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VASSILIEV INVARIANTS OF VIRTUAL LEGENDRIAN KNOTS

PATRICIA CAHN AND ASA LEVI

We introduce a theory of virtual Legendrian knots. A virtual Legendrian
knot is a cooriented wavefront on an oriented surface up to Legendrian
isotopy of its lift to the unit cotangent bundle and stabilization and destabi-
lization of the surface away from the wavefront. We show that the groups
of Vassiliev invariants of virtual Legendrian knots and of virtual framed
knots are isomorphic. In particular, Vassiliev invariants cannot be used
to distinguish virtual Legendrian knots that are isotopic as virtual framed
knots and have equal virtual Maslov numbers.

We work in the smooth category. All maps and manifolds are C*. All surfaces
are oriented unless explicitly stated otherwise. All curves are immersed.

1. Introduction

The first goal of this paper is to introduce a theory of virtual Legendrian knots.
Briefly, a virtual Legendrian knot is a Legendrian knot in the spherical cotangent
bundle ST*F of a surface F, up to Legendrian isotopy and stabilization and desta-
bilization of the surface F. In this paper, virtual framed knots are framed knots in
ST*F up to framed isotopy and stabilization and destabilization of the surface F.
The second goal of the paper is to study the group of order < n Vassiliev invariants
of virtual Legendrian knots. We show that this group is naturally isomorphic to
the group of order < n Vassiliev invariants of virtual framed knots. As a corollary,
order < n Vassiliev invariants do not distinguish virtual Legendrian knots that are
isotopic as framed virtual knots and have the same virtual Maslov number. Similar
theorems were proved by Goryunov [1997], Hill [1997], Fuchs and Tabachnikov
[1997], and Chernov [2003] for Legendrian knots in various contact manifolds.

We give three equivalent formulations of virtual Legendrian knot theory. The
first, which we describe in the introduction, was motivated by the formulation of
virtual knot theory given by Carter, Kamada and Saito [2002], and was suggested
to us by V. Chernov (private communication, 2011).

MSC2010: 5TM27.
Keywords: Virtual knot, Legendrian knot, Vassiliev invariant.
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Figure 1. The dangerous tangency move.

First we review the concept of a wavefront as discussed by Arnold [1989].
Suppose that the surface F' is made of an isotropic, homogeneous medium, and
that light rays are emitted from a point of F. The set of points that these light rays
reach at a fixed time ¢ is called a wavefront. As t increases, semicubical cusps
may appear, so the wavefront is not necessarily immersed. We say a (cooriented)
wavefront on an oriented surface F is a cooriented curve on F which is immersed
except at a finite number of semicubical cusps. The coorientation represents the
direction of propagation of the wavefront. A wavefront is generic if it has a finite
number of self-intersection points, all of which are transverse double points.

The spherical cotangent bundle ST*F of a surface F' is equipped with the natural
contact structure. Arnold [1989; 2004] observed that, due to the Huygens principle,
the propagation of a wavefront on F' lifts to a Legendrian isotopy in ST*F. That is,
lifting the wavefront to ST*F according to the direction of its coorienting vector
produces a curve in ST *F which is everywhere tangent to the distribution of contact
planes, and during the propagation of the wavefront, the lift of this curve undergoes
an isotopy while remaining tangent to the contact planes.

In particular the Huygens principle implies that the dangerous tangency move
in Figure 1 cannot appear during the propagation of a single front w, because if
two branches of w become tangent during the propagation in such a way that their
coorientations match, they must be tangent for all 7.

Hence the Legendrian liftings of two generic wavefronts are Legendrian isotopic
if and only if the wavefronts are related by a sequence of the moves in Figure 2 up
to certain choices of coorientation, in addition to ambient isotopy. To obtain all the
valid choices of coorientation, one should consider the moves in Figure 2 with all
possible choices of coorientations on the branches, except in the case of the second
move, because dangerous tangencies are prohibited; see [Arnold 1994].

