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Summary: Cluster-randomized trials (CRTs) of infectious disease preventions often yield correlated, interval-censored

data: dependencies may exist between observations from the same cluster, and event occurrence may be assessed only

at intermittent clinic visits. This data structure must be accounted for when conducting interim monitoring and

futility assessment for CRTs. In this article, we propose a flexible framework for conditional power estimation when

outcomes are correlated and interval-censored. Under the assumption that the survival times follow a shared frailty

model, we first characterize the correspondence between the marginal and cluster-conditional survival functions, and

then use this relationship to semiparametrically estimate the cluster-specific survival distributions from the available

interim data. We incorporate assumptions about changes to the event process over the remainder of the trial—as well

as estimates of the dependency among observations in the same cluster—to extend these survival curves through the

end of the study. Based on these projected survival functions we generate correlated interval-censored observations,

and then calculate the conditional power as the proportion of times (across multiple full-data generation steps) that

the null hypothesis of no treatment e↵ect is rejected. We evaluate the performance of the proposed method through

extensive simulation studies, and illustrate its use on a large cluster-randomized HIV prevention trial.
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1. Introduction

Cluster-randomized trials (CRTs) are well suited for the study of infectious disease prevention

and intervention strategies (e.g., Pronyk, et al., 2006; Lemaitre et al., 2009). By collectively

randomizing groups of individuals to receive either the intervention or the standard-of-

care, CRTs lessen the possibility of treatment contamination across randomization arms and

allow investigators to capture both the direct and indirect e↵ects of the intervention (Hayes

and Moulton, 2017). However the data generated from these studies are often complexly

structured. The “clustering e↵ect” is a well-noted feature of CRTs: two individuals from

the same cluster are more likely to be similar to one another than two individuals from

di↵erent clusters. Furthermore, the outcome of interest in infectious disease CRTs is often a

time-to-event outcome, such as time to HIV seroconversion. In the event that this outcome

is asymptomatic or otherwise only observable via periodic examination (as is the case for

HIV seroconversion), it is also interval-censored. Thus the design, monitoring, and analysis

of these CRTs must account for correlated, interval-censored data.

Our focus here lies specifically on the issue of interim monitoring to permit early stopping

for e�cacy or futility. Interim monitoring refers to the practice of evaluating a trial’s progress

while the trial is ongoing, and is typically conducted through a series of interim statistical

analyses (Proschan, et al., 2006). The results of these analyses guide study decisions re-

garding sample size re-estimation, resource allocation, and early termination, and thus have

important ethical and financial implications.

Two statistical frameworks are commonly used for determining if and when to stop a

clinical trial early: group sequential testing (Pocock, 1977; O’Brien and Fleming, 1979;

Pampallona and Tsiatis, 1994) and stochastic curtailment (Lan et al., 1982; Lachin, 2005).

Group sequential methods calculate the test statistic of interest at each interim look, and stop

the trial for either e�cacy or futility if this test statistic crosses a pre-determined stopping
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boundary (Pampallona and Tsiatis, 1994). Stochastic curtailment approaches, on the other

hand, involve calculating the conditional power, the conditional probability of rejecting the

null hypothesis of no treatment e↵ect at the scheduled end of the trial, given both the

observed interim data and some conjecture about the remainder of the study. The trial stops

for futility if this conditional power is low (Lachin, 2005).

Standard conditional power formulae for exponential family outcomes typically rely on

the assumption that the test statistic, or some transformation thereof, is an asymptotically

Brownian motion with linear drift; under this assumption, the conditional power may be

expressed in a straightforward manner in terms of the standard normal cumulative distribu-

tion function (Lan et al., 1982; Lan and Wittes, 1988). This framework has since been

adopted for the interim monitoring of trials with more complexly-structured outcomes,

such as repeated measures or failure time data. In the repeated measures context, for

example, Wu and Lan (1992) discussed the conditions under which a test statistic based

on the linear mixed e↵ects model could give rise to a discrete Brownian motion. Lin et al.

(1999), on the other hand, addressed the monitoring of independent right-censored data,

using martingale theory to establish that a broad class of weighted log-rank type statistics,

possibly with covariate adjustment, converges to a Gaussian process. Martingale theory is

not, however, generally available for interval-censored data due to the di�culty of defining

an appropriate filtration. While the history of the associated counting process is a natural

choice of filtration in the right-censored setting, this counting process is not well-defined for

interval-censored data: when no exact failure times are observed, the value of the counting

process at a particular time t, as well as the information generated by that process on the

interval [0, t], may be unknown. As such, the formulae used in Lin et al. (1999) cannot

be easily extended to interval-censored data, and it is otherwise not apparent that test

statistics suitable for analyzing correlated interval-censored data are asymptotically Gaussian
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processes. Simulation-based approaches for calculating conditional power with time-to-event

endpoints have also been proposed, but these methods are currently limited to independent,

right-censored data (Henderson et al., 1991).

Thus, while existing conditional power methods are able to address correlated data and

right-censored time-to-event data separately, extensions to data that are both correlated and

interval-censored are not available but are much needed. As a case in point, we consider the

Botswana Combination Prevention Project (BCPP), a cluster-randomized trial evaluating

the impact of combination HIV prevention on the 3-year cumulative incidence of HIV in 30

Botswanan communities (Gaolathe et al., 2016). To measure HIV incidence, a random sample

of HIV-negative members from each community was tested annually for HIV, resulting in

clustered, interval-censored data. When the study begin in 2013, one component of the

combination prevention package was immediate antiretroviral therapy initiation for all HIV-

positive individuals with high viral loads; the prevailing standard of care at the time was to

initiate treatment only for those individuals with CD4 counts below 350 cells/mm3. However,

during the course of the BCPP, the Botswana Ministry of Health updated the national

treatment guidelines for HIV to a universal-test-and-treat approach, recommending that

all infected individuals—regardless of CD4 count or viral load level—receive antiretroviral

therapy. This change likely reduced the magnitude of the expected intervention e↵ect and

raised concerns about the power of the study to detect the updated e↵ect. Interim monitoring

of the BCPP for futility was thus particularly salient, but di�cult given current interim

monitoring and futility analysis methods (Gaolathe et al., 2016).

Motivated by this example, we propose a flexible simulation-based framework for esti-

mating conditional power with correlated, interval-censored data. Our approach models the

dependence between outcomes via a cluster-specific frailty and permits calculation of the

conditional power under any assumed baseline hazard function and hazard ratio over the
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remainder of the study. It may also be used with any final analysis method. The statistical

contributions of this paper are thus two-fold: it (i) presents the first conditional power method

to explicitly consider correlated interval-censored data and (ii) does so in a manner that

permits greater analytical flexibility than traditional formulae-based approaches.

The remainder of this paper is structured as follows. In Section 2, we describe in detail

our proposed conditional power method. Section 3 examines the performance of this method

across a range of data-generating mechanisms and clustering e↵ects, as well as its sensitivity

to misspecification of the dependence and to study design choices such as the number and

size of the randomized clusters and the width of the censoring interval. In Section 4 we apply

the proposed method to interim data patterned on the BCPP, and in Section 5 we conclude

with a brief summary and discussion.

2. Methods

Suppose that we conduct a cluster-randomized trial of M independent clusters (indexed by

i = 1, . . . ,M), with ni individuals (indexed by j = 1, . . . , ni) in cluster i. Each of these indi-

viduals is associated with a latent set ofK distinct monitoring times, {Yijk : k = 1, . . . , K}, at

which the outcome of interest would be assessed, as well as a set of R observation indicators,

{Rijk : k = 1, . . . , K}, withRijk = 1 if individual j in cluster i is present at the kth inspection.

The set of observed monitoring times is then given by {Y ⇤
ijk = YijkRijk : k = 1, . . . , K}. Let

Tij be the time to event for individual j in cluster i, measured from study entry. Note that,

for asymptomatic events, we do not observe this failure time directly, but rather observe the

interval (Lij, Uij], where Lij is the last observed monitoring time at which individual j in

cluster i tests negative for the presence of the event, and Uij is the first observed monitoring

time at which individual j in cluster i tests positive. Individuals who remain event-free at

the last observed monitoring time are right-censored with observed interval (maxk{Y ⇤
ijk},1).

We assume throughout that the observed monitoring times Y ⇤
ij = {Y ⇤

ijk : k = 1, . . . , K} are
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independent of the underlying time to infection, and that the underlying time to infection is

independent of the calendar time of study entry.

