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Abstract

Background: Preconception pregnancy risk profiles—characterizing the likelihood that a pregnancy attempt results
in a full-term birth, preterm birth, clinical pregnancy loss, or failure to conceive—can provide critical information during
the early stages of a pregnancy attempt, when obstetricians are best positioned to intervene to improve the chances
of successful conception and full-term live birth. Yet the task of constructing and validating risk assessment tools for
this earlier intervention window is complicated by several statistical features: the final outcome of the pregnancy
attempt is multinomial in nature, and it summarizes the results of two intermediate stages, conception and gestation,
whose outcomes are subject to competing risks, measured on different time scales, and governed by different
biological processes. In light of this complexity, existing pregnancy risk assessment tools largely focus on predicting a
single adverse pregnancy outcome, and make these predictions at some later, post-conception time point.

Methods: We reframe the individual pregnancy attempt as a multistate model comprised of two nested multinomial
prediction tasks: one corresponding to conception and the other to the subsequent outcome of that pregnancy. We
discuss the estimation of this model in the presence of multiple stages of outcome missingness and then introduce
an inverse-probability-weighted Hypervolume Under the Manifold statistic to validate the resulting multivariate risk
scores. Finally, we use data from the Effects of Aspirin in Gestation and Reproduction (EAGeR) trial to illustrate how this
multistate competing risks framework might be utilized in practice to construct and validate a preconception
pregnancy risk assessment tool.

Results: In the EAGeR study population, the resulting risk profiles are able to meaningfully discriminate between the
four pregnancy attempt outcomes of interest and represent a significant improvement over classification by random
chance.

Conclusions: As illustrated in our analysis of the EAGeR data, our proposed prediction framework expands the
pregnancy risk assessment task in two key ways—by considering a broader array of pregnancy outcomes and by
providing the predictions at an earlier, preconception intervention window—providing obstetricians and their
patients with more information and opportunities to successfully guide pregnancy attempts.

Keywords: Competing risks, Discrete survival models, Missing data, Multinomial classification, Pregnancy, Risk
prediction
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Background
The role of risk prediction in preconception care
In obstetrics and gynecology, preconception care refers
to a “set of interventions that aim to identify and mod-
ify biomedical, behavioral, or social risks to [a potentially
child-bearing individual’s] health or pregnancy outcome,”
with particular emphasis placed on those factors thatmust
be intervened on prior to conception or early in the preg-
nancy [1]. Integral to these efforts is the initial preconcep-
tion consultation, a pre-pregnancy check-up during which
an obstetrician may collect baseline demographic and
medical history data in order to better guide and inform
the planned pregnancy attempt. These consultations thus
serve an important dual purpose: they assist patients in
preparing for an upcoming pregnancy, while also repre-
senting the first point at which clinicians might intervene
to improve the likelihood of conception and an eventual
full-term live birth by, for example recommending imme-
diate initiation of assisted reproductive technology [2] or
by identifying and reviewing modifiable risk factors of
adverse pregnancy outcomes [3, 4].
To that end, accurate and personalized predictions of

both the time to conception and the outcome of any sub-
sequent pregnancy are particularly relevant to preconcep-
tion care [1]. Yet current pregnancy outcome prediction
tools are limited in several key dimensions: existing risk
scores typically (i) focus on prediction among individu-
als with already viable pregnancies, using as predictors
biomarker and other biomedical data that may be unavail-
able or difficult tomeasure at an initial preconception visit
[5–7], and (ii) either collapse all pregnancy outcomes into
a single adverse event indicator [8, 9] or focus on predic-
tion of a single pregnancy outcome [10, 11]. In focusing on
a binarized representation of the pregnancy attempt, these
models ignore the complex interdependencies and com-
peting risks that may exist between pregnancy outcomes.
This improper accounting may, in turn, have conse-
quences for estimation biases in, and the predictive accu-
racy of, these post-conception prediction models [12, 13].
The few obstetric risk prediction tools explicitly devel-

oped for preconception contexts (such as those in Sep et
al. [14], van Kuijk et al. [15], and Mehta-Lee et al. [16])
similarly consider only a single isolated adverse mater-
nal or neonatal event, and are further limited by con-
cerns of both internal and external validity. In particular,
these models are often constructed and trained on ret-
rospectively ascertained datasets whose inclusion criteria
require that individuals (i) had a clinically-recognized
pregnancy that (ii) resulted in a live birth during the
course of the study period; such criteria systematically
exclude individuals struggling with sub-fertility or clini-
cal pregnancy loss—individuals who may also be at higher
risk for other adverse pregnancy outcomes—while pre-
venting the generalization of these models to practical

preconception clinical settings in which neither concep-
tion nor an eventual live birth are guaranteed. And while
greater attention has been paid to the task of modeling
fertility and time to conception in the statistical litera-
ture [17–21], to the best of our knowledge no obstet-
ric/gynecological model has attempted to integrate these
fertility predictions into a broader preconception risk
assessment framework.
In short, the existing pregnancy-related prediction tools

are either all adapted for patient populations and clinical
scenarios that are defined downstream of the initial pre-
conception visit or are too narrow in scope to be used to
guide preconception care.

The effects of aspirin in gestation and reproduction trial
To address this limitation, we aim to develop a clinical risk
assessment tool that is implementable during the course
of a pre-pregnancy check-up and that simultaneously con-
siders both (i) the likelihood of a clinically-recognized
pregnancy occurring and (ii) the likelihood of that preg-
nancy ending in either a full-term live birth or an adverse
event. This prediction task effectively reframes the preg-
nancy attempt as a multistate competing risks process
comprised of two stages—a conception stage resulting in
an implementation event (or a lack thereof) and a gesta-
tion stage resulting in a final birth outcome—that repre-
sent fundamentally different biological processes and thus
may be governed by fundamentally different sets of risk
factors [22].
One of the few existing pregnancy studies with data

on both of these outcome stages, as well as a rich set of
potential predictors, is the Effects of Aspirin in Gestation
and Reproduction (EAGeR) trial, a randomized controlled
trial of the effects of low-dose preconception aspirin use
on both the times to conception and the subsequent birth
outcomes for women with at least one prior pregnancy
loss [23]. The study enrolled 1228 women at the time of
their initial preconception consultation, and then followed
these women for one of four mutually exclusive pregnancy
attempt outcomes:

1. failure to conceive within six menstrual cycles of the
initial preconception visit;

2. pregnancy resulting in a clinical pregnancy loss,
including both spontaneous abortion and stillbirth;

3. pregnancy resulting in a preterm birth, defined as a
live birth occurring at or before 37 weeks’ gestation;
or

4. pregnancy resulting in a full-term birth, defined as a
live birth occurring after 37 week’s gestation.

