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Abstract

Background

Helminth and protozoan infections affect more than 1 billion children globally. Improving

water quality, sanitation, handwashing, and nutrition could be more sustainable control strat-

egies for parasite infections than mass drug administration, while providing other quality of

life benefits.

Methods and findings

We enrolled geographic clusters of pregnant women in rural western Kenya into a cluster-

randomized controlled trial (ClinicalTrials.gov NCT01704105) that tested 6 interventions:

water treatment, improved sanitation, handwashing with soap, combined water treatment,

sanitation, and handwashing (WSH), improved nutrition, and combined WSH and nutrition

(WSHN). We assessed intervention effects on parasite infections by measuring Ascaris

lumbricoides, Trichuris trichiura, hookworm, and Giardia duodenalis among children born to

the enrolled pregnant women (index children) and their older siblings. After 2 years of inter-

vention exposure, we collected stool specimens from 9,077 total children aged 2 to 15 years

in 622 clusters, including 2,346 children in an active control group (received household visits

but no interventions), 1,117 in the water treatment arm, 1,160 in the sanitation arm, 1,141 in
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the handwashing arm, 1,064 in the WSH arm, 1,072 in the nutrition arm, and 1,177 in the

WSHN arm. In the control group, 23% of children were infected with A. lumbricoides, 1%

with T. trichiura, 2% with hookworm, and 39% with G. duodenalis. The analysis included

4,928 index children (median age in years: 2) and 4,149 older siblings (median age in years:

5); study households had an average of 5 people, <10% had electricity access, and >90%

had dirt floors. Compared to the control group, Ascaris infection prevalence was lower in the

water treatment arm (prevalence ratio [PR]: 0.82 [95% CI 0.67, 1.00], p = 0.056), the WSH

arm (PR: 0.78 [95% CI 0.63, 0.96], p = 0.021), and the WSHN arm (PR: 0.78 [95% CI 0.64,

0.96], p = 0.017). We did not observe differences in Ascaris infection prevalence between

the control group and the arms with the individual interventions sanitation (PR: 0.89 [95% CI

0.73, 1.08], p = 0.228), handwashing (PR: 0.89 [95% CI 0.73, 1.09], p = 0.277), or nutrition

(PR: 86 [95% CI 0.71, 1.05], p = 0.148). Integrating nutrition with WSH did not provide addi-

tional benefit. Trichuris and hookworm were rarely detected, resulting in imprecise effect

estimates. No intervention reduced Giardia. Reanalysis of stool samples by quantitative

polymerase chain reaction confirmed the reductions in Ascaris infections measured by

microscopy in the WSH and WSHN groups. Trial limitations included imperfect uptake of tar-

geted intervention behaviors, limited power to detect effects on rare parasite infections, and

that it was not feasible to blind participants and sample collectors to treatment status. How-

ever, lab technicians and data analysts were blinded to treatment status. The trial was

funded by the Bill & Melinda Gates Foundation and the United States Agency for Interna-

tional Development.

Conclusions

Integration of improved water quality, sanitation, and handwashing could contribute to sus-

tainable control strategies for Ascaris infections, particularly in similar settings with recent or

ongoing deworming programs. Combining nutrition with WSH did not provide further bene-

fits, and water treatment alone was similarly effective to integrated WSH. Our findings pro-

vide new evidence that drinking water should be given increased attention as a transmission

pathway for Ascaris.

Trial registration

ClinicalTrials.gov NCT01704105.

Author summary

Why was this study done?

• Intestinal worm and protozoan infections affect >1 billion children and are associated

with growth faltering and impaired cognitive development.

• High reinfection rates can prevent mass drug administration programs from eliminat-

ing transmission.

Integrated WASH and nutrition to prevent child parasite infections
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• Improved water quality, sanitation, handwashing, and nutrition could interrupt envi-

ronmental transmission of parasites, but few trials evaluating these interventions have

measured parasite infections as an outcome.

What did the researchers do and find?

• The authors conducted a randomized controlled trial among a birth cohort to test if sin-

gle and combined improved drinking water quality, sanitation, handwashing, and nutri-

tion interventions can reduce intestinal worm and Giardia infections. The authors

measured parasite infections after 2 years of intervention exposure.

• The authors demonstrated that water treatment alone and integrated water, sanitation,

and handwashing interventions can sustainably reduce roundworm (Ascaris) infection

prevalence among young children in Kenya.

• Improved nutrition did not enhance the effectiveness of the water, sanitation, and hand-

washing interventions, and none of the interventions reduced Giardia.

What do these findings mean?

• Improving water quality, sanitation, and handwashing concurrently in the household

environment can protect children from infection with Ascaris.

• The study also provides evidence that water treatment alone may provide a similar level

of protection against Ascaris infection, suggesting that combining water, sanitation, and

handwashing interventions does not yield greater health benefits than implementing

single interventions.

• Treating drinking water is a relatively unexplored strategy for controlling intestinal

worm infections, and drinking water should be given increased attention as an ingestion

exposure pathway for Ascaris eggs.

Introduction

Intestinal soil-transmitted helminth (STH) infections, including Ascaris lumbricoides, Tri-
churis trichiura, and hookworm, and the protozoan Giardia duodenalis are common parasitic

infections among children in low-resource settings and are neglected tropical diseases. Glob-

ally, STHs are estimated to affect 1.45 billion people [1], while Giardia has been cited as the

most common enteropathogen in low-income countries [2]. STH and Giardia infections can

result in poor absorption of nutrients and weight loss [3,4]. There is some evidence that STH

and Giardia infections, even when asymptomatic, may contribute to growth faltering and

impaired cognitive development [5–8]. Longitudinal cohort studies in Bangladesh and Brazil

have identified early infection with Giardia as a risk factor for stunting among children [7,9].

