrin-binding motif has been mutated to RDG (plasmid DNA provided by B. Hackel, 

University of Minnesota), were prepared as previously described (Sirois et al., 2018). 

Briefly, Fn3 genes were cloned into a pET vector with a C-terminal hexahistadine tag 

(plasmid provided by B. Hackel, University of Minnesota) and expressed in BL21(DE3) E. 
coli. Cultures were grown in LB and induced overnight at 20°C with 0.5 mM Isopropyl-β-D-

thiogalactopyranoside (IPTG). Cells were resuspended in lysis buffer (35 mM 

Na2HPO4·dibasic, 15 mM NaH2PO4·monobasic, 500 mM NaCl, 5 mM CHAPS, 25 mM 

imidazole, 5% glycerol) supplemented with an EDTA-free protease inhibitor (Pierce), and 

lysed by repeated freezing and thawing. Soluble fractions were isolated by centrifugation. 

Fn3 variant 3.4.4 was purified by cobalt affinity chromatography with HisPur cobalt resin 

(Thermo Fisher) while Fn3 RDG was purified by nickel affinity chromatography with Ni-

NTA agarose resin (Thermo Fisher) followed by size exclusion chromatography (SEC) on a 

Superdex 75 10/300 column (GE Healthcare Life Sciences). Protein samples were analyzed 

for purity by SDS-PAGE on a BioRad ChemiDoc MP imaging system.

Binding affinity measurements of soluble Fn3 proteins for MSLN-positive tumor cells

A431/H9 and MCF-7 cells were cultured to 80% confluency, as described above, harvested, 

washed, and pelleted at 200g for 5 min at 4°C. MSLN expression was detected by a mouse 
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anti-MSLN antibody (clone K1, Abcam, 1:50) and a goat anti-mouse PE conjugate (1:25). 

Cells were incubated with a range of concentrations of 3.4.4. or Fn3 RDG in a total volume 

of 50 μL PBSA for 1 h at 23°C with rotation. Cells were washed with PBSA and incubated 

with a mouse anti-His6 DyLight-488 antibody (Abcam #ab117512, 1:50) for 20 min at 4°C 

and protected from light. Fluorescence was analyzed using an EMD Millipore Guava 

easyCyte flow cytometer. Mean fluorescence intensities for Fn3 variant binding were 

determined using InCyte software (EMD Millipore). Data was plotted and fit to a sigmoidal 

curve using KaleidaGraph software. Dissociation constants (KD) were determined as the 

half-maximal value of the sigmoidal fit for three separate experiments, and the mean and 

standard deviation (SD) for the KD are reported.

Cell viability measurements

Cell viability was determined using a Cell Counting Kit-8 (CCK-8, Dojindo Laboratories, 

Japan), according to the manufacturer’s instructions. Briefly, cells were seeded at 3 x 103 

(KB-3-1) or 5 x 103 (T-47D) cells per well in 96-well plates and cultured overnight in a final 

volume of 100 μL of medium. After overnight culture, the medium was exchanged to serum-

free medium containing various concentrations of 3.4.4 or Fn3 RDG (2, 20, or 200 nM). As 

a positive control, cells were treated with 10 μM mitomycin C (MMC), a known 

chemotherapeutic agent. At 48 h post treatments, spent media was removed and replaced 

with 100 μL of fresh media with 10 μL of CCK-8 reagent and the cells were incubated at 

37°C for an additional 2 h. The absorbance of each well was measured at 450 nm on a Tecan 

Infinite M100 microplate reader. All treatments were carried out as triplicates in three 

independent experiments. Data were analyzed using the Magellan 7.0 software (Tecan). 

Measured absorbance was normalized with absorbance values of the cell culture media that 

did not contain cells. Untreated cells were regarded as control, and cell viability was 

calculated as the ratio of the absorbance of test and control wells.

