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Abstract

We investigate how to make the surface of a convex polyhedron (a
polytope) by folding up a polygon and gluing its perimeter shut, and the
reverse process of cutting open a polytope and unfolding it to a poly-
gon. We explore basic enumeration questions in both directions: Given
a polygon, how many foldings are there? Given a polytope, how many
unfoldings are there to simple polygons? Throughout we give special at-
tention to convex polygons, and to regular polygons. We show that every
convex polygon folds to an infinite number of distinct polytopes, but that
their number of combinatorially distinct gluings is polynomial. There are,
however, simple polygons with an exponential number of distinct gluings.

In the reverse direction, we show that there are polytopes with an ex-
ponential number of distinct cuttings that lead to simple unfoldings. We
establish necessary conditions for a polytope to have convex unfoldings,
implying, for example, that among the Platonic solids, only the tetrahe-
dron has a convex unfolding. We provide an inventory of the polytopes
that may unfold to regular polygons, showing that, for n > 6, there is
essentially only one class of such polytopes.
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1 Introduction

We explore the process of folding a simple polygon by gluing its perimeter shut to
form a convex polyhedron, and its reverse, cutting a convex polyhedron open and
flattening its surface to a simple polygon. We restrict attention to convex poly-
hedra (henceforth, polytopes), and to simple (i.e., nonself-intersecting, nonover-
lapping) polygons (henceforth just polygons). The restriction to nonoverlap-
ping polygons is natural, as this is important to the manufacturing applica-
tions [O’R00]. The restriction to convex polyhedra is made primarily to reduce
the scope of the problem. See [BDD+98] and [BDEK99] for a start on unfolding
nonconvex polyhedra.

Much recent work on unfolding revolves around an open problem that seems
to have been first mentioned in print in [She75] but is probably much older:
Can every polytope be cut along edges and unfolded flat to a (simple) polygon?
Cutting along edges leads to edge unfoldings ; we will not follow this restriction
here. Thus our work is only indirectly related to this edge-unfolding question.

In some sense this report is a continuation of the investigation started
in [LO96], which detailed an O(n2) algorithm for deciding when a polygon
may be folded to a polytope, with the restriction that each edge of the polyon
perimeter glues to another complete edge: edge-to-edge gluing. But here we do
not following this restriction, permitting arbitrary perimeter gluings. Moreover,
we do not consider algorithmic questions. Rather we concentrate on enumerat-
ing the number of foldings and unfoldings between polygons and polytopes. We
pay special attention to convex polygons; following Shephard [She75], we call
an unfolding of a polytope that produces a convex polygon a convex unfolding.
Within the class of polytopes, we sometimes use the five regular polytopes as
examples; within the class of convex polygons, we additionally focus on regular
polygons.

The basic questions we ask are:

1. How many combinatorially different foldings of a polygon lead to a poly-
tope?

2. How many geometrically different polytopes may be folded from one poly-
gon?

3. How many combinatorially different cuttings of a polytope lead to polygon
unfoldings?

4. How many geometrically different polygons may be unfolded from one
polytope?

Our answers to these four questions are crudely summarized in Table 1, whose
four rows correspond to the four questions above, and whose columns are for
general, convex, and regular polygons. We will not explain the entries in the
table here, but only remark that the increased constraints provided by convex
and regular polygons reduces the number of possibilities.

A key tool in our work is a powerful theorem of Aleksandrov, which we
describe and immediately apply in Section 2. We then define the two main

1



General Convex Regular
Polygons Polygons

Foldings gluing trees 2Ω(n), O(n2λ−2) O(n3) O(1)
polytopes ∞ ∞ 2 classes

Unfoldings cut trees 2Ω(n), 2O(n2) ? O(1)
polygons ∞ 0, ∞ O(1)

Table 1: Summary of Results. n is the number of polygon vertices or polytope
vertices; λ is the number of leaves of the gluing tree; the symbol ∞ represents
nondenumerably infinite, i.e., a continuum.

combinatorial objects we study, cut trees and gluing trees, and make clear ex-
actly how we count them. We then explore constraints on convex unfoldings in
Section 4 before proceeding to the general enumeration bounds in Table 1 in
Sections 5-8. A final section (9) concentrates on regular polygons

2 Aleksandrov’s Theorem

Aleksandrov proved a far-reaching generalization of Cauchy’s rigidity theorem
in [Ale58] that gives simple conditions for any folding to a polytope. Let P be a
polygon and ∂P its boundary. A gluing maps ∂P to ∂P in a length-preserving
manner, as follows. ∂P is partitioned by a finite number of distinct points into
a collection of open intervals whose closure covers ∂P . Each interval is mapped
one-to-one (i.e., glued) to another interval of equal length. Corresponding end-
points of glued intervals are glued together (i.e., identified). Finally, gluing is
considered transitive: if points a and b glue to point c, then a glues to b.1 Alek-
sandrov proved that any gluing that satisfies these two conditions corresponds
to a unique polytope:

1. No more than 2π total face angle is glued together at any point; and

2. The complex resulting from the gluing is homeomorphic to a sphere. (This
condition is satisfied if, when ∂P is viewed as a topological circle, and the
interval gluings as chords of the circle, then no pair of chords cross in the
∂P -circle.)