Suppose that an interim analysis is scheduled for calendar time TI , and that T (i)
I is the

study time of the interim analysis, measured in time since randomization of cluster i. Our

proposed conditional power estimation procedure includes the following steps, as detailed in

Sections 2.1 to 2.4 below (Figure 1). We (1) estimate the conditional survival function in

each of the trial communities through time T (i)
I and then (2) use these estimated curves—

as well as assumptions regarding the subsequent event process and underlying dependence

structure—to extend the survival functions through the remainder of follow-up. We then

(3) use a truncated inverse probability integral transform method to generate complete-trial

observations from these extended curves and (4) perform the prespecified final analysis on

this complete-trial dataset. Finally, we (5) estimate the conditional power of the trial by

repeating this data generation and analysis procedure multiple times, and by calculating the

proportion of times that the null hypothesis of no intervention e↵ect is rejected.

[Figure 1 about here.]

2.1 Estimation of the Interim Survival Functions and Dependence Structure

Let Xi indicate cluster-level randomization to either intervention (Xi = 1) or standard-of-

care (Xi = 0) at baseline. We assume that individual outcomes are independent conditional

on cluster membership, and that the hazard in cluster i can be written as

�(t|Xi; ⌘i) = �(t|Xi = 0) exp(�Xi + ⌘i), (1)

where exp(⌘i) is a cluster-specific frailty and �(t|Xi = 0) is the baseline hazard function

when ⌘i
set
= 0. We also assume that the frailties follow a lognormal distribution, exp(⌘i) ⇠

LogNormal(0, �2), as the lognormal model has an appealing computational connection to

generalized linear mixed models with random intercepts (Ripatti and Palmgren, 2000) and
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admits an intuitive relationship between �2 and the coe�cient of variation, k:

k =

q
V ar

�
�(t|Xi; ⌘i)|Xi

�

E
�
�(t|Xi; ⌘i)|Xi

� =
p

e�2 � 1.

Our approach may, however, be easily generalized to other common frailty distributions (Web

Appendix A). Throughout we will adopt the convention that �(t|Xi; ⌘i) and S(t|Xi; ⌘i) denote

the conditional hazard and survival functions within cluster i; that �(t|Xi) and S(t|Xi)

denote the hazard and survival functions marginalized over cluster membership; and that

�(t|Xi) and S(t|Xi) denote the conditional hazard and survival functions when ⌘i
set
= 0.

Under the shared frailty model in (1), the conditional survival function in cluster i is

equivalently given by S(t|Xi; ⌘i) = S(t|Xi)exp(⌘i). Provided that we are able to estimate both

S(t|Xi) and exp(⌘i), we may then take bS(t|Xi; ⌘i) = bS(t|Xi)exp(b⌘i) for t in [0, T (i)
I ]. Estimating

the conditional survival functions in this fashion presents several notable advantages over

stratified estimation of S(t|Xi; ⌘i) within each cluster: it (i) permits explicit characterization

of the underlying dependence structure while (ii) e↵ectively leveraging information from all

M clusters. This latter point is of particular importance when the outcome of interest is

rare and the amount of information available in cluster i is otherwise small. Thus estimation

of S(t|Xi; ⌘i) under model (1) reduces to estimation of the common conditional survival

function when ⌘i = 0, S(t|Xi), as well as the M cluster-specific frailty terms, exp(⌘i).

Methods for the semiparametric estimation of S(t|Xi) according to (1) are, however,

generally limited, while methods for the nonparametric estimation of the marginal survival

function, S(t|Xi), are readily available in standard statistical software (e.g., Turnbull, 1976;

Wellner and Zhan, 1997). The relationship between these two curves depends on the as-

sumed frailty distribution (see Web Appendix B for further discussion), but may—under the

lognormal frailty model—be approximated by

S(t|Xi) ⇡ S(t|Xi)


1 +

�2

2
logS(t|Xi) {logS(t|Xi) + 1}

�
. (2)
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See Appendix A for the derivation of (2). A semiparametric estimator of S(t|Xi) is then given

by the root of g(x) = x{1 + �2

2 log x(log x+ 1)}� S(t|Xi), which in turn requires reasonable

estimates of S(t|Xi) and �2.

To that end, we nonparametrically estimate the marginal survival function in each inter-

vention arm according to an independence data likelihood:

MY

i=1

niY

j=1

�
S(Lij|Xi)� S(Uij|Xi)

 
.

Although the independence likelihood is a misspecified version of the joint distribution—thus

precluding valid inference on, for example, second-order terms—it still permits consistent

estimation of the marginal parameters S(t|Xi = 0) and S(t|Xi = 1) (Chandler and Bate,

2007). Under nonparametric estimation, these survival functions are identifiable only up

to the equivalence class of right-continuous, non-increasing functions defined by the values

of {S(Lij) : i = 1, . . . ,M ; j = 1, . . . , ni} [ {S(Uij) : i = 1, . . . ,M ; j = 1, . . . , ni}. While

convention typically takes the nonparametric maximum likelihood estimator (NPMLE) to

be the step function within this equivalence class, we instead use linear interpolation to

identify the marginal survival functions wherever the NPMLE is non-unique. This choice is

made in recognition of the fact that—in settings where the censoring intervals are wide—the

NPMLE may be unidentified on large regions of the support of Tij; it may not be reasonable

to assume that the survival function is flat during these inter-monitoring periods.

Recovering S(t|Xi) from S(t|Xi) also requires estimates of the variance term �2, while final

estimation of S(t|Xi; ⌘i) requires estimates of the frailty terms ⌘ = {⌘i : i = 1, . . . ,M}. Due

to a lack of reliable software for frailty estimation with correlated interval-censored data,

we first transform the interval-censored observations into right-censored data via mid-point

imputation (Law and Brookmeyer, 1992) and then fit model (1) using a penalized partial

likelihood approach (Therneau et al., 2003). This allows us to iteratively estimate both b�2

and b⌘ = {b⌘i : i = 1, . . . ,M}. As an aside, we note that—while mid-point imputation has
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been shown to produce biased coe�cient estimates in Cox models fit to independent data—

the simulation studies in Section 4 suggest that any bias in the estimation of �2 and ⌘ has

limited impact on the final conditional power estimates (Law and Brookmeyer, 1992).

Given b�2 and b⌘, we take bS(t|Xi) to be the root of g(x) = x{1+ b�2

2 log x(log x+1)}�bS(t|Xi),

and may then estimate bS(t|Xi; ⌘i) = bS(t|Xi)exp(b⌘i).

2.2 Specification of the Event Process over the Remainder of the Trail

In order to calculate the conditional power, we also require some set of assumptions about

the shape of the two conditional hazard functions when ⌘i
set
= 0, �(t|Xi = 0) and �(t|Xi = 1),

over the remainder of the trial. Denote these hypothesized future values by e�(t|Xi). Then

under the assumption that there are no temporal trends in the event process of interest—so

that the survival function S(t|Xi) is the same for all clusters with intervention assignment

Xi, regardless of the time of study entry—the complete-trial survival function for the ith

cluster, eS(t|Xi; b⌘i) is given by
8
>>><

>>>:

bS(t|Xi)exp(b⌘i), t 6 T (i)
I

bS(T (i)
I |Xi)exp(b⌘i) exp

n
�
R t

T
(i)
I

e�(u|Xi)exp(b⌘i)du
o
, t > T (i)

I .

(3)

The shape of these projected conditional hazard functions may be informed by scientific

knowledge or determined by the investigator: our method permits any reasonable specifica-

tion of e�(t|Xi = 0) and e�(t|Xi = 1). The projections may also be informed by the available

interim data, and we detail one such approach to specifying e�(t|Xi) below.

Within each trial arm, we approximate the conditional hazard function prior to interim via

a step function with prespecified and equally-spaced knot points {⇠t : t = 0, . . . , n}, where

⇠0 = 0 and ⇠n = TI . Let �Xi(t) be the piecewise component on the interval [⇠t�1, ⇠t) in the

arm with intervention assignment Xi, so that

S(⇠t|Xi) = exp{��Xi(t)(⇠t � ⇠t�1)}S(⇠t�1|Xi)
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and

�Xi(t) = (⇠t � ⇠t�1)
�1 � logS(⇠t�1|Xi)� logS(⇠t|Xi)

 
.

We then estimate b�Xi(t) by replacing S(⇠t�1|Xi) and S(⇠t|Xi) with the estimated values of

the conditional survival functions when ⌘i = 0.