In Peru, children with multiple Giardia infections per year during the first 2 years of life had

lower cognitive function scores at age 9 years than children with 1 or fewer Giardia infections

Integrated WASH and nutrition to prevent child parasite infections
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[10]. Evidence on the effect of child STH infections on child growth, cognitive development,

and school performance has been mixed and strongly debated by experts, with some suggest-

ing additional evidence is needed [5,6,11–14].

School-based targeted mass drug administration (MDA) campaigns have been the corner-

stone of the global strategy to control STH infections; however, high reinfection rates limit the

ability of MDA to achieve sustained reduction in STH infection prevalence [15]. Ascaris, Tri-
churis, Giardia, and Ancylostoma duodenale are primarily transmitted through the fecal—oral

ingestion route, although A. duodenale as well as Necator americanus can be transmitted trans-

dermally [3]. A meta-analysis of studies from settings with medium-to-high endemic STH

prevalence identified an average reinfection rate for Ascaris at 12 months of 94% of baseline

prevalence, while the average 12-month reinfection rates for Trichuris and hookworm were

82% and 57%, respectively [16]. To achieve elimination of STH transmission, it has been sug-

gested that MDA control efforts may need to be integrated with improved water, sanitation,

and handwashing [17]. Control of Giardia has historically relied on drug treatment after diag-

nosis as well as exposure prevention by water treatment and improved sanitation, but zoonotic

transmission can complicate exposure prevention: Few interventions have been developed to

prevent human exposure to animal fecal contamination [18].

Recent systematic reviews suggest that improved water, sanitation, and handwashing can

reduce the odds of STH and Giardia infections, though the quality of the evidence base

remains poor and consists almost exclusively of observational analyses [2,19]. Two random-

ized controlled trials (RCTs) in rural India found no impact of community sanitation interven-

tions on helminth infections; however, both studies reported low usage rates of toilets among

intervention households [20,21]. A recent cluster-randomized trial in Timor-Leste found no

additional benefit from combining improved water, sanitation, and handwashing with

deworming over deworming alone [22]. We were able to identify 3 previous RCTs evaluating

water and sanitation effects on Giardia [2]. Two water treatment trials in Guatemala and

Rwanda with small sample sizes (n< 200 participants per arm) did not detect an effect on

serological measures of Giardia [23,24], while a community-level sanitation trial detected a

reduction in Giardia infection prevalence in rural India [20].

An individual’s susceptibility to STH and Giardia infection is influenced by exposure and

immune response. A recent systematic review concluded that there was some evidence that

nutritional supplementation decreases the risk of infection or reinfection with STHs, but studies

have been of low quality [25]. Plausible mechanisms by which nutrition might reduce STH or

Giardia infection are through improvements in effective immune response, including repair of

cell damage caused by parasite infection, and through changes to the gut microbiome [26,27].

We conducted a cluster-randomized controlled trial (WASH Benefits) in rural Kenya to

assess the effects of water, sanitation, handwashing, and nutrition interventions delivered

alone and in combination on STH and Giardia infections among a birth cohort. STH and

Giardia infections were prespecified as trial outcomes before the trial began [28]. In a separate

paper, we reported the effects of the interventions on child growth and diarrhea [29]. The tri-

al’s nutrition intervention was the only component that improved child growth, and none of

the interventions reduced diarrhea [29]. Here, we report intervention effects on Ascaris, Tri-
churis, hookworm, and Giardia infections measured after 2 years of intervention exposure.

Methods

Study design

The trial protocol and detailed methods are published [28]. The trial was registered at Clinical-

Trials.gov, identification number: NCT01704105. The study protocol was approved by the

Integrated WASH and nutrition to prevent child parasite infections
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Committee for Protection of Human Subjects at the University of California, Berkeley (proto-

col number 2011-09-3654), the Institutional Review Board at Stanford University (IRB-

23310), and the Scientific and Ethics Review Unit at the Kenya Medical Research Institute

(protocol number SSC-2271). Innovations for Poverty Action enrolled participants, imple-

mented the intervention delivery, and collected the data. Mothers provided written informed

consent for themselves and their children.

Clusters of eligible pregnant women were randomized by geographic proximal blocks into

1 of 8 study arms: water treatment (chlorine treatment of drinking water); improved sanita-

tion(provision of toilets with plastic slabs and hardware to manage child feces); handwashing

with soap; combined water treatment, sanitation, and handwashing (WSH); improved nutri-

tion (infant and young child feeding counseling plus small-quantity lipid-based nutrient sup-

plements [LNSs]); combined WSH and nutrition (WSHN); a double-sized active control; and

a passive control. The trial included a passive control arm to test if promoter visits alone (active

control) had an effect on the trial’s primary outcomes diarrhea and growth; children in the

passive control arm were purposively excluded from parasitology measurement (Fig 1).

We conducted a cluster-randomized trial because there could have been behavior and

infectious disease interactions between neighboring households. Villages were eligible for

selection into the study if they were rural, the majority of the population lacked access to piped

water supplies, and there were no other ongoing WSH or nutrition programs. Within selected

villages, a census was conducted to identify eligible pregnant women in their second or third

trimester who planned to continue to live at their current residence for the next year. Since

Fig 1. Trial profile and participant flow. STH, soil-transmitted helminth.

https://doi.org/10.1371/journal.pmed.1002841.g001

Integrated WASH and nutrition to prevent child parasite infections
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interventions were designed to reduce child exposure to pathogens through a cleaner environ-

ment and exclusive breastfeeding, we enrolled pregnant women to allow time for intervention

delivery to occur prior to or as close to birth as possible. After the census, clusters were formed

from 1–3 neighboring villages and had a minimum of 6 pregnant women per cluster after the

enrollment survey (each village could only be assigned to 1 cluster). Enrolled study compounds

were thus a small proportion of the total number of compounds residing in each cluster. Chil-

dren born to enrolled pregnant women were considered “index” children. We measured para-

site infections approximately 27 months post-enrollment (which equates to a minimum of 24

months of intervention exposure since intervention hardware was delivered <3 months after

enrollment). Outcomes were assessed among index children, including twins, as well as

among 1 older child in the index child’s compound to understand the effect of the interven-

tions on both preschool-aged and school-aged children. The older child was selected by enroll-

ing the youngest available child within the age range of 3–15 years old, with priority for a

sibling in the index child’s household.