Apoptosis experiments

Apoptosis was determined using a Dead Cell Apoptosis kit with annexin V-AF488 and 

propidium iodide (PI) (Molecular Probes), according to the manufacturer’s instructions. 

Briefly, KB-3-1 cells were seeded at 2.5 x 105 cells in 35 mm plates and cultured overnight 

in a final volume of 3 mL of medium. After overnight culture, the medium was exchanged to 

serum-free medium containing 200 nM of 3.4.4 or Fn3 RDG. At 48 h post treatment, cells 

were trypsinized, washed three times with PBS, and resuspended in 1X binding buffer to a 

density of 1x106 cells/mL. 100 μL of this cell suspension was incubated with 5 μL of the 

supplied annexin V-AF488 and 1 μL of PI (100 μg/mL) for 15 min while protected from 

light. The percentages of annexin V-AF488-positive and PI-positive cells were determined 

from the fluorescence of 25,000 cells measured on an EMD Millipore Guava easyCyte flow 

cytometer. All treatments were carried out as triplicates. Data were analyzed using InCyte 

software (EMD Millipore).

Caspase-3/7 activation

Caspase induction was assessed using the Caspase-Glo 3/7 assay (Promega), according to 

the manufacturer’s instructions. Briefly, KB-3-1 cells were seeded at 5 x 103 cells per well 

in 96-well plates and cultured overnight in a final volume of 100 μL of medium. After 
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overnight culture, the medium was exchanged to serum-free medium containing 200 nM of 

3.4.4 or Fn3 RDG. As a positive control, cells were treated with 10 μM MMC. At the 

specific time point of either 6, 12, 24, 36, or 48 h, 100 μL of Caspase-3/7 reagent was added 

to each well, gently mixed at 300 rpm for 30 s, and incubated at 23°C for an additional 2 h. 

Luminescence was measured on a Tecan Infinite M100 microplate reader. All treatments 

were carried out as triplicates in three independent experiments, unless otherwise noted. 

Data were analyzed using the Magellan 7.0 software.

Receptor downregulation

KB-3-1 cells were seeded at 3x104 cells per well in 96-well plates, grown overnight, and 

serum starved for 12-16 h. Cells were treated with 200 nM 3.4.4 or Fn3 RDG for the 

indicated time between 0 and 48 h. Medium was removed and cells were washed with PBS, 

detached with 0.05% trypsin-EDTA, and placed on ice for the remainder of the assay. Cells 

were washed with PBSA and incubated with an anti-MSLN antibody raised in mouse for 1 h 

on ice followed by a goat anti-mouse PE conjugate antibody. Cells were washed and 

analyzed by flow cytometry. All treatments were carried out in triplicates. Levels of cell 

surface MSLN expression were determined from the fluorescence of 25,000 cells measured 

on a EMD Millipore Guava easyCyte flow cytometer. Data were analyzed using InCyte 

software (EMD Millipore).

Combination therapy with engineered protein variant and MMC

The Dead Cell Apoptosis kit with annexin V-AF488 and propidium iodide (PI) described 

above was used to determine whether treatment with Fn3 variant 3.4.4 could enhance the 

susceptibility of MSLN-expressing cells to MMC-induced apoptosis. Briefly, KB-3-1cells or 

OVCAR-3 cells were seeded at 1 x 105 cells in 12-well plates and cultured overnight in a 

final volume of 1 mL of medium. After overnight culture, the medium was exchanged to 

serum-free medium containing 200 nM Fn3 variant 3.4.4, 1 μM MMC, or 1 μM MMC with 

200 nM Fn3 variant 3.4.4. At 48 h post treatment, cells were trypsinized, washed three times 

with PBS, and resuspended in 1X binding buffer to a density of 1x106 cells/mL. 100 μL of 

this cell suspension was incubated with 5 μL of the supplied annexin V-AF488 and 1 μL of 

PI (100 μg/mL) for 15 min at 23°C while protected from light. The percentages of annexin 

V-AF488-positive and PI-positive cells were determined from the fluorescence of at least 

20,000 cells measured on an EMD Millipore Guava easyCyte flow cytometer. All treatments 

were carried out as triplicates. Data were analyzed using InCyte software (EMD Millipore).