By treating the initial preconception visit as the time ori-
gin fromwhich women are then prospectively followed for
an implantation event, the EAGeR dataset overcomes the
left and right truncation issues typically noted in time to



Cook et al. BMCMedical ResearchMethodology          (2022) 22:156 Page 3 of 14

pregnancy studies [24]; by recording pregnancy attempt
outcomes on all women—regardless of whether those
women ultimately fail to conceive within the study period
or experience a clinical pregnancy loss—the trial circum-
vents the selection and generalizability concerns endemic
to other preconception datasets.
It does, however, present different statistical challenges

to the construction and validation of a preconception
prediction model. In light of the relatively short follow-
up during the conception stage of the EAGeR study, as
well as the complex biological restrictions that naturally
exist on the support of the subsequent birth outcomes,
correct specification of the transition intensities for the
various pregnancy attempt outcomes is difficult. Further-
more, the time-to-event data on each stage of the preg-
nancy attempt were recorded with different levels of gran-
ularity; the gestation-related outcomes (namely clinical
pregnancy loss, preterm birth, and full-term birth) were
reported in terms of gestational age, a continuousmeasure
of time since implantation, while the conception outcome
was reported in terms of menstrual cycles since the pre-
conception visit. This partial coarsening of the time axis
further complicates the use of traditional multistate mod-
eling analyses for the preconception prediction of preg-
nancy outcomes, as these analyses typically assume that
the outcome process unfolds and is measured entirely in
either continuous or discrete time [25]. Finally, during the
conduct of the EAGeR trial, women were lost to follow-
up at both stages of the outcomes process—prior to the
observation of a clinically-recognized pregnancy, as well
as prior to the observation of that pregnancy’s outcome—
such that the missing data process was also multistage in
nature. As a consequence, we must contend with multiple
possible sources of estimation bias when constructing the
final risk predictionmodel, both as a consequence ofmiss-
ingness in the pregnancy attempt outcomes themselves
and as a consequence ofmissingness in the selection event
for the second-stage outcomes.

Outline
In what follows, we present a unified framework for the
preconception prediction of pregnancy outcomes that

adapts the traditional multistate competing risks model
in order to accommodate the coarsening of the timescale
information and the multistage nature of the missingness
processes, while also circumventing concerns regarding
biological plausibility. In the “Methods” section, we first
introduce this prediction framework in greater detail, and
then discuss its estimation and inference in the pres-
ence of complete data (“Complete data setting” section)
as well as extensions to the missing at random setting
(“Estimation and validation in the presence of outcome
missingness” section). We also present an analysis of data
from the EAGeR trial (“Preconception risk prediction in
the EAGeR study population” section), illustrating how
preconception risk prediction might be accomplished and
utilized by clinicians in practice. The results of this anal-
ysis are given in the “Results” section, and we conclude
with a brief discussion in the “Discussion” section and
conclusions in the “Conclusion” section.

Methods
Prediction in a multistate competing risks framework
Suppose that individual i wishes to conceive, and sched-
ules a preconception obstetrics consultation in order to
plan their current pregnancy attempt. We let the stochas-
tic process (Yi(t), t ≥ 0) characterize the status of this
attempt at time t since preconception visit, with Yi(t)
taking on values over some discrete state space S that
captures all potential pregnancy outcomes of interest. In
the motivating EAGeR trial, for example, this state space
is S = {0, 1, 2, 3, 4}, where {0} indicates the absence of
a successful implantation event, {1} an active and ongo-
ing pregnancy, {2} a clinical pregnancy loss, {3} a preterm
birth, and {4} a full-term birth. More complex construc-
tions of S including additional terminal (e.g., elective
abortion) and non-terminal (e.g., the development of ges-
tational diabetes or pre-eclampsia) events are possible
but not considered here. We assume that the transitions
between these states are governed by the multistate model
shown in Fig. 1, where

λjk(t) = lim
δ→0

P
{
Yi(t− + δ) = k|Yi(t−) = j,Yit−

}

Fig. 1Multistate model characterizing the status of a single pregnancy attempt at calendar time t since the preconception visit, Yi(t). Arrows are
labeled with the individual transition intensities



Cook et al. BMCMedical ResearchMethodology          (2022) 22:156 Page 4 of 14

characterizes the instantaneous probability of transition-
ing from pregnancy outcome state j to pregnancy outcome
state k at time t since the preconception visit, conditional
on the history of the pregnancy attempt up until that time,
Yit− . Note that the model in Fig. 1 naturally partitions the
pregnancy attempt into a conception stage (the 0 → 1
transition) and a gestation stage (the 1 → 2, 1 → 3, and
1 → 4 transitions); we assume that the transition intensity
for the conception stage depends only on the time t since
the preconception visit, and that the transition intensities
for the gestation stage depend additionally on the time to
clinically-recognized pregnancy, T1 = inf{t : Yi(t) = 1}.
Given this framework, our aim is to make meaningful
predictions about individual i’s pregnancy attempt, Yi(t)—
and in particular to construct an individualized risk profile
characterizing the likely outcomes of that attempt—based
on the covariate information,wi, that is routinely collected
as part of the preconception consultation.
Several authors have considered how to incorporate

covariate information into the estimation of the transi-
tion intensities, λjk(t), and the state occupation prob-
abilities, πij(t) = P{Yi(t) = j}, of semi-Markovian
stochastic processes like the multistate model in Fig. 1
(see Andersen and Perme [25] for an in-depth review).
However, the nature of preconception pregnancy predic-
tion in general—and the structure of the EAGeR data in
particular—present several challenges to the construction
of individual preconception risk profiles in terms of either
of these quantities.

1. Directly specifying and estimating λjk(t) in terms of
wi and some parametric baseline intensity function,
as discussed in Kalbfleisch and Prentice [26] and
Beyersmann et al. [22] among others, is complicated
by the complex restrictions that exist on the support
of the gestational outcomes: clinical pregnancy loss,
preterm birth, and full-term birth. The possible
calendar times t at which λ12(t), λ13(t), and λ14(t)
are each non-zero are dictated by limits on fetal
viability, biological and medical constraints on
pregnancy duration, and the definitions of the
outcomes themselves, such that biologically
plausible—let alone correct—specification of the
baseline intensity functions is unlikely.