Let ��0 and ��1 be projected multiplicative changes to the conditional hazard function in

the standard-of-care arm and in the intervention arm, respectively, over the remainder of the

trial. We introduce these parameters to accommodate clinical settings in which the future

event process is expected to di↵er systematically from that observed at interim, perhaps in

light of delays in intervention roll-out or mid-trial modifications to the intervention. In the

absence of additional information regarding the form of e�(t|Xi), we make the final simplifying

assumption that both e�(t|Xi = 0) and e�(t|Xi = 1) are constant, and then set e�(t|Xi = 0) =

�0 ·��0 and e�(t|Xi = 1) = �1 ·��1 , where �Xi = n�1
Pn

t=1
b�Xi(t).

2.3 Simulation of the End-of-Trial Data

In order to generate a final complete-trial dataset that captures both the observed interim

data and the projected future event process, we must first identify the subset of study

participants who are still at risk for the event of interest at interim. To that end, we note

that, at the time of the interim analysis, there are three possible outcomes for individual j in

cluster i: either (i) they have been observed to have the event of interest; (ii) they have not

had the event of interest but remain under active follow-up; or (iii) they have been lost to

follow-up prior to time TI . Note that if missingness at the monitoring times is assumed to be

intermittent rather than monotone, there may be no trial participants with interim outcome

(iii). All individuals with interim outcomes (i) and (iii) thus have complete data at the time of

the interim analysis; those with interim outcome (ii) remain at risk for the event of interest.

For this last subset of individuals, we then simulate completed observations by generating
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both an underlying time to event and the subsequent observation process. The final complete-

trial dataset then consists of the observed records from individuals with interim outcomes

(i) and (iii) and the simulated records from individuals with interim outcome (ii).

2.3.1 Simulation of the underlying time to event. Each individual j in cluster i with

interim outcome (ii) is e↵ectively right-censored at the time of the interim analysis, in that

their observed censoring interval is (Lij,1). Thus we wish to generate simulated times to

event eTij according to the complete-trial survival function for cluster i given in (3) and subject

to the restriction that eTij > Lij. In this way, the simulated eTij will be consistent with both the

observed interim data and the projected event process over the remainder of the trial. To do

so, we first define the generalized inverse function eS�1
i (!|Xi; b⌘i) = inf{t|eSi(t|Xi; b⌘i) 6 !} and

let U ⇠ Uniform
�
0, eSi(Lij|Xi; b⌘i)

�
. Then eTij := eS�1

i (U |Xi; b⌘i) follows the desired truncated

distribution, with eTij > Lij. Appendix B provides formal justification for this truncated

inverse probability integral transform method.

2.3.2 Simulation of the missingness and interval-censoring mechanisms. We also require

some method for simulating the subsequent observation process, which in turn requires gen-

eration of both the latent monitoring times, eYijk, and the observation indicators, eRijk. While

we outline some possible modeling choices below, we note that any reasonable specification

of the monitoring and missingness processes reflecting the trial experiences is permitted.

In CRTs and other clinical setting, monitoring times are typically planned a priori, though

the actual visit dates of the individual study participants will inevitably vary in practice.

Suppose that, at the time of the interim analysis, an additional 0 < K 0
ij < K visits

are planned for the remainder of the study, and that these visits are scheduled for study

times ⌧K�K0
ij+1, . . . , ⌧K . To incorporate uncertainty around the scheduling of these visits, we

simulate the remaining monitoring times eYijk ⇠ Uniform(⌧k � �, ⌧k + �) for some prespecified

� > 0 and for k = K �K 0
ij + 1, . . . , K. We also set eYij,K+1 := 1.
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Missingness at these monitoring times may be modeled as either intermittent or monotone.

In the case of the former, the observation indicators {Rijk : k = K �K 0
ij + 1, . . . , K} are a

sequence of Bernoulli random variables, where the probability of being observed at time k,

⇡R
ijk, optionally depends on the available baseline covariates and the prior history of miss-

ingness. ⇡R
ijk may then be estimated using a generalized linear mixed model with individual-

and cluster-specific frailties and a logit link. We then simulate eRijk ⇠ Bernoulli(b⇡R
ijk).

Alternatively, under monotone missingness, the observation indicators for individual j in

cluster i represent a coarsening of some latent loss to follow-up time, Cij, in that Rijk =

I(Yijk 6 Cij). Simulation of the observation indicators {Rijk : k = K � K 0
ij + 1, . . . , K}

thus reduces to the simulation and appropriate transformation of this time. To that end, we

first assume that Cij ⇠ Exp(�C), where �C is the rate of study attrition. To estimate �C

from the observed data, we additionally note that the Cij are, in e↵ect, interval-censored. To

see this, consider again the three possible outcomes for individual j in cluster i at interim.

Under interim outcome (i), the censoring interval for Cij is simply [Uij,1), while under

interim outcome (ii) the censoring interval is [Lij,1). Under interim outcome (iii), let

YijK00
ij
be the time of the last observed visit and ⌧ij,K00

ij+1 be the (planned) time of the first

missed visit. Then the corresponding censoring interval is [YijK00
ij
, ⌧ij,K00

ij+1). Regardless of the

outcome scenario, we denote the observed interval for Cij as [L⇤
ij, U

⇤
ij), and estimate �C by

maximizing the independence likelihood. We may then use the truncated inverse probability

integral transform to simulate eCij ⇠ Exp(b�C) subject to eCij > L⇤
ij. The set of corresponding

observation indicators is simply { eRijk = I(eYijk 6 eCij) : k = K �K 0
ij + 1, . . . , K}.

Regardless of the assumed missingness mechanism, we set the observation indicator for

the final visit time eYij,K+1 to be eRij,K+1 := 1. Then the simulated observation process post

interim analysis is given by {eY ⇤
ijk = eYijk

eRijk : k = K �K 0
ij + 1, . . . , K + 1}.
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2.3.3 Generation of the final complete-trial observations. For each study participant with

interim outcome (ii), we first simulate both the underlying time-to-event, eTij, and the

subsequent observation process, {eY ⇤
ijk : k = K �K 0

ij + 1, . . . , K + 1}. Let eY
⇤
ij represent the

corresponding full-trial observation process, comprised of both the observed and simulated

inspections: eY
⇤
ij = {Y ⇤

ijk : k = 1, . . . , K�K 0
ij}[{eY ⇤

ijk : k = K�K 0
ij+1, . . . , K+1}. Then the

final simulated observation is (eLij, eUij], where eLij = max{eY ⇤
ijk : eY ⇤

ijk 2 eY
⇤
ij and eY ⇤

ijk < eTij}

and eUij = min{eY ⇤
ijk : eY ⇤

ijk 2 eY
⇤
ij and eY ⇤

ijk > eTij}. A diagram further illustrating the process

of generating complete-trial observations is provided in Figure 2.

[Figure 2 about here.]

2.4 Calculation of the Conditional Power

For a given specification of e�(t|Xi) and of the monitoring and missingness processes, we

generate C complete-trial datasets with correlated interval-censored outcomes, and then

conduct the prespecified final analysis on each of these simulated datasets; potential analysis

methods for correlated interval-censored data include mixed-e↵ects accelerated failure time

modeling (e.g., Komárek and Lesa↵re, 2007) and randomization-based inference (Wang and

De Gruttola, 2017). We then calculate the conditional power as the proportion of the C

p-values that are significant at the desired ↵ level.

2.5 Sensitivity Analyses

In order to better guide study termination decisions, we recommend that investigators

conduct a series of sensitivity analyses for the conditional power. These sensitivity analyses

might take the following form. To account for the presence of estimation or investigator

uncertainty, the analyst might first construct confidence intervals for each estimated interim

parameter (e.g., the conditional hazard functions) or plausible intervals for each projected

component of the event process, and then recalculate the conditional power at various values
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across this plausible region. This produces a range of conditional power values consistent

with the observed data and/or the investigator’s uncertainty about the remainder of the

trial. Other potential sensitivity analyses include calculating the conditional power under the

null trend or under the minimum clinically-meaningful e↵ect. Finally, in order to evaluate

the impact of clustering on the final probability of study success, investigators may also wish

to calculate the conditional power under an array of plausible coe�cients of variation and

associated frailty terms.

3. Simulation Study

We conducted a series of simulation studies to examine the performance of our proposed

conditional power method, as well as to characterize its robustness to the number and size of

clusters, the width of the censoring interval, and the specification of the frailty distribution.

3.1 Simulation Settings and Evaluation Procedure

3.1.1 Data generating mechanism. We first generated completed CRTs of M = 30 pair-

matched clusters and ni ⇠ Uniform(250, 350) individuals in each cluster, with one member of

each cluster pair randomized to the intervention. The true time to event for each participant

was generated according to model (1) with �(t|Xi = 0) := �0 and ⌘i ⇠ N(0, �2), and was

subject to monitoring at study times Yijk ⇠ Uniform(⌧k � 4, ⌧k + 4) for k = 1, . . . , 4 and ⌧k

the kth element of {52, 104, 156, 208} weeks. Participant drop out was separately modeled

as monotone with Cij ⇠ Exp(0.002), corresponding to an overall loss to follow-up rate of

approximately 10% per year. We interval-censored each time to event as a function of the

simulated observation process, and then created the interim analysis datasets by truncating

the observations after the completion of all ⌧2 monitoring visits.