A virtual Legendrian knot is a Legendrian knot in the spherical cotangent bundle
of a surface, and corresponds to a wavefront on that surface. The definition of
virtual Legendrian knot theory suggested by Chernov is as follows: two virtual
Legendrian knots are equivalent if their corresponding wavefronts are related by
wavefront moves, and stabilization and destabilization of the surface. To stabilize
the surface F, we remove two disks from F that are disjoint from the wavefront, and
glue the two boundary components together so that the surface remains orientable.
To destabilize the surface F, we choose an essential simple closed curve disjoint
from the wavefront, cut along it, and glue disks to the two resulting boundary
components. Physically, this corresponds to the notion that the medium through
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Figure 2. Moves for wavefronts on an oriented surface, with one
possible choice of coorientation on each branch.

which the wavefront propagates can change its topology outside a neighborhood of
the wavefront. We denote a virtual Legendrian knot by a pair (F, K) where F is a
compact oriented surface and K is a wavefront on F, and we let [(F, K)]; denote
its virtual Legendrian isotopy class.

We also give a purely diagrammatic description of virtual Legendrian knot theory
in Section 2. Namely, one can view a virtual Legendrian knot as a wavefront in
the plane with virtual crossings up to certain moves, in the spirit of Kauffman’s
original theory of virtual knots [1999].

Questions similar to ours have been studied by many people over the last 20
years. In the rest of this section let I be R or C and A be any abelian group. Fuchs
and Tabachnikov [1997] showed that the vector spaces of K-valued, order < n
Vassiliev invariants of Legendrian knots with fixed Maslov number in R? endowed
with the standard contact structure and those of framed knots in R* are isomorphic.
Around the same time, Goryunov [1997] showed that the vector spaces of K-valued,
order < n Vassiliev invariants of oriented framed knots in the solid torus ST*R?
and those of oriented plane curves without direct self-tangencies are isomorphic.

Generalizing the work of Goryunov, Hill [1997] proved the same result for all
planar fronts. Finally, Chernov [2003] was able to show that the groups of .4-valued,
order < n Vassiliev invariants of framed knots in ST*F, where F is any surface,
and those of Legendrian knots in ST*F are isomorphic.

More precisely, suppose £ is a connected component of the space of Legendrian
curves in a contact manifold (M, C) and let F be the connected component of the
space of framed curves in (M, C) that contains £. Chernov proved that the groups
of A-valued, order < n Vassiliev invariants of framed knots in F and those of
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Legendrian knots in £ are isomorphic for a large class of contact manifolds (M, C).
In particular, the theorem holds for M = ST*F with its natural contact structure.
We develop techniques to show that a similar result holds in the virtual category.

Theorem 1.1. Let F be a connected component of the space of virtual framed
curves and L C F be a connected component of the space of virtual Legendrian
curves contained in F. Let A be an abelian group and VI (respectively V) be the
group of A-valued Vassiliev invariants of framed (respectively Legendrian) knots
on F (respectively L) of order < n. Then the restriction map ¢ : Vf — Vnﬁ is an
isomorphism.

It follows that Vassiliev invariants cannot distinguish two virtual Legendrian
knots that are homotopic as Legendrian curves and isotopic as framed virtual knots.

Theorem 1.2. Let x € Vnc, let (F, K), (F', L) be representatives of the virtual
Legendrian homotopy class L, and let (F, K) be virtually framed isotopic to (F’, L').
Then x([(F. K)) = x(I(F", L)];).

In Section 8 we discuss virtual version of the Maslov number. We prove that, as in
the classical case, virtual Legendrian homotopy classes are completely characterized
by their Maslov number and their underlying virtual homotopy class.

Theorem 1.3. Two virtual Legendrian knots are virtual Legendrian homotopic if
and only if they have the same virtual Maslov number and are homotopic as virtual
knots.

Part of the motivation for studying virtual knot theory stems from the fact that
virtually isotopic classical knots must be isotopic as classical knots. Goussarov,
Polyak, and Viro [Goussarov et al. 2000], and the proof can also be found in
[Kauffman 1999]. In other words, virtual knot theory extends classical knot theory.

Together with Chernov, we conjecture:

Conjecture 1.4. With F = S? or F = R?, two Legendrian knots in ST*F that are
isotopic as virtual Legendrian knots must be Legendrian isotopic in ST*F.

Kuperberg [2003] later showed that two knots in F x [ that are isotopic as virtual
knots must be isotopic as knots in F x I, possibly after a homeomorphism of F x I,
provided that F is the surface of smallest genus realizing an element of the virtual
isotopy class. We also hope that a similar result holds for virtual Legendrian knots.

