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Abstract

We derive formulas for counting certain classes of vacua in the string/M theory landscape. We do so in
the context of the moduli space of M-theory compactifications on singular manifolds with G2 holonomy.
Particularly, we count the numbers of gauge theories with different gauge groups but equal numbers of U(1)

factors which are dual to each other. The vacua correspond to various symmetry breaking patterns of grand
unified theories. Counting these dual vacua is equivalent to counting the number of conjugacy classes of el-
ements of finite order inside Lie groups. We also point out certain cases where the conventional expectation
is that symmetry breaking patterns by Wilson lines and Higgs fields are the same, but we show they are in
fact different.
© 2012 Published by Elsevier B.V.

1. Introduction

In the study of compactification of string or M theory on Calabi–Yau (CY) or G2 manifolds,
it was believed for many years that one could find a particular CY or G2 manifold from which
the theory resulting from compactification would be the true vacuum: the Standard Model of
particle physics. After a while, it became apparent that finding such a CY or G2 manifold would
be inordinately difficult due to the staggering number of possible manifolds, which form what
is now known as the “string landscape”. The string landscape tied in with prior ideas related
to the cosmological constant problem [1–5]. There was then a paradigm shift in the approach,
from searching for a particular vacuum towards counting the many vacua of the landscape [6].
An extensive discussion of the issue of counting vacua, following which there was a surge of
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literature about statistics of vacua, appeared in [6] (see also [7] and references therein). There,
in lieu of a precise counting, statistical methods were used.

Some time before the paradigm shift of [6], the first author took the counting approach and
found the first precise formula for counting string or M-theory vacua in the context of a study
of the dynamics of M-theory compactified on singular spaces of G2 holonomy that provide for
gauge symmetry breaking [8].1 The study of compactifications on singular manifolds was mo-
tivated by the realization that for smooth G2 manifolds, compactification does not lead to any
non-Abelian gauge theories [14–16] and thus is not useful in obtaining the ultimate vacuum, i.e.
the Standard Model of particle physics. However, when a manifold of G2 holonomy has an A, D,
or E singularity – that is, a singularity of the form C2/Γ where Γ is a finite, discrete subgroup of
SU(2) – it is known via string dualities [17–19,15,16,20] that the four-dimensional physics con-
tains a supersymmetric non-Abelian gauge theory with gauge group given by the ADE Lie group
corresponding to the ADE singularity. Therefore, the study of compactification of M-theory on
singular G2 spaces could lead to potentially realistic physical theories; for recent examples, see
[21–25].

The space of supersymmetric M-theory vacua can be thought of as the quantum moduli
space of M-theories compactified on G2 manifolds. When the G2 manifolds are asymptotic
to a cone over (S3 × S3)/Γ , it has been shown [19,15,16,26] that the quantum moduli space
is a Riemann surface that smoothly interpolates between three different classical limits: one
of these classical limits corresponds to non-Abelian supersymmetric ADE gauge theories that
arise from ADE singularities in the G2 manifold, while the two others correspond to theories on
a smooth G2 manifold which does not admit any normalizable zero modes. Since theories with
no normalizable zero modes have a mass gap, the smooth interpolation between such theories
and non-Abelian supersymmetric gauge theories has been viewed as evidence supporting the
statement that non-Abelian supersymmetric gauge theories have a mass gap [16,19,26,14].

This picture may be generalized to G2 manifolds that are asymptotic to a cone over
(S3 × S3)/Γ where Γ is a larger group such as Γ = Γ1 × Γ2 × Γ3 ∈ [SU(2)]3, where each
Γi is a finite discrete subgroup of SU(2). In this case, it was shown in [8] that the three clas-
sical limits appearing in the moduli space correspond to supersymmetric ADE gauge theories
that admit a natural gauge symmetry breaking by Wilson lines2 of a gauge group G of ADE
type to a subgroup H . The moduli space then consists of disconnected branches classified by the
number of U(1) factors that appear in the subgroup H of G that remains after the gauge sym-
metry breaking. As in [8], we denote the branch with s − 1 U(1) factors by Ns,Γ . The number
of U(1) factors also corresponds to the number of zero modes that appear in the theory. One
example stands out: when Γ = Z5 × Zq and q is prime to 5, we obtain the first manifestation
via M-theory of Georgi–Glashow grand unification: an SU(5) grand unified gauge group is bro-
ken by Wilson lines precisely to the gauge group of the Standard Model SU(3) × SU(2) × U(1)

[35,8,21]. Having a single U(1) factor, this theory appears on the branch N2,Z5×Zq
.