Aleksandrov calls any complex (not necessarily a single polygon) that satisfies
these properties a net [Ale58].2 We call a gluing that satisfies these conditions
an Aleksandrov gluing.

Although an Aleksandrov gluing of a polygon forms a unique polytope, it
is an open problem to compute the three-dimensional structure of the poly-

1 What we call gluing is sometimes called pasting [AZ67, p. 13]. In the theory of complexes,
it is sometimes called topological identification [Hen79, p. 116].

2 This may derive from the German translation, Netz. In fact, the Russian word Aleksan-
drov used is closer to “unfolding.”
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tope [O’R00]. Note that there is no specification of the fold (or “crease”) lines;
and yet they are uniquely determined. Henceforth we will say a polygon folds
to a polytope whenever it has an Aleksandrov gluing.

We should mention two features of Aleksandrov’s theorem. First, the poly-
tope whose existence is guaranteed may be flat, that is, a doubly-covered convex
polygon. We use the term “polytope” to include flat polyhedra. Second, con-
dition (2) specifies a face angle ≤ 2π. The case of equality with 2π leads to
a point on the polytope at which there is no curvature, i.e., a nonvertex. We
make explicit what counts as a vertex below.

Polygon/Polytope Notation. We will use P throughout the paper for a
polygon, and Q for a polytope. Their boundaries are ∂P and ∂Q respectively.
The curvature γ(x) of a point x ∈ ∂Q is 2π minus the sum of the face angles
incident to x. This “angle deficit” corresponds to the notion of Gaussian curva-
ture. We define vertices of polygons and polytopes to be essential in the sense
that the boundary is not flat there: the interior angle at a polygon vertex is
different from π, and the curvature at a polytope vertex is different from 0. Be-
cause of these definitions, there is no direct correspondence between the vertices
of a polytope Q and the vertices of a polygon P unfolding of Q: a vertex of Q
may or may not unfold to a vertex of P ; and a vertex of P may or may not fold
to a vertex of Q (see Section 3.3). At the risk of confusion, we will use the terms
“vertex” and “edge” for both polygons and polytopes, but reserve “node” and
“arc” for graphs. We will use n for the number of vertices of P or Q, letting
the context determine which.

We will also freely employ two types of paths on the surface of a polytope:
geodesics, which unfold (or “develop”) to straight lines, and shortest paths,
geodesics which are in addition shortest paths between their endpoints. See,
e.g., [AAOS97] for details and basic properties.

2.1 Perimeter Halving

As a straightforward application of Aleksandrov’s theorem, we prove that every
convex polygon folds to a polytope. We will see in Section 4.2 that the converse
does not hold.

For two points x, y ∈ ∂P , define (x, y) be the open interval of ∂P counter-
clockwise from x to y, and let |x, y| be its length. Define a perimeter-halving
gluing as one which glues (x, y) to (y, x).

Lemma 2.1 Every convex polygon folds to a polytope via perimeter halving.
Proof: Let the perimeter of a convex polygon P be L. Let x ∈ ∂P be an
arbitrary point on the boundary of P , and let y ∈ ∂P be the midpoint of
perimeter around ∂P measured from x, i.e., y is the unique point satisfying
|x, y| = |y, x| = L/2. See Fig. 1 for an example.

Now glue (x, y( to (y, x) in the natural way, mapping each point z with
|x, z| = d to the point z′ the same distance from x in the other direction:
|z′, x| = d. We claim this is an Aleksandrov gluing. It is a gluing by construction.

3
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Figure 1: A perimeter-halving fold of a pentagon. The gluing mappings of
vertices v1 and v3 are shown.