Conjecture 1.5. Let K| and K; be two Legendrian knots in ST *F that are isotopic
as virtual Legendrian knots, and suppose that F is the surface of smallest genus
realizing knots in the virtual Legendrian isotopy class of K and K». Then, possibly
after a contactomorphism of ST*F, K| and K, are Legendrian isotopic in ST*F.

Chernov’s definition of virtual Legendrian knot theory can also be generalized
to higher dimensions. That is, two Legendrian manifolds L in ST*M; and L, in
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ST*M, (not necessarily spheres) are virtually Legendrian isotopic if one can be
obtained from the other by a sequence of Legendrian isotopies and modifications of
contact ST*M induced by surgery on M in the part of M which does not contain the
projection of the Legendrian knot. It’s also possible to formulate the first conjecture
in higher dimensions, namely two Legendrian knots in ST*R™ or ST*S™ are virtual
Legendrian isotopic if and only if they are Legendrian isotopic.

2. Virtual Legendrian knot diagrams

A virtual Legendrian knot diagram is a generic wavefront in R> with two types of
crossings. In addition to ordinary crossings, there are virtual crossings, which are
marked with a small circle and obey slightly different Reidemeister moves. The
Reidemeister moves involving only ordinary crossings are shown in Figure 2, and
these moves are a subset of the possible moves for virtual Legendrian knot diagrams.
Again, we can obtain other wavefront moves from these moves by independently
reversing the choice of coorientation on any branch, except in the case of the second
Reidemeister move, where the dangerous tangency move is forbidden.

The remaining moves for virtual Legendrian front diagrams involve at least one
virtual crossing, and are pictured in Figure 3. Other moves can be obtained from
these moves by independently reversing the coorientation on any branch. Note that
we allow virtual dangerous tangencies. Also note that the move obtained from the
first move in Figure 2 by replacing the ordinary crossing with a virtual crossing is
not allowed.

In Section 7 we will verify that this diagrammatic definition of virtual Legendrian
knot theory is equivalent to Chernov’s definition given in the Introduction.

If we allow the dangerous self-tangency move in Figure 1, the equivalence
relation generated is that of virfual Legendrian homotopy, rather than isotopy. We

2 =N -
=T X~ 1
o= K-k

Figure 3. Moves for virtual wavefront diagrams in the plane, with
one possible choice of coorientation on each branch.
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sometimes refer to a virtual Legendrian homotopy class as a connected component
of the space of virtual Legendrian curves.

3. Flat virtual knots

Virtual knot theory was introduced by Kauffman [1999]. We will briefly review the
definition of a related object, called a flat virtual knot, or virtual string, in order to
motivate the definition of a virtual Legendrian knot. Virtual strings were introduced
by Turaev [2004].

A virtual string is a counterclockwise oriented copy of S', called a core circle,
with arrows whose endpoints are glued to the core circle. The endpoints of the
arrows are required to be distinct. We identify two virtual strings if there is a
homeomorphism from one to the other preserving the directions of the arrows.

Every generic oriented curve on an oriented surface gives rise to a virtual string,
called its underlying virtual string. To construct the underlying virtual string of
a curve, label the double points of the curve ay, ..., a,. Traverse the curve in
the direction of its orientation and record the cyclic order in which the labels a;
appear. Each label appears twice in the cyclic order. Then mark 2# points on a
counterclockwise oriented copy of S!, and label these points a1, . . ., a, in the same
cyclic order in which the labels appear on the double points during the traversal of
the curve. For each 1 <i < n, connect the two points labeled a; by an arrow. In
other words, we connect the preimages of each double point of the map S' — F
by an arrow. The direction of the arrows are determined by the following rule: At
each intersection point of the curve order the two outgoing branches so that their
tangent vectors form a positive frame. The head of the arrow in the virtual string
should point to the preimage corresponding to the first branch. The underlying
virtual string of a curve on a surface is also known as its Gauss diagram.

Two curves on a surface are homotopic if and only if they are related by a sequence
of flat Reidemeister moves, pictured at the top of Figure 4, along with other moves
that are obtained from those moves by independently reversing the orientation on

Figure 4. Gauss diagram moves for flat virtual knots and their
corresponding moves in the plane.

