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PHYSICAL REVIEW C VOLUME 42, NUMBER 5 NOVEMBER 1990

Microscopic calculations of low-energy reaction crohs sections

R. E. Warner* and G. N. Felder
Physics Department, Oberlin College, Oberlin, Ohio 44074

and Kernfysisch Versneller Instituut, 9747AA Groningen, The Netherlands
(Received 30 July 1990)

Microscopic calculations of nuclear reaction cross sections and total reaction probabilities are
compared with measurements for the d +Si, ' He+ Si, and d +Ge systems at energies ranging from
2 to 53 MeV/nucleon. Good agreement is obtained, except for 'He+Si at the very lowest energies,
when zero-range nucleon-nucleon forces are assumed and realistic nuclear density distributions are
used in the tail regions, where the models are most sensitive. The agreement is less good for finite-

range forces. A strong absorption model gives much poorer agreement with the recent He+Si
measurements than do the microscopic models.

Nuclear reaction cross sections have for years been
used to test nuclear reaction models, such as the optical
model, and to obtain information about nuclear radii.
Moreover, the recent growth of interest in exotic nuclei
has stimulated many new reaction cross-section measure-
ments' aimed toward identifying anomalously large radii,
and possibly neutron halos, in the light neutron-rich nu-
clei.

Several microscopic theoretical treatments based on
the Glauber model explain nucleus-nucleus reaction
cross sections as resulting from individual nucleon-
nucleon interactions. Their common ingredients are the
averaged nucleon-nucleon reaction cross section, o.~~,
and the nuclear matter densities in the projectile and tar-
get nuclei, pp and pT. Most treatments begin by con-
sidering a projectile with impact parameter b (Fig. 1),
which contains ppd Vp nucleons in a volume element d Vp
whose displacements from the centers of the two nuclei
are rp and rT. The probability of interaction in this
volume element, while the projectile travels a distance dz,
is just o'~~pTppd Vpdz; pT is the target nucleon density in
this same volume element. The transparency, or proba-
bility that the projectile will not interact at this impact
parameter, is then

T(b)=exp[ —cr~~ f f f fpT(rT)pp( pr)dVpdz],

where the integrations extend over the projectile s trajec-
tory (assumed to be a straight line) and internal coordi-
nates. The reaction cross section is obtained by integra-
tion over impact parameters:

o tt =2tr f [1—T(b)]b db .

The complete Glauber theory involves expansions in
powers of the nucleon-nucleon scattering amplitude.
Calculations based on Eqs. (1) and (2) are therefore ap-
proximate, but nevertheless have often successfully fitted
the experimental data. This method was first used by
Karol, who calculated o.~'s at 2. 1 GeV/nucleon labora-
tory energy for many projectile-target combinations, us-
ing density functions for which Eqs. (1) and (2) could be

evaluated analytically. Later, DeVries and Peng applied
the model at somewhat lower energies, using more realis-
tic density functions which required numerical integra-
tion. To make the model useful at these energies, they
modified Eq. (2) to allow for the defiection of the
projectile's trajectory by the Coulomb field:

o„=2m.f [1—T(b')]b db . (3)

The trajectory, as in the Karol model, was again assumed
to be straight but at distance b' from the beam axis,
where b' is the classical distance of closest approach for a
particle having impact parameter b.

Although Glauber theory was developed for applica-
tion at high energies, these models have successfully pre-
dicted o z s for heavy-ion collisions at bombarding ener-
gies down to 10 MeV/nucleon. ' Therefore we decided
to apply it to the recent data ' for light projectiles on
Si and Ge, some of which extend to still lower energies.

We first concentrated on fitting the recent measure-
ments' of the reaction probability for 27 to 92 MeV a
particles on Si (i.e., the probability that such a particles
will initiate a nuclear reaction in a Si detector before the
end of their range). These measurements determine an
average reaction cross section of 1170+55 mb in this en-
ergy range', they are compared in Fig. 2 with our micro-
scopic predictions. The solid and dashed curves are ob-
tained when p of Si is taken to be a three-parameter Fer-
mi (3PF) distribution, " and the Gaussian function
recommended by Karol, respectively, ' both give an rms
radius of 3.08 fm. For the a-particle density, both 3PF
(as used by DeVries and Peng ) and Gaussian forms were
used, with indistinguishable results. Nucleon-nucleon
cross sections down to the lowest available energies were
taken from the literature there, opp is taken to be
4m.(do. /dQ) at 90 c.m. , where the Coulomb scattering
cross section is negligible compared with those observed.
At lower energies o.„was computed from the effective
range parameters, ' and o„„and o.

pp
were obtained by

extrapolating the existing data assuming a 1/E depen-
dence. The latter procedure appeared reliable to about
+10%. This uncertainty has negligible effect on the com-
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FIG. 1. Overlap region, where nucleon-nucleon collisions be-
tween projectile and target nuclei take place.