3.1.2 Simulation settings and structure. We considered two possible values for the con-

ditional baseline hazard, �0 = 0.001 and 0.01, and varied the conditional intervention e↵ect
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� from [�1, 1] at 0.1 intervals. We also considered �2 = 0, 0.06, and 0.22, corresponding

to approximate coe�cients of variation of k = 0, 0.25, and 0.5, respectively. Our primary

simulation study consisted of 1000 simulation replicates for each combination of the baseline

hazard, intervention e↵ect, and log-frailty variance. We also conducted a series of more

focused simulations in which we varied the number and size of the clusters, the width of the

censoring interval, and the frailty distribution. We took ��0 = ��1 = 1 throughout.

3.1.3 Analysis method. For each generated interim dataset, we evaluated the conditional

power by testing the null hypothesis of no intervention e↵ect across 500 sets of projected

complete-trial data using a permutation test (Wang and De Gruttola, 2017). Our test statistic

was the sum of the within-pair di↵erences in cumulative incidence, T obs =
P15

g=1

�b⇤1g� b⇤0g

�
,

where g indexes cluster pairs and b⇤Xig is the estimated cumulative incidence in the cluster

from pair g with intervention assignment Xi. We constructed the permutation null distri-

bution by randomizing treatment assignment within each matched pair, and then sampled

P = 1000 permutation test statistics T ⇤
p in order to approximate the corresponding p-value

for T obs:
1+

PP
p=1 I(|T ⇤

p |>|T obs|)
P+1 . The conditional power was taken to be the proportion of these

500 p-values that reached significance at an ↵ = 0.05 level.

3.1.4 Performance evaluation. To evaluate the overall performance of our conditional

power method, we compared the mean conditional power across the 1000 simulation repli-

cates to the simulated power for that setting. While we note that the conditional and

unconditional power of a trial are not directly comparable, the mean of the empirical

conditional power distribution estimates the trial power. In particular, if µs is the empirical

probability measure for the observed interim data, I, across the s = 1000 simulation

replicates and µ is the true probability measure for I, then
Z

P
�
p(D) 6 ↵

��I
�
dµs ⇡

Z
P
�
p(D) 6 ↵

��I
�
dµ = P (p(D) 6 ↵)
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for any p-value p(D) derived from the complete-trial data, D. Thus, if our conditional power

method performs as designed, we would expect the mean conditional power to approximate

the simulated power for each simulation setting. We also calculated the conditional power

under the modification (unachievable in practice) in which e�(t|Xi = 0) := e�0, e�(t|Xi = 1) :=

e�1, �2, and ⌘ were all set to their data-generating values. This allowed us to isolate whether

any discrepancies between the mean conditional power and the simulated power were the

result of the projection procedure, the specification and estimation of the parameter vector,

or both.

To examine our ability to recapitulate key features of the original complete-trial datasets,

we also recorded for each simulation replicate: the mean projected number of events in each

trial arm; the mean projected person-time in each trial arm; the bias and mean squared

error of b�2
c as an estimator of b�2

orig, where b�2
c is the estimated variance parameter in the cth

projected dataset and e�2
orig is the estimated variance parameter in the original dataset; and

the analogous bias and mean squared errors of �0,c and b�1,c, calculated as in Section 2.2 with

knot points at each week of follow-up.

3.2 Simulation Results

The proposed conditional power method successfully captured both general trends in study

conditional power across the simulation settings (Figure 3), as well as specific fluctuations in

evidence strength across the individual interim datasets (Figure 4; Web Figure S3). When

e�0, e�1, �2, and ⌘ were all set to their data-generating values, the mean conditional power

closely approximated the simulated study power for all baseline hazard, intervention e↵ect,

and dependence settings. This close correspondence confirms that—absent any estimation

error in either the event process or the correlation structure—the resulting conditional power

estimates reasonably capture (on average) the underlying study futility. When e�0, e�1, �2, and
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⌘ were instead estimated as in Sections 2.1 and 2.2—and as might be done in practice—the

mean conditional power continued to match the simulated trial power.

In addition to capturing aggregate trends in study futility, our proposed method pro-

duced individual conditional power estimates that correlated in a meaningful way with the

significance of the individual completed studies (Figure 4; Web Figure S3). Assuming a

futility threshold of 20% conditional power, 96.8% of all trials classified as futile at interim

had final p-values greater than ↵ = 0.05, while 93.0% of all trials classified as not futile

at interim had final p-values below ↵ = 0.05; the final correct classification rate over all

126,000 simulated trials was 94.1%. Although the accuracy rate dipped as low as 71.3% in the

independent data setting with low incidence and small intervention e↵ect, these classification

errors were attributable almost entirely to continuing studies that ultimately proved futile.

This elevated type II error rate is a reflection of the modest inflation of the mean conditional

power estimates relative to the study power observed in those simulation settings with near-

null intervention e↵ects (Figure 3). This inflation is likely the result of a floor e↵ect: even

when data are representative of a null intervention e↵ect, the observed conditional hazard

functions b�Xi(t) will inevitably di↵er from one another slightly, and the resulting conditional

power estimates will reflect this spurious e↵ect.

Across all simulation settings considered, the proposed complete-trial projection procedure

also reasonably captured the salient features of the original trial data, with the bias and mean

squared error of the estimated log-frailty variance and conditional hazards all near zero (Web

Figures S4–S5). That being said, the bias, when present, tended to be slightly but persistently

negative: the projected complete-trial datasets had, on average, fewer events in each trial

arm than did the original complete-trial datasets, resulting in smaller within-arm incidences

and lower correlation (Web Tables S2–S3). This discrepancy diminished to near zero when

individuals were monitored for the event of interest on a bimonthly (as opposed to annual)
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basis (Web Table S5; Web Figure S6). This suggests that the bias was not the result of our

projection framework per se, but rather of imprecisions in the estimation of bS(t|Xi) due to

the limited information available at interim under the annual inspection schedule.

[Figure 3 about here.]

[Figure 4 about here.]

3.3 Sensitivity to the Study Design and Misspecification of the Frailty Distribution

Our proposed method produced reasonable conditional power estimates across several modifi-

cations to the CRT study design, including variations in the number and size of randomized

clusters (Web Table S4) and the frequency of the event inspections (Web Table S5; Web

Figure S6). Its performance was also robust to misspecification of the frailty distribution:

when the true frailties were gamma-distributed, the conditional power estimates derived

under the misspecified lognormal model were nearly identical to those under the correctly-

specified gamma model (Web Table S6).

4. The Botswana Combination Prevention Project

The Botswana Combination Prevention Project (BCPP) was a pair-matched CRT designed

to evaluate the impact of combination HIV prevention strategies on the population-level

three-year cumulative incidence of HIV (Gaolathe et al., 2016; Makhema et al., 2019).

Thirty communities in Botswana were pair-matched on the basis of size, pre-existing health

services, population age structure and geographic location, with one community in each pair

randomized to receive combination HIV prevention and the other to receive an enhanced

standard-of-care. An incidence cohort of HIV-negative individuals identified from a 20%

random sample from each community was tested for seroconversion at each of three annual

visits; an interim analysis was planned following the completion of all one-year visits.

At the beginning of the study in 2013, the combination prevention package included
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scaled-up HIV testing and counseling services, linkage-to-care support, enhanced mother-

to-child transmission prevention e↵orts, male circumcision campaigns, and extension of

antiretroviral therapy to those infected individuals with high viral load levels. The enhanced

standard-of-care included higher testing coverage (due to the annual testing of the incidence

cohort) and improved technical support for data management, but otherwise reflected the

contemporary standard practice. However, while the trial was ongoing the national HIV

treatment guidelines changed: the Botswana Ministry of Health recommended in 2016 that

all HIV-positive patients, regardless of CD4 count or viral load levels, initiate antiretroviral

therapy (Gaolathe et al., 2016). This change made the care administered to the control

communities more similar to that in the intervention communities, raising concerns that the

anticipated intervention e↵ect might be reduced and that the trial might be futile as a result.