-~ -~
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any branch of the curve in the picture. Each of these moves corresponds to a move
on the underlying virtual string (Gauss diagram of the curve). Two virtual strings
are virtually homotopic if and only if they are related by a sequence of the Gauss
diagram moves in the bottom row of Figure 4, in addition to the Gauss diagram
moves obtained from the other versions of the moves in the top row (which differ
from the listed moves by the choice of orientation on the branches of the curve.) In
Section 4, we will define Gauss diagram moves for virtual Legendrian knots.

4. Gauss diagrams for virtual Legendrian knots

We explain how to associate a Gauss diagram to an oriented virtual Legendrian knot.
For planar fronts, our diagrams are similar to the diagrams described by Polyak
[1998]. However, unlike Polyak’s diagrams, our diagrams are not marked with a
basepoint and the signs on our cusps are different from Polyak’s.

The Gauss diagram of an oriented and cooriented wavefront K on a surface F
with ¢ cusps and n crossings (which we assume are transverse double points) is a
counterclockwise oriented copy of S, with n arrows glued to S' at their endpoints,
and ¢ marked points on S'. Let C be the set of all marked points. Each connected
component of S!\ C is labeled with a coorientation. Furthermore we require that
the coorientations on adjacent components of S! \ C are different, and as a result
|C| is even. The endpoints of the arrows are distinct, as are the marked points, and
no marked point falls on the endpoint of an arrow. The Gauss diagram of a given
front is determined as follows. We view S! as the circle parameterizing the curve
K, and each pair of preimages of a double point of K is connected by an arrow. At
each crossing, we label the outgoing branches of K with a “1” and a “2” so that the
ordered pair of their velocity vectors forms a positively oriented frame. The head
of the arrow is placed at the preimage corresponding to the branch labeled “1.” The
marked points of C are the preimages of the cusps of K, and each marked point
is equipped with a sign as follows. A cusp of a wavefront is called positive if the
outgoing branch of the cusp is in the coorienting half-plane of the cusp. Otherwise,
the cusp is called negative (see Figure 5). A virtual Legendrian knot diagram and
its Gauss diagram are pictured in Figure 6.

LA
R
Y
Figure 5. From top to bottom, a positive left cusp, negative left
cusp, positive right cusp, and negative right cusp.
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Figure 6. A virtual Legendrian knot diagram and its corresponding
Legendrian Gauss diagram.

Each wavefront move in Figure 2 gives rise to a corresponding move on the
Gauss diagram of the front in the obvious way, though we do not list these moves
explicitly. In Section 7 we will see that the equivalence relation generated by these
Gauss diagram moves is simply the equivalence relation of virtual Legendrian knot
theory.

5. Virtual framed and virtual Legendrian isotopy
in the spherical cotangent bundle

The goal of this section is to define the notions of virtual framed and virtual
Legendrian isotopy. The definitions in this section are motivated by the definition
of virtual knots given by Carter, Kamada and Saiton [Carter et al. 2002] whose
generalization to this context was suggested to us by Chernov. We also introduce
flat projection of a virtual blackboard framed knot.

Throughout this section, K will typically denote a knot in ST*F and K will
typically denote its projection to the surface.

5A. The natural contact structure on the spherical cotangent bundle. et F be
an oriented surface and let ST*F be its spherical cotangent bundle. That is, a point
wp € ST,F is alinear functional on 7, F defined up to multiplication by a positive
scalar. Hence w), is determined by a choice of 1-dimensional subspace /,, of T), F
such that [, = kerw,,, and a choice of positive half-space, which is a choice of
connected component of T, F'\ [, on which w,, is positive. Put 7w : ST*F — F to be
the usual projection. The contact plane at w), is 7, 1(1,,), which is a 2-dimensional
subspace of T,,, ST*F.

5B. Virtual isotopy in the spherical cotangent bundle of a surface. Typically the
virtual isotopy class of a knot is the isotopy class of a knot in a thickened surface
F x I up to stabilization and destabilization of F'. In this paper we replace F x I with
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ST*F. We give a careful definition of virtual isotopy in S7*F in this section, and this
definition is based on the formulation of virtual isotopy due in [Carter et al. 2002].

The surface diagram of a knot K : S' — ST*F is a triple (F, K, [), where K is
the projection of K to F, and [ is a cooriented line field along K that describes how
to lift K to K. Namely, the point K (¢) lifts to the functional in S T oF with kernel
spanned by /(¢), and which is positive on the half-space of Tk ) F \ [(t) given by
the coorientation of [(z).