Baseline survey

A survey at enrollment measured household socioeconomic characteristics and demographics

(including maternal age, maternal education, electricity access, type of floor, and number of

people in the household), as well as water, sanitation, and handwashing infrastructure and

behaviors (including type of water source, reported water treatment, defecation location, type

of toilet, and presence of water and soap at a handwashing station). In addition, at study

enrollment we measured Giardia, Entamoeba histolytica, and Cryptosporidium spp. among

children residing in study compounds between 18 and 27 months of age (the projected age

range for index children at the end of the study) to assess baseline prevalence of these patho-

gens. STHs were not measured at enrollment among these proxy children because it was not

logistically feasible to deworm infected children at baseline. We also collected 100-ml samples

from primary drinking water sources accessed by study households and household stored

drinking water (if available). We transported the samples on ice to field labs and enumerated

Escherichia coli in each sample by membrane filtration followed by culture on MI medium.

Randomization and blinding

A few weeks after enrollment, clusters were randomly assigned to intervention/control arms at

the University of California, Berkeley, by an investigator independent of the field research

team (BFA) using a random number generator. Groups of 9 geographically adjacent clusters

were block-randomized into the 6 intervention arms, the double-sized active control arm, and

the passive control arm (the passive control arm was not included in the parasite assessment).

Participants and other community members were informed of their intervention/control

group assignment after the baseline survey. Blinding (masking) of participants was not possi-

ble given the nature of the interventions. Data and stool sample collectors were not informed

of cluster assignment, but could have inferred treatment status by observing intervention hard-

ware. Lab technicians were blinded to intervention status. Two authors (AJP and JS) indepen-

dently replicated the statistical analyses while blinded to intervention status.

Intervention delivery

Intervention delivery occurred within 3 months after enrollment. In the water intervention

arms (water treatment, WSH, and WSHN), community health promoters encouraged drink-

ing water treatment with chlorine (liquid sodium hypochlorite) using either manual dispensers

installed at the point of collection (community water source) in study villages or bottled

Integrated WASH and nutrition to prevent child parasite infections
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chlorine provided directly to households every 6 months. In the sanitation intervention arms

(sanitation, WSH, and WSHN), households in study compounds received new latrines, or

existing latrines were upgraded and improved by installing a plastic slab that included a lid. All

households in sanitation arm study compounds were provided with a child potty for each

child<3 years as well as a “sani-scoop” to remove animal and human feces from the com-

pound. Households were encouraged to use latrines for defecation and for disposal of child

and animal feces. In the handwashing intervention arms (handwashing, WSH, and WSHN),

study compounds were provided with 2 handwashing stations—near the latrine for handwash-

ing after defecation and near the cooking area for handwashing before preparing food. Stations

included dual foot-pedal-operated jerry cans that could be tipped to dispense either soapy

water or rinse water. Households were responsible for keeping the stations stocked with rinse

water, and community health promoters refilled soap regularly. In the nutrition intervention

arms (nutrition and WSHN), small-quantity LNSs were provided to children 6–24 months of

age. Children received monthly rations of LNSs for addition to their other food twice per day.

Nutrition messaging included promoting dietary diversity during pregnancy and lactation,

early initiation of breastfeeding, exclusive breastfeeding at age 0–6 months, continued breast-

feeding through age 24 months, timely introduction of complementary foods, dietary diversity

for child feeding, and child feeding during illness. Intervention delivery was at the cluster level

for the water intervention (all compounds in villages assigned to the cluster had access to the

chlorine dispensers), at the compound level for sanitation and handwashing (non-study com-

pounds in the cluster did not receive handwashing stations or improved toilets), and at the

child level for the nutrition intervention (only index children and their siblings under 24

months received LNSs).

Community health promoters were nominated by mothers in the community and trained

to provide intervention-specific behavior change activities and instructions on hardware use

and provision of nutrition supplements. They were also trained to measure the mid-upper arm

circumference of the index children to identify and provide referrals for potential cases of

severe acute malnutrition. Each intervention consisted of a comprehensive behavior change

package of key messages; visual aids in the form of flip charts, posters, and reminder cue cards;

interactive activities with songs, games, or pledges to commit to practice target behaviors; and

the distribution of arm-specific hardware, products, or supplements. Households in the active

control group received visits from promoters to measure child mid-upper arm circumference

and provide malnutrition referrals, but did not receive any intervention-related hardware or

messaging. Promoters were instructed to visit households monthly. Key messages and pro-

moter materials are available at https://osf.io/fs23x/.

Adherence to the interventions was measured during unannounced household visits after 1

year and 2 years of intervention exposure (S1 Text).