Statistical analysis

Statistical differences between groups were determined using an unpaired Student’s two-

tailed t-test. A p value of < 0.05 was considered statistically significant (* p < 0.05, ** p < 

0.01, *** p < 0.001). All data are presented as mean ± SD.

RESULTS AND DISCUSSION

Fn3 proteins from further evolved library bind MSLN with high affinity.

Our previously reported MSLN-binding Fn3 proteins were engineered from a naïve yeast 

surface display Fn3 library (Sirois et al., 2018; Woldring, Holec, Zhou, & Hackel, 2015) 
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(Fig. 1A, B) and their moderate affinity for cell surface MSLN motivated additional rounds 

of directed evolution. Following mutagenesis of our second generation library, the third 

generation library was subjected to two rounds of MACS, a FACS sort for full-length 

expression and four iterative rounds of dual-color FACS for binding to MSLN. The resultant 

population yielded enrichment of evident MSLN-binding clones (Fig. 1C). Sequence 

analysis of individual clones identified three dominant variants: 3.1.6, 3.4.4 and 3.4.5 (Fig. 

1D). All three variants included a shared single mutation in the BC binding loop compared 

to previously reported Fn3 clones 1.4.1 and 2.4.1 (Sirois et al., 2018). Single framework 

mutations N63K and D3Y are incorporated into clones 3.1.6 and 3.4.4, respectively. In 

addition to the D3Y mutation, variant 3.4.5 incorporates three further framework mutations, 

including P64S, S82Y, and D94N. These variants were transformed into EBY100 yeast 

surface display strain and their binding to a range of MSLN concentrations was assessed by 

flow cytometry (Fig. 1E). From these data, variant 3.4.4 was subsequently selected for 

further binding and therapeutic characterization.

Soluble Fn3 protein selectively binds the surface of MSLN-positive cancer cells.

Fn3 variant 3.4.4 and the non-binding control, Fn3 RDG, both containing a C-terminal His6 

tag, were solubly produced in E. coli and high purity of proteins following metal affinity 

purification was verified by SDS-PAGE analysis (Fig. 2A). Equilibrium binding titrations of 

Fn3 variant 3.4.4 and Fn3 RDG on A431/H9 and MCF-7 cell lines were performed (Fig. 

2B). The A431/H9 cell line is an A431 human epidermoid carcinoma cell line transfected to 

stably overexpress MSLN on its surface and MCF-7 is a human breast cancer cell line that 

does not express MSLN on its surface (K Chang & Pastan, 1996; Mitchell Ho et al., 2011; 

Sirois et al., 2018). Previously reported Fn3 proteins engineered to bind cell surface MSLN 

demonstrated moderate binding affinities (KD > 400 nM) (Sirois et al., 2018). The Fn3 

variant reported here, 3.4.4, binds to MSLN-expressing A431/H9 cells with a binding 

affinity of KD = 19 ± 1 nM, while displaying no binding to the MSLN-negative control cell 

line, MCF-7. The nonbinding control, Fn3 RDG, also showed no detectable binding to the 

A431/H9 cell line (Fig. 2B).

Engineered Fn3 protein reduces the viability of MSLN-positive cancer cells.

The effect of Fn3 variant 3.4.4 on cell viability was studied using the CCK-8 assay based on 

WST-8, a water-soluble tetrazolium salt that is reduced by dehydrogenase to produce a 

yellow formazan dye. The amount of formazan dye generated by dehydrogenase activity is 

directly proportional to the number of living cells.