Because P is convex, each point along the gluing path has ≤ 2π angle incident
to it: the gluing of two nonvertex points results in exactly 2π, and if either
point is a vertex, the total angle is strictly less than 2π. The resulting surface
is clearly homeomorphic to a sphere. By Aleksandrov’s theorem, this gluing
corresponds to a unique polytope Qx. 2

In an Aleksandrov gluing of a polygon, a point in the interior of a polygon
edge that glues only to itself, i.e., where a crease folds the edge in two, is called
a fold point. A fold point corresponds to a leaf of the gluing tree, and becomes
a vertex of the polytope with curvature π. Points x and y in the above proof
are fold points. In Theorem 6.2 we will show that different choices of x result
in distinct polytopes Qx, leading to the conclusion that every convex polygon
folds to an infinite number of polytopes.

3 Cut Trees and Gluing Trees

The four main objects we study are polygons, polytopes, cut trees, and gluing
trees. It will be useful in spots to distinguish between a geometric tree T
composed of a union of line segments, and the more familiar combinatorial tree
T of nodes and arcs. A geometric cut tree TC for a polytope Q is a tree drawn
on ∂Q, with each arc a polygonal path, which leads to a polygon unfolding when
the surface is cut along T , i.e., flattening Q \ T to a plane. A geometric gluing
tree TG specifies how ∂P is glued to itself to fold to a polytope. There is clearly
a close correspondence between TC and TG, which are in some sense the same
object, one viewed from the perspective of unfolding, one from the perspective
of folding. It will nevertheless be useful to retain a distinction between them,
and especially their combinatorial counterparts, which we define below after
stating some basic properties.
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3.1 Cut Trees

Lemma 3.1 If a polygon P folds to a polytope Q, ∂P maps to a tree TC ⊂ ∂Q,
the geometric cut tree, with the following properties:

1. TC is a tree.

2. TC spans the vertices of Q.

3. Every leaf of TC is at a vertex of Q.

4. A point of TC of degree d (i.e., one with d incident segments) corresponds
to exactly d points of ∂P . Thus a leaf corresponds to a unique point of
∂P .

5. Each arc of TC is a polygonal path on Q.

Proof:

1. If TC contained a cycle, then it would unfold to disconnected pieces, con-
tradicting the assumption that Q is folded from a single polygon P . Thus
TC is a forest. But because TC is constructed by gluing the connected
path ∂P to itself, it must be connected. So TC is a tree.

2. If a vertex v of Q is not touched by TC , then, because Q is not flat at v,
P is not planar, a contradiction to the assumption that P is a polygon.

3. Suppose a leaf x of TC is interior to a face or edge of Q. Then it is
surrounded by 2π face angle on Q, and so unfolds to a point x of P
similarly surrounded. But by assumption, x is on the boundary of a
simple polygon P , a contradiction.

4. Gluing exactly two distinct points of x, y ∈ ∂P together implies that
neighborhoods of x and y are glued, which leads to the interior of an arc
of the cut tree, i.e., a degree-2 point of TC . Note that either or both of
these points might be vertices of P . In general, if p ∈ TC has d incident
cut segments, p unfolds to d distinct points of ∂P .

5. If an arc of TC is not a polygonal path, then neither side unfolds to a
polygonal path, contradicting the assumption that P is a polygon.

2

When counting cut trees, we will rely on their combinatorial structure. There
are several natural definitions of this structure, which are useful in different
circumstances. We first discuss some of the options.

1. Make every segment of TC an arc of TC . Although this is very natural, it
means there are an infinite number of different cut trees for any polytope,
for the path between any two polytope vertices could be an arbitrarily
complicated polygonal path, leading to different combinatorial trees.

5



2. Make every point where a path of TC crosses an edge of the polytope a
node of TC . This again leads to trivially infinite numbers of cut trees when
a path of TC zigzags back and forth over an edge of Q.

3. Exclude this possibility by forcing the paths between polytope vertices to
be geodesics, and again make polytope edge crossings nodes of TC . This
excludes many interesting cut trees—all those where a polygon vertex is
glued to a point with angle sum 2π.

4. Make every maximal path of TC consisting only of degree-2 points a single
arc of TC . This has the undesirable effect of having polytope vertices in
the interior of such a path disappear from TC .

Threading between these possibilities, we define the combinatorial cut tree
TC corresponding to a geometric cut tree TC as the labeled graph with a node
(not necessarily labeled) for each point of TC with degree not equal to 2, and a
labeled node for each point of TC that corresponds to a vertex of Q (labeled by
the vertex label); arcs are determined by the polygonal paths of TC connecting
these nodes. An example is shown in Fig. 2. Note that not every node of the tree
is labeled, but every polytope vertex label is used at some node. All degree-2
nodes are labeled.

(a) (b)
0

3
2

1

4

7 6

5

0
3 2

1

4

7 6

5

Figure 2: (a) Geometric cut tree TC on the surface of a cube; (b) The corre-
sponding combinatorial cut tree TC .