Measurement of parasite infections

Stool samples were collected from index children and older children in sterile containers and

transported on ice to the closer of 2 central field labs located in Kakamega and Bungoma. Field

staff revisited households up to 3 times to collect stool samples. A. lumbricoides, T. trichiura,

and hookworm eggs were immediately enumerated (same day) by double-slide Kato—Katz

microscopy with 41.7-mg templates. Both slides created from each stool sample were counted

by a trained parasitologist, and 2 different parasitologists counted each slide from the same

sample. A supervisor with expertise in STH egg identification reviewed 10% of all slides, and

any discrepancies were corrected. STH egg counts were averaged for analysis if both slides

from 1 stool sample were positive; if 1 slide was negative, the count for the positive slide was

Integrated WASH and nutrition to prevent child parasite infections
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used for analysis. Two aliquots of stool (1 mixed with ethanol) were transported on dry ice to

the Eastern and Southern Africa Centre of International Parasite Control laboratory at the

Kenya Medical Research Institute in Nairobi, Kenya, for further analysis.

One aliquot was analyzed by monoclonal enzyme-linked immunosorbent assay (ELISA)

(Giardia II, Alere International, Galway, Ireland) for the presence or absence of G. duodenalis
cysts. Samples were measured by ELISA in duplicate; if there was a discrepancy between dupli-

cates, the sample was rerun. DNA was extracted from the other aliquot (preserved in ethanol)

for stool samples collected from children in the control, WSH, and WSHN groups. Four quan-

titative polymerase chain reaction (qPCR) assays were run in duplicate on each sample to

detect the following targets: N. americanus, A. duodenale, T. trichiura, and A. lumbricoides (see

S1 Text for further details) [30].

Outcomes

STH and Giardia infections were prespecified outcomes in the parent WASH Benefits trial

prior to the start of data collection; see Fig 3 in Arnold et al. [28]. Parasite infections were mea-

sured after 2 years of intervention exposure. The main indicators of parasite infections were

the prevalence of each individual STH infection, any STH infection, and Giardia infection

among index and older children from the same compound. Additional indicators of parasite

infections included intensity of Ascaris, Trichuris, and hookworm measured in eggs per gram

(epg) of feces; intensity binary category of Ascaris infection, measured as low intensity (1–

5,000 epg) or moderate/high intensity (>5,000 epg), following World Health Organization

(WHO) cutoffs; prevalence of coinfection with 2 or 3 STHs; and prevalence of coinfection

with Giardia and any STH. The trial’s original protocol included E. histolytica and Cryptospo-
ridium spp. as additional protozoan endpoints. At enrollment, Giardia prevalence was 40%

among 535 children 18–27 months old in study compounds, while Cryptosporidium spp. prev-

alence was 1% and E. histolytica prevalence was 0%. We determined that the extremely low

baseline prevalence of E. histolytica and Cryptosporidium spp. made these trial endpoints futile

due to limited statistical power, and since each required a separate assay on the ELISA plat-

form, the study’s steering committee decided to not test for them at follow-up.

Sample size calculations

All households in all clusters enrolled into the main trial were invited to participate in the mea-

surement of parasite infections. The main trial was powered for a minimum detectable effect

of 0.15 in length-for-age Z score and a relative risk of diarrhea of 0.7 or smaller for a compari-

son of any intervention with the double-sized control group, assuming a type I error (α) of

0.05 and power (1 − β) of 0.8, 10% loss to follow-up, and a 1-sided test for a 2-sample compari-

son of means (the main trial statistical analysis plan was later changed to employ 2-sided tests).

This led to a planned design of 100 clusters per arm and 10 index children per cluster. Given

this design and a single post-intervention measure, we estimated that the trial’s sample size

would be sufficient at 80% power with a 2-sided α of 0.05 to detect a relative reduction of 18%

in infection prevalence of any parasite (2-sided tests were planned due to a lack of evidence

that all interventions would have a protective effect). Our minimum detectable effect calcula-

tions assumed 50% prevalence in the control arm, a village intraclass correlation (ICC) of 0.14,

2 children measured per enrolled household (index child plus an older sibling), and 70% suc-

cessful stool collection and analysis. For perspective, this minimum detectable effect is much

smaller than typical effect sizes reported in meta-analyses of the association between improved

water, sanitation, and handwashing and helminth/protozoan infections (e.g., odds ratios

between 0.46 and 0.58 for sanitation facilities and helminth infections) [2,31].
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Statistical analysis

All statistical analyses and comparisons between arms (water treatment, sanitation, hand-

washing, WSH, nutrition, and WSHN compared to active control) were prespecified prior to

unblinding of investigators, and the analysis plan was published with a time stamp on the

Open Science Framework (https://osf.io/k2s47/). Replication scripts and data are also pro-

vided at the same link. Our alternative hypothesis for all comparisons was that group means

were not equal (2-sided tests). We estimated unadjusted and adjusted intention-to-treat effect

differences between study arms using targeted maximum likelihood estimation with influ-

ence-curve-based standard errors that treated clusters as independent units and allowed for

outcome correlation within clusters [32,33]. Our parameters of interest for dichotomous out-

comes were prevalence ratios (PRs) (prevalence in the intervention group divided by the

prevalence in the control group). Our parameter of interest for helminth intensity was the

relative fecal egg count reduction. We calculated the relative reduction using both geometric

and arithmetic means. We did not perform statistical adjustments for multiple outcomes to

preserve interpretation of effects and because many of our outcomes were correlated [34].

We estimated adjusted parameters by including variables that were associated with the out-

come, to potentially improve the precision of our estimates. We prescreened covariates (S1

Text) to assess whether they were associated (p-value < 0.2) with each outcome prior to

including them in adjusted statistical models [35]. We conducted subgroup analyses to

explore effect modification on Ascaris and Giardia infection presence by the following fac-

tors: index child status (LNSs were given only to index children and siblings under 24

months), consumed deworming medicine in past 6 months (Ascaris only), consumed soil in

past week (index children only), >8 people in compound, and time since defecation before

stool collection. Statistical analyses were conducted using R version 3.3.2 (https://www.r-

project.org).