2. Alternatively, direct estimation of the state
occupation probabilities using either the pseudo-
value approach of Andersen and Klein [27] or the
weighted estimating equation approach of Scheike
and Zhang [28] and Scheike et al. [29] is complicated
by the lack of granularity in the EAGeR event time
data, and in pregnancy outcome reporting more
generally. In particular, time to pregnancy is typically
measured and reported in terms of menstrual cycles
to conception, which partitions calendar time into

discrete time units; the gestational outcomes (clinical
pregnancy loss, preterm birth, and full-term birth)
are instead reported in continuous time (gestational
age) with an unknown and estimated time origin: the
exact calendar time of conception. Using such data
to estimate attributes of a single stochastic process
(Yi(t), t ≥ 0) with a cohesive and consistent internal
time scale is challenging.

3. Similar data coarsening issues arise when accounting
for censoring in the estimation task. In the EAGeR
trial, for example, while exact loss to follow-up times
are available for the conception stage of the
stochastic process (i.e., for the 0 → 1 transition), the
remaining pregnancy outcomes were determined
using medical chart abstraction, so that only a binary
indicator of missingness was available for the 1 → 2,
1 → 3, and 1 → 4 transitions. The mechanisms
driving missingess in the conception stage may also
differ substantially from the mechanisms driving
missingness in the clinical result of that conception.

4. Finally, while the multistate model for a single
pregnancy attempt naturally includes a
non-absorbing “active pregnancy” state (Fig. 1), this
state is only of indirect interest for our particular
prediction task. The relative likelihoods of occupying
states {0}, corresponding to no clinically-recognized
pregnancy; {2}, corresponding to clinical pregnancy
loss; {3}, corresponding to preterm live birth; and {4},
corresponding to full-term live birth, have clear
clinical and prognostic value for the pregnancy
attempt. State {1}, corresponding to active
pregnancy, is relevant only in so much as it defines
the population of individuals on whom the
gestation-related outcomes will be observed.

In light of these challenges, we instead define the indi-
vidual preconception risk profile as

pi(τ ) := {
πi0(τ ), πi2|1(τ )πi¬0(τ ), πi3|1(τ )πi¬0(τ ),

πi4|1(τ )πi¬0(τ )
}
, (1)

where πi¬0(τ ) := 1 − πi0(τ ) and where

πij|1(τ ) := lim
t→∞P{Yi(t) = j|T1 ≤ τ }, j = 2, 3, 4

are limiting conditional state occupation probabilities
defined over a conception window of τ menstrual cycles.
pi(τ ) thus characterizes the likelihood that individual i
fails to conceive within τ menstrual cycles of the pre-
conception consultation, or that they successfully con-
ceive within that window and that the subsequent preg-
nancy results in either a clinical pregnancy loss, a
preterm birth, or a full-term birth: πi0(τ ), πi2|1(τ )πi¬0(τ ),
πi3|1(τ )πi¬0(τ ), and πi4|1(τ )πi¬0(τ ), respectively.
Constructing pi(τ ) in this fashion allows us to refor-

mulate (Yi(t), t ≥ 0) as the composition of a first-stage
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outcome, Yi1 ∈ {0, 1}, which represents conception within
τ menstrual cycles, and a (potentially undefined) second-
stage outcome, Yi2 ∈ {2, 3, 4}, which represents the final
result of that pregnancy (Fig. 2). We may then estimate
pi(τ ) in terms of the baseline covariate information wi by
separately modeling the outcomes of each of these stages;
this two-stage approach is reminiscent of the nested com-
peting risks construction of [22] and allows us to explicitly
account for the different timescales, the different gov-
erning risk factors, and the different censoring patterns
of the conception and gestation processes while avoid-
ing concerns regarding the biological plausibility of the
underlying transition intensity model.

Model estimation and validation
Complete data setting
When the reformulated pregnancy attempt outcome Y i =
(Yi1,Yi2) is completely observed for all n individuals, we
take

logit {P(Yi1 = 1|xi)} = βTxi (2)

log
{
P(Yi2 = k|zi,Yi1 = 1)
P(Yi2 = 4|zi,Yi1 = 1)

}
= αT

k zi, k = 2, 3 (3)

where xi ⊂ wi and zi ⊂ wi are the baseline covari-
ates informing the conception and gestation processes,
respectively, and where the first element of xi and zi is
assumed to be a 1 if an intercept is included. Note that the
dependence of models (2) and (3) on the conception win-
dow τ is implicit in the definition of Yi1 = I(T1i ≤ τ):
different choices of τ will naturally lead to different def-
initions of the outcome for model (2) and the selection
event for model (3), which might in turn lead to differ-
ences in the true values of β and α. We further note that
the second-stage model in (3) is agnostic to the timing of
the clinically-recognized pregnancy beyond the implicit
restriction that Yi1 = 1 ⇐⇒ T1i ≤ τ ; more complex
specifications of (3), in which we first predict a time to
conception and then incorporate this prediction into (3),

are possible but not explored here. We then use standard
maximum likelihood estimation to fit (2) to the full sam-
ple of n individuals and (3) to the subset of individuals
with at least one clinically-recognized pregnancy within
τ menstrual cycles of their preconception visit. From the
resulting estimates of β , α2, and α3, we have

π̂i¬0(τ ) = expit
(
β̂
Txi

)

π̂i2|1(τ ) = π̂i4|1(τ ) exp
(
α̂T
2 zi

)

π̂i3|1(τ ) = π̂i4|1(τ ) exp
(
α̂T
3 zi

)

π̂i4|1(τ ) =
{
1 + exp

(
α̂T
2 zi

)
+ exp

(
α̂T
3 zi

)}−1
,

and we obtain the predicted risk profile for individual i,
p̂i(τ ), by substituting these estimates into (1).
To quantify the extent to which these risk profiles

meaningfully discriminate between the four pregnancy
outcomes, we use the Hypervolume Under the Manifold
(HUM) statistic, a generalization of the Area Under the
Curve (AUC) statistic to outcomes with K > 2 outcome
classes. Much as the AUC measures the correct classi-
fication rate of discordant pairs of binary outcomes, the
HUM measures the correct classification rate of sets of K
individuals, with one individual from each of the K out-
come classes. Operationalizing the HUM thus requires
specifying a decision rule with which to conduct this K-
alternative forced-choice decision task. To that end, let ek
be the kth basis vector, here indicating assignment to out-
come class k (k = 1, . . . ,K). We consider the following
general class of decision rules, which selects the classifi-
cation (c1, c2, . . . , cK ) that minimizes the weighted sum of
the Euclidean distances from each individual’s risk profile
to their assignment vector:

argmin
(c1,c2,...,cK )

