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QCD vs. the Centrifugal Barrier: a New QCD Effect �

Tamar Friedmann1,a

1University of Rochester, Rochester, NY

Abstract. We propose an extended schematic model for hadrons in which quarks and

diquarks alike serve as building blocks. The outcome is a reclassification of the hadron

spectrum in which there are no radially excited hadrons: all mesons and baryons pre-

viously believed to be radial excitations are orbitally excited states involving diquarks.

Also, there are no exotic hadrons: all hadrons previously believed to be exotic are states

involving diquarks and are an integral part of the model. We discuss the implications of

this result for a new understanding of confinement and its relation to asymptotic freedom,

as well as its implications for a novel relation between the size and energy of hadrons,

whereby an orbitally excited hadron shrinks.

1 Introduction

It is well-known that making reliable predictions about low-energy QCD and hadrons is a great chal-

lenge, as perturbative methods of quantum field theory do not apply at low energies where the coupling

constant is strong. The common approach has been to propose various dynamical models which are

inspired by assumptions, ideas, and intuition borrowed from physical systems, such as atomic physics

and non-relativistic quantum mechanics, which are not QCD.

Here1 we set out to study the hadron spectrum by employing purely QCD ingredients and invoking

the role of diquarks in the mix.

One well-established pillar of QCD is the quark model [3], which has been the accepted framework

for classifying the hadron spectrum. This is a schematic model for the mesons and baryons in which

quarks are the building blocks for all the hadrons: mesons are bound states of a quark and an antiquark

(qq̄) and baryons are bound states of three quarks (qqq). In addition to quarks, bound configurations

of two quarks, known as diquarks, may also be building blocks. The diquarks, explored already at

the emergence of the quark model in the 1960’s having been introduced by Gell-Mann in [4], were

revisited following a surge of experimental and theoretical interest in pentaquarks (qqqqq̄)[5].2 In

particular, diquarks have been used as building blocks in a systematic classification of all known

baryons [7]. As to mesons, a few mesons have been viewed as having diquarks as constituents – to

name just two examples, the light scalar mesons were interpreted as diquark-antidiquark states [8], as

�Plenary Talk, International Conference on New Frontiers in Physics, Kolymbari, Crete, Greece, June 2012.
ae-mail: tamarf@pas.rochester.edu
1This work is based on a more extensive manuscript, with many additional details and references [1, 2]; some material is

being reused.
2It was eventually found that the pentaquarkΘ+ does not exist [6]; as R. L. Jaffe said (Harvard seminar, 2004), "pentaquarks

might come and go, but the diquarks are here to stay."
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were several charmed mesons [9]. But diquarks have never been employed systematically as building

blocks for the classification of all known mesons.

We undertake this task. Our purpose is to find out whether the entire meson spectrum can be

re–classified with the aid of diquarks, and whether we can learn anything new about QCD in the

process.

In this spirit, we construct a new extended schematic model for mesons in which certain diquark

configurations, selected for us by the flavor structure of meson phenomenology, are building blocks

for mesons in addition to, and on equal footing with, the quarks of the traditional quark model. These

diquarks are the two flavor-antisymmetric ones. One of the two coincides with the most well–known

"good" diquark which is antisymmetric in all quantum numbers; the other has been previously unfairly

neglected.

What follows is a reclassification of the meson spectrum into quark-antiquark and diquark-

antidiquark states3 and a reassignment of L and S quantum numbers to the mesons. Thus, diquark-

antidiquark states are naturally integrated into the classification and no longer perceived as "exotic".

In the classification process, a new notion of isorons (iso-hadrons) emerges, along with their magic
JPC quantum numbers. The isorons are the natural analogs of isotopes or isotones in atomic or nuclear

physics, and their magic JPC quantum numbers are analogous to the magic numbers of the nuclear

shell model. In the nuclear shell model, it was spin-orbit couplings which was the magic behind

the magic numbers. Here, it remains an open problem to understand what is behind the magic JPC

of isorons. It is striking that the magic JPC of isorons match the quantum numbers predicted for

low-lying glueballs by lattice QCD.