Now put

(F1, K1, ly) ~ (F2, K2, 1)

if there exists a compact oriented surface F3 and orientation preserving embed-
dings ¢ : F1 — F3 and ¢, : F> — F3 such that the lifts of the surface diagrams
(F3, ¢1(K1), ¢15(l1)) and (F3, ¢2(K2), ¢24(12)) are isotopic in ST*F3. Here ¢ is
the usual differential from 7' F; — T F3, and ¢;,(I;) is again a cooriented line field.
We abuse notation and also let ¢;, denote the natural map from ST*F; to ST*Fs.
At first glance it appears that this map goes in the incorrect direction, but ¢; is an
embedding so its differential, and hence the induced map on cotangent spaces, are
isomorphisms. So, we abuse notation and let ¢;, : ST*F; — ST *F. Note that the
lift to ST*F3 of (F3, ¢;(Ki), ¢ix(ls)) is simply ¢y, (K).

Two virtual knots (F, K, 1) and (F’, K’, 1) are virtually isotopic if there is a
sequence of knot diagrams (F;, K;, [;), 1 <i < m, such that

(Fa K,l)=(F],K],l])'\’(FZ,KZ,ZZ)'\‘"'N(En,Km,lm):(F/, K/9l/)'

5C. Virtual framed isotopy in the spherical cotangent bundle. Next we define
virtual isotopy for framed knots in ST*F where F is an oriented surface. A virtual
framed knot is a knot K : S! — ST*F equipped with a transverse vector field v
considered up to the equivalence relation we define below. We denote this virtual
framed knot (F, K"). Because we will not need to work with the projection of
a virtual framed knot, we will sometimes write (F, K") rather than (F, K"); the
meaning of the notation will be clear from context.

Let ¢ : F — F’ be an orientation preserving embedding, and as above, let
¢« : ST*F — ST*F’ be the induced map on the spherical cotangent bundles. Let
Qus : TST*F — T ST*F’ be the differential of ¢,.

Put (Fy, K\") ~¢ (F», K5?) if there exists a compact oriented surface F3 and
orientation preserving embeddings ¢; : F; — F3 and ¢ : F» — F3 such that
(F3, ¢15(K )?=)) is framed isotopic to (F3, o, (K2)?(™)) in ST*F;.

We say (Fi, I?'l”) and (F,,, K,»") are virtually framed isotopic if there exists a
sequence of virtual framed knots K 7,1 <i < m, satisfying

(Fi, K\ ~f (Fa, Ky ~p -~ (F, K.
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The blackboard framing. We will sometimes consider knots with a certain framing,
which we call the blackboard framing. Fix an orientation of ST*F and of F.
A virtual topological knot (F, K, ) is in general position if its velocity vector,
K'(t), never points in the direction of the S! fiber. The orientations of ST*F
and F determine an orientation of the S! fibers of ST*F. Let 36 be the vector
field corresponding to the positive orientation of the S! fibers. Then for a virtual
topological knot in general position the vector field 96 is always transverse to K
and thus is a framing vector field. We call this framing the blackboard framing.
We can associate this framing to any virtual topological knot in general position to
obtain a virtual framed knot with the blackboard framing, K .

Proposition 5.1. Let (F, KV) be a virtual framed knot. Then there is a blackboard
framed virtual knot (F, L% in the framed virtual isotopy class [(F, I?”)]f.

Proof. It is enough to show that the nonvirtual framed isotopy class of K" contains a
blackboard framed knot L. We may assume, possibly by first performing a small
perturbation, that the velocity vector of K never points in the direction of the S'
fiber, where K denotes the unframed knot in ST*F obtained from K" by forgetting
its framing. Now consider the blackboard framed knot K% which coincides with
K" as an unframed knot. Let j= m(K", K% be the relative number of twists of
the framings of the two knots (see Section 10A). Next consider the surface diagram
(F, K, 1) consisting of the projection K of K to F and the cooriented line field
I which describes how to lift K to K. We can replace a portion of this surface
diagram, where the line field is locally constant, with a small kink (see Figure 7).
Adding the top or bottom kink in Figure 7 to (F, K, [) will yield new framed knots
K| and K, respectively, which, once isotoped to coincide with K as embeddings,