(
ω1‖p(1)(τ ) − ec1‖ + ω2‖p(2)(τ ) − ec2‖

+ · · · + ωK‖p(K)(τ ) − ecK ‖
)
, (4)

Fig. 2 Reformulation of (Yi(t), t ≥ 0) as a binomial first-stage outcome, Yi1, composed with a multinomial second-stage outcome, Yi2, conditional
on a conception window of τ menstrual cycles. Arrows are labeled with the relevant individual (conditional) state occupation probabilities
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where p(k)(τ ) is the risk profile for the individual from
class k and where ‖ · ‖ is the standard L2 norm. Note
that the choice of weight vector, ω = (ω1, . . . ,ωK ), allows
one to differentially prioritize the discriminatory ability
of pi(τ ) with respect to each of the different outcome
classes; a weighting scheme in which ω1/‖ω‖ > 0.25 will,
for example, result in an HUM that rewards risk profiles
with high discriminatory ability with respect to the first
outcome class. Appropriate selection of ω is thus highly
context dependent. In the absence of any strong rationale
to the contrary, we recommend implementing (4) with all
outcomes weighted equally, i.e., with ω set to 1, so that
the resulting HUM speaks to overall classification perfor-
mance and may be more readily compared across analyses
and applications.
Let CR(·) indicate whether all K individuals have been

correctly classified on the basis of their risk profiles and
the selected decision rule. Then

HUM = P
[
CR

{
p(1)(τ ), p(2)(τ ), . . . , p(K)(τ )

}
= 1

]

and a nonparametric estimator of the HUM is

̂HUM= 1
n1n2 · · · nK

n1∑

i1=1

n2∑

i2=1
· · ·

nK∑

iK=1

CR
{
p̂(1)
i1 (τ ), p̂(2)

i2 (τ ), . . . , p̂(K)
iK (τ )

}
, (5)

where nk is the number of individuals belonging to out-
come class k and p̂(k)

ik (τ ) is the estimated risk profile for
the ikth individual in that class. Note that if the risk pro-
files have no inherent predictive value, such that they
correspond to classification by random chance, then the
correct classification rate will simply be HUM = 1/K !.
For pregnancy outcome prediction with K = 4 outcome
classes, this non-informative HUM = 1/4!≈ 0.0417.

Estimation and validation in the presence of outcome
missingness
Longitudinal pregnancy outcome studies often, however,
feature loss to follow-up and study withdrawal, which may
occur at any point during the pregnancy attempt. As a
result, Y i = (Yi1,Yi2) may be partially or completely
unobserved for some subset of individuals in the study.
Let Ri1, Ri2, and Ri be indicators of non-missingness in Yi1,
Yi2, and Y i, respectively, where Ri = I(Ri1 = 1 ∩ Ri2 = 1).
Then study subjects may be classified as belonging to one
of four observed data categories:

1. Censored prior to conception (Ri1 = 0,Ri2 = 0)
2. No pregnancy within τ menstrual cycles

(Ri1 = 1,Ri2 = 1)

3. Pregnancy within τ menstrual cycles, unknown result
(Ri1 = 1,Ri2 = 0)

4. Pregnancy within τ menstrual cycles, known result
(Ri1 = 1,Ri2 = 1)

For an individual to have complete data with respect to
model (2), their pregnancy status after τ cycles must be
known (Ri1 = 1); for an individual to have complete data
with respect tomodel (3), both their pregnancy status and,
provided that a clinically-recognized pregnancy occurred,
the final result of that pregnancy must be observed (Ri1 =
1,Yi1 = 1,Ri2 = 1).
Modeling and predicting Y i thus requires addressing

potentially multiple stages of outcomemissingness, where
the factors governing that missingness may vary accord-
ing to stage. To that end, we assume that Y i is missing
sequentially at random, so that

P(Ri1 = 1|wi,Yi1) = P
(
Ri1 = 1|x′

i
)

P(Ri2 = 1|wi,Ri1 = 1,Y i) = P
(
Ri2 = 1|z′

i,Ri1 = 1,Yi1
)

P(Ri = 1|wi,Y i) = P
(
Ri2 = 1|z′

i,Ri1 = 1,Yi1
)

P(Ri1 = 1|x′
i),

where x′
i ⊂ wi and z′

i ⊂ wi are the baseline covariates
informing the first and second stages of the missingness
process, respectively. We then (i) reframe estimation of
πi¬0(τ ) = P(Yi1 = 1|xi) in terms of a discrete-time sur-
vival model for time to clinically-recognized pregnancy,
and (ii) implement the modularized missing data frame-
work of Haneuse and Daniels [30] using either multiple
imputation or inverse probability of censoring weights to
address selection into and estimation of the model for
πik|1(τ ) = P(Yi2 = k|zi,Yi1 = 1) with k = 2, 3, 4.
Let, as before, T1i be the time to clinically-recognized

pregnancy, and now take Ci to be the time to censoring
or withdrawal from the first stage of Fig. 1. As a result,
we do not necessarily observe Yi1 = I(T1i ≤ τ) directly,
but rather observe (Ui, δi), where Ui = (T1i ∧ Ci) ∧ τ ,
δi = I[T1i ≤ (Ci ∧ τ)], and “∧” denotes the minimum of
its arguments. Note that δi ≡ Yi1 for all individuals with
Ri1 = 1; for all remaining individuals, we have only the
partial information that T1i > Ci. To leverage this when
estimating πi0(τ ), we additionally assume that T1i ⊥⊥ Ci|xi
and replace the logistic regression model in (2) with the
discrete-time survival model

logit [P (T1i = t|T1i ≥ t, xi)] = gt + γ Txi, t = 1, 2, . . . , τ
(6)

where P(T1i = t|T1i ≥ t, xi) is the transition intensity
function λ01(t) under a discrete-time representation of
the conception process.
To fit model (6), let δit = I(δi = 1 ∩ Ui = t). Then after

rearrangement, the log-likelihood of g = (g1, . . . , gτ ) and
γ may be written as



Cook et al. BMCMedical ResearchMethodology          (2022) 22:156 Page 7 of 14

log L(g, γ |U , δ, x)

=
n∑

i=1

ui∑

t=1
δit logit [P (T1i = t|T1i ≥ t, xi)]

+
n∑

i=1

ui∑

t=1
log [1 − P (T1i = t|T1i ≥ t, xi)]

=
n∑

i=1

ui∑

t=1

{
δit

(
gt+γ Txi

)
−log

[
1+exp

(
gt+γ Txi

)]}
,

which is the log-likelihood for a logistic regression model
fit to N = ∑n

i=1Ui independent observations with δit as
the outcome [31]. Estimation of g and γ then proceeds by:

1. Creating Ui duplicates of individual i ’s record, with
each duplicate corresponding to a distinct unit of
time during which individual i was under
observation.