Actual interim data from the BCPP remain confidential. As such, we used our proposed

method to conduct a futility assessment on a simulated interim dataset, generated by apply-

ing an agent-based epidemic model to a dynamic network of simulated sexual partnerships

(Wang et al., 2014). Both the sexual network and epidemic models were developed to project

the intervention e↵ect during the design phase of the BCPP, and the inputs to these models

were calibrated to resemble the actual study conditions (see Web Appendix E for details).

4.1 Futility Assessment Using the Network-Generated Data

The simulated BCPP trial followed an incidence cohort of 10,465 individuals across the 30

study communities: 5,225 of these individuals belonged to combination prevention communi-

ties, and 5,240 to enhanced standard-of-care communities. By the time of the interim analysis,

35 individuals in the combination prevention clusters and 50 individuals in the enhanced

standard-of-care clusters had seroconverted, corresponding to cluster-conditional incidence

rates of 0.0045 and 0.0064 events per person-year, respectively (estimated conditional hazard

ratio: 0.699). Assuming no change to these trends, the conditional power of the simulated
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BCPP was estimated to be 0.648. However, if the observed intervention e↵ect were to dimin-

ish by 10% over the remainder of the trial in response to the new Ministry of Health treatment

guidelines (reducing the hazard ratio from 0.699 to 0.769), the estimated conditional power

would drop to 0.478. Reductions in the underlying baseline hazard of seroconversion, as

might result from the mid-trial adoption of universal antiretroviral therapy initiation, also

led to a modest drop in the estimated conditional power (Table 1). For a full summary of

the estimated conditional power results, as well as information regarding the projected total

person-time of follow-up and number of HIV seroconversions at study conclusion across the

simulated complete-trial datasets, see Table 1. The full analysis was executed in R on a single

core of the Harvard Medical School O2 cluster and took approximately 3 hours to complete,

for an average time of 18 minutes per conditional power estimate.

[Table 1 about here.]

5. Discussion

We have proposed a flexible framework for calculating the conditional power of CRTs with

interval-censored endpoints. Our approach permits any assumed form for the conditional

hazard functions over the remainder of the study, and may be used with any final hypothesis

test of interest. This second feature presents a notable advantage over standard conditional

power formulae, which are typically specific to a given test statistic or class of test statistics.

Extensive simulation studies demonstrated that the proposed method produces reasonable

conditional power estimates across an array of data-generating models and a wide range of

study design parameters, and that it is robust to misspecification of the frailty distribution.

We observed mild inflation in the conditional power estimates in those settings with

low study power, most likely due to a floor e↵ect on the estimation of the intervention

e↵ect. However, the futility bound for clinical trials with conditional-power-based interim
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monitoring is often set between 10% and 30% (Zhang et al., 2017), with recent examples

including the oncology trial LUME-Lung 2, for which the futility threshold was set at

20% (Lesa↵re et al., 2017), and a psychiatric trial of maintenance treatment of bipolar I

disorder, for which the futility threshold was set at 30% (Mahableshwarkar et al., 2017).

Under these more conservative futility thresholds, our conditional power procedure remains

able to accurately discriminate between futile and non-futile trials at interim, even in the

presence of this mild conditional power inflation.

In order to estimate the cluster-conditional survival functions S(t|Xi; ⌘i), we adopted the

lognormal shared frailty model given in (1). Few computational methods permit stable fitting

of (1) to large clusters of interval-censored observations, and semiparametric estimation of

this model with correlated interval-censored data remains an open area of research. As such,

we used mid-point imputation to transform the interval-censored observations into right-

censored observations, from which we then estimated the log-frailty variance and individual

frailty terms. However, mid-point imputation has been shown to produce biased coe�cient

estimates in (1), with the magnitude of the bias increasing with the width of the censoring

intervals. For this reason, we exploited the relationship between the marginal and conditional

survival functions to obtain a semiparametric estimator for S(t|Xi), rather than relying on a

mid-point imputed estimate. Further work is needed to develop stable procedures for fitting

frailty models directly to correlated interval-censored observations.

The main focus of this article has been on proposing a method for calculating point

estimates of the conditional power. Clinical decision-making would be further aided by

having some tool to characterize uncertainty in these estimates. One natural choice for

estimating this variability is the bootstrap 95% confidence interval. However, there are sev-

eral complications that arise when performing bootstrap resampling on correlated, interval-

censored observations, particularly when the outcome of interest is both rare and interval-
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censored. CRTs typically randomize only a small number of communities, so that bootstrap

resampling at the cluster level is unlikely to provide a reasonable approximation to the

sampling distribution. Resampling at the individual level conditional on cluster membership

is more amenable to a small M setting, but may produce clusters in which no event has

occurred when the outcome of interest is rare; this in turn limits the types of test statistics

that can be computed on the bootstrapped interim data. In light of these challenges, we

instead recommend conducting sensitivity analyses to assess the conditional power across

a range of projections that are compatible with the observed data; these analyses should

provide the additional context and uncertainty quantification needed for clinicians to make

appropriate and informed trial termination decisions at the futility boundary.
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Appendix A: Derivation of Equation (2)

Let Ṡ(t|Xi; ⌘i = 0) and S̈(t|Xi; ⌘i = 0) be the first and second partial derivatives of S(t|Xi; ⌘i)

with respect to ⌘i, evaluated at ⌘i = 0. Taking the second-order Taylor approximation of

S(t|Xi; ⌘i) about ⌘i = 0, we have

S(t|Xi; ⌘i) ⇡ S(t|Xi; ⌘i = 0) + Ṡ(t|Xi; ⌘i = 0)(⌘i � 0) +
1

2
S̈(t|Xi; ⌘i = 0)(⌘2i � 0)

= S(t|Xi)� ⌘i⇤(t|Xi)S(t|Xi) +
⌘2i
2
⇤(t|Xi)S(t|Xi){⇤(t|Xi)� 1},

so that marginalizing over the frailty distribution yields

S(t|Xi) ⇡
Z 1

�1


S(t|Xi)� ⌘i⇤(t|Xi)S(t|Xi) +

⌘2i
2
⇤(t|Xi)S(t|Xi){⇤(t|Xi)� 1}

�
�(⌘i)d⌘i

= S(t|Xi)


1 +

�2

2
⇤(t|Xi){⇤(t|Xi)� 1}

�
,
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where �(⌘i) denotes the N(0, �2) density function.

Appendix B: Justification of Truncated Inverse Probability Integral Transform

To sample observations from the survival function in (3), subject to the restriction that eTij

must be larger than the right-censoring time Lij, we define the generalized inverse function

eS�1
i (!|Xi; b⌘i) = inf{t|eSi(t|Xi; b⌘i) 6 !}. Then the truncated inverse probability integral

transform procedure draws U ⇠ Uniform
�
0, eSi(Lij|Xi; b⌘i)

�
and sets eTij := eS�1

i (U |Xi; b⌘i).

Claim 1: The resulting eTij constitutes a random sample from the target conditional

distribution, eSi(t|Tij > Lij, Xi; b⌘i).

Proof. Consider the probability space (⌦,B, P ), where ⌦ =
�
0, eSi(Lij|Xi; b⌘i)

�
, B is the

Borel �-algebra on ⌦, and P (·) = µ(·)/µ(⌦) with µ the Lebesgue measure. Define A! =

{! : eS�1
i (!|Xi; b⌘i) > t} and B! = {! : ! 6 eSi(t|Xi; b⌘i)} for t 2 (Lij,1) and ! 2

�
0, eSi(Lij|Xi; b⌘i)

�
. Note that the desired result follows immediately if we are able to show

that P (A!) = P (B!), where P (B!) = eSi(t|Xi; b⌘i)/eSi(Lij|Xi; b⌘i) = eSi(t|Tij > Lij, Xi; b⌘i).

[)] Consider !⇤ 2 A!. Then eS�1
i (!⇤|Xi; b⌘i) > t, so that t 62 {t : eSi(t|Xi; b⌘i) 6 !⇤}. So it

follows that eSi(t|Xi; b⌘i) > !⇤, which further implies that !⇤ 2 B! and A! ⇢ B!.

[(] Define B
0
! = {! : ! < eSi(t|Xi; b⌘i)} and consider !⇤ 2 B

0
!. By the right continuity of

eSi(t|Xi; b⌘i), there exists �!⇤ > 0 so that eSi(t|Xi; b⌘i)� eSi(t+�!⇤ |Xi; b⌘i) < eSi(t|Xi; b⌘i)�!⇤ =)

eSi(t+�!⇤ |Xi; b⌘i) > !⇤. Then t+�!⇤ 62 {t : eSi(t|Xi; b⌘i) 6 !⇤} and eS�1
i (!⇤|Xi; b⌘i) > t+�!⇤ > t.