FIG. 3. Nucleon density p in Si (left vertical scale), and opa-
city [1—T{r)]for the a+St system at E,=30 MeV {right verti-
cal scale), plotted vs. distance for two functional forms of p.
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FIG. 2. Total nuclear reaction probability data (Ref. 10) for
27 to 92 MeV a-particles incident upon a thick Si detector,
compared with microscopic predictions using the model of
DeVries and Peng. Two different functional forms of the nu-

cleon density in Si are used (see text) when the nucleon-nucleon
force is assumed to have zero range, while the 3PF density is
used in the finite-range calculation.

puted reaction probabilities.
The 3PF Si density function gives better results for

a+Si (y /% =2.4 vs. 9.4 for the Gaussian function) since
the Gaussian cross section is too large, especially at
higher energies. For example, at E 0=90 MeV, the 3PF
and Gaussian o R's are 1201 and 1286 mb, respectively.
The explanation is contained in Fig. 3, which shows that
the opacity 1 —T extends to larger impact parameters for
the Gauss form. The density functions have two crossing
points, at 2.2 and 4.3 fm. Our predictions using the 3PF
density inside 4.3 fm, and the Gaussian density otherwise,
were indistinguishable from those using the pure Gauss-
ian density. Therefore the excess cross section from the
Gaussian function is attributable to its dominance over
the 3PF function outside the second crossing point. The
Gauss and 3PF functions place 12% and 9%, respective-
ly, of the Si matter distribution in this outer region. This
3% difference in surface matter content leads to a 10%
difference in o z at 90 MeV. These calculations illustrate
the great sensitivity of reaction cross sections, as given by
this model, to the matter distribution in the nuclear sur-
face, and their insensitivity to the matter in the interior

R;„,=Q, +Q~ +f ( A'
, + A 2

3
)/E,'i (4)

where both nuclei are more than suSciently dense to be
completely opaque.

Correction for Coulomb effects, as represented by Eq.
(3), is essential at these energies. Neglecting this correc-
tion raised the 3PF cross section from 1201 to 1305 mb at
90 MeV and had larger effects at lo~er energies.

Bertsch, Brown, and Sagawa obtained a simpler mi-
croscopic model, also based on Glauber theory, by as-
suming that nucleon-nucleon interactions take place be-
tween independent tubes of matter, aligned with the
beam direction, in the projectile and target. With this
simplification, calculations using both finite-range and
zero-range nucleon-nucleon forces are straightforward.
When this model was used to calculate a+Si reaction
cross sections (assuming zero-range forces and 3PF densi-
ties, and making Coulomb corrections), the results were
indistinguishable (differences ~ 0. 1%) from those ob-
tained with Eqs. (1) and (3). A finite-range force with an
interaction range of 1 fm increased the average oz by
about 10%. This increase is comparable to that found by
Bertsch, Brown and Sagawa for the Li+ ' C and
Be+ ' C systems and, as they explain, is expected since
the effect of the finite-range force is to increase the sur-
face density.

It seems disappointing that the calculations with
finite-range forces overpredict the data. Two possible ex-
planations may be considered. First, the density distribu-
tions we use are charge distributions obtained from elec-
tron scattering" and are not always corrected for proton
size. If they are not, the use of finite-range forces may in
effect count the nucleon size twice. Secondly, the micro-
scopic models neglect Pauli blocking and the excitation
of collective surface modes; these processes have large,
opposing effects on the cross section. ' Thus the
discrepancy between these calculations, which should be
our most realistic ones, and the experimental data may
indicate incomplete cancellation of these effects.