2. Recording, for each unit of time, the binary outcome
δit . By definition, δit = 0 for observation times
t = 1, . . . ,Ui − 1. If individual i was censored, then
δiUi = 0 as well; otherwise, δiUI = 1.

3. Using standard maximum likelihood estimation to fit
the logistic regression model
logit{P(δit = 1|xi)} = gt = γ Txi under working
independence.

We may then recover π̂i¬0(τ ) = P̂(Yi1 = 1|xi) = P̂(T1i ≤
τ |xi) by taking

P̂(T1i ≤ τ |xi) =
τ∑

t=1

[̂
P(T1i = t|T1i ≥ t, xi)

×
t−1∏

j=1

{
1 − P̂(T1i = t − j|T1i ≥ t − j, xi)

}
⎤

⎦

=
τ∑

t=1

⎡

⎣expit
(
ĝt + γ̂ Txi

) t−1∏

j=1

{
1 − expit

(
ĝt−j + γ̂ Txi

)}
⎤

⎦ .

Estimation of the remaining components of the per-
sonalized risk profile requires fitting model (3), which in
turn requires addressing missingness in both the selection
event, Yi1, and the outcome, Yi2. To do so, we modularize
the data provenance for Y i into two submechanisms—
one corresponding to whether or not the implantation
event (or lack thereof) is observed within τ menstrual
cycles, and the other corresponding to whether or not the
final clinical result of that pregnancy is recorded—and use
either multiple imputation or inverse probability of cen-
soring weights to address missingness at each of these
stages.

In the sequential multiple imputation analysis of (3),
we start by imputing the selection event I(T1i ≤ τ),
which is necessary for delineating the subgroup on whom
model (3) will subsequently be fit. This selection event
is, in turn, a function of the time to clinically-recognized
pregnancy, T1i. Thus, to fit model (3) in the presence
of two-stage outcome missingnenss, we first impute T1i
for all individuals with Ri1 = 0 using the multinomial
model

log
{ P(T1i = t|T1i > ui, x∗

i )

P(T1i = ui + 1|T1i > ui, x∗
i )

}
=ζT

uix
∗
i , t=ui+1, . . . , τ +1,

where x∗
i ⊂ wi comprises both the predictors xi and any

other auxiliary variables thought helpful for the imputa-
tion process (such as x′

i; see [32] for guidance on speci-
fying the imputation model) and where the mass at cycle
t = τ + 1 corresponds to administrative censoring at
time τ . We then transform the imputed T̃1i to obtain
the corresponding indicator of an implantation event,
Ỹi1 = I(T̃1i ≤ τ). For all individuals meeting the selec-
tion criteria for model (3) (i.e., with either Yi1 = 1 or
Ỹi1 = 1) but with missing second-stage outcome data
(i.e., with Ri2 = 0), we also conduct a second imputa-
tion for the final pregnancy result, Ỹi2. We repeat this
two-stage imputation procedure M times, and in the mth
completed dataset fit model (3) to all individuals with
either an observed or imputed implantation event within
τ menstrual cycles. Combining the resulting point esti-
mates, we find α̂ = M−1 ∑M

m=1 α̂(m). Alternatively, in the
two-stage inverse-probability-weighted analysis of model
(3), we first estimate the probability of having complete
data with respect to model (3),

πC
i = P(Ri2 = 1,Yi1 = 1,Ri1 = 1|wi)

= P(Ri1 = 1|z′
i,Ri1 = 1,Yi1 = 1)

P(Yi1 = 1|xi,Ri1 = 1)P(Ri1 = 1|x′
i),

using (for example) a series of logistic regression mod-
els, and arrive at α̂ by fitting (3) to the complete cases,
weighted by 1/π̂C

i . Recent work has also considered the
task of model estimation and inference when different
missing data techniques are adopted for each of the pro-
posed sub-mechanisms [33, 34]. Regardless of how final
point estimates for (3) are obtained, given the resulting α̂

we may then estimate π̂i2|1(τ ), π̂i3|1(τ ), and π̂i4|1(τ ) as in
the previous section.

Remark 1 For a given data provenance sub-mechanism,
the choice between conducting multiple imputation and
conducting inverse probability weighting should largely be
informed by which model the analyst feels better able to
specify correctly: the imputation model or the weighting
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model. The former requires modeling the full conditional
distribution of the missing data given the observed data—
which (at a minimum) draws upon knowledge of the out-
come process, and which can become challenging if addi-
tional covariates beyond the outcome are missing—while
the latter requires modeling P(R1 = 1) and draws upon
knowledge of the missingness process. Misspecification of
these models will, in general, lead to bias in the point
estimates α̂ from the corresponding imputed or weighted
final analysis, though iterative multiple imputation proce-
dures such as multiple imputation by chained equations
have been shown to be robust to misspecification of the
full conditional distribution so long as the component uni-
variate conditional distributions are valid [35]. Other con-
siderations for selecting a missing data approach include
efficiency (when the imputation and weighting models are
both correctly specified, multiple imputation is known to
be more efficient than inverse probability weighting) and
the stability of the inverse probability weights (in settings
where either P̂(Ri1 = 1|x′

i) or P̂(Ri2 = 1|z′
i,Ri1 = 1,Yi1)

is near zero for certain levels of x′
i or z′

i, the correspond-
ing inverse probability weights are large and the resulting
estimator may be unstable).

We must also account for both partial and complete
missingness in Y i = (Yi1,Yi2) when quantifying the dis-
criminatory performance of the predicted risk profiles,
p̂i(τ ). In particular, the nonparametric HUM estimator
given in (5) requires knowledge of each individual’s true
pregnancy outcome; a complete-case implementation—in
which (5) is estimated using only the subset of individu-
als for whom this outcome is completely observed—may
be subject to verification bias unless both Yi1 and Yi2 are
missing completely at random. Zhang and Alonzo [36]
consider verification bias adjustment in the three outcome
classification setting in which the outcomes of interest
are ordinal and the classification decision is based on a
continuous measurement; under the additional assump-
tion that missingness occurs at random, they develop
an inverse-probability-weighted version of the nonpara-
metric HUM estimator. Here, we extend this result to
K = 4 unordered outcome classes, missing sequentially
at random, where classification occurs on the basis of a
multinomial risk profile.
Let Ri1, Ri2, and Ri be defined as before, and let n∗

k
be the number of individuals in outcome class k with
Ri = 1. Then a verification-bias-adjusted estimator for the
HUM is

where p̂(k)
ik (τ ) is the estimated risk profile for the ikth indi-

vidual in outcome class k, and where π̂R
ik is the estimated

probability of fully observing Y i for that same individual:

π̂R
i = P̂

(
Ri2 = 1|z′

i,Ri1 = 1,Yi1
)
P̂

(
Ri1 = 1|x′

i
)
.