So !⇤ 2 A! and B
0
! ⇢ A!.

Note that P (B!) = P (B
0
!), and that B

0
! ⇢ A! ⇢ B! =) P (B

0
!) 6 P (A!) 6 P (B!). So

P (A!) = P (B!), as desired.
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Figure 1. An overview of the proposed conditional power calculation approach. The shaded
boxes indicate the analysis pipeline, while the clear boxes indicate inputs to the pipeline that
may either be user-specified or informed by the observed interim data.
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1
Figure 2. Sample complete-trial generation process under monotone missingness for four
members of cluster i, with the observed data rendered in black and the projected data
rendered in blue. The final interval-censored observations are given on the right.
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Figure 3. Power and conditional power results as a function of the true, data-generating
baseline hazard, intervention e↵ect, and log-frailty variance in the generated interim data.
Each data point represents the mean estimated power (conditional power) across 1000
simulation runs.
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Web Appendix A. Alternate Frailty Specifications

Suppose that we conduct a cluster-randomized trial ofM communities (indexed i = 1, . . . ,M)

in which the outcome of interest is an interval-censored time-to-event with cluster-specific

hazard function

�(t|Xi; ⌘i) = �(t|Xi) exp(⌘i).

While the exposition in the main text assumed ⌘i ⇠ N(0, �2), the proposed method may be

generalized to any assumed frailty distribution f(exp(⌘); ✓) provided that one can (i) estimate

✓ and (⌘1, . . . , ⌘M)T and (ii) derive either an exact or approximate relationship between the

conditional survival function, S(t|Xi) = S(t|Xi; ⌘i = 0), and the induced marginal survival

distribution, S(t|Xi), in terms of these parameters. Two common alternative choices for the

frailty distribution are exp(⌘i) ⇠ Gamma(✓, ✓) and exp(⌘i) ⇠ Positive-Stable(↵).

A.1 Gamma Frailty Distribution

Define $i := exp(⌘i), and suppose $i ⇠ Gamma(✓, ✓) with E($i) = 1 and V ar($i) = ✓�1.

Then

S(t|Xi) =

Z 1

�1
S(t|Xi;$i)f($i; ✓)d$i

=

Z 1

�1
exp {�⇤(t|Xi)$i}

✓✓

�(✓)
$✓�1

i e�✓$id$i

=
✓✓

�(✓)

Z 1

�1
exp [� {⇤(t|Xi) + ✓}$i]$

✓�1
i d$i

=

⇢
✓

⇤(t|Xi) + ✓

�✓

,

where ⇤(t|Xi) =
R t

0 �(u|Xi)du is the cumulative conditional hazard function. Note that ✓

may be estimated by direct maximization of the marginal likelihood and ($1, . . . ,$M)T by

empirical Bayes (see, for example, Klein (1992) and Nielsen et al. (1992)), and that the

conditional survival function may be written as an explicit function of S(t|Xi) and ✓:

S(t|Xi) = exp
⇥
�✓

�
S(t|Xi)

�1/✓ � 1
 ⇤

.
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Then our proposed conditional power procedure proceeds exactly as described in the main

paper, with bS(t|Xi; b$i) = bS(t|Xi)b$i .

A.2 Positive Stable Frailty Distribution

Alternatively, suppose $i ⇠ Positive-Stable(↵) for ↵ 2 (0, 1], where the positive stable

distributional family is characterized by its Laplace transform

E{exp(�c$i)} = exp(�c↵). (A.1)

In light of (A.1), we may immediately write down an exact relationship between the marginal

and cluster-conditional survival functions, with

S(t|Xi) = E [exp {�⇤(t|Xi)$i}] = exp {�⇤(t|Xi)
↵} = exp [� {� logS(t|Xi)}↵] .

The frailty parameters ↵ and ($1, . . . ,$M)T may once again be estimated by direct max-

imization of the marginal likelihood and by empirical Bayes, and the conditional survival

function may be estimated using the inverse relationship

S(t|Xi) = exp
h
�
�
� logS(t|Xi)

 1/↵
i
.

Then the remainder of the conditional power procedure proceeds as before, with bS(t|Xi; b$i) =

bS(t|Xi)b$i .

Web Appendix B. Marginal & Cluster-Conditional Survival Functions

In this section we discuss the relationship between the conditional and induced marginal

survival functions under gamma, positive stable, and lognormal frailty models:

$i ⇠ Gamma(✓, ✓) S(t|Xi) =

⇢
✓

⇤(t|Xi) + ✓

�✓

(A.2)

$i ⇠ Positive-Stable(↵) S(t|Xi) = exp {�⇤(t|Xi)
↵} (A.3)

⌘i ⇠ N(0, �2) S(t|Xi) ⇡ S(t|Xi)


1 +

�2

2
⇤(t|Xi){⇤(t|Xi)� 1}

�
(A.4)

We also comment on the performance of the approximation in (A.4), and demonstrate

visually that the approximation error is small in settings with mild to moderate dependence.
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B.1 Curve Comparison

(A.2) Under the gamma frailty model, an application of Jensen’s inequality demonstrates

that the marginal survival function always lies above the conditional curve:

S(t|Xi) = E{S(t|Xi)
$i} > S(t|Xi)

E($i) = S(t|Xi),

with the extent of the discrepancy vanishing as V ar($i) = ✓�1 ! 0 or ⇤(t|Xi) ! 0.

(A.3) In the positive stable model, we instead observe that for ↵ 2 (0, 1), the marginal

survival function lies below the conditional survival function until ⇤(t|Xi) = 1, at which

point the two curves cross:

S(t|Xi) > S(t|Xi) () exp {�⇤(t|Xi)
↵} > exp {�⇤(t|Xi)}

() ⇤(t|Xi)
↵ 6 ⇤(t|Xi)

() ⇤(t|Xi) > 1.

When ↵ = 1, the positive stable distribution reduces to a point mass at one, such that all

survival times are independent of one another and the marginal and conditional survival

functions trivially coincide.

The positive stable distribution also has the notable feature that—assuming the event times

follow a Weibull distribution with common shape parameter —it preserves proportionality

of the hazards under marginalization (Hougaard, 1986). In particular, if the hazard within

cluster i is given by

�(t|Xi;$i) = ��1 (t/�)�1 exp(�Xi)$i,

then the marginal distribution

S(t|Xi) = E
⇥
exp

�
� (t/�) exp(�Xi)$i

 ⇤
= exp

�
� (t�)↵ exp(↵�Xi)

 

is also Weibull, but with both the shape parameter and the log hazard ratio scaled by ↵; the

latter implies an attenuation of the cluster-conditional e↵ect on the marginal scale. Under

Weibull failure times the positive stable parameter also has an intuitive interpretation in
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terms of the within-cluster correlation: corr(log Tij, log Tij0) = 1� ↵2 (Hougaard, 1986).

(A.4) In the lognormal frailty model, we see that the marginal survival function will closely

approximate the conditional survival function when the contribution of the second term in

(A.4) is negligible. This occurs whenever the observations in the study are approximately

uncorrelated: either as the result of a small frailty variance, a low study incidence, or minimal

observed follow-up time. Furthermore, we see that, as in the positive stable model, S(t|Xi)

will generally lie below S(t|Xi) whenever ⇤(t|Xi) < 1:

S(t|Xi)� S(t|Xi) ⇡
�2

2
⇤(t|Xi){⇤(t|Xi)� 1}

=) sign
�
S(t|Xi)� S(t|Xi)

 
= sign

�
⇤(t|Xi)� 1

 
.

Thus in our low incidence simulation studies, where �(t|Xi = 0) was set to 0.001, S(t|Xi = 0)

underestimated S(t|Xi = 0) at all time-points; in our high incidence simulation studies, where

�(t|Xi = 0) was set to 0.01, S(t|Xi = 0) underestimated S(t|Xi = 0) until t = 100 weeks.

B.2 Approximation Performance

As discussed in Section 2.1 of the main text, the approximation in (A.4) permits estimation

of the conditional survival function S(t|Xi) as the root of

g(y) = y

⇢
1 +

b�2

2
log y(log y + 1)

�
� bS(t|Xi), (B.1)

where bS(t|Xi) is the nonparametric maximum likelihood estimator of S(t|Xi) and b�2 is an

estimator of the log-frailty variance. Here we consider the extent of the resulting approxima-

tion error when both S(t|Xi) and �2 are known, i.e., when the error is attributable solely to

the use of a second-order Taylor approximation; we also compare the performance of bS(t|Xi)

to the performance of S(t|Xi) as (potentially näive) estimators of S(t|Xi). The settings used

for this comparison are given in Web Table S1.