Results

Enrollment

Pregnant women were enrolled into the cluster-randomized controlled trial from Kakamega,

Bungoma, and Vihiga counties in Kenya’s western region. Enrollment occurred between

November 27, 2012, and May 21, 2014; 8,246 pregnant women were enrolled. Clusters with an

average of 12 eligible pregnant women each were randomized by geographic proximal blocks

into 1 of 8 study arms: water treatment (chlorine treatment of drinking water); improved

sanitation (provision of toilets with plastic slabs and hardware to manage child feces); hand-

washing with soap; combined WSH; improved nutrition (infant and young child feeding

counseling plus small-quantity LNSs); combined WSHN; a double-sized active control; and a

passive control. Children in the passive control arm were purposively excluded from parasitol-

ogy measurement: Only the active control group is considered hereafter (Fig 1). Parasite infec-

tions were measured among children born to enrolled pregnant women (index children) as

well as their older siblings or an older child in the same compound.

Enrollment characteristics of the study population were similar between arms (Table 1).

Most households accessed springs or wells as their primary drinking water source. In the

control group, 24% of households accessed unprotected water sources, such as springs, dug

wells, and surface water. The microbial quality of drinking water was very poor, as has been

reported previously for this study area [36]; 96% (n = 1,829) of source water samples and 94%

(n = 5959) of stored drinking water samples contained E. coli contamination. Most (82%)

households owned a latrine, but only 15% had access to a latrine with a slab or ventilation pipe
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(Table 1). Soap and water availability for handwashing at a designated handwashing location

was low (<10%).

Indicators of intervention uptake

After 1 year of intervention, 89%–90% of households that received the sanitation intervention

had access to an improved latrine with a slab or a ventilation pipe (compared to 18% in the

control arm), and 79%–82% of these had access to an improved latrine after 2 years of inter-

vention. In the water intervention arms, 40%–44% of households had a detectable chlorine

residual in their stored drinking water at the 1-year follow-up (compared to 3% of control

households), and 19%–23% had chlorine detected after 2 years. In the handwashing interven-

tion arms, 76%–78% of households had soap and water available at a handwashing station

(compared to 12% in the control arm) after 1 year, and this decreased to 19%–23% at 2 years.

Consumption of LNS sachets by children in the nutrition intervention arms was 95%–96% of

the expected 2 sachets per day at the 1-year follow-up, and 114%–116% of expected at the

2-year follow-up (>100% is possible because additional LNS sachets were delivered in case of

future delivery delays) (S1 and S2 Tables).

Table 1. Baseline characteristics by treatment assignment.

Characteristic Control

(n = 1,916)

Water

(n = 903)

Sanitation

(n = 886)

Handwashing

(n = 911)

WSH

(n = 909)

Nutrition

(n = 840)

Nutrition + WSH

(n = 920)

Maternal

Age (years) 26 26 26 26 26 26 26

Completed primary school 47.9 49.4 48.4 43.8 47.1 48.6 47.7

Paternal

Completed primary school 62.4 63.9 58.7 59.0 61.5 63.5 62.5

Works in agriculture 41.1 44.2 42.6 42.1 43.2 43.6 42.8

Household

Number of persons 5 5 5 5 5 5 5

Has electricity 6.4 6.7 8.1 7.2 7.0 6.9 7.3

Has a cement floor 5.6 8.1 5.5 4.5 5.4 5.7 6.1

Drinking water

Primary source protected 75.7 75.3 75.9 77.5 68.6 71.5 76.1

Stored water observed at home 81.5 81.3 82.0 82.8 79.5 81.0 81.0

Reported treating currently stored water 12.6 11.1 12.8 12.6 13.2 11.6 14.3

Sanitation

Daily defecating in the open

Children: 3 to <8 years 11.7 12.6 12.7 13.8 12.8 14.4 12.3

Children: 0 to <3 years 77.5 80.2 74.8 76.2 76.4 78.5 78.0

Latrine

Owned by compound 81.7 83.2 81.2 82.8 82.7 83.1 83.5

Has slab or ventilation pipe 17.3 17.7 15.7 18.4 17.5 15.0 16.4

Visible feces on slab or floor 47.6 78.3 76.3 50.1 52.5 50.4 50.2

Has a child potty 2.3 2.7 2.0 3.1 2.6 1.7 2.2

Human feces observed in the compound 8.6 7.3 8.0 9.3 8.1 8.7 9.5

Handwashing

Handwashing station has water and soap 5.0 6.2 4.7 5.6 6.9 6.7 5.7

Data are mean or percent. Protected water sources include piped water, borewells, protected springs, protected dug wells, and rainwater collection.

WSH, water treatment, sanitation, and handwashing.

https://doi.org/10.1371/journal.pmed.1002841.t001
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Infection prevalence

STH and Giardia infections were measured after 2 years of exposure to the interventions. We

collected stool specimens from 9,077 children aged 2–15 years at the 2-year survey during Jan-

uary 2015–July 2016, including 4,928 index children (median age in years: 2.0; IQR 1.9, 2.1)

and 4,149 older children (median age in years: 5.0; IQR 4.2, 6.4) residing in an index child’s

compound (Fig 1). A total of 2,346 children in 158 control clusters, 1,117 children in 77 water

clusters, 1,160 children in 77 sanitation clusters, 1,141 children in 77 handwashing clusters,

1,064 children in 76 WSH clusters, 1,072 children in 78 nutrition clusters, and 1,177 children

in 79 WSHN clusters provided stool specimens. Stool specimens were successfully collected

from 95% (4,928 of 5,202) of available index children and from 93% (4,149 of 4,484) of avail-

able older children 2 years after intervention delivery (Fig 1 shows number of children not

available due to there being no live birth, death, refusal, or absence; S3 and S4 Tables show

characteristics of children lost to follow-up, by treatment status). In the control group, 22.6%

of children were infected with Ascaris (ICC: 0.10), 2.2% with hookworm (ICC: 0.04), 1.2%

with Trichuris (ICC: 0.07) (measured by Kato–Katz microscopy), and 39% with Giardia (mea-

sured by ELISA) (S5 Table). Ascaris infection prevalence was similar for index children

(22.8%) and older children (22.3%) in the control group. Caregivers reported that 39% of

index children and 10% of older children had consumed soil in the past 7 days.