Preconception risk prediction in the EAGeR study
population
We illustrate the broad utility of this multistate competing
risks framework for pregnancy outcomes by constructing
and validating a preconception risk assessment tool on
the study population of the Effects of Aspirin in Gestation
and Reproduction (EAGeR) trial [23, 37]. As discussed in
the “Background” section, the trial enrolled 1228 women
who were actively attempting to conceive, and who were
between the ages of 18 and 40, had a history of 1–2 previ-
ous pregnancy losses, had up to two previous live births,
and had at most one elective termination or ectopic preg-
nancy; hese women had no prior history of infertility or
subfertility, and were neither currently undergoing nor
planning to undergo medical fertility treatment during
the course of the trial. Each woman attended a base-
line preconception clinic visit, at which point biomedical,
sociodemographic, and medical data were collected. The
women were then randomized to take either low-dose
aspirin or a placebo over the remainder of their pregnancy
attempt. The women were followed for up to six men-
strual cycles for the occurrence of a clinically-recognized
pregnancy and—for those women who successfully con-
ceived during the study period—were subsequently fol-
lowed for the outcome of that pregnancy (Table 1).
Towards building a risk prediction model for the out-

come of these pregnancy attempts given a conception
window of τ = 6 menstrual cycles, we restricted our
attention to the 1093 women who had been attempting
to conceive for fewer than twelve menstrual cycles at
the start of the trial and who contributed at least one
cycle of follow-up. We considered the following covari-
ates as possible predictors, wi: preconception aspirin
use (0, placebo; 1, low-dose aspirin), age at enrollment,
body mass index (BMI), hypertensive status (0, non-
hypertensive; 1, hypertensive), smoking history over the
past year (0, none; 1, at least one cigarette), race (0, other;
1, non-Hispanic white), income level (≤ $19,999; $20,000–
$39,999; $40,000–$74,999; $75,000–$99,999; ≥$100,000),
educational attainment (0, some college or less; 1, college
or postgraduate degree), parity (0, nulliparous; 1, parous),

∑n∗
1

i1=1
∑n∗

2
i2=1

∑n∗
3

i3=1
∑n∗

4
i4=1(π̂

R
i1 π̂

R
i2 π̂

R
i3 π̂

R
i4)

−1CR
(
p̂(1)
i1 (τ ), p̂(2)

i2 (τ ), p̂(3)
i3 (τ ), p̂(4)

i4 (τ )
)

∑n∗
1

i1=1
∑n∗

2
i2=1

∑n∗
3

i3=1
∑n∗

4
i4=1(π̂

R
i1 π̂

R
i2 π̂

R
i3 π̂

R
i4)

−1
, (7)
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Table 1 Observed pregnancy outcomes for the n = 1093 EAGeR
participants who were not clinically infertile at the baseline
preconception visit

Pregnancy
Outcomea

R Y N (%)

Censored prior to
conception

(R1 = 0, R2 = 0) — 88 (8.1%)

No pregnancy
within 6 cycles

(R1 = 1, R2 = 1) Y1 = 0 319 (29.2%)

Pregnancy within
6 cycles

Unknown result (R1 = 1, R2 = 0) (Y1 = 1, —) 12 (1.1%)

Clinical
pregnancy loss

(R1 = 1, R2 = 1) (Y1 = 1, Y2 = 2) 122 (11.2%)

Preterm birth (R1 = 1, R2 = 1) (Y1 = 1, Y2 = 3) 49 (4.5%)

Full-term birth (R1 = 1, R2 = 1) (Y1 = 1, Y2 = 4) 501 (45.8%)

aA pregnancy was considered to be clinically-recognized if it was confirmed by an
ultrasound scan at 6–7 weeks’ gestation. Clinical pregnancy loss comprised both
miscarriages (prior to 20 weeks’ gestation) and stillbirths (after 20 weeks’ gestation),
preterm birth comprised live births prior to 37 weeks’ gestation, and full-term birth
comprised live births after 37 weeks’ gestation

number of previous pregnancy losses (either 1 or 2 per
study inclusion criteria), and number of menstrual cycles
spent attempting to conceive at the time of enrollment.

Implementation of the proposedmodel and validationmetric
Given that women in the EAGeR trial reported missing-
ness at both stages of the pregnancy outcome process
(Table 1), as well as at low levels in the available base-
line covariate data (BMI, 1.4%; hypertensive status, 0.5%;
smoking status, 0.7%; educational attainment, 0.7%), we
estimated and validated the personalized risk profiles
according to the procedure proposed in the “Estimation
and validation in the presence of outcome missingness”
section. In particular, we conducted multiple imputation
by chained equations to createM = 10 imputed datasets:
for the first-stage model in (6), we imputed missing base-
line covariate data only, while for the second-stage model
in (3), we also used a sequential multiple imputation pro-
cedure to impute both missing selection events and miss-
ing pregnancy outcome data. We then selected predictors
separately for the first- and second-stage models using an
AIC-based backward selection procedure applied to the
combined dataset of Mn individuals in order to decide
among all possible first-order covariate effects [38]. Both
race and number of previous losses were a priori thought
to be clinically relevant, and so were manually included
in both stages of the outcome model. We fit the selected
models on each imputed dataset separately—with the
first-stage model fit using all fertile women in the EAGeR
trial, and the second-stage model fit using all women
with either an observed or imputed clinically-recognized
pregnancy—and combined the point estimates across the
datasets using the standard Rubin’s method.