The KB-3-1 cell line is a human cervical carcinoma cell line reported to express moderate 

levels of MSLN on its surface (Zhang, Xiang, Hassan, & Pastan, 2007), while the T-47D cell 

line is a human breast carcinoma cell line that is not known to endogenously express MSLN 

(Uehara, Matsuoka, & Tsubura, 2008). While H9 cells that were transfected to express high 

levels of MSLN were ideal for binding assays, we chose the endogenously expressing 

KB-3-1 cells for therapeutic characterization of Fn3 3.4.4. Using an anti-MSLN antibody, 

high levels of MSLN were confirmed on the surface of KB-3-1 cells, and no MSLN was 

detected on the surface of T-47D cells (Fig. 3A). We tested the cytotoxic effect of 

concentrations of 3.4.4 protein based on the measured dissociation constant, selecting to test 
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concentrations equivalent to the dissociation constant (20 nM) and one order of magnitude 

above (200 nM) and below (2 nM) the dissociation constant. After 48 h of treatment, Fn3 

variant 3.4.4 significantly reduced (p < 0.05) the number of viable cells in the KB-3-1 cell 

line in a dose-dependent manner (Fig. 3B), but did not affect viability of the T-47D cell line 

(Fig. 3C). The non-binding Fn3 RDG control demonstrated no effect on cell viability for 

either cell line. In contrast to the MSLN-dependent effect of Fn3 variant 3.4.4, non-targeted 

chemotherapeutic MMC significantly reduced (p < 0.001) the viability of both the MSLN-

positive and MSLN-negative cell lines (Fig. 3B, C). Because we observed a cytotoxic effect 

when treating cells with 200 nM of protein 3.4.4, we used 200 nM of Fn3 protein for 

subsequent experiments.

Treatment with Fn3 protein induces apoptosis of MSLN-positive cancer cells.

We evaluated the induction of apoptosis on KB-3-1 cells after 3.4.4 treatment, measured by 

flow cytometry following staining with fluorescently labeled annexin-V and PI (Fig. 4). 

Annexin V in combination with PI can discriminate between viable cells, early apoptotic 

cells, late apoptotic cells, and cells in necrosis (Matteucci, Grelli, De Smaele, Fontana, & 

Mastino, 1999). Cells that are viable and intact do not stain with either annexin V or PI, cells 

that are in the early stages of apoptosis undergo changes that alter the cell membrane and 

allow the incorporation of annexin V but still exclude PI, and cells that are in the late stages 

of apoptosis are stained with both annexin V and PI once PI can penetrate a degrading 

membrane and intercalate into nucleic acids. Cells that are necrotic but not from apoptosis 

have a permeable membrane and stain with PI but not with annexin V.

After 48 h of treatment, Fn3 variant 3.4.4 significantly increased the number of apoptotic 

cells compared to vehicle-treated cells (Fig. 4A, B). The number of early and late apoptotic 

cells increased from the untreated levels when treated with Fn3 3.4.4 (p <0.001 for increase 

in early apoptosis, p < 0.05 for increase in late apoptosis), and the number of necrotic cells 

also increased with treatment (p < 0.001). Cells treated with the non-binding control Fn3 

RDG demonstrated no increase in apoptosis or necrosis compared to vehicle-treated cells 

(Fig. 4C, D).

Fn3 protein induces apoptosis of MSLN-positive cancer cells in a caspase-independent 
manner.

We examined whether the observed apoptosis of MSLN-positive tumor cells from variant 

3.4.4 treatment was executed via a caspase-mediated pathway. Caspases typically play a key 

role in apoptosis (Riedl & Shi, 2004; Zhao & Zhang, 2018), therefore we assessed the 

activity of the executioner caspases, caspases-3 and -7 (Fig. 5). KB-3-1 cells were treated 

with 3.4.4, Fn3 RDG, or MMC. After 48 h of treatment, caspase 3/7 activities were 

significantly increased in the MMC-treated cells (p < 0.001) compared to vehicle-treated 

cells, while neither treatment with Fn3 3.4.4 nor negative control Fn3 RDG demonstrated 

increased caspase activity over vehicle treatment (Fig. 5A).