Several strong absorption models exist for calculating
o.z. All such models contain an interaction radius R;„,
which is parametrized in different ways. Gupta and Kai-
las' review the arguments for energy-dependent interac-
tion radii. Their model II, for instance, uses
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where the equivalent uniform radii Q, and Qz are defined
in Ref. 15 and f is the only free parameter in their model.
They fit many heavy-ion crz data, taking f= l. 17 for best
fit to their data set. With this f we find a+Si o ~'s about
50% larger than those given by the microscopic models,
and y /N=—100. However, when much smaller f's are
used (0.21 and 0.29 for their models I and II, respectively)
we obtain fits indistinguishable from the 3PF prediction.
Their model thus lacks universality in that it predicts too
strong an energy dependence for the a+ Si interaction ra-
dius. Similarly, Kox et a/. found it inadequate to de-
scribe the reaction cross sections for ' C+' C.

We found the reaction probabilities for 2 to 6
MeV/nucleon d and He on Si with the microscopic
theory of DeVries and Peng, using deuteron densities
from Humberston and Wallace (Ref. 16), He densities
from McCarthy et al. ,

' and the 3PF silicon density.
The results are compared with measurements in Fig. 4.
For the d+Si system, both measurements and calcula-
tions give average cross sections of about 1200 mb in this
region, and the fit is excellent. Replacement of the deute-
ron density with a Gaussian function having the same
rms radius leads to serious underprediction of the data,
since the Gauss function is very weak in the tail region in
comparison with the realistic deuteron wave function. '

This again illustrates the high sensitivity of the cross sec-
tions to the matter distribution in this region.

The predicted He+ Si cross section is negligible up to
2 MeV/nucleon since, even for head-on collisions, there
is essentially no overlap of target and projectile. This
effect makes the theory generally underpredict the data.
However, at higher energies the predictions and data
have equal slopes, signifying equal average cross sections
(about 900 mb).

Finally, we consider the 15 to 53 MeV/nucleon d +Ge
measurements, noting first that the data given are ratios
of deuterons reacting in a Ge detector telescope to those
which do not react. We present in Table I the corre-
sponding reaction probabilities. The microscopic calcu-
lations with zero-range NN forces give good predictions
at the highest energies but are too low at lower energies.
Finite-range calculations provide a still better fit at high
energies but again underpredict g below 75 MeV. The
problem may lie with the measurements, since at the
lowest energies the deuterons went only a short distance
into the stopping detector. However, microscopic calcu-
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FIG. 4. Predicted and measured (Ref. 9) nuclear reaction
probabilities for 2 to 6 MeV/nucleon d and He on Si. The mi-
croscopic calculations employ zero-range nucleon-nucleon
forces; nuclear density functions are specified in the text.

lations for 10 to 30 MeV/nucleon deuterons on the near-
by nucleus Zr also are lower than the data points. New,
more accurate measurements would therefore be of in-
terest.

We conclude that the microscopic models, developed
from the Glauber theory, predict reaction cross sections
in good agreement with those measured for the d+Si,
3 4He+Si, and d +Ge systems at energies as low as 2
MeV/nucleon provided realistic density distributions are
used in the tail region, where the models are most sensi-
tive. The prescription of DeVries and Peng and of Kox
et al. for including Coulomb-force effects appears ade-
quate. The one serious failure occurs for 1.5
MeV/nucleon He on Si, where the closest-approach dis-
tance, even for head-on collisions, is so large that the den-
sity distributions have negligible overlap. The inclusion
of finite-range nucleon-nucleon somewhat spoils the
agreement with the most accurate data set we consider
(27 to 92 MeV a- particles on Si). This suggests that

TABLE I. Total nuclear reaction probabilities g(Ed ) for deuterons of laboratory energy Ed incident
upon germanium. Measurements are from (Ref. 8). Predictions are for zero- and finite-range nucleon-
nucleon forces, using the method of Bertsch, Brown, and Sagawa (Ref. 5).

Predicted g
Ed (MeV)

34.9
44.4
60.8
75.3
90.0

105.2

Measured g

0.030+0.005
0.040+0.002
0.059+0.003
0.068+0.004
0.093+0.004
0.109+0.005

(zero range)

0.015
0.024
0.042
0.062
0.084
0.109

(finite range)

0.016
0.026
0.046
0.066
0.089
0.116
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omission from the models of certain physical effects—
such as Pauli blocking, eclipsing, and collective surface
excitations —causes errors which only partially cancel
one another in determining the reaction cross sections.
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