[Table 1 about here.]

As anticipated, S(t|Xi) underestimated S(t|Xi) when the cumulative incidence was small,
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with the extent of this discrepancy increasing in direct correspondence with the log-frailty

variance (Web Figures S1 and S2). The Taylor-approximated bS(t|Xi) closely matched the

true S(t|Xi) in all low incidence settings considered, and diverged substantially from S(t|Xi)

only when both the extent of the clustering e↵ect was extreme and the cumulative incidence

was large. Note, however, that the performance documented in Web Figures S1 and S2 is an

optimistic assessment of bS(t|Xi) as an estimator of S(t|Xi) in practice: estimation of both

S(t|Xi) and �2 will necessarily introduce additional error into the approximation. While we

anticipate that bS(t|Xi) will still provide a better representation of the underlying conditional

survival function than S(t|Xi), the relative improvement may be small in settings with low

dependence.

[Figure 1 about here.]

[Figure 2 about here.]

Web Appendix C. Additional Simulation Results

In this section we provide additional results regarding the ability of our conditional power

procedure to:

(C.1) respond to specific fluctuations in evidence strength across the individual study

datasets; and

(C.2) generate complete-trial datasets that reasonably capture—in aggregate—the salient

features of the observed trial data, had the observed trial run to completion.

To briefly summarize, our simulation study first generated 1000 complete-trial datasets for

each unique combination of baseline hazard �0, intervention e↵ect �, and log-frailty variance

�2. We then truncated these datasets following two years of follow-up to create the interim

analysis datasets to which our proposed conditional power procedure was applied. Greater
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detail regarding the simulation study design and simulation parameters is available in Section

3.1 of the main paper.

C.1 Study-Specific Concordance

Select mosaic and conditional power distribution plots demonstrating our proposed method’s

study-specific classification performance when �0 = 0.001 and k = 0.25 are given in Web Fig-

ure S3. The interim futility classification was based on a futility threshold of 20% conditional

power, and the final study significance was based on a significance level of ↵ = 0.05.

[Figure 3 about here.]

C.2 Generation of Complete-Trial Datasets

Web Figures S4 and S5 presents bias and mean squared error results for the estimated

conditional hazards and log-frailty variance in the projected complete-trial datasets, taken

as estimators of those same quantities in the original complete-trial data. Web Tables S2 and

S3 similarly compare the average number of recorded events, the average number of person-

weeks under observation, and the average incidence rates within each arm of the original and

projected compete-trial data.

Our projected datasets mildly but persistently underreported the number of events in each

trial arm, with this underestimation becoming more prominent in the high incidence setting

(Web Figure S5). It is worth noting, however, that the underestimation was largely invariant

to the size of the log-frailty variance, and that it persisted even when the data-generating

values of �0, �1, �2, and ⌘ were used to create the projected datasets. In Web Appendix D,

we also see that the discrepancy diminished to near zero when individuals were monitored

on a more frequent bimonthly inspection schedule. This suggests that the bias noted in Web

Figures S4–S5 and the underreporting noted in Web Tables S2–S3 are consequences of the
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limited information available at interim under an annual inspection schedule, and not an

inherent feature of the method itself.

[Figure 4 about here.]

[Figure 5 about here.]

[Table 2 about here.]

[Table 3 about here.]

Web Appendix D. Sensitivity Analyses

We also conducted a series of focused simulation studies to explore the robustness of our

proposed conditional power method to the size and number of randomized clusters, to the

width of the censoring interval, and to possible misspecification of the frailty distribution. The

simulation design for the sensitivity analyses closely matched that of the primary simulation

study (detailed in Section 3.1 of the main paper) except where noted, though we restricted

our focus to the low incidence (�0 = 0.001) and low dependence (k = 0.25) setting. We

also took � 2 {0,�0.2,�0.4}, selected to produce trials with approximately 5%, 41.2%, and

92.6% empirical power, respectively. The results of the analyses are presented in Sections

D.1–D.3 below.

D.1 Size and Number of Clusters

While many pragmatic CRTs randomize a small number of large clusters—the sort of study

design considered in our primary simulation study—studies targeted at a community or

household level may randomize a larger number of small clusters (e.g., Guiteras et al. (2015)).

In acknowledgment of these alternative CRT designs, we conducted sensitivity analyses under

two di↵erent large M scenarios: one in which M = 90 and ni ⇠ Uniform(50, 150), and the

second in which M = 300 and ni ⇠ Uniform(10, 50). In both settings, the expected total
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sample size,
P

i ni = 9000, matched that from the primary simulation study. Our results

suggest our conditional power projection procedure is robust to the size and number of

randomized clusters: it produces reasonable conditional power estimates (Web Table S4)

even when M ⇡ ni (scenario one) or M � ni (scenario two). Complete-trial data generation

and study-specific concordance results are omitted, but were broadly similar to those in Web

Appendix C and the main text.

[Table 4 about here.]

D.2 Width of the Censoring Interval

In trials with interval-censored outcomes, the event monitoring schedule that participants

follow has potentially large implications for the amount of information available at the

interim analysis. The less frequent the inspections, the wider the censoring intervals and

the more uncertain the estimates of the within-cluster dependence, the community-specific

frailty terms, and the observed trends in incidence. This, in turn, has implications for the

quality of the conditional power projections.

Both the BCPP and our primary simulation study operated on one end of the extreme: the

inspections followed an annual schedule, and study participants had at most two inspections

prior to the interim analysis. To determine the extent to which this monitoring schedule may

have contributed to mild under-projection of the number of events (Web Figure S4–S5; Web

Tables S2–S3) and mild inflation in the conditional power estimates (Figure 3), we conducted

a second sensitivity analysis assuming K = 26 bimonthly inspections planned at ⌧k = 8k

weeks, k = 1, . . . , 26. As in the primary simulation study, individual participant monitoring

times then followed a Uniform(⌧k�4, ⌧k+4) distribution about these planned visits. Finally,

for this sensitivity analysis only, we considered both low (�0 = 0.001) and high (�0 = 0.01)

incidence settings, as the downward bias noted in the projected number of events appeared

to increase with the underlying event rate.
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Conditional power estimates under both the low and high incidence settings are given in

Web Table S5, while the ability of the conditional power procedure to recapitulate features

of the original completed trials when �0 = 0.01 is given in Web Figure S6 (results when

�0 = 0.001 were similar to those in Web Appendix C). Crucially, we see that the persistent

underestimation of the conditional incidence rates noted in the main simulation study disap-

peared with more frequent bimonthly inspections, where the bimonthly inspections provided

correspondingly more information at interim with which to estimate the conditional survival

curves.

[Table 5 about here.]

[Figure 6 about here.]

D.3 Specification of the Frailty Distribution

To examine the robustness of our proposed conditional power method to misspecification of

the frailty distribution, we conducted a final sensitivity analysis in which the data-generating

model was

�(t|Xi;$i) = 0.001 exp(�Xi)$i,

with $i ⇠ Gamma(1/0.06, 1/0.06). We calculated the conditional power under the following

three scenarios:

(1) The frailty distribution was misspecified as lognormal, and equation (B.1) was used to

estimate the conditional survival functions, bS(t|Xi); the projected/estimated e�0, e�1, b�2,

and b⌘ were then used to extend these functions through the remainder of the trial.

(2) The frailty distribution was correctly specified, and equation (A.2) was used to estimate

the conditional survival functions, bS(t|Xi); the projected/estimated e�0, e�1, b✓, and c$

were then used to extend these functions through the remainder of the trial.

(3) The frailty distribution was correctly specified, and equation (A.2) was used to estimate
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the conditional survival functions, bS(t|Xi); the data-generating �0, �1, ✓, and $ were

then used to extend these functions through the remainder of the trial.

As shown in Web Table S6, misspecification of the frailty distribution had a negligible impact

on the final conditional power estimates: the mean conditional power under scenarios (1)

and (2) di↵ered by at most 0.005 points, and the two models produced identical interim

futility classifications for 2,979 of the 3,000 generated interim datasets. Complete-trial data

generation and study-specific concordance results are omitted, but demonstrated similar

trends to those observed in Web Appendix C.

[Table 6 about here.]

Web Appendix E. BCPP Data Generation

We used the same agent-based epidemic model as in Wang et al. (2014), developed during

the design stage of the BCPP to project the study-specific incidence of HIV, to generate an

interim analysis dataset modeled after the trial. The simulation approach consisted of first

generating sexual networks representative of the trial communities before then propagating

disease transmission on these networks.