Effect of interventions on parasite infection prevalence

Infection prevalence of each STH, any STH, and Giardia was compared between each inter-

vention group (water treatment, sanitation, handwashing, WSH, nutrition, and WSHN) and

the double-sized active control group; see Methods for further details of the analysis. Com-

pared to the control group, Ascaris infection prevalence was 18% lower in the water arm (PR:

0.82 [95% CI 0.67, 1.00]), 22% lower in the combined WSH arm (PR: 0.78 [95% CI 0.63,

0.96]), and 22% lower in the WSHN arm (PR: 0.78 [95% CI 0.64, 0.96]) (Fig 2; S5 Table). We

did not observe that the individual interventions sanitation (PR: 0.89 [95% CI 0.73, 1.08]),

handwashing (PR: 0.89 [95% CI 0.73, 1.09]), or nutrition (PR: 86 [95% CI 0.71, 1.05] reduced

Ascaris infection on their own (Fig 2). The combined WSH intervention reduced infection

with any STH by 23% (PR: 0.77 [95% CI 0.63, 0.95]), and the combined WSHN intervention

reduced infection with any STH by 19% (PR: 0.81 [95% CI 0.66, 0.98]) (S5 Table). No interven-

tions significantly reduced the prevalence of hookworm and Trichuris, though the low preva-

lence in the control arm meant that any reduction due to intervention would be difficult to

detect in the trial (S5 Table). No interventions reduced Giardia prevalence (Fig 2).

We reanalyzed all stool samples collected from children enrolled in the control, WSH, and

WSHN arms by qPCR to validate our estimates based on microscopy measurements. These 3

arms were selected for the qPCR subset analysis prior to unblinding of investigators to results

and were chosen based on the hypothesis that these arms would be the most likely to have low-

intensity STH infections if any of the interventions were effective. qPCR analyses resulted in

almost identical intervention effect estimates to those based on microscopy (Fig 3; S6 Table).

Compared to the control group, Ascaris infection prevalence was 21% lower (PR: 0.79 [95% CI

0.64, 0.97]) in the WSH group and 23% lower (PR: 0.77 [95% CI 0.64, 0.93]) in the WSHN

group. We also did not detect any significant effects of the interventions on Trichuris or hook-

worm infections using qPCR data (S6 Table).

Effect of interventions on infection intensity

Ascaris infection intensity was lower in children in the water arm (fecal egg count reduction

[FECR] with geometric means: −16% [95% CI −32%, −1%]), the WSH arm (FECR: −19%
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[95% CI −33%, −5%]), and the WSHN arm (FECR: −18% [95% CI −32%, −4%]) compared to

the control arm; FECR with arithmetic means showed similar results (Table 2). The prevalence

of heavy/moderate intensity Ascaris infections was 10.0% in the water arm, 10.9% in WSH,

and 10.3% in WSHN compared to 12.7% in the control arm; these differences were not statisti-

cally significant at the 95% confidence level (S5 Table).

The FECR with arithmetic means indicated that children in the WSH arm had lower inten-

sity infections with hookworm (3 epg versus 11 epg in control arm) (Table 2). In addition, the

FECR with arithmetic means indicated lower Trichuris infection intensity in the WSH (0 epg

versus 6 epg in control arm), nutrition (2 epg), and WSHN (1 epg) arms. Children who

received the WSHN intervention had 27% lower prevalence of coinfection with STH and Giar-
dia compared to the control group (PR: 0.73 [95% CI 0.56, 0.97]) (S4 Table). STH coinfection

was rare: <2% in the control arm and at similarly low levels in intervention arms (S5 Table).

Fig 2. Effect of the interventions on infection with Ascaris and Giardia: Data includes all index children and older siblings combined. Prevalence ratios

estimated by targeted maximum likelihood estimation. Error bars show 95% confidence intervals for the prevalence ratios. WSH, water treatment, sanitation, and

handwashing.

https://doi.org/10.1371/journal.pmed.1002841.g002
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Adjusted models and subgroup analyses

Adjusted effect estimates were similar to unadjusted effects (S5 Table). Subgroup analyses of

intervention effects stratified by index children versus older children, reported soil consump-

tion (index children only), number of people living in the compound, deworming (Ascaris
only), and time since defecation did not show any strong effect modification (S8 Table).

Discussion

Our findings demonstrate that an integrated water, sanitation, and handwashing intervention

targeting the household environment in rural Kenya reduced Ascaris infection prevalence by

22%, while a water treatment intervention reduced Ascaris infection by 18%. Almost identical

effect estimates generated by analyzing stool samples with microscopy and qPCR in a subset

of arms lent additional credibility to the overall results (Fig 3). In addition, we found that

improved nutrition did not enhance the effectiveness of the WSH intervention. Trichuris and

hookworm prevalence were too low to precisely assess intervention impact in this setting, and

Giardia was unaffected by the interventions. Although the integrated WSH intervention did

Fig 3. Effect of the combined interventions on infection with Ascaris estimated with Kato–Katz microscopy (left) and by qPCR (right). Prevalence ratios

estimated by targeted maximum likelihood estimation. Error bars show 95% confidence intervals for the prevalence ratios. qPCR, quantitative PCR; WSH, water

treatment, sanitation, and handwashing.

https://doi.org/10.1371/journal.pmed.1002841.g003
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not succeed in improving child growth or reducing symptomatic diarrhea in this trial [29], our

findings confirm that WSH can effectively reduce helminth infection prevalence.