The biochemical pathways associated with apoptosis, and the time required to detect 

activation of these different biochemical pathways, are variable and dependent on cell line, 

specific apoptosis inducer, biochemical events assayed, and the time at which events are 
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assayed (Elmore, 2007). To confirm 3.4.4 treatment did not induce caspase activation at 

earlier time points, we monitored caspase-3/7 activities over an extended time course. 

Compared with vehicle-treated cells, 3.4.4-treated cells showed no increase in caspase-3/7 

activities when measured at 6, 12, 24, or 36 h (Fig. 5B).

Decreased cell viability and increased apoptosis is not due to MSLN downregulation.

We investigated whether the observed 3.4.4-induced apoptosis was due to downregulation of 

surface MSLN. Aberrant signaling via overexpressed receptors is implicated in many 

cancers and interruption of this process can cause antitumor effects (Richter & Zhang, 

2005). Signaling abrogation mechanisms include blocking ligand binding, inhibiting 

downstream signaling pathways following receptor binding, and receptor downregulation 

(Friedman et al., 2005; Lee et al., 2003). Ligand-induced endocytosis and degradation of 

receptor is known to be a significant process by which growth-promoting signals are 

interrupted (Chan, LaPara, & Yee, 2016; Friedman et al., 2005; Hackel, Neil, White, & 

Wittrup, 2012; Kearns et al., 2015; Maloney et al., 2003; Marmor & Yarden, 2004; Sachdev, 

Singh, Fujita-Yamaguchi, & Yee, 2006; Spangler et al., 2010). There is previous evidence 

that direct reduction of surface levels of MSLN by shRNA or siRNA inhibits cell 

proliferation, migration, and invasion, and sensitizes cancer cells to chemotherapeutics and 

induces apoptosis (Bharadwaj et al., 2008, 2011; M.-C. Chang et al., 2009; Wang et al., 

2012; Zheng et al., 2012). To examine if MSLN receptor downregulation contributed to the 

observed decrease in MSLN-positive tumor cell viability and increase in apoptosis following 

3.4.4 treatment, we measured levels of MSLN on the surface of treated tumor cells using an 

antibody recognizing MSLN and flow cytometry. We did not detect any changes in surface 

levels of MSLN on KB-3-1 tumor cells over a time course of 48 h compared to untreated 

cells, when cells were treated with either variant 3.4.4 or non-binding negative control Fn3 

RDG (Fig. 6), indicating that apoptosis induction was not mediated by receptor 

downregulation.

Fn3 protein enhances sensitivity of KB-3-1 and OVCAR-3 cells to chemotherapeutic 
mitomycin C.

We evaluated the combined effect of MSLN-binding Fn3 protein and standard 

chemotherapeutic MMC on MSLN-positive KB-3-1 cells and OVCAR-3 cells. Having 

observed that variant 3.4.4 increased MSLN-positive cell apoptosis, but not through caspase 

activation and not through receptor downregulation, we hypothesized that 3.4.4 may act 

most directly on survival pathways of the tumor cells, accelerating the apoptosis of cells that 

were naturally beginning down an apoptosis pathway. If 3.4.4 had this effect of supporting 

apoptosis, then we hypothesized that treatment of MSLN-positive cells with variant 3.4.4 

could increase the sensitivity of cells exposed to a chemotherapeutic agent, when the 

treatments were administered in combination. Combination therapy has become standard 

practice in the clinic for cancer therapy (Bayat Mokhtari et al., 2017). Targeting multiple, 

essential tumor pathways is often more effective than monotherapies, and can promote 

robust anti-cancer effects while minimizing the likelihood that resistant cancer cells will 

develop (Bayat Mokhtari et al., 2017; Saputra, Huang, Chen, & Tucker-Kellogg, 2018).
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When MSLN-positive KB-3-1 cells were simultaneously treated with MSLN-binding Fn3 

protein 3.4.4 and chemotherapeutic MMC, the cancer cells exhibited enhanced sensitivity to 

MMC compared to KB-3-1 cells treated with either Fn3 3.4.4 or MMC alone (Fig. 7 A, B). 