The simulated study-wide sexual network was comprised of 15 independent sub-networks,

each corresponding to a matched pair of intervention and standard-of-care communities;

these sub-networks captured all heterosexual partnerships between and within the matched

communities. For each sub-network, the distribution of number of partnerships per individ-

ual was estimated from comprehensive sexual network data from Likoma Island, Malawi

(Helleringer and Kohler, 2007), and the extent of sexual mixing between the two matched

communities was informed by a pilot study in Mochudi, Botswana (Wang et al., 2014). We

used the method of Goyal et al. (2013) to generate sexual networks compatible with these

two distributional constraints. The duration of each generated partnership was then drawn
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from a survival distribution estimated from data collected in the Mochudi study, and the

start date of each generated partnership was drawn uniformly at random over the study

period.

We then propagated HIV on these networks using an agent-based epidemic model, in which

both individual and community characteristics informed the spread of disease. At the start of

the simulation, each individual in the collection of networks was assigned an infection status

at random based on current estimates of HIV prevalence in Botswana, reported in Gaolathe

et al. (2016) as 29%. Infected individuals were then assigned a viral load category and CD4

count, and characteristics such as transmission probabilities, individual risk-increasing and

risk-reducing behaviors, and projected intervention uptake and e↵ects were used to determine

HIV spread. A complete listing of the input parameters is given in Web Table S7.

We assumed that a random sample of 20% of each community was selected to receive

yearly HIV tests, and that the remainder of the community was tested at a background rate

corresponding to the community’s intervention or standard-of-care status. The simulation

ran for a total of three years; we truncated the data at 82 weeks for the purposes of creating

an interim analysis dataset.

[Table 7 about here.]
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Figure S1. Comparison of the true conditional survival function, S(t|Xi), the induced
marginal function, S(t|Xi), and the Taylor-approximated conditional function, bS(t|Xi),
under exponential-distributed failure times and low (top row) and high (bottom row)
incidence settings. The distance metrics d(S, S) := kS � Sk1 and d(S, bS) := kS � bSk1
were defined over the set [0, 208].
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Figure S2. Comparison of the true conditional survival function, S(t|Xi), the induced
marginal function, S(t|Xi), and the Taylor-approximated conditional function, bS(t|Xi),
under Weibull-distributed failure times and low (top row) and high (bottom row) incidence
settings. The distance metrics d(S, S) := kS � Sk1 and d(S, bS) := kS � bSk1 were defined
over the set [0, 208].
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Figure S3. Distribution of interim conditional power estimates stratified by significance at
the ↵ = 0.05 level of the completed trial (top row), as well as the corresponding classification
performance assuming a futility threshold of 20% conditional power (bottom row), for select
low incidence (�0 = 0.001) and low dependence (k = 0.25) simulation settings. All plots are
summarized over 1000 simulated interim datasets.
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Figure S4. Bias and squared error of the estimated conditional hazards (left, center)
and log-frailty variance (right) in the projected complete-trial datasets as estimators of
the analogous quantities in the original completed trials. The original data were gener-
ated with �0 = 0.001, and selected results are presented for � = (�0.2, 0.0, 0.2) and
k = (0.00, 0.25, 0.50).
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Figure S5. Bias and squared error of the estimated conditional hazards (left, center)
and log-frailty variance (right) in the projected complete-trial datasets as estimators of the
analogous quantities in the original completed trials. The original data were generated with
�0 = 0.01, and selected results are presented for � = (�0.2, 0.0, 0.2) and k = (0.00, 0.25, 0.50).
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Figure S6. Sensitivity of features of the projected complete-trial datasets (considered as
estimators of the analogous quantities in the original completed trials) to the width of the
censoring interval under high incidence (�0 = 0.01) and low dependence (k = 0.25).
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Table S1
Attributes of the cluster-conditional model, S(t|Xi = 0), under lognormal frailties and either exponential or Weibull
hazards. The Weibull distribution was parametrized so that E(Ti) = ��(1 + 1/), and the parameters chosen so that

the survival at 208 weeks would be the same under both distributions.

Survival Distribution

Exponential Weibull
Low Incidence: � = 0.001  = 0.5, � = 4807.692
High Incidence: � = 0.01  = 2.0, � = 144.2221

Frailty Distribution

Variance: �2 = 0.22, 0.45, 0.69 (k = 0.50, 0.75, 1.00)
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Table S4
Sensitivity of power and conditional power results to the number and size of randomized clusters under low incidence
(�0 = 0.001) and low dependence (k = 0.25). Results are summarized via the mean and empirical standard error

over 1000 simulation runs.

Power
Conditional Power

Power
Conditional Power

(e�0, e�1, b�2, b⌘) (�0, �1, �2, ⌘) (e�0, e�1, b�2, b⌘) (�0, �1, �2, ⌘)

Scenario One (M ⇡ ni) Scenario Two (M � ni)

� = 0.0 0.050 0.154 (0.269) 0.055 (0.132) 0.050 0.150 (0.247) 0.052 (0.122)
� = �0.2 0.689 0.669 (0.375) 0.692 (0.290) 0.811 0.734 (0.342) 0.796 (0.265)
� = �0.4 0.997 0.987 (0.068) 0.998 (0.012) 1.000 0.996 (0.035) 1.000 (0.002)
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Table S5
Sensitivity of power and conditional power results to the width of the censoring interval under low dependence
(k = 0.25). Results are summarized via the mean and empirical standard error over 1000 simulation runs.

Power
Conditional Power

Power
Conditional Power

(e�0, e�1, b�2, b⌘) (�0, �1, �2, ⌘) (e�0, e�1, b�2, b⌘) (�0, �1, �2, ⌘)

�0 = 0.001 �0 = 0.01

� = 0.0 0.050 0.112 (0.250) 0.059 (0.182) 0.050 0.053 (0.206) 0.049 (0.196)
� = �0.2 0.416 0.447 (0.417) 0.410 (0.398) 0.508 0.541 (0.460) 0.542 (0.460)
� = �0.4 0.929 0.916 (0.223) 0.936 (0.181) 0.975 0.975 (0.137) 0.976 (0.136)
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Table S6
Sensitivity of power and conditional power results to misspecification of the frailty distribution under low incidence
(�0 = 0.001) and low dependence (✓ = 1/0.06). Results are summarized via the mean and empirical standard error

over 1000 simulation runs.

Power
Conditional Power

(e�0, e�1, b�2, b⌘) (e�0, �1, b✓, f$) (�0, �1, ✓, $)

� = 0.0 0.050 0.101 (0.234) 0.104 (0.235) 0.053 (0.161)
� = �0.2 0.412 0.454 (0.422) 0.459 (0.423) 0.411 (0.402)
� = �0.4 0.927 0.894 (0.249) 0.895 (0.248) 0.917 (0.213)
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Table S7
Input parameters used to generate data representative of the Botswana Combination Prevention Project.

Parameter Value

Network Generation Parameters
Rate of spatial mixing between communities 0.210
Variance of spatial mixing between communities 0.00651
Community size (individuals) 2,500
Proportion of community in incidence cohort 0.200

Disease Characteristics
HIV prevalence at baseline 0.290
Prevalence of each viral load category
Viral load: (0, 400] copies/mL 0.139
Viral load: (400, 3500] copies/mL 0.174
Viral load: (3500, 10000] copies/mL 0.158
Viral load: (10000, 500000] copies/mL 0.268
Viral load: > 50000 copies/mL 0.261

Probability of transmission per 100 person-years
Viral load: (0, 400] copies/mL 0.000
Viral load: (400, 3500] copies/mL 0.045
Viral load: (3500, 10000] copies/mL 0.120
Viral load: (10000, 500000] copies/mL 0.140
Viral load: > 50000 copies/mL 0.230

Individual Attributes at Baseline
Percent of males who are circumcised 0.127
Percent of individuals who use condoms regularly 0.400
Reduction in acquisition risk from circumcision 0.600
Reduction in transmission risk from regular condom use 0.800
Percent of HIV+ individuals eligible for ART at baseline (CD4 < 350 cells/mm3) 0.887
Percent of individuals on ART among those eligible 0.400
Percent of individuals with high viral load (> 50000 copies/mL) that are ART naive 0.530

Intervention Components
Linkage-to-care rates in standard-of-care communities 0.800
Linkage-to-care rates in intervention communities 0.900
Male circumcision coverage

Standard-of-care communities Intervention communities
Year 1 0.314 0.464
Year 2 0.500 0.600
Year 3 0.600 0.680

HIV testing and counseling rates (among those not in the incidence cohort)
Standard-of-care communities Intervention communities

Year 1 0.243 0.790
Year 2 0.430 0.850
Year 3 0.470 0.900
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