Most significantly, we find that there are no radially excited mesons: no radial quantum number

arises. In both the light and heavy quark sectors, mesons that have been believed to be radially excited

quark–antiquark states are orbitally excited diquark- antidiquark states. The same is true for baryons:

the baryons that have so far been considered to be radially excited are orbitally excited configurations

of two diquarks and an antiquark. All in all, we are led to the conclusion that there are no radial

excitations in the hadron spectrum. In turn, this leads to inescapable, surprising, and significant

implications regarding the dynamics of the strong force, confinement, and asymptotic freedom. In

particular, we uncover a new set of relations between two fundamental properties of hadrons: their

size and their energy. These relations predict that hadrons shrink.

While our predictions may appear counterintuitive, they are completely consistent with the known

properties of QCD, such as confinement and asymptotic freedom, and provide a novel explanation for

the relation between them.

By now our predictions have experimental confirmation: three experiments which observe shrink-

age of hadrons have surfaced several months after this author’s papers [1] were posted to arXiv. In

the first, a shrunk size of the proton was observed in July 2010 [11]. While initially the reason for

the unexpectedly small size of the proton was attributed to QED, it was later realized [12] that the

shrunk size of the proton manifests properties of QCD, as predicted in our papers [1]; it was again

acknowledged that the proton size is a manifestation of QCD in the nonperturbative region when the

same experiment was repeated a couple of years later in January 2013 [13]. The third experiment,

carried out at HERMES, reported shrinkage of the size of the ρ meson in December 2010 [14]. Fur-

thermore, charged bottomonium-like "exotic" states, the Zb(10610) and Zb(10650), were discovered

by the BELLE collaboration in October 2011 [15], which fit nicely in our classification tables as our

predicted isovector made of a diquark and an antidiquark. Suggestions for further experiments appear

in Section 5.

3For a recent study of tetraquark mesons at large N by Steven Weinberg, see [10].
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We emphasize that we have not imposed any form of interquark interaction on our model. Instead,

we make extensive use only of experimental data together with the idea that quarks and diquarks serve

as building blocks for hadrons. This approach is fundamentally different from the one behind non-

relativistic QCD models which rely on an interquark potential. The results are also fundamentally

different.

2 Extended schematic model for mesons: diquark building blocks and
meson quantum numbers

Now we turn to meson phenomenology to determine what configurations of two quarks can be consid-

ered as the diquark building blocks for mesons. We note that all observed light meson multiplets are

flavor nonets. No larger flavor multiplets appear. Therefore, the S U(3) f flavor representation of the

diquark building blocks may not be larger than an antitriplet or else flavor multiplets of mesons larger

than nonets would be expected. Fortunately, an antitriplet indeed appears in the flavor representation

of a diquark (the subcript f denotes flavor):

Q = qq : 3 f ⊗ 3 f = 6 f ⊕ 3̄ f . (1)

So we require that a diquark be in 3̄ f configuration, which is flavor antisymmetric. Since quarks

are fermions, a totally antisymmetric configuration is needed, which leads to two possible diquark

configurations: Q1 = (3̄ f , 1s, 3̄c) and Q2 = (3̄ f , 3s, 6c) (the subscript s denotes spin and c denotes

color). When we include heavy flavors, we continue to require antisymmetry in flavor; the spin and

color representations remain unchanged.

So now we have three building blocks for mesons: ordinary quarks q and the diquarks Q1 and Q2.

From these we construct meson states.