To quantify the predictive capability of the final preg-
nancy outcome model, we implemented the verification-
bias-adjusted HUM estimator in (7). In light of the
low levels of second-stage outcome missingness (only 12
women had recognized pregnancies but no recorded final
pregnancy outcome), we fit a single logistic regression
model to estimate the probability of verification weights,
π̂R
i = P̂(Ri = 1|wi), and once again used backward

selection followed by Rubin’s method to arrive at the final
model for the verification weights.
Finally, to adjust for the optimistic prediction perfor-

mance inherent to both fitting and validating models
(6) and (3) on the full EAGeR dataset, we implemented
the optimism correction described in Harrell et al. [39].
Let ̂HUMinit be the initial optimistic verification-bias-
adjusted HUM estimate. We first created B = 1000 boot-
strapped datasets, and in each of these datasets repeated
the multiple imputation, model selection, and model esti-
mation procedures in order to refit models (6) and (3)
and reestimate the verification weights, π̂R

i [40]. For the
bth set of bootstrapped models, we then evaluated their
prediction performance (i.e., computed the verification-
bias-adjusted HUM estimator) on both the corresponding
bootstrapped dataset and the original EAGeR dataset:
̂HUM

(b)
boot and ̂HUM

(b)
orig , respectively. The final optimism-

corrected estimate was then

̂HUM = ̂HUMinit − 1
B

B∑

b=1

(
̂HUM

(b)
boot − ̂HUM

(b)
orig

)
.

Remark 2 The above bootstrap procedure explicitly
accounts for three sources of uncertainty and optimism in
̂HUMinit , namely that resulting from the multiple impu-
tation, the model selection, and the model estimation
procedures. However, several of the covariate patterns
in wi have low prevalence in the original and resam-
pled EAGeR datasets, such that the final selected models
were highly variable across the resampled datasets and
prone to large and unstable coefficient estimates; these
large fluctuations in coefficient magnitude in turn led to
increased separation between the individual risk predic-
tions and thus to improved in-sample (and worsened out-
of-sample) discriminatory performance (a model selection
analog of the winner’s curse [41]). As a result, the resam-
pled ̂HUMboot were overly optimistic relative to ̂HUMinit ,
and their empirical bootstrap distribution was centered
well to the right of the observed-sample statistic. In light of
this idiosyncratic small-sample behavior, we opt to report
bootstrapped optimism-corrected results that condition on
the form of the originally-selected risk prediction model,
i.e., for which only the multiple imputation and model
estimation procedures were bootstrapped.
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All analyses were conducted using R version 3.6.1,
and the code is available online at https://github.com/
kaitlyncook/preconception-risk-prediction. The analysis
code makes use of the package discSurv to fit the
discrete-time survival model in (6), nnet to fit the multi-
nomial regression model in (3), MASS to conduct model
selection, and mice to conduct sequential multiple
imputation.

Results
The final first- and second-stage prediction models are
given in Table 2, and the resulting preconception risk
profiles, calculated for all women in the EAGeR trial
with complete covariate data, are given in Fig. 3. Among
these women, the predicted probability of a clinically-
recognized pregnancy within the first six menstrual cycles
post preconception visit ranged from 14.5% to 91.9%;
the predicted probability of successful conception peaked
during the first menstrual cycle post clinic visit (at 20.3%,
on average) and decreased with each subsequent cycle
(Fig. 4). Assuming that each woman did, in fact, suc-
cessfully conceive, the most likely outcome of their preg-
nancies was a full-term birth (with predicted conditional
probabilities ranging from 56.7% to 80.2%), followed by
clinical pregnancy loss (10.1% to 37.0%) and preterm birth
(3.5% to 25.7%). The optimistic verification-bias-adjusted
HUM was estimated to be 0.108 (95% confidence inter-
val (CI) with bootstrapped standard errors: 0.078, 0.144),
while the optimism-corrected HUM was estimated to be

0.093 (95% CI with bootstrapped standard errors: 0.064,
0.128); both point estimates and confidence interval limits
fell well above the non-informative HUM for a four-level
outcome (≈ 0.042), representing significant improvement
over classification by random chance.
To illustrate the potential clinical utility of this multi-

stage prediction framework, we specifically highlight the
predicted risk profiles for three hypothetical patients: one
who represents the median participant in the EAGeR trial
with respect to each of the included baseline covariates;
another whose medical history, and in particular their
hypertension and experience of previous pregnancy loss
with no previous live birth, places them at higher risk
of an adverse pregnancy outcome; and a third who is of
advanced maternal age (Table 3). Comparing the corre-
sponding risk profiles to one another illustrates a stark
difference in predicted pregnancy attempt trajectories for
the three hypothetical patients, which may then inform
the subsequent preconception care that each patient
receives (see the gray bands superimposed on Fig. 3).
The first patient and their obstetrician may, for exam-
ple, find their preconception risk profile to be acceptable,
and proceed with the pregnancy attempt according to the
standard of care. The second patient, however, has an ele-
vated probability of failing to conceive (44.2%) and, should
they conceive, of having either a clinical pregnancy loss
or preterm birth (22.0%). Given this profile, the obste-
trician may instead recommend more active monitoring
of the pregnancy attempt and, should the patient fail to

Table 2 Selected models for the time to clinically-recognized pregnancy (first-stage model), the result of that pregnancy
(second-stage model) and the probability of verification. All results are reported as: estimate (SD)

First Stage Second Stage Verification

logit[ P(Ti = t|Ti ≥ t)] log(πi2|1/πi4|1) log(πi3|1/πi4|1) logit
(
πR
i

)

Intercept -0.542 (0.370) -3.025 (0.754) -0.827 (1.096) 2.050 (0.515)

I(t = 2) -0.047 (0.117) — — —

I(t = 3) -0.148 (0.129) — — —

I(t = 4) -0.152 (0.141) — — —

I(t = 5) -0.456 (0.167) — — —

I(t = 6) -0.402 (0.178) — — —

Menstrual cycles trying prior to baseline -0.120 (0.019) — — —

Aspirin use 0.185 (0.086) — — —

Age (in years) -0.026 (0.010) 0.041 (0.022) -0.032 (0.035) —

Number of previous pregnancy losses 0.058 (0.092) 0.265 (0.210) -0.089 (0.330) —

Non-Hispanic white 0.444 (0.159) 0.012 (0.422) -0.698 (0.463) 0.773 (0.278)

College degree 0.251 (0.093) — — 0.474 (0.236)

BMI -0.027 (0.007) — — -0.024 (0.015)

Parous 0.357 (0.090) — — 0.366 (0.214)

Smoker (past year) — — — -0.973 (0.258)

Hypertension — 0.412 (0.253) 0.741 (0.367) —

https://github.com/kaitlyncook/preconception-risk-prediction
https://github.com/kaitlyncook/preconception-risk-prediction
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Fig. 3 Preconception risk profiles for all n = 1073 women in the EAGeR trial with complete baseline covariate data with respect to the final
prediction models. Each vertical cross-section of the plot corresponds to a unique individual in the EAGeR trial; for each of these women, the height
of each colored region represents her predicted probability of the corresponding pregnancy outcome. The gray vertical bars correspond to the
predicted risk profiles of the three patients in Table 3