Figure 7. Adding a twist to the framing of a blackboard framed knot.
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~ -0
=1
Y

Figure 8. Moves for flat virtual blackboard framed knot projections.

satisfy m(K;, K) = £1, i = 1, 2. The sign depends on the chosen orientation of
the fiber. We add |j| copies of one of the kinks in Figure 7 so that the lift L of the
resulting surface diagram is isotopic to K, and the blackboard framed knot L% is
framed isotopic to K". O

The flat projection of a virtual blackboard framed knot. To prove Proposition 10.3
we will use an invariant that is defined on the flat diagram of a blackboard framed
virtual framed knot. The flat projection of a virtual blackboard framed knot, K %, is
the immersed curve 7 (K).

If two blackboard framed knots in the spherical cotangent bundle of the same
surface are framed homotopic, then their flat projections are related by a sequence
of moves in Figure 8.

Thus if two blackboard framed virtual knots K ?9 and K 39 are virtually framed
homotopic then there exists a sequence of moves in Figure 8, in addition to stabi-
lization and destabilization of the surface that takes the flat projection of K ?9 to
that of K57,

5D. Virtual Legendrian isotopy. Let K be a Legendrian knot in ST*F in general
position. Then K projects to a cooriented wavefront K on F. Furthermore, two
Legendrian knots K and K, are Legendrian isotopic in ST*F if and only if their
wavefronts K and K, on F are related by a sequence of the moves in Figure 2,
excluding the dangerous self-tangency move.

Put (Fy, K1) ~; (F>, K») if there exists a compact oriented surface F3 and
orientation preserving embeddings ¢ : F| — F3 and ¢, : F» — F3 such that ¢ (K1)
and ¢, (K,) are related by a sequence of moves for wavefronts on F3, or equivalently,
if ¢1(K1) and ¢ (K ) are Legendrian isotopic in ST*F3.

We say (F, K) and (F’, K') are virtually Legendrian isotopic if there exists a
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sequence of pairs satisfying
(F,K) = (F1, K1) ~ (F2, K2) ~1 ===~ (Fyu, Kip) = (F', K).

Remark 5.2. If in this definition we allowed dangerous tangency moves as well
then we would have the definition of a virtual Legendrian homotopy.

Remark 5.3. A virtual Legendrian knot in a cooriented contact structure has a
natural framing, at each point given by the unit vector in the normal bundle to the
velocity vector of the knot on which the coorienting one form evaluates to one.
Given a virtual Legendrian knot K, let K*' denote the virtual framed knot given by
K with this framing.

6. Flat framed virtual knot diagrams

In this section we give reformulate the theory of flat virtual framed knots in terms
of planar diagrams.

Given a virtual knot with a blackboard framing, K% we associate to it a planar
flat virtual framed knot diagram. This is obtained first by forgetting the framing
and cooriented line field, leaving a generic immersed curve K on the surface F,
denoted (F, K). Then we construct the virtual string associated to this curve as
described in Section 3. This virtual string describes a flat virtual knot diagram in
the plane in the usual way, which is unique up to any combination of virtual moves
(a sequence of virtual moves is sometimes called the detour move).

If two virtual framed knots are virtual framed homotopic then their planar flat
virtual diagrams are related by a sequence of moves in Figure 9.

~ -0
- 1

I
R = N

|

- e
|

N
RN —

Figure 9. Moves for flat virtual framed knot diagrams.
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7. Equivalent definitions of virtual Legendrian isotopy

Let LGD be the set of Legendrian Gauss diagrams and let ~;¢4 be the equivalence
relation generated by Gauss diagram moves. Recall that the set of Gauss diagram
moves is precisely the set of moves on Gauss diagrams obtained by translating each
wavefront move to the Gauss diagram. Let LGD = LGD/ ~qq4.

Let VLD be the set of virtual Legendrian knot diagrams. Let ~,;; be the
equivalence relation generated by virtual Legendrian knot diagram moves. Put
VLD =VLD/ ~y4.

The theory of Legendrian Gauss diagrams up to Gauss diagram moves is equiv-
alent to the theory of virtual Legendrian knot diagrams up to virtual wavefront
moves.