As usual, mesons must be color singlet bosons. By computing the suitable tensor products of the

representations of the color group S U(3)c, we find that the only color singlet combinations are qq̄,
Q1Q̄1, and Q2Q̄2. It remains to compute their JPC quantum numbers. For qq̄ these are well-known to

be J = L ⊗ S , P = (−1)L+1, C = (−1)L+S . For Q1Q̄1 and Q2Q̄2, J is as usual L ⊗ S , and a calculation

analogous to the derivation of P and C for qq̄ mesons yields4 P = (−1)L and C = (−1)L+S . Now all

JPC quantum numbers for all three types of mesons in this model may be computed in terms of L and

S . See Table 1.

3 Reclassification of mesons

The next stage is to classify the known mesons based on this model. The PDG contains all mesons

observed in experiments, with measurements of the meson’s mass, JPC , and decays.5 We arrange the

mesons in flavor nonets of common JPC quantum numbers, and assign L and S quantum numbers

from Table 1. The result is a classification of all mesons, both light and heavy. See Table 2.

We now discuss two central features of the classification.6

1) Isorons and magic numbers. In most cases, there is a unique assignment for each meson, but

occasionally there are multiple mesons vying for one available space in the table. In analogy with the

concept of "isotopes," which denote multiple atoms with the same atomic number and properties but

4Of course, the charge conjugation quantum number C is understood to apply only to charge conjugation eigenstates.
5Those mesons listed in the PDG under "further states" are not yet considered established and we leave them out of the

discussion.
6Other features discussed in [1] involve expected new particles, mass hierarchies in light nonets, binding energies of di-

quarks, decays of QiQ̄i mesons, interquark forces, and Regge trajectories, are omitted here due to space constraints.
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Table 1: JPC quantum numbers for the three types of mesons, up to L = 2 (see [1] for full table).

Table 1a: qq̄

L S JPC 2S+1LJ

0 0 0−+ 1S 0

0 1 1−− 3S 1

1 0 1+− 1P1

1 1 2++ 3P2

1++ 3P1

0++ 3P0

2 0 2−+ 1D2

2 1 3−− 3D3

2−− 3D2

1−− 3D1

Table 1b: Q1Q̄1

L S JPC 2S+1LJ

0 0 0++ 1S 0

1 0 1−− 1P1

2 0 2++ 1D2

Table 1c: Q2Q̄2

L S JPC 2S+1LJ

0 0 0++ 1S 0

0 1 1+− 3S 1

0 2 2++ 5S 2

1 0 1−− 1P1

1 1 2−+ 3P2

1−+ 3P1

0−+ 3P0

1 2 3−− 5P3

2−− 5P2

1−− 5P1

2 0 2++ 1D2

2 1 3+− 3D3

2+− 3D2

1+− 3D1

2 2 4++ 5D4

3++ 5D3

2++ 5D2

1++ 5D1

0++ 5D0

different mass, we name the multiple mesons "isorons," short for iso-hadrons. They appear in Table

2c.

One can see immediately that there are certain JPC for which there is an abundance of isorons.

Those JPC are called "magic JPC" in analogy with magic numbers of the nuclear shell model. In-

triguingly, in the light meson sector, the magic JPC exactly match the quantum numbers expected for

low-lying glueballs from lattice QCD [16].

2) No radial excitations. A distinct feature of the classification is that no radial quantum number

arises: all mesons are reclassified as qq̄, Q1Q̄1, or Q2Q̄2 with assigned L and S quantum numbers that

are consistent with the measured JPC . Mesons previously believed to be radially excited are classified

as one of the following: Q1Q̄1 or Q2Q̄2 mesons with one unit of orbital excitation, L = 1 (see the

second light 0−+ nonet and the second light 1−− nonet, as well as their heavier charm and bottom

partners); qq̄ mesons with L = 2 (the ψ(3770) and the Υ(3S )); or Q2Q̄2 mesons with L = 3 (the

ψ(4040) and the Υ(4S )).7

Although we have not discussed baryon reclassification in our extended quark model, one can

show [1, 5] that in the baryon sector it is also the case that there is no radial quantum number: all

baryons previously believed to be radially excited are reclassified as states involving diquarks, such as

Q1Q1q̄, with orbital, but no radial, excitations. Hence, the result about no radial excitations in mesons

extends to all hadrons.