The smooth interpolation between any two points on a given branch can be interpreted as
a duality between theories with different gauge groups H and H ′ but equal number of U(1)

1 For counting of supersymmetric vacua in gauge theories via the Witten index, see [9–13] and references therein.
2 The idea of symmetry breaking by Wilson lines dates back to the 1980s [27–30] and has appeared and re-appeared

in the string/M/F theory literature. For some recent examples see [8,21,31–34].
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factors. For example, if the G2 space has an An−1 singularity, we have an SU(n) gauge theory
which can be broken to s non-Abelian subgroups and s − 1 Abelian U(1) factors via

SU(n) −→
s∏

i=1

SU(ni) × U(1)s−1,

where
∑

ni = n. For fixed s, all these theories appear on a single branch and are interpreted as
dual to each other. This same duality, originally obtained in [8] via M-theory compactifications,
was later rediscovered in [36] via field theoretic methods.

The question now becomes, how many such theories, or – equivalently – semiclassical vacua,
actually appear on each branch Ns,Γ of the quantum moduli space? Unlike the more general case
of [6], where counting is not possible, a precise formula in the particular case of An singularities
actually was presented already in [8] (without the derivation). As it happens, this formula con-
stituted the first actual counting of vacua with gauge symmetry breaking in the string/M theory
landscape context, and the first author has received requests for the derivation.

It is the purpose of this paper to provide the counting formulas not only for An−1 singularities
corresponding to the grand unified group G = SU(n), but also to provide analogous formulas for
G = SO(n), Sp(n), U(n), and O(n). The prudent reader would notice that these are the A, B,
C, and D Lie groups, while the M-theory compactification we started with corresponds to gauge
theories with A, D, or E gauge groups only. While the formulas we derive for A and D groups
apply directly to the given M-theory compactifications on A and D singularities, the formulas
for B and C groups do not seem at first sight to be directly related to any such compactification.
However, we note that one may obtain the Dynkin diagrams corresponding to the B and C groups
by folding the A or D Dynkin diagrams. Specifically, Bn may be obtained by folding Dn+1,
and Cn may be obtained by folding A2n−1 [37]. Therefore, our formulas for B and C groups do
apply to compactifications that allow for such folding action. Also, the formulas we obtain tell us
new information about symmetry breaking patterns for grand unified theories (GUTs) that may
be useful beyond the M-theory compactifications from which we obtained them.

In all the cases under consideration, the locus of the singularity in the manifold of G2 holon-
omy is a cycle which has a non-trivial fundamental group, and it is the fundamental group which
allows for the GUT symmetry breaking by Wilson lines. The same Wilson lines naturally in-
duce a fractional three-form flux that can stabilize moduli [31], an important consideration when
attempting to obtain Standard Model physics from string or M theory.

Note that the vacua we consider are supersymmetric; to reach the landscape of non-
supersymmetric vacua, one needs to put in a supersymmetry breaking mechanism. Also, note
that the specific manifolds of G2 holonomy we consider are not compact; our discussion is rele-
vant to M-theory on compact manifolds of G2 holonomy with ADE singularities whose locus is
a 3-cycle with non-trivial fundamental group [19,8].

This paper is organized as follows. In Section 2 we explain the connection between vacua
and conjugacy classes. In Sections 3, 4, and 5 we derive the counting formulas for the unitary
and special unitary groups, symplectic groups, and orthogonal groups, respectively. In Section 6
we point out a subtle difference in symmetry breaking patterns by Wilson lines and by adjoint
Higgs fields. In a separate manuscript [39], the counting is addressed from a purely mathematical
approach. We leave for future work the analogous counting in the exceptional compact Lie groups
as well as in non-compact Lie groups.

Two of the quantities we derive, Eqs. (2) and (6), were obtained in [38] using the full ma-
chinery of Lie structure theory. Our methods are combinatorial and apply not only to simply
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connected or adjoint groups as do the methods of [38], so we can obtain results about O(n),
SO(n), and U(n) in addition to SU(n) and Sp(n).

2. Vacua as conjugacy classes

In this section we show that counting vacua in the string/M theory landscape can be reformu-
lated in terms of counting certain conjugacy classes in Lie groups.