The percentage of total apoptotic cells increased significantly when comparing cells treated 

with 200 nM Fn3 3.4.4 to cells treated with the combination of 1 μM of MMC and 200 nM 

of Fn3 3.4.4 (23 ± 3% and 62 ± 3%, p-value < 0.001) and when comparing cells treated with 

1 μM of MMC to cells treated with the combination of 1μM of MMC and 200 nM of Fn3 

3.4.4 (44 ± 5% and 62 ± 3%, p-value < 0.01) (Fig. 7B).

To determine if a similar therapeutic effect would be observed for another MSLN-positive 

tumor cell line, we repeated the combination therapy experiment with OVCAR-3 ovarian 

carcinoma cells (Fig. 7 C, D), a cell line with a moderate level of MSLN expression 

(Supporting Information Fig. S1). OVCAR-3 cells provide an interesting comparison to 

KB-3-1 cells because while KB-3-1 cells do not express CA125, which is a native binding 

partner for MSLN, the OVCAR-3 cells do express high levels of CA125 (Supporting 

Information Fig. S1). The percentage of total apoptotic cells increased significantly when 

comparing cells treated with 200 nM Fn3 3.4.4 to cells treated with 1 μM of MMC and 200 

nM of Fn3 3.4.4 (35 ± 1% and 71 ± 7%, p-value < 0.001) and when comparing cells treated 

with 1 μM of MMC to cells treated with 1μM of MMC and 200 nM of Fn3 3.4.4 (42 ± 2% 

and 71 ± 7%, p-value < 0.01) (Fig. 7D).

These results highlight the potential of targeting MSLN with biologic therapeutics in 

combination therapy with traditional chemotherapeutics for more selective, synergistic 

treatment of tumors expressing MSLN. Such combination therapy can allow a reduction in 

chemotherapeutic dose, reducing the nonspecific toxic side effects of non-selective cytotoxic 

agents. Building on the recent successes of antibody-drug conjugates, one promising 

approach is to create a protein-drug conjugate, coupling a chemotherapeutic to an 

engineered Fn3 variant that targets MSLN, merging targeted drug delivery with combination 

therapy and further reducing nonspecific toxicities. We anticipate that the highly stable 

structure of the Fn3 scaffold and the lack of native disulfide bonds will facilitate the 

development of strategies to synthesize Fn3-drug conjugates for targeted combination 

therapy of MSLN-positive tumors.

CONCLUSION

In summary, we have successfully engineered a non-antibody Fn3 protein that binds cancer 

antigen MSLN with high affinity and specificity, and has a targeted therapeutic effect on 

MSLN-positive tumor cells, reducing cell viability and increasing apoptosis. Further, the 

Fn3 protein engineered to bind MSLN increases the sensitivity of tumor cells to a common 

chemotherapeutic agent when used as a combination therapy. In recently reported work, 

treatment with anetumab ravtansine, a MSLN-specific antibody-drug conjugate, not only 

inhibited tumor growth in ovarian cancer models as a monotherapy, but also exhibited an 

additive effect when used in combination with targeted agents and standard 

chemotherapeutics (Quanz et al., 2018). Together, this current report and the recent results of 

related research validate that molecules developed to target MSLN are promising for both 
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monotherapy and combination therapy for patients who do not currently have any targeted 

treatment options.