7Note that the names Υ(nS ) given to the bottomoniums are based on their previous classification as S-waves with n units of

radial excitation.
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Table 2a: Classification of light mesons, up to J = 2 (see [1] for full table).

Light mesons
JPC constituents 2S+1LJ I = 1 I = 1

2
I = 0

0−+ qq̄ 1S 0 •π •K • η • η′(958)
0−+ Q2Q̄2

3P0 •π(1300) K(1460) • η(1475) • η(1295)
0++ Q1Q̄1

1S 0 •a0(980) κ(800) • f0(980) • f0(600)
0++ qq̄ 3P0 •a0(1450) •K∗

0(1430) • f0(1710) • f0(1370)
0++ Q2Q̄2

5D0 K∗
0(1950) f0(2100) • f0(2020)

1−− qq̄ 3S 1 •ρ(770) •K∗(892) • φ(1020) • ω(782)
1−− Q1Q̄1

1P1 •ρ(1450) •K∗(1410) • φ(1680) • ω(1420)
1−− Q2Q̄2

5P1 ρ(1570)

1−− qq̄ 3D1 •ρ(1700) •K∗(1680) •ω(1650)
1−− Q2Q̄2

5F1 ρ(2150) φ(2170)

1−+ Q2Q̄2
3P1 •π1(1600) K(1630)

1++ qq̄ 3P1 •a1(1260) •K1(1400) • f1(1420) • f1(1285)
1++ Q2Q̄2

5D1 a1(1640) K1(1650) f1(1510)
1+− qq̄ 1P1 •b1(1235) •K1(1270) h1(1380) • h1(1170)

1+− Q2Q̄2
3D1 h1(1595)

2−+ Q2Q̄2
3P2 •π2(1670) K2(1580) η2(1870) • η2(1645)

2−+ qq̄ 1D2 •π2(1880)
2−+ Q2Q̄2

3F2 π2(2100) K2(2250)

2−− Q2Q̄2
5P2 •K2(1770)

2−− qq̄ 3D2 •K2(1820)

2++ qq̄ 3P2 •a2(1320) •K∗
2(1430) f2(1430) • f2(1270)

2++ Q2Q̄2
1D2 • f ′2(1525)

2++ Q1Q̄1
1D2 a2(1700) f2(1640) f2(1565)

2++ Q2Q̄2
5D2 f2(1810)

2++ qq̄ 3F2 K∗
2(1980) • f2(2010) • f2(1950)

For J ≥ 3 see [1].

One may now ask: can this result shed any new light on QCD? The answer is an emphatic "yes,"

and we discuss it in the following section.

Before we do so, we address the history that led to the current belief that radial excitations of

hadrons do exist.

One of the main sources for the concept that hadrons may be radially excited goes back to po-

tential models. According to these models, low-energy QCD is described by a quark–quark potential

V(r), where r is the distance between the quarks. The potential in these models has two terms: a

short–distance term that is Coulomb-like (i.e., proportional to −1/r) and analogous to the interac-

tion between the proton and electron in the hydrogen atom, and a long–distance term Vcon f (r) that
increases with r and – according to the models – describes confinement.

In these models, the spectrum for quark–antiquark bound states, i.e. mesons, is obtained by solv-

ing the Schrödinger equation with the above potential V(r). As with the hydrogen atom, or as with any

central potential in non-relativistic quantum mechanics, the resulting quantum numbers that describe

the spectrum include a principal or radial quantum number. Hence, potential models automatically

allow for, and in fact require, radial quantum numbers and radial excitations. Another prominent set

of models known as strong decay models also includes radials. Yet the theoretical predictions about
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Table 2b: Classification of heavy mesons.