A limited number of RCTs have previously analyzed the effect of WSH interventions on

STH infection. Several school-based RCTs combining deworming with handwashing promo-

tion have reported significant reductions in Ascaris reinfection prevalence in China, Ethiopia,

and Peru [37–39]. A school-based integrated WSH intervention combined with deworming in

rural Kenya also reduced the odds of Ascaris reinfection [40]. While previous RCTs demon-

strate the success of school-based deworming combined with hygiene promotion, our results

contribute new evidence from a large cluster-randomized trial that improving WSH in the

household environment can reduce Ascaris infections in a rural, low-income setting.

We did not detect an effect of the sanitation intervention alone on STH infection preva-

lence. One potential explanation for the lack of impact may be that transitioning households

from using traditional pit latrines to pit latrines with slabs may not have a measurable impact

on STH transmission. A shift from households practicing open defecation to using latrines

might be more likely to reduce STH transmission, with little additional benefit from improving

latrine quality. A recent trial in Côte d’Ivoire reported greater reduction in hookworm infec-

tion prevalence among communities that received a community-led total sanitation

Table 2. Effect of the interventions on infection intensity, measured by FECR with arithmetic and geometric means.

Outcome and arm N Geometric mean Arithmetic mean

Log10 mean�, epg FECR 95% CI p-Value Arithmetic mean, epg FECR 95% CI p-Value

Ascaris FECR

Control 2,335 0.60 3,641

Water 1,114 0.40 −0.16 −0.32, −0.01 0.04 2,682 −0.26 −0.52, −0.01 0.04

Sanitation 1,154 0.50 −0.09 −0.25, 0.07 0.27 3,443 −0.04 −0.32, 0.23 0.75

Handwashing 1,140 0.50 −0.08 −0.25, 0.08 0.31 3,386 −0.03 −0.34, 0.28 0.85

WSH 1,058 0.40 −0.19 −0.33, −0.05 0.01 2,571 −0.27 −0.52, −0.02 0.03

Nutrition 1,071 0.50 −0.10 −0.25, 0.04 0.16 3,303 −0.11 −0.34, 0.12 0.35

Nutrition + WSH 1,174 0.40 −0.18 −0.32, −0.04 0.01 2,927 −0.21 −0.46, 0.03 0.09

Hookworm FECR

Control 2,335 −0.25 12

Water 1,114 −0.23 0.02 −0.02, 0.05 0.37 10 −0.20 −0.84, 0.44 0.54

Sanitation 1,154 −0.24 0.01 −0.02, 0.04 0.42 10 −0.16 −0.90, 0.57 0.67

Handwashing 1,140 −0.21 0.03 0.00, 0.07 0.08 23 0.93 −1.39, 3.25 0.43

WSH 1,058 −0.26 −0.02 −0.04, 0.01 0.18 3 −0.74 −0.91, −0.58 0.00

Nutrition 1,071 −0.23 0.03 −0.01, 0.06 0.14 12 0.16 −1.17, 1.50 0.81

Nutrition + WSH 1,174 −0.23 0.02 −0.01, 0.06 0.22 24 1.02 −1.87, 3.91 0.49

Trichuris FECR

Control 2,335 −0.27 6

Water 1,114 −0.27 0.00 −0.03, 0.03 0.92 6 0.04 −1.91, 1.98 0.97

Sanitation 1,154 −0.27 0.00 −0.03, 0.02 0.77 4 −0.19 −1.49, 1.11 0.78

Handwashing 1,140 −0.26 0.01 −0.02, 0.04 0.46 6 0.03 −1.40, 1.46 0.97

WSH 1,058 −0.29 −0.02 −0.04, 0.00 0.06 0 −0.91 −1.07, −0.75 0.00

Nutrition 1,071 −0.28 −0.02 −0.04, 0.01 0.18 2 −0.64 −1.22, −0.05 0.03

Nutrition + WSH 1,174 −0.29 −0.02 −0.05, 0.00 0.10 1 −0.81 −1.15, −0.47 0.00

FECR estimated by targeted maximum likelihood estimation. FECRs are expressed as proportions (percentage change/100).

�Value of 0.5 epg substituted for samples below the detection limit, to calculate log-transformed mean.

epg, eggs per gram; FECR, fecal egg count reduction; WSH, water treatment, sanitation, and handwashing.

https://doi.org/10.1371/journal.pmed.1002841.t002

Integrated WASH and nutrition to prevent child parasite infections

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002841 June 26, 2019 14 / 21

https://doi.org/10.1371/journal.pmed.1002841.t002
https://doi.org/10.1371/journal.pmed.1002841


intervention (designed to reduce open defecation levels) integrated with community-wide

MDA compared to community-wide MDA alone, although it should be noted that the trial

was not randomized and had limited statistical power [41]. A second explanation for the lack

of effect of the sanitation intervention may be that sanitation interventions are more effective

at interrupting environmental transmission of pathogens when they are implemented at the

community level [42], whereas our intervention only improved sanitation access in com-

pounds with enrolled pregnant women. However, a recent cluster-randomized trial of a com-

munity-wide sanitation intervention integrated with deworming in Timor-Leste found that

the intervention did not reduce helminth infection prevalence more than deworming alone

[22]. A third explanation is that it could require >2 years of improved sanitation access to sub-

stantially reduce levels of helminth eggs in soil (Ascaris eggs can survive in soil for several

years).