Consider manifolds of G2 holonomy that are asymptotic to a cone over (S3 ×S3)/(Zp × Zq),
with (p, q) = 1. The manifold S3 × S3 can be described [19,8] as a homogeneous space
SU(2)3/SU(2) where the equivalence relation is

(g1, g2, g3) ∼ (g1h,g2h,g3h), gi, h ∈ SU(2).

A cone over this manifold may be obtained by “filling in” one of the three SU(2) factors, that is,
by allowing say g1 ∈ B4 (a ball of radius 1 in four dimensions) rather than just g1 ∈ S3 ∼ SU(2).
The action of γ × δ ∈ Zp × Zq is then given by

(g1, g2, g3) �→ (γg1, δg2, g3).

As shown in [8], when (p, q) = 1 the compactification of M-theory on such manifolds leads to
semiclassical vacua that are either an SU(p) gauge theory on a seven-dimensional locus of the
form R4 × (S3/Zq), or an SU(q) gauge theory on R4 × (S3/Zp).3 These gauge theories are the
vacua that we will be counting in this paper.

We may also consider manifolds of G2 holonomy that are asymptotic to a cone over
(S3 × S3)/(Γ1 × Γ2), where now the Γi are finite subgroups of SU(2) that are not necessar-
ily cyclic, i.e. they may be of D or E type as well. We still require (|Γ1|, |Γ2|) = 1 where |Γi |
denotes the number of elements in Γi .4 Since the DE groups all have even order, at least one of
the Γi must be of A type, so we consider (S3 × S3)/(Γ × Zq) with Γ an ADE group such that
(|Γ |, q) = 1. We obtain vacua that are certain combinations of SU(p), SO(2n), and E6,7,8 gauge
groups living on cycles with (binary) cyclic, dihedral, tetrahedral, octahedral, and icosahedral
fundamental groups.

All the vacua we will be counting are gauge theories living on a manifold M with non-trivial
fundamental group π1(M) (in the above example, M was R4 × (S3/Zp) or R4 × (S3/Zq) and
π1(M) was Zq or Zp). Therefore, these vacua admit Wilson lines (flat connections), that is,
homomorphisms of the fundamental group into the gauge group, U : π1(M) → G, given by [40]:

Uγ = P exp
∫
γ

Adx

where γ is a non-trivial loop in M and A is a flat connection. In the presence of a Wilson line,
the gauge group G is broken to the subgroup Hγ ⊂ G that commutes with Uγ :

Hγ = {
h ∈ G

∣∣ hUγ h−1 = Uγ

}
.

For any other element γ ′ of the fundamental group for which Uγ ′ is conjugate in the gauge
group to Uγ , the remaining subgroup Hγ ′ will be conjugate to Hγ and isomorphic to it. We will

3 The requirement that q and p are relatively prime ensures that the seven-dimensional loci are not singular.
4 Again, this condition ensures the smoothness of the seven-dimensional locus of the singularity.
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be counting the theories that have distinct symmetry breakings, so we count each conjugacy class
of Wilson lines only once. For example, when the fundamental group is Zq and the gauge group
is SU(p), a conjugacy class of Wilson lines is simply a conjugacy class consisting of elements
of SU(p) order dividing q , i.e. elements x ∈ SU(p) such that xq = I .

3. Counting vacua associated with unitary groups

In this section, we derive the formulas for the number of semiclassical vacua that appear in
the moduli space of M-theory compactifications on singular spaces of G2 holonomy that are
asymptotic to a cone over (S3 × S3)/Zp × Zq .

Based on the previous section, this number is equal to the number of conjugacy classes of
elements of order dividing q in SU(p) (i.e. xq = 1, x ∈ SU(p)) where p and q are relatively
prime (or the same with p and q exchanged). In the process, we also count the number of such
conjugacy classes in the full unitary group U(p), where there are no constraints on p and q .

Since every conjugacy class of U(p) or SU(p) contains diagonal matrices, the problem re-
duces to counting inequivalent diagonal matrices. For both U(p) and SU(p), the diagonal entries
are qth roots of unity, e2πik/q with k = 0,1, . . . , q − 1; for SU(p), we have the additional condi-
tion that their product – the determinant of the matrix – must be unity.