Charmed mesons
JPC constituents 2S+1LJ I = 1◦ I = 1

2
I = 0 I = 0

0−+ qq̄ 1S 0 •D •Ds •ηc(1S )
0−+ Q2Q̄2

3P0 •ηc(2S )
0++ Q1Q̄1

1S 0 D∗
0(2400) •D∗

s0(2317) •χc0(1P)
0++ qq̄ 3P0 χb0(2P)
1−− qq̄ 3S 1 •D∗ •D∗

s •J/ψ(1S )
1−− Q1Q̄1

1P1 •ψ(2S )
1−− qq̄ 3D1 •ψ(3770)
1−− Q2Q̄2

5F1 •ψ(4040)
1++ qq̄ 3P1 D1(2420) •Ds1(2536) •χc1(1P)
1++ Q2Q̄2

5D1 •Ds1(2460) •X(3872)

2++ qq̄ 3P2 •D∗
2(2460) •Ds2(2573)

� •χc2(1P)
2++ Q1Q̄1

1D2 χc2(2P)
Bottom mesons

0−+ qq̄ 1S 0 •B •Bs, Bc ηb(1S )
0++ Q1Q̄1

1S 0 •χb0(1P)
0++ qq̄ 3P0 χb0(2P)
1−− qq̄ 3S 1 •B∗ B∗

s •Υ(1S )
1−− Q1Q̄1

1P1 •Υ(2S )
1−− qq̄ 3D1 •Υ(3S )
1−− Q2Q̄2

5F1 •Υ(4S )
1++ qq̄ 3P1 •B1(5721)

0 •Bs1(5830)
0 •χb1(1P)

1++ Q2Q̄2
5D1 •χb1(2P)

2++ qq̄ 3P2 •B∗
2(5747)

0† •B∗
s2(5840)

† •χb2(1P)††

2++ Q1Q̄1
1D2 •χb2(2P)††

Table 2c: Isorons.

JPC Isorons
0−+ •η(1405) η(1760) • π(1800) K(1830) η(2225)

0++ • f0(1500) f0(2200) f0(2330)
1−− ρ(1900)

•ψ(4160) • X(4260) X(4360) • ψ(4415) Υ(10860) Υ(11020)
1−+ •π1(1400)
2++ f2(1910) f2(2150) • f2(2300) • f2(2340)
4++ f4(2300)

radial excitations in hadrons have been known to encounter difficulties: data involving the masses of

the candidates for radial excitations shows that they are often significantly lighter than predicted by

the models, and data involving their decay modes often does not favor a radial assignment either [17].

If we turn back to the original quark model, we find that a radial quantum number was never

part of this model, and the early versions of the PDG reported the quantum numbers of mesons with

the notation 2S+1LJ , that is, spin and orbital quantum numbers only. It was only around 1980 that

the PDG added a radial quantum number, ultimately modifying its notation to the atomic one, i.e.
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n2S+1LJ . The reason was that additional mesons were detected that did not fit into the original quark

model classification, and this extra quantum number was introduced as a classification tool. There

was certainly no direct evidence that those additional mesons were radially excited. In fact, some

years later the PDG removed the radial classification of two meson nonets because it was considered

far fetched [18].

4 Implications

We now discuss the implications of our result, which we summarize as

The Law of the Hadronic Spectrum: There are no radial excitations in low-energy QCD.

1) The laws of ground state and excited hadrons. In order to understand the implications of the above

Law of the Hadronic Spectrum, we first recall the properties of radial excitations in systems where

they do exist, such as atomic physics. Recall that in a radially excited hydrogen atom, the average

distance between the proton and electron is larger than that distance in its ground state. As the radial

excitation quantum number nr increases, this distance - which defines the radius of the atom - grows,

until finally when nr → ∞, the electron and proton are completely separated and the atom has been

ionized.