The reductions in Ascaris prevalence in the combined arms could have resulted from

improved water quality alone; Ascaris prevalence was 18% lower in the water treatment arm

than the control arm, a similar magnitude to the 22% reduction in the integrated intervention

arms. Near identical reductions in Ascaris infection across all 3 water intervention arms sug-

gests that water could have been an important transmission pathway in this population, which

was interrupted by chlorine treatment. STH transmission through water is consistent with a

recently published substudy among the control, sanitation, and WSH arms in our trial that

found no effect of the sanitation intervention on STH egg prevalence in soil collected from the

household entrance [43]. However, we cannot completely rule out contribution to reductions

from other interventions in the combined arms; Ascaris prevalence was lower (20%) in the sin-

gle intervention arms sanitation, handwashing, and nutrition, compared to 23% prevalence in

the control arm. Chlorine is not known to inactivate Ascaris eggs, but 1 experimental study did

find that chlorine can delay egg development and infectivity [44]; it’s possible that delayed egg

infectivity could reduce the risk of consuming an infective egg through drinking water. The

proportion of households using jerry cans (a plastic water container with a narrow capped

opening) to safely store drinking water was slightly higher in the water intervention arms than

the other arms (S1 and S2 Tables). Our findings indicate that drinking water is an understud-

ied transmission pathway for Ascaris. We believe drinking water treatment should be further

investigated as an STH control strategy, and that chlorine should be further explored as a

method for inhibiting Ascaris egg development in drinking water supplies. While improved

sanitation and handwashing have been suggested as control strategies for Ascaris, water treat-

ment has not been previously recommended as an Ascaris control strategy, yet it appeared to

be the most effective environmental intervention that we tested in this trial. Our results have

the potential to shape future guidance for STH control programs to emphasize water treatment

for Ascaris control.

The combined WSHN intervention was similarly effective to WSH in reducing Ascaris
prevalence, and improved nutrition did not reduce STH or Giardia infection on its own.

Together, these results suggest that the improved nutrition intervention did not reduce

parasite infection in this population. Trials investigating the impact of micronutrient supple-

mentation on STH infection or reinfection have reported mixed results [25]. Our results are

consistent with a Kenyan trial that found no effect of school-based micronutrient supplemen-

tation on reinfection with Ascaris [45]. Considering that interventions in this trial did not

include treatment with antiparasitic drugs, further research would be valuable to understand if

LNSs could prevent parasite infections after drug treatment.

Our findings suggest that combined interventions may not achieve additive or multiplica-

tive effects on Ascaris infection. Similar reductions in Ascaris infection prevalence were

observed in the water and combined WSH arms, and in the WSH and WSHN arms. Given
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limited resources, combining the interventions implemented in this trial may not be a cost-

effective strategy to reduce helminth infections as drinking water interventions alone may

yield similar benefits.

Giardia prevalence was unaffected by any of the interventions in this trial. Our results stand

in contrast to results from the parallel WASH Benefits trial conducted in Bangladesh [46],

which detected reductions in Giardia infection prevalence in the handwashing, sanitation,

combined WSH, and combined WSHN arms [47]. One potential explanation for the lack of

intervention effects in this trial is that water could be the primary transmission pathway for

Giardia in this study setting, and Giardia is highly resistant to chlorination. The majority of

households in the WASH Benefits Bangladesh trial accessed protected tubewells, providing

water with lower levels of fecal contamination compared to the springs and shallow wells

accessed by households in this trial [36,48]. Another potential explanation is that handwashing

rates with soap were not high enough at the time of measurement to interrupt Giardia trans-

mission; presence of soap and water at a handwashing station decreased from 78% at 1 year to

19% at 2 years among households in the WSH arm (S1 and S2 Tables). Giardia is also zoonotic

[4]; exposure to avian and ruminant fecal contamination in the household environment could

mitigate the effect of improved sanitation on transmission. Animal feces management was not

a targeted behavior of the intervention packages.

This trial had some limitations. Chlorination does not inactivate protozoa, but was selected

as the most appropriate water treatment intervention for the study context considering previ-

ous local acceptability, affordability, and effectiveness against bacterial and viral enteric patho-

gens. We measured parasite infections 2 years after intervention delivery; measurement

among the study population at 1 year could have produced different results because of higher

intervention adherence at that time (S1 Table) and different child age-related exposures (e.g.,

younger children may be more likely to consume soil). We were unable to blind study partici-

pants due to the nature of the interventions; however, our outcomes were objective indicators

of infection analyzed by blinded laboratory technicians, and blinded analysts replicated the

data analysis.

During our trial, Kenya implemented a national school-based targeted MDA program to

reduce STH prevalence [49], and 43% of study children were reported to have consumed

deworming medication in the past 6 months (S8 Table). Reported consumption of deworming

medicine was similar across study arms, suggesting no systematic differences in program cov-

erage or intensity between arms (S9 Table). We observed similar Ascaris prevalence among

study index children (23%, median age 2 years) and older children (22%, median age 5 years),

suggesting that school-based MDA could be missing a key reservoir of infection among young,

preschool-aged children. Moreover, an environmental survey conducted during the national

deworming program in our study region reported common detection of STH eggs in soil col-

lected from the entrance to homes, with Ascaris eggs detected in soil in 19% of households

[50]. Taken together, these findings suggest that additional control strategies beyond school-

based deworming might be necessary to fully interrupt environmental STH transmission.

In contrast to most previous trials evaluating the effect of WSH or nutrition on STH infec-

tion, administering deworming medication was not included with our intervention. Our find-

ings represent the potential impact of WSH and nutrition interventions in the context of

exposure to a deworming program implemented at the national scale. Although the magnitude

of Ascaris prevalence reduction observed in the WSH and water arms may be lower than

what could be achieved by drug treatment in the short term, reduced STH infection after 2

years of intervention exposure indicates sustained impact. Our results support the proposal

that improved WSH could complement chemotherapy in the global effort to eliminate STH

transmission.
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