Interestingly, the apoptosis of KB-3-1 cells induced by the non-antibody Fn3 variant 3.4.4 

does not occur via caspase activation, and we do not observe downregulation of levels of 

MSLN on the tumor cell surface of KB-3-1 cells following treatment with 3.4.4. The 

absence of these commonly observed pathways for targeted treatment of tumor cells 

suggests that a currently unknown alternate pathway is engaged in the KB-3-1 tumor cell 

response to variant Fn3 3.4.4. Future research exploring relevant pathways for 3.4.4-induced 

tumor cell death, in the tumor cell lines used in this paper and in other cell lines expressing 

MSLN, has the potential to uncover and further elucidate important signaling pathways for 

MSLN-positive tumor cells, informing ongoing efforts to design effective targeted 

treatments for patients with tumors expressing MSLN. We are also interested in working to 

understand if and how Fn3 3.4.4 may modulate the interaction of MSLN and native binding 

partner CA125, building on our observation that OVCAR-3 cells had enhanced response to 

3.4.4 treatment alone compared to the 3.4.4 treatment response of KB-3-1 cells. This 

difference in response could be related to potential disruption of MSLN and CA125 

interactions by 3.4.4, which would only be relevant for the MSLN+/CA125+ OVCAR-3 

cells. Combination therapy with molecules targeting MSLN and molecules targeting CA125 

is another approach warranting further study.
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Figure 1. Engineering and characterization of a third generation anti-mesothelin Fn3 library.
(A) The human fibronectin type III (Fn3) protein scaffold has a highly stable structure with 

loops that are suitable for mutation to engineer novel molecular recognition properties (PDB 

1TTG). (B) The Fn3 library sequence (Woldring et al., 2015). (C) Indicated yeast libraries 

displaying Fn3 variants were labeled with an antibody to a terminal c-myc epitope tag and 

25 nM biotinylated, Fc-tagged MSLN. Unsorted refers to the original naïve library. 

Generation 1 refers to the library following four rounds of FACS. Generation 2 refers to the 

library following one round of mutagenic PCR and four rounds of FACS. Generation 3 

refers to the library that has undergone mutagenic PCR twice, with four rounds of FACS. 

(D) Selected clones from a third generation library demonstrate further evolved sequences 

when compared to our previously reported clones. (E) Individual clones were displayed on 

the surface of yeast and incubated with a range of concentrations of biotinylated, Fc-tagged 

MSLN. Experimental triplicate data were collected, and the dissociation constant is reported 

as the mean ± SD of the KD values calculated for each replicate. A representative binding 

curve is shown for each variant.
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Figure 2. Fn3 protein variant 3.4.4 selectively binds tumor cell-surface MSLN with high affinity.
(A) Engineered Fn3 clone 3.4.4 and Fn3 RDG were expressed in bacteria and purified to 

high purity (>99%) as analyzed by SDS-PAGE. Fn3 3.4.4 expected molecular weight: 13 

kDa, Fn3 RDG expected molecular weight: 11 kDa. (B) Binding of 3.4.4 and Fn3-RDG to 

cell surface MSLN were measured using equilibrium binding assays. H9 cells express 

MSLN, MCF-7 cells do not express MSLN. The assays were performed as experimental 

triplicates. Data from each replicate were fit to a sigmoidal curve, and a KD value was 

calculated as the concentration yielding the half-maximal value. The KD is reported as the 

mean ± SD. Representative binding curves are shown.
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Figure 3. Fn3 protein decreases the viability of MSLN-positive cancer cells.
(A) Analysis by flow cytometry confirms MSLN presence on the surface of KB-3-1 cells 

(white histogram, solid line) as detected by an anti-MSLN antibody. The T-47D cell line 

does not express MSLN (gray histogram, solid line). Dashed line, unstained T-47D cells. (B) 

KB-3-1 and (C) T-47D cells were treated with various concentrations of 3.4.4, Fn3 RDG, or 

MMC for 48 h. Treated cells were subjected to a CCK-8 assay to measure cell viability, 

which was normalized to vehicle-treated cells. Error bars indicate mean ± SD (n = 9); * p < 