We proceed through an example. Let p = 7 and q = 4. Partition p into q parts corresponding
to the q possible values for the diagonal entries, keeping in mind that not all q roots of unity are
required to appear. Consider the following diagram:

This diagram corresponds to the partition {nk} = (n0, n1, n2, n3) = (2,3,0,2),
∑

nk = p. This

partition corresponds to the matrix diag(exp 2πi
4 (0,0,1,1,1,3,3)) = diag(1,1, e

2πi
4 , e

2πi
4 , e

2πi
4 ,

e
6πi

4 , e
6πi

4 ), which breaks U(7) to U(2) × U(3) × U(2) = SU(2) × SU(3) × SU(2) × U(1)3.
There is a bijection between such diagrams and inequivalent diagonal matrices in U(7). Note
that the exponents of the entries in the corresponding matrix are nondecreasing, so there is no
danger of over-counting any equivalent diagonal matrices.

The above diagram has p + q − 1 dots, with q − 1 of them circled. The number of distinct
such diagrams is given by(

p + q − 1
q − 1

)
=

(
p + q − 1

p

)
, (1)

and this is the number of conjugacy classes of elements of order 4 or 2 in U(7), or more generally
the number of conjugacy classes of elements of order q or dividing q in U(p). This number is
also the number of “weak q-compositions of p” [41].

Now impose (p, q) = 1 and turn to SU(p) = SU(7). We must take into account the require-
ment that the determinant of the matrix must be unity. Consider the following set of q = 4 distinct
partitions related to each other by cyclic permutations, their corresponding U(7) matrices, and
the sums of the diagonal exponents:

{
n

(0)
k

} = (2,3,0,2), diag

(
exp

2πi

4
(0,0,1,1,1,3,3)

)
,

∑
kn

(0)
k ≡ 1 mod 4,

{
n

(1)
k

} = (3,0,2,2), diag

(
exp

2πi

4
(0,0,0,2,2,3,3)

)
,

∑
kn

(1)
k ≡ 2 mod 4,
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{
n

(2)
k

} = (0,2,2,3), diag

(
exp

2πi

4
(1,1,2,2,3,3,3)

)
,

∑
kn

(2)
k ≡ 3 mod 4,

{
n

(3)
k

} = (2,2,3,0), diag

(
exp

2πi

4
(0,0,1,1,2,2,2)

)
,

∑
kn

(3)
k ≡ 0 mod 4,

where k = 0, . . . , q − 1. It is no accident that exactly one of these four has determinant equal
to unity (the fourth one), making it an element of SU(7). More generally, for a given partition
{n(0)

k }, consider the following set of q distinct partitions:{
n

(j)
k

} = {
n

(0)
k+j

}
, j, k = 0,1, . . . , q − 1

(indices are understood mod q). The determinant of the corresponding matrix is given by

D{n(j)
k } = exp

2πi

q

(
q−1∑
k=0

kn
(j)
k

)
= exp

2πi

q

(
q−1∑
k=0

kn
(0)
k+j

)
.

As we cycle through j = 0, . . . , q − 1, the sums differ from each other by multiples of∑
k n

(j)
k = p:

D{n(j)
k } − D{n(j+1)

k } =
q−1∑
k=0

(
kn

(j)
k − kn

(j+1)
k

)

=
q−1∑
k=0

kn
(0)
k+j −

q∑
k=1

(k − 1)n
(0)
k+j = −qnq+j +

q∑
k=1

n
(0)
k+j ≡ p mod q.

Since (q,p) = 1, by the Chinese remainder theorem, the sum 0 mod q , which represents a matrix
in SU(p) and not just U(p), appears exactly once. Therefore, to get the number of conjugacy
classes in SU(p) we must divide our previous formula by q:

1

q

(
p + q − 1

p

)
= (p + q − 1)!

p!q! . (2)

Eq. (2) represents the number of semiclassical vacua appearing on the moduli space of M-theory
compactifications on a cone over (S3 × S3)/(Zp × Zq), as well as the number of inequivalent
ways to break SU(p) gauge symmetry by a Zq Wilson line.

As explained in the introduction, in addition to the total number of ways to break the gauge
symmetry by Wilson lines, which is given by Eq. (1) for U(p) and Eq. (2) for SU(p), it is also
of physical interest to count how many of these symmetry breakings result in a specified number
of U(1) factors in the remaining gauge group H . Let us denote this number of U(1) factors by s,
so that the symmetry breaking is of the form

U(n) −→ U(1)s ×
s∏

i=1

SU(ni)

or

SU(n) −→ U(1)s ×
s+1∏
i=1

SU(ni).

