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Computational Geometry Column 40

Joseph O’Rourke∗

Abstract

It has recently been established by Below, De Loera, and Richter-Gebert that finding a minimum size
(or even just a small) triangulation of a convex polyhedron is NP-complete. Their 3SAT-reduction proof
is discussed.

All triangulations of a polygon of n vertices use the same number of triangles, n−2, but the same does not
hold in higher dimensions, even for convex polytopes. We will only discuss 3-polytopes, i.e., convex polyhedra
P , where a triangulation is a collection of tetrahedra whose vertices are drawn from the vertices of P , whose
union is P , and such that the intersection of any two of the tetrahedra is either empty or a vertex, edge, or
face common to the two tetrahedra. The number of tetrahedra in a triangulation of a convex polyhedron of n

vertices might be as small as n− 3 or as large as
(

n

2

)

− 2n+3. It is easy to obtain a linear-size triangulation of
a simplicial polyhedron (all faces triangles) by the following starring procedure ([Ber97, p. 424]). Select one
vertex v and include the tetrahedron formed by the convex hull of v and each face f not incident to v. Because
a simplicial polyhedron has F = 2n − 4 faces, this method yields at most 2n − 7 tetrahedra (at least three
tetrahedra are incident to v). For nonsimplicial polyhedra, it could be better. For example, applied to a cube,
starring results in a triangulation by 6 tetrahedra (Fig. 1a). So this method provides a triangulation using at
most twice the minimum number. But getting closer to the optimum (in the case of a cube, 5 (e.g., Fig. 1b))
has proven difficult. Now we know why: Below, De Loera, and Richter-Gebert (BDR) proved that deciding
whether a convex polyhedron can be triangulated with fewer than k tetrahedra is NP-complete [BDR00].

v

(b)(a)

Figure 1: (a) One tetrahedron in a triangulation of six tetrahedra starred from v. Here 6 of the 12 faces are
incident to v; 6 = 2n− 10. (b) A triangulation using five tetrahedra; the central tetrahedron is shown.

Their proof follows the structure of Ruppert and Seidel’s similar proof that the same question for nonconvex
polyhedra is intractable [RS92]. But the latter authors showed that even deciding whether a polyhedron could
be triangulated is hard, whereas we’ve seen all convex polyhedra are easily triangulated. Here I will sketch
just one aspect of the proof in [BDR00].

Both proofs rely on Schönhardt’s untriangulable polyhedron ([O’R87, p. 254]; [Ber97, p. 423]), shown in
Fig. 2(b). The three reflex diagonals (a) block triangulation. The polyhedron is first transformed by enlarging
the base B (c). Now if B is glued to a larger “frame” polyhedron, its top face A, which BDR call the “skylight,”
must be connected through B to a vertex below to form the tetrahedron that includes A. It is this “visibility”
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Figure 2: Schönhardt polyehdron. (a) Reflex diagonals; (b) Polyhedron; (c) Base B enlarged with respect to
“skylight” A.

constraint that Ruppert and Seidel exploited to arrange for their 3-SAT reduction.
BDR convexify the attached Schönhardt polyhedra through the following strategy. They prove (in [BB+00])

that a fan-shaped polyhedron like that shown in Fig. 3 (embedded in a larger polyhedron) is efficiently
triangulated by employing the internal axis diagonal ab, but any triangulation that avoids that diagonal
uses many more tetrahedra. So they string a shallow arc of points exterior to the three reflex diagonals of
each Schönhardt polyhedron, to achieve two goals: (1) to convexify each; and (2) to heavily penalize any
triangulation that does not employ the reflex diagonals. This forces the inclusion of the Schönhardt diagonals,
which forces skylight visiblity constraints.

b

a

Figure 3: A fan is best triangulated using diagonal
ab; one tetrahedron is shown.

v

Figure 4: Starring from v is incompatible with
surface triangulation.

The remainder (and majority) of their proof exploits these constraints to construct variable and clause
gadgets on the frame polyhedron, carefully arranging lines of sight to result in a convex polyhedron that
can be triangulated with few tetrahedra iff a particular logical formula is satisfiable. Beside the intricacy of
the logical structure, two delicate issues are retaining convexity, and assuring the vertex coordinates remain
singly-exponential, and so polynomially representable.

At least two interesting open questions remain. The first is determining the complexity of finding a
maximum size (or just a large) triangulation. Perhaps surprisingly, large triangulations of d-polytopes do have
application, to algebraic geometry and to integer programming.

The second problem has practical significance in geometric modeling, in particular, to meshing. For a
nonsimplicial polyhedron, i.e., one with faces of more than three sides, the surface may be triangulated in
several different ways. Typically solid models are given with a particular surface triangulation. It is unknown
how difficult it is to decide whether there exists a triangulation of the polyhedron into tetrahedra that is
compatible with a given surface triangulation, in the sense that each triangle on the surface is a face of a
tetrahedron. For example, no starring of the triangular prism shown in Fig. 4 is compatible with the displayed



(Schönhardt-like) surface triangulation, for starring from v demands all faces incident to v be also starred. In
fact no triangulation of this prism is compatible without adding an interior “Steiner” point.

References

[BB+00] A. Below, U. Brehm, J. A. De Loera, and J. Richter-Gebert. Minimal simplicial dissections and
triangulations of convex 3-polytopes. Discrete Comput. Geom., 24:35–48, 2000.

[Ber97] M. Bern. Triangulations. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and

Computational Geometry, chapter 22, pages 413–428. CRC Press LLC, Boca Raton, FL, 1997.

[BDR00] A. Below, J. A. De Loera, and J. Richter-Gebert. The complexity of finding small triangulations of
convex 3-polytopes. Manuscript. http://www.inf.ethz.ch/personal/richter/, 2000.

[O’R87] J. O’Rourke. Art Gallery Theorems and Algorithms. The International Series of Monographs on
Computer Science. Oxford University Press, New York, NY, 1987.

[RS92] J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional non-convex polyhedra.
Discrete Comput. Geom., 7:227–253, 1992.

http://www.inf.ethz.ch/personal/richter/

	Smith ScholarWorks
	12-2000

	Computational Geometry Column 40
	Joseph O'Rourke
	Recommended Citation


	arXiv:cs/0010039v1  [cs.CG]  31 Oct 2000