Fig. 4 Probability of the first clinically-recognized pregnancy occurring at T1 menstrual cycles post preconception visit for all n = 1073 women in
the EAGeR trial with complete baseline covariate data with respect to the final prediction models. Each vertical cross-section of the plot corresponds
to a unique individual in the EAGeR trial; for each of these women, the height of each colored region represents her predicted probability of
conceiving during the corresponding menstrual cycle
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Table 3 Preconception medical history and sociodemographic
profiles for three hypothetical patients, along with their
corresponding predicted preconception risk profiles

Patient 1 Patient 2 Patient 3

Characteristics at the
Preconception Visit

Age 28.3 years 23.7 years 39.3 years

Non-Hispanic white Yes No No

College degree None None None

BMI 24.4 21.1 27.2

Hypertensive status No Yes Yes

Parous Yes No Yes

Number of previous
pregnancy losses

1.0 1.0 1.0

Preconception aspirin
use

Yes No No

Menstrual cycles trying
prior to visit

1.0 2.0 4.0

Preconception Risk Profile

No pregnancy within
τ = 6 cycles

0.212 0.443 0.643

Pregnancy ending in
clinical loss

0.125 0.085 0.099

Pregnancy ending in a
preterm birth

0.050 0.134 0.050

Pregnancy ending in a
full-term birth

0.613 0.338 0.208

conceive within six additional menstrual cycles, a fertil-
ity treatment such as intrauterine insemination. Finally,
the third patient’s advanced maternal age and high risk
of either failing to conceive (64.3%) or experiencing a
clinical pregnancy loss (9.9%) might lead the obstetrician
to recommend immediate use of assisted reproductive
technology.

Discussion
In this manuscript, we have advocated for the use of a
multistate modeling framework in order to construct and
validate individualized pregnancy outcome profiles for
use in routine preconception care.We have discussed how
the task of pregnancy outcome prediction in particular
presents challenges to the typical construction and appli-
cation of these multistate models—namely regarding cor-
rect specification of the transition intensities and potential
coarsening of the available data on both the outcome and
censoring processes—and presented a two-stage estima-
tion process that circumvents these challenges in order
to derive patient-specific absolute risk profiles for the
joint probability of all competing birth outcomes. We also
developed an inverse-probability-weighted HUM statistic
to quantify the model’s classification performance.
By adopting this multistate prediction framework, we

were able to reframe—and broaden the purview of—
pregnancy risk prediction to include endpoints related to

both the conception and gestation processes. Existing pre-
diction tools have typically focused on a single adverse
pregnancy outcome, whose risk is determined on the basis
of biomedical markers collected over the course of the
pregnancy; they are necessarily calculated downstream
of the initial preconception consultation. This initial visit
represents, however, an important window in patients’
preconception and prenatal care. It marks the first time
at which risk factors for adverse conception and perinatal
outcomesmay be identified andmodified, with potentially
long-ranging implications for the pregnancy attempt. To
that end, the multistate competing risks framework allows
one to derive patient-specific risk profiles—estimable at
the time of the preconception visit—that quantify both (i)
the likelihood of successful conception and (ii) the like-
lihood of that pregnancy ending in a clinical pregnancy
loss, preterm birth, or full-term birth while permitting dif-
ferent sets of demographic and medical characteristics to
govern and inform each of those processes.
We illustrated the clinical utility of these risk profiles

by constructing and validating a multistage competing
risks model using the EAGeR trial. While the patient pop-
ulation in the EAGeR trial—women with at least one
previous pregnancy loss and at most two previous live
births—prevents generalization of this prediction model
to a broader clinical population, it still represents an
important proof of concept. Despite using only the (more
limited) information available at the time of the initial pre-
conception visit, the resulting risk profiles were able to
meaningfully distinguish between women on the basis of
their future pregnancy outcomes. This prediction frame-
work also easily generalizes to other clinical settings in
which the endpoint of interest is effectively a multistage
outcome. For example, predicting which patients are at
high-risk of hospital-acquired infections and subsequent
adverse events—which considers first whether a patient
acquires an infection and, among those with a hospital-
acquired infection, the duration of stay or severity of
that infection—readily lends itself to a similar multistage
framing.
Before these sorts of multistate competing risks predic-

tionmodels are implemented in clinical practice, however,
several limitations regarding their construction and vali-
dation must be addressed. Returning to the task of preg-
nancy outcome prediction, some fraction of the broader
population is understood to be sterile and thus unable to
conceive or to experience any of the downstream preg-
nancy outcomes; this phenomenon is naturally modeled
through the inclusion of either a latent sterility variable or
a so-called cure fraction (here representing those who are
sterile) into the competing risks model. These extensions
are not without their own methodological challenges. An
individual’s latent sterility status is measured imperfectly
through their observed fertility, which itself is measured



Cook et al. BMCMedical ResearchMethodology          (2022) 22:156 Page 13 of 14

only after a fixed period of time—an individual is classified
as clinically infertile only after unsuccessfully attempting
to conceive for 12 or more menstrual cycles—and so will
be structurally missing for most individuals in the esti-
mation and validation datasets. Once measured, sterility
is also subject to differential misclassification: while all
individuals who are unable to conceive will be labeled as
clinically infertile, not all individuals labeled as clinically
infertile are biologically unable to conceive. Generalizing
the multistate pregnancy outcome prediction framework
to include infertility will thus require addressing both
of these statistical features. Additional work will also be
needed to improve model selection procedures for multi-
state competing risks models, e.g., through the develop-
ment of penalized regression methods, particularly when
these models are fit using either inverse probability of
censoring weights or multiple imputation.
Finally, the proposed HUM validation metric for multi-

nomial outcomes is less well-studied and well-known
than its binary counterpart, the AUC, and so lacks the
same common understanding of what a “poor”, “good”, or
“excellent” HUM might be for a given applied problem.
Constructing confidence intervals for the estimated HUM
is an important first step towards contextualizing the
predictive performance of multinomial or nestedmultino-
mial (multistate) models, but further research on both the
statistical properties and the practical implications of the
HUM is warranted.

Conclusion
As illustrated by our analysis of the EAGeR trial data,
our proposed multistate competing risks framework has
the potential to shape preconception care by (i) consid-
ering joint risk prediction for a broader array of possi-
ble pregnancy attempt outcomes and (ii) providing those
predictions at an earlier intervention period (during the
preconception clinic visit) than existing obstetric pre-
diction models. It thus presents an important first step
in expanding the types of clinical risk assessment tools
available for pregnancy outcome prediction, and suggests
broader applications to the prediction of other complex,
multistage health outcomes.
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