Again we show how to count through an example. We start with the full unitary group U(p).
Let p = 7 and q = 4 as before, and let s = 2. Consider the following diagram:



80 T. Friedmann, R.P. Stanley / Nuclear Physics B 869 [PM] (2013) 74–88

It corresponds to a partition of p into s non-zero parts, {na} = (n1, n2) = (2,5) (
∑s

a=1 na = p).
Note that there is 1 = s − 1 vertical dividing line. There are(

p − 1
s − 1

)
different such partitions, also known as “s-compositions of p” [41]. To associate such a partition
to a matrix, we must choose s = 2 eigenvalues out of the possible q = 4. There are(

q

s

)

different such choices. Suppose we chose eigenvalues e2πi/4 and e6πi/4, which we de-
note by {λa} = (λ1, λ2) = (1,3). Then the diagonal matrix corresponding to this choice is
diag(exp(2πi/4)(1,1,3,3,3,3,3)), where as before we have ordered the exponents in non-
decreasing order so as not to overcount. Note that we have not required here that p and q be
relatively prime. So we have that the number of ways to break the gauge group U(p) into sub-
groups that have exactly s U(1) factors is(

p − 1
s − 1

)(
q

s

)
= s

p

(
p

s

)(
q

s

)
. (3)

The calculation is modified for SU(p), where we impose the condition that the determinant
of the matrix is unity and (p, q) = 1. Continuing with the example {na} = (2,5), consider the
following set of q = 4 choices of eigenvalues:

{
λ(0)

a

} = (1,3), diag

(
exp

2πi

4
(1,1,3,3,3,3,3)

)
,

∑
naλ

(0)
a ≡ 1 mod 4,

{
λ(1)

a

} = (2,0), diag

(
exp

2πi

4
(2,2,0,0,0,0,0)

)
,

∑
naλ

(1)
a ≡ 0 mod 4,

{
λ(2)

a

} = (3,1), diag

(
exp

2πi

4
(3,3,1,1,1,1,1)

)
,

∑
naλ

(2)
a ≡ 3 mod 4,

{
λ(3)

a

} = (0,2), diag

(
exp

2πi

4
(0,0,2,2,2,2,2)

)
,

∑
naλ

(3)
a ≡ 2 mod 4,

where a = 1, . . . , s and{
λ

(j)
a

} = {
λ(0)

a + j
}
, j = 0,1, . . . , q − 1,

and all numbers are understood mod q . As before, it is no accident that exactly one of these (the
second in this case) has determinant equal unity. The determinants of the corresponding matrices
are given by

D{λ(j)
a } = exp

2πi

q

(
s∑

a=1

naλ
(j)
a

)
= exp

2πi

q

(
s∑

a=1

na

(
λ(0)

a + j
))

. (4)

As we cycle through j = 0, . . . , q − 1, the sums differ from each other by multiples of p:

D{λ(j+1)
a } − D{λ(j)

a } =
s∑

a=1

naλ
(j+1)
a −

s∑
a=1

naλ
(j)
a =

s∑
a=1

na = p.
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When p and q are relatively prime, exactly one of the q sums in Eq. (4) will have determinant
equal unity. So we divide Eq. (3) by q to obtain

1

q

(
p − 1
s − 1

)(
q

s

)
= s

pq

(
p

s

)(
q

s

)
, (5)

which holds for (p, q) = 1 and represents the number of ways to break the gauge group SU(p)

into subgroups that have exactly s − 1 U(1) factors. Each such breaking also represents a semi-
classical point on the branch Ns,Γ of the moduli space associated with Γ = Zp × Zq .

Note the symmetry under exchange of p and q in both Eq. (2) and Eq. (5). This symmetry
implies a certain duality between the corresponding physical theories, see [8].

Putting together Eqs. (2) and (5) we now obtain

(
p + q − 1

p

)
=

p∑
s=1

s

p

(
p

s

)(
q

s

)
=

∑
s

(
p − 1
s − 1

)(
q

q − s

)
.

This is known as the Chu–Vandermonde identity [41]. This seems to be the first appearance of
this identity in the context of counting string/M theory vacua, and its first appearance in the
context of counting conjugacy classes of elements of finite order in a group G.