Theorem 7.1. The map g : VLD — LGD given by associating a (unique) Legen-
drian Gauss diagram to a virtual Legendrian knot diagram induces a bijection
g~:VLD — LGD.

Proof. First we verify that g is well-defined. Indeed, the Legendrian Gauss
diagrams of two equivalent virtual Legendrian knot diagrams differ by Gauss
diagram moves, as moves involving virtual crossings do not affect the Gauss
diagram.

The map g~ is clearly surjective, as any Legendrian Gauss diagram gives rise
to a virtual Legendrian knot diagram. One simply draws all cusps and crossings
present in the Legendrian Gauss diagram in the plane, and connects such cusps and
crossings by arcs, creating virtual crossings where these arcs cross.

It remains to check that g is injective. Suppose we have two virtual Legendrian
knot diagrams D and D, with the same Gauss diagram. We will show that D
and D; are related by virtual Legendrian knot diagram moves. We first change
D, by a regular isotopy so that a small neighborhood of each of its cusps and
double points coincides with a small neighborhood of each corresponding cusp and
double point of D;. The resulting diagrams differ only in how the cusps and double
points are connected by arcs. To move an arc a, of D; so that it coincides with the
corresponding arc a; of D, we move a; by a fixed endpoint homotopy, such that
any crossings created during that homotopy are virtual. This move is known as the
detour move, and is simply a sequence of the moves pictured in Figure 3. O

Now let SFD be the set of all front diagrams on orientable surfaces, i.e., all pairs
(F, K) where F is an oriented surface and K is a cooriented wavefront on F. Let
~ra be the equivalence relation generated by the relation ~; defined in Section 5D,
and let SFD = SFD/ ~rq. In other words, SFD consists of pairs (F, K) of
oriented surfaces F' with cooriented wavefront diagrams K on F considered up to
wavefront moves and stabilization and destabilization of the surface F.
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Next we show that the theory of Legendrian Gauss diagrams up to Gauss diagram
moves is equivalent to the theory of fronts on surfaces up to wavefront moves.

Theorem 7.2. The map h : SFD — LGD that assigns a Legendrian Gauss diagram
to a wavefront on an oriented surface induces a bijection h~ : SFD — LGD.

Proof. First we check that A is well-defined. That is, suppose we have two pairs
(F, K) and (F’, K'), such that for some sequence of pairs {(F;, K;)}?_,, we have

(F,K)=(F1,Ki)~ (F2, K2) ~ ... (Fy, K;) = (F', K').

We need to check that (F, K) and (F’, K’) have equivalent Legendrian Gauss
diagrams, but since stabilization and destabilization do not affect the Legendrian
Gauss diagram of a wavefront on a surface, this is clear.

Next we verify that 4~ is surjective. To do this, we construct a wavefront diagram
on a surface given a Legendrian Gauss diagram. First we build the disk-band surface
realizing the underlying flat virtual knot of the wavefront. For a detailed explanation
of this procedure, see [Turaev 2004]. Then we insert positive and negative cusps
according to the markings on the Legendrian Gauss diagram.

Finally we verify A~ is injective. To do this we must show that if two pairs
(F, K) and (F’, K’) have equivalent Gauss diagrams, then (F, K) and (F’, K')
are equivalent. Again, the argument is completely analogous to the case of virtual
strings, which is carefully described in [Turaev 2004]. O

8. Virtual versions of the classical invariants

In this section we define the Maslov number for virtual Legendrian knots. We do
not discuss virtual analogues of the Bennequin number in this work. The virtual
Maslov number u(K,) where K, is a planar virtual front diagram, is defined to be
the number of positive cusps minus the number of negative cusps; see Figure 5.
Clearly, if K, corresponds to the front (F, K) on a surface then u(K,) is equal to
the (nonvirtual) Maslov number of the front K on F.

A positive (respectively negative) stabilization of the virtual Legendrian knot
K is obtained by inserting a pair of positive (respectively negative) cusps at any
point along K. Let K"""2 denote the virtual Legendrian knot obtained from K by
applying n positive stabilizations and n, negative stabilizations.

Proposition 8.1. The virtual Legendrian knot K is virtual Legendrian homotopic
to K™" for any positive integer n.