It is therefore clear that the absence of radial excitations in the hadron spectrum is directly related

to the prohibition on separation of the constituents of a hadron, that is, it is directly related to quark

confinement. Since radial excitations are prohibited for hadrons, but other excitations – such as orbital

excitations – are allowed, it must follow that the distance between the quarks in excited states cannot

be larger than their distance in the corresponding ground state, or else such excitations would have

been prohibited just as radial excitations are. Therefore, unlike the case for atoms, we have:

The Law of Ground State Hadrons: The radius of a hadron is largest when the hadron is
in its ground state.

When a hadron is excited, does its radius stay the same or become smaller? While no radii

of excited hadrons have ever been measured, four measurements of ground-state radii are available

(proton: .87fm, Σ−: .78fm, π: .67fm, K: .56fm; their masses are .94GeV, 1.2GeV, .14GeV, and

.49GeV, respectively [6]8). From these one can see that in both the meson and baryon sectors, a

more massive hadron is smaller. Now, an orbitally excited hadron has higher mass than a ground

state hadron - it follows roughly the Regge trajectory equation where m2 ∝ L. Also, it is standard to

associate higher energies or large momenta with smaller distances. So we have:

The Law of Shrinking Radii: The radius of a hadron decreases when the hadron’s orbital
excitation increases.

We may express the Law of Shrinking Radii in the following way:

ΔR
ΔL

< 0 , (2)

where R is the hadron’s radius.

This result may appear counter-intuitive, since it is well-known in quantum physics, as well as in

classical physics, that there is a centrifugal barrier associated with orbital angular momentum. That

8Another ground state hadron, the ρ meson, arguably has a size similar to that of the pion [19]. Lattice QCD calculations

[20] also provide a radius for the Δ.
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is, an object with orbital angular momentum tends to be larger. However, QCD and confinement have

always proved counter-intuitive. We may therefore re-state the result by saying that in hadrons, QCD

overcomes the centrifugal barrier9.

2) Transition between confinement and asymptotic freedom. It is one of the pillars of QCD that when

quarks are at high energies and close to each other, their interaction is very weak - this is the concept of

asymptotic freedom and antiscreening. Further, when quarks are at low energies and far apart (around

1fm), their interaction is strong and confining.

We have shown that a hadron is largest at its lowest energy state, and its size decreases when it

is orbitally excited. It follows that we can overcome confinement and reach asymptotic freedom by

increasing a hadron’s orbital excitation. Eventually, its quarks will be so close to each other that they

become free and the hadron no longer exists.

Note that a set of hadrons where each successive one has an additional unit of L is called a Regge

trajectory. Therefore, what we have shown is that the path from confinement to asymptotic freedom is
a Regge trajectory.

So far, known Regge trajectories have at most 3 hadrons for baryons, and 6 hadrons for mesons

[1, 7]. This means either that further hadrons of the trajectory have not yet been detected, or that they

already do not exist as hadrons because the energy is already high enough that we have reached the

regime of asymptotic freedom.

3) The top quark is free. The top quark is the heaviest known quark and it is the only quark that has

been observed on its own, not as a constituent of any hadron. It is standard to say that the top is so

heavy that it decays before it hadronizes [6, 21]. We propose a different interpretation: the top quark

is so heavy that its intrinsic energy is in the asymptotically free regime where there is no confinement,

and no hadrons. It is a free quark.

5 Further experimental tests

In addition to the experiments [11, 14] mentioned in the introduction, a particularly direct test of the

predictions proposed here about the size of hadrons would be a measurement of the size of excited

hadrons as compared with a measurement of the size of their ground state. For example, one may

take several mesons of a given Regge trajectory such as π, b1(1235), π2(1670) or a Regge trajectory
of baryons such as N(939), N(1520), N(1680) and measure their sizes. Such measurements have not

yet been carried out and may prove challenging experimentally due to the short lifetime of the excited

hadrons. However, extensive studies of N∗s have been carried out at JLAB and may contain promising

data [22].
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