It is also possible to obtain formulas in the case (p, q) 
= 1 via a generating function ap-
proach [39]. For integers n and m that are not relatively prime, the number of conjugacy classes
of elements of order m or dividing m in SU(n) is

1

m

∑
d|(n,m)

φ(d)

(
n/d + m/d − 1

n/d

)
,

where φ(d) is Euler’s function. This is also the number of ways to break SU(n) gauge theory to
a subgroup using a Wilson line of order m or dividing m. When we require that the remaining
subgroup of SU(n) has exactly s − 1 U(1) factors, the number is

1

m

∑
d|(n,m)

∑
j�0

φ(d)

(
n/d + m/d − j − 1

n/d − j

)(
m/d

j

)(
jd

s

)
(−1)j+s .

It remains to be seen how this case of (p, q) 
= 1 would arise in the context of M-theory com-
pactifications.

4. Counting vacua associated with symplectic groups

Here we derive the expressions analogous to those of Section 3, with unitary groups replaced
by symplectic groups.

Every element in the symplectic group Sp(n) = Sp(n,C) ∩ U(2n) is conjugate to an element
in the maximal torus TSp(n) given by

TSp(n) = {(
eiθ1 , . . . , eiθn , e−iθ1, . . . , eiθn

)}
.

We need to count the number of inequivalent such elements x for which xm = 1. Note that
the first n diagonal entries determine the entire matrix. Also note that given a matrix in TSp(n),
replacing any θj by 2π − θj results in an equivalent (i.e. conjugate) matrix. Therefore, we may
restrict our attention to the first n entries, and to θj = 2πj

m
, where j = 0,1, . . . , [m

2 ].
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The arguments leading to Eq. (1) apply here with m replaced by ([m
2 ] + 1), which is the

number of possible entries on the diagonal, and with p replaced by n. We get(
n + [m

2 ]
n

)
(6)

for the number of conjugacy classes of elements of order dividing m in Sp(n).
In analogy with Eq. (3) we get(

n − 1
s − 1

)( [m
2 ] + 1

s

)
(7)

for the number of conjugacy classes of elements of order dividing m with s distinct conjugate
pairs of eigenvalues, that is, s distinct θj in Eq. (4).

5. Counting vacua associated with orthogonal groups

In this section, we count the number of elements of order dividing q in all the orthogonal
groups: SO(2n), SO(2n + 1), O(2n) and O(2n + 1). We discuss the odd and even values of q

separately. The case of SO(2n) corresponds to singularities of type D, and it counts semiclassical
vacua on the moduli space of M-theory compactifications on singular G2 spaces asymptotic to a
cone over (S3 × S3)/Dn × Zq .

5.1. Elements of odd order

Any matrix in SO(2n + 1) is conjugate to an element of its maximal torus, given by

TSO(2n+1) =
{

diag
(
A(θ1),A(θ2), . . . ,A(θn),1

) ∣∣∣ A(θ) =
(

cos θ sin θ

− sin θ cos θ

)}
. (8)

Note that the matrix⎛
⎜⎝

B

I2n−2

−1

⎞
⎟⎠ ,

where

B =
(

1
−1

)
,

is an element of SO(2n+1) and conjugating by it takes θ1 to −θ1 in TSO(2n+1). Similarly, replac-
ing any θj by −θj in the expression for TSO(2n+1) leaves us in the same conjugacy class. There-
fore, similar to the symplectic case, we may restrict our attention to θj = 2πj

q
, j = 0,1, . . . , [ q

2 ].
As in Eq. (1), and now replacing p by n and q by q+1

2 , we have(
n + q+1

2
n

)
(9)

for the number of conjugacy classes of elements of order dividing q in SO(2n + 1) for odd q .
Physically, this represents the number of ways to break an SO(2n + 1) gauge symmetry by
a Wilson line of order q , where q is odd.
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The maximal torus of O(2n + 1) is different:

TO(2n+1) = {
T1 = diag

(
A(θ1),A(θ2), . . . ,A(θn),1

);
T2 = diag

(
A(θ1),A(θ2), . . . ,A(θn),−1

)}
. (10)

Since here q is odd, we cannot have −1 as an eigenvalue for any element of order q , so elements
of T2 are not relevant. Therefore, the counting remains the same as the SO(2n + 1) case, and
Eq. (9) holds.