Proof. One can add a pair of positive cusps and a pair of negative cusps using a
Legendrian homotopy; see Figure 10. This sequence of moves is due to Fuchs
and Tabachnikov [1997]. This Legendrian homotopy is also a virtual Legendrian
homotopy. U
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Figure 10. Adding a pair of negative cusps and a pair of positive
cusps via a (virtual) Legendrian homotopy.

Theorem 8.2. Two virtual Legendrian knots are virtual Legendrian homotopic if
and only if they have the same virtual Maslov number and are homotopic as virtual
knots.

Proof. One can verify that the virtual Maslov number is an invariant of virtual
Legendrian homotopy by checking its invariance under all virtual wavefront moves,
as well as the dangerous tangency move. Hence two virtual Legendrian homotopic
virtual Legendrian knots have the same virtual Maslov number and (clearly) are
homotopic as virtual knots.

Now suppose that K and L are Legendrian knots with the same virtual Maslov
number that are homotopic as virtual knots. We will show below that the assumption
that K and L are homotopic as virtual knots implies that for any two sufficiently
large positive integers n and n;, there exist integers n3 and ny4 such that K2
is virtual Legendrian homotopic to L"3-"¢. In particular, this will be true for some
p =n =ny large enough. Then, since K and K77 are virtual Legendrian homotopic
by Proposition 8.1, and for suitable n3 and n4, K?°? and L™ are virtual Legendrian
homotopic, we have u(L) = u(K) = u(KPP)y=pu(L™"™). Then u(L) = p(L">"*)
implies n3 = nq. Put ¢ = n3 = n4. Again by Proposition 8.1, L and L?°7 are virtual
Legendrian homotopic. Hence K and L are virtual Legendrian homotopic.

It remains to show that if K and L are virtually homotopic then for sufficiently
large positive integers n| and n,, there exist integers n3 and n4 such that K"""2 is
virtual Legendrian homotopic to L"*"4. We do this in the next lemma. ([

Lemma 8.3. Let (F, K) and (F', L) be two virtually homotopic Legendrian knots.
Then for sufficiently large positive integers ny and n; there exist integers nz and ny
such that K" is virtual Legendrian homotopic to L"*"4.

Proof. We let K be a Legendrian knot in ST*F, let L be a Legendrian knot in
ST*F’, and we have a sequence of pairs

(F’K):(F17K1)7(F27K2)7"'9(FH7K11):(Fle)
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of curves K; in ST*F; such that the cooriented line fields (F;, K;, ;) on F; and
(Fiy1, Kit1, li+1) on F;4; lifting to K; and E,‘_H respectively can be realized as
homotopic cooriented line fields on a third surface G; (meaning their lifts are
homotopic in ST*G;).

On each surface G;, this homotopy looks locally (within a Darboux chart)
like a sequence of Reidemeister moves and crossing changes. We show how
to imitate this virtual homotopy by a virtual Legendrian homotopy by replacing
topological Reidemeister moves with Legendrian Reidemeister moves, and by
replacing topological crossing changes with Legendrian crossing changes.

The argument is now local, so we simply consider the case where K and L
are homotopic as Legendrian knots in ST*F for a fixed surface F. Furthermore
we assume for now that the homotopy between K and L is contained in a single
Darboux chart, so that K and L are Legendrian knots in the standard contact R>.
We consider the topological knot projections of K and L to the xz-plane. Because
K and L are homotopic, their topological projections are related by a sequence of
Reidemeister moves of Types 1-3 and crossing changes; see Figure 11.

Fuchs and Tabachnikov [1997] proved that if K and L are topologically isotopic
Legendrian knots in the standard contact R?, then for sufficiently large n| and n,
there exist n3 and n4 such that K""*2 is Legendrian isotopic to L"3-"¢. We prove
the same statement, replacing isotopy with homotopy, and imitate their proof. Let «
and A be the front projections of K and L. First we know « and X are related by a
topological isotopy K, with projection «;, such that Ko = K, K| = L, and for some
O=tp<n<trp<---<t,=1¢€[0,1], x; =k, and k; 41 = Ky, are related by a
single topological Reidemeister move, topological crossing change (see Figure 11),
or a passage through a vertical tangency (an ambient isotopy during which a strand
without a vertical tangency passes through a vertical tangency, and after which two
new vertical tangencies appear locally).

Next convert each topological knot diagram «; into a front diagram by replacing
vertical tangencies wi