0.05, *** p < 0.001 as determined with an unpaired Student’s two-tailed t-test.
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Figure 4. Fn3 protein induces apoptosis in MSLN-positive cancer cells.
Induction of apoptosis of KB-3-1 cells following Fn3 3.4.4 treatment was evaluated by 

staining with annexin-V and PI. (A, C) KB-3-1 cells were treated with 3.4.4 or Fn3 RDG, 

then stained with annexin-V AF488 and PI and analyzed by flow cytometry. A 

representative plot of each treatment is shown. Viable cells (annexin-V−/ PI−) are in the 

lower left quadrant, early apoptotic cells (annexin-V+/ PI−) are in the lower right quadrant, 

late apoptotic cells (annexin-V+/ PI+) are in the upper right quadrant, and necrotic cells 

(annexin-V−/ PI+) are in the upper left quadrant. Vehicle varies slightly between two 

treatments, and each vehicle control is shown separately. (B, D) Quantitative analysis of 

induction of apoptosis and necrosis after treatments. Data are presented as the mean ± SD (n 

= 3). * p < 0.05, *** p < 0.001 as determined with an unpaired Student’s two-tailed t-test.
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Figure 5. Analysis of caspase 3/7 activation in MSLN-positive cells treated with Fn3 protein.
(A) KB-3-1 cells were treated with 3.4.4, Fn3 RDG, or MMC for 48 h, and caspase 3/7 

activation was analyzed. Positive control chemotherapeutic MMC induced caspase 

activation, while Fn3 3.4.4 and negative control Fn3 RDG did not activate caspases. Error 

bars indicate mean ± SD (n = 9). *** p < 0.001 as determined with an unpaired Student’s 

two-tailed t-test. (B) Treatment of KB-3-1 cells with Fn3 3.4.4 also did not activate caspase 

3/7 over the indicated time points. Error bars indicate mean ± SD (n = 3).
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Figure 6. Surface MSLN expression is not downregulated following treatment with Fn3 variant 
3.4.4.
KB-3-1 cells that express MSLN were incubated with 3.4.4 (square) or Fn3 RDG (circle). At 

the specified time points, surface MSLN was quantified via flow cytometry with an antibody 

that binds MSLN. Surface MSLN levels relative to untreated KB-3-1 cells are plotted as a 

function of time. Error bars indicate mean ± SD (n = 3). No significant downregulation of 

surface MSLN was observed, as determined with an unpaired Student’s two-tailed t-test.
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Figure 7. Treatment with Fn3 variant 3.4.4 enhances sensitivity of KB-3-1 cells and OVCAR-3 
cells to chemotherapeutic.
Induction of apoptosis of KB-3-1 cells and OVCAR-3 cells following treatment with 3.4.4, 

MMC, or MMC in combination with Fn3 3.4.4 was evaluated by staining with annexin-V 

and PI. (A) KB-3-1 and (C) OVCAR-3 cells were treated with 200 nM Fn3 3.4.4, 1 μM 

MMC, or 1 μM MMC and 200 nM Fn3 3.4.4, then stained with annexin-V AF488 and PI 

and analyzed by flow cytometry. A representative plot of each treatment is shown. Viable 

cells (annexin-V−/ PI−) are in the lower left quadrant, early apoptotic cells (annexin-V+/ PI−) 

are in the lower right quadrant, late apoptotic cells (annexin-V+/ PI+) are in the upper right 

quadrant, and necrotic cells (annexin-V−/ PI+) are in the upper left quadrant. (B, D) 

Quantitative analysis of induction of apoptosis in (B) KB-3-1 cells and (D) OVCAR-3 cells 

after treatments. Data are presented as the mean ± SD (n = 3). ** p < 0.01, *** p < 0.001 as 

determined with an unpaired Student’s two-tailed t-test.
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