Now consider SO(2n). Here the maximal torus is

TSO(2n) = {
diag

(
A(θ1),A(θ2), . . . ,A(θn)

)}
. (11)

It is no longer the case that replacing θi by −θi necessarily leaves us in the same conjugacy class
because(

B 0

0 I2n−2

)
/∈ SO(2n).

Instead, we must flip the signs of pairs of θi ’s to stay in the same conjugacy class. To flip, say, θ1
and θ2 the conjugation would be via⎛

⎜⎝
B 0 0

0 B 0

0 0 I2n−4

⎞
⎟⎠ ∈ SO(2n),

so while diag(A(θ1),A(θ2), . . . ,A(θn)) is conjugate to diag(A(−θ1),A(θ2), . . . ,A(θn)) in
O(2n), it is not so in SO(2n) unless at least one of the θj is 0. This makes the counting consid-
erably more complicated in SO(2n) than in O(2n). We start with the easier case, O(2n).

In O(2n), the maximal torus is

TO(2n) = {
T1 = diag

(
A(θ1),A(θ2), . . . ,A(θn)

);
T2 = diag

(
A(θ1),A(θ2), . . . ,A(θn−1),B

)}
. (12)

Since q is odd and the order of any element in T2 is even, we can ignore T2 for this case. Now,
since (

B 0

0 I2n−2

)
∈ O(2n),

flipping any single θj leaves us in the same conjugacy class, as was the case for SO(2n + 1).
So we can restrict to θj = 2πj

q
, j = 0,1, . . . , [ q

2 ], giving(
n + [ q

2 ]
n

)
(13)

for the number of ways to break O(2n) gauge symmetry by a Wilson line of order q , where q is
odd.

In going from O(2n) to SO(2n), in some cases two elements that are in the same conjugacy
class in O(2n) may be in two distinct conjugacy classes in SO(2n). These are the elements of T1
in the maximal tori of SO(2n) or O(2n) for which θj 
= 0 ∀j . The number of such elements x

with xq = 1 is
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(
n + q+1

2 − 1
n

)
. (14)

This formula is obtained by replacing (q+1)
2 by (q+1)

2 − 1 in Eq. (9), as the number of allowed
eigenvalues is one less (since zero is not allowed).

The number of elements in O(2n) with xq = 1 and at least one θi = 0 is(
n − 1 + q+1

2
n − 1

)
. (15)

This formula is derived by fixing θ1 = 0 and counting the number of elements in T1 of order
dividing q , allowing the θj>1 to take on any of the q+1

2 possible values. It is equivalent to replac-
ing n by n − 1 in Eq. (9).

To get the number of conjugacy classes in SO(2n) of order q = 2m + 1, we multiply for-
mula (14) by 2 and add formula (15) to get

2

(
n + q−1

2
n

)
+

(
n + q−1

2
n − 1

)
=

(
n + q+1

2
n − 1

)
n + q − 1

n
, (16)

which physically is the number of ways to break SO(2n) gauge symmetry by Wilson lines of odd
order q . This case of SO(2n) includes the important GUT group SO(10), which is obtained when
the G2 manifold has a D5 singularity, as constructed in [8]. Note that the formulas for O(2n),
O(2n + 1), and SO(2n + 1) are identical, but differ from the formula for SO(2n).

Now let s be the number of distinct θi that appear in Eqs. (8), (10), (11), or (12).
In analogy with Eq. (3), we get(

n − 1
s − 1

)( q+1
2 + 1

s

)
for the number of conjugacy classes of elements of order dividing q in O(2n), O(2n + 1),
or SO(2n + 1) with s distinct θi ’s.

For SO(2n), the counting is again more complicated. We count separately the conjugacy
classes that have at least one θi = 0, and those that do not. If the angle 0 does not appear, the
number of elements of order dividing q with eigenvalue number s is(

n − 1
s − 1

)( [ q
2 ]
s

)
(17)

and as before we will multiply this by 2. If the angle 0 does appear, we have s − 1 distinct angles
left to be determined:(

n − 1
s − 1

)( [ q
2 ]

s − 1

)
.

So the total number of conjugacy classes of elements of order dividing q in SO(2n) with s

distinct θj is(
n − 1
s − 1

)[
2

( q+1
2
s

)( q+1
2

s − 1

)]
. (18)

As in the case of unitary groups, the number s here has physical significance as it is related to
the number of U(1) factors that appear in the remaining group H . Given the relation

U(n) = O(2n) ∩ Sp2nR,
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one can rewrite an element in the even part of TO(2n) as diag(eiθ1In1, . . . , e
iθs Ins ) ∈ U(n) where∑s

j=1 nj = n and nj is the number of times θj appears. Then the commutant of this element in
U(n) is

s∏
j=1

U(nj ) = U(1)s ×
s∏

j=1

SU(nj ),

so in O(2n) the commutant of that element has at least s U(1) factors.

5.2. Elements of even order

For SO(2n + 1), all the arguments that applied for odd q apply for even q as well. For
O(2n + 1), since q is even, we do have to add the elements of type T2 in the torus. But the
counting is exactly the same as that in T1. So we have(

n + q
2

n

)
(19)

for the number of conjugacy classes of elements of order dividing q = 2m in SO(2n + 1), and

2

(
n + q

2
n

)
(20)

for that number in O(2n + 1).
Now we turn to O(2n). Again, in addition to the counting in T1, we also have to count in-

side T2. For T2, note that we have n − 1, not n, 2 × 2 blocks of the form A(θi). We obtain(
n + q

2
n

)
+

(
n + q

2 − 1
n − 1

)
(21)

for the number of conjugacy classes of elements of order dividing q = 2m in O(2n).
For SO(2n), the maximal torus consists only of elements of the form T1. However, flipping θj

to −θj does not leave us in the same conjugacy class unless at least one θj is either 0 or π so that
A(θj ) commutes with B (note that in the previous subsection where q was odd, θj = π was not
allowed). So now we need to count separately the elements in the torus that have no θj = 0,π ,
multiply this number by 2, and add to that the number of elements that do have at least one
θj = 0,π . Our counting methods, together with some algebra of binomial coefficients, leads to(

n + q
2

n

)
+

(
n + q

2 − 2
n

)
. (22)

We now consider the number of conjugacy classes of order q = 2m with a fixed number s of
distinct values of θi in the torus. We have(

n − 1
s − 1

)( q
2 + 1

s

)

for SO(2n + 1),

2

(
n − 1
s − 1

)( q
2 + 1

s

)

for O(2n + 1),
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[(
n − 1
s − 1

)
+

(
n − 2
s − 1

)]( q
2 + 1

s

)
for O(2n), and(

n − 1
s − 1

)[( q
2 + 1

s

)
+

( q
2 − 1

s

)]
for SO(2n).

6. On symmetry breaking patterns: Wilson vs. Higgs

Patterns of symmetry breaking by Wilson lines are generally considered to be the same as
patterns of symmetry breaking by a related adjoint Higgs field. However, there is a subtle but
significant difference which we point out here.

As explained in Section 2, when a gauge symmetry G is broken by a Wilson line U , the
remaining group H is given by the centralizer of the Wilson line in the group,

H = CG(U) = {
h ∈ G

∣∣ hUh−1 = U
}
.

On the other hand, in symmetry breaking by a Higgs field, the remaining group is the one gener-
ated by the commutant of the Higgs field in the Lie algebra,

H = exp
({

X ∈ g
∣∣ [φ,X] = 0

})
.

We now show that even with the simple identification U = eφ between a Wilson line and
a Higgs field, the symmetry breaking patterns are not the same. The difference is rooted in the
fact that in general, conjugation in the Lie group is not in one-to-one correspondence with com-
mutation in the Lie algebra. Specifically, let X ∈ g and let Ut = etφ, ht = etX form one-parameter
subgroups of the Lie group. Then

htUth
−1
t = Ut (23)

does not always imply

[φ,X] = 0. (24)

Rather, this is true only when t is small; when t is not small, (23) may be satisfied while (24)
is not. We demonstrate this by a simple explicit example. Let φ = diag(πi,−πi) ∈ su(2). Then
U = eφ = −I , which is in the center of the group SU(2) so does not break it. But φ is not in
the center of the Lie algebra su(2); it commutes only with its diagonal elements. Hence, the
symmetry breaking pattern arising from an adjoint Higgs field can be different from that arising
from the corresponding Wilson line – at the group level, more symmetry may be preserved.
Therefore, one should take extra care in applying the formulas obtained here for Wilson lines to
symmetry breaking by Higgs fields.

This allows us to use Wilson lines to study certain GUT symmetry breaking patterns that are
not allowed by Higgs fields and obtain the Standard Model group in new ways [42].
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