Although this definition avoids some of the listed pitfalls, it does have the
undesirable consequence of counting different geodesics on ∂Q between two poly-
tope vertices as the same arc of TC . Thus the two unfoldings shown in Fig. 5
(below) have the same combinatorial cut tree under our definition, even though
the geodesic in (c) spirals twice around compared to once around in (a).

3.2 Gluing Trees

Let a convex polygon P have vertices v1, . . . , vn, labeled counterclockwise, and
edge ei, i = 1, . . . , n the open segment of ∂P after vi. There is less need to
discuss the geometric gluing tree, so we concentrate on the combinatorial gluing
tree TG. TG is a tree representing the identification of ∂P with itself. Any point

6



of ∂P that is identified with more or less than one other distinct point of ∂P
becomes a node of TG, as well as any point to which a vertex is glued. (Note
that this means there may be nodes of degree 2.) So every vertex of P maps
to a node of TG; each node is labeled with the set of all the elements (vertices
or edges) that are glued together there. A leaf that is a fold point is labeled by
the edge label only. Every nonleaf node has at least one vertex label, and at
most one edge label. A simple example is shown in Fig. 3.3 Here the central
node of TG is assigned the label {v1, v3, e3}. A more complicated example is

v1

e1

v2

e2

v3
x

(a)

z

y

e3 v1

v2

v3

(b)

e3 e3e3

Figure 3: (a) A gluing of an equilateral triangle P : v1 and v3 are glued to point
z; (b) the corresponding gluing tree TG [folding up]. Points x and y become
fold points of the resulting tetrahedron.

shown in Fig. 4.4 The polygon shown folds (amazingly!) to a tetrahedron by
creasing as illustrated in (a). All four tetrahedron vertices are fold points. The
corresponding gluing tree is shown in (b) of the figure. The two interior nodes
of TG have labels {v1, v6, e1} and {v2, v5, e5}.

Later (Lemma 5.3) will show that the gluing tree is determined by a relatively
sparse set of gluing instructions.

3.3 Comparison of Cut and Gluing Trees

Lemma 3.2 Let TC be a combinatorial cut tree for polytope Q that unfolds to
a polygon P , and let TG be the combinatorial gluing tree that folds P to Q. If

3 Gluing trees can be drawn by folding up the polygon toward the viewer (as in this figure),
or folding the polygon away. We employ both conventions but always note which is followed.

4 We found this example by an enumeration algorithm that will not be discussed in this
report.
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v1
e1 v2

v3v4

v5v6

v7 v8

v1

v2

v3 v4

v5

v6

v7v8

(a) (b)

e7

e1 e5

e3

Figure 4: (a) A polygon, with fold creases shown dotted; (b) A gluing tree TG

[folding away] corresponding to the crease pattern.

all degree-2 nodes are removed by contraction, TC and TG are isomorphic as
unlabeled graphs.
Proof: Let (a, b, c) be three consecutive nodes on a path in a tree T , with b
of degree 2. Removing b by contraction deletes b and replaces it with the arc
(a, c). Applying this to both TC and TG produces two trees T ′

C and T ′
G without

degree-2 nodes. As the trees were defined to include nodes for each point whose
degree differs from 2, it must be that T ′

C and T ′
G have isomorphic structures. Of

course they are labeled differently, but without the labels, they are isomorphic
graphs. 2

Note that vertices in Q and vertices in P do not necessarily map to one
another: A vertex of Q can map to an interior point of ∂P , and a vertex of P
can map to a point interior to a face or edge of Q. This affects the labeling of
the two trees, but they have essentially the same structure.

4 Cut Trees for Convex Unfoldings

Before embarking on general enumeration results, we specialize the discussion
to convex unfoldings, and derive some constraints on the possible cut trees that
lead to convex unfoldings.

4.1 Stronger Characterization

We now sharpen the characterization of cut trees (and via Lemma 3.2, of gluing
trees) under the restriction that the unfolding must be a convex polygon. We
first strengthen Lemma 3.1(5), which only required arcs to be polygonal paths:

8



Lemma 4.1 Every arc of a cut tree TC that leads to a convex unfolding must
be a geodesic on Q (paths that unfold to straight segments), but arcs might not
be shortest paths on Q.
Proof: Suppose an arc a of T is not a geodesic. Then it does not unfold to a
straight line. Suppose a point x ∈ a is a point in the relative interior of a at
which the unfolding is locally not straight. Then only one of the two points of
∂P that correspond to x can have an interior angle ≤ π in P , showing that P
has at least one reflex angle. This establishes that arcs of TC must be geodesics.
We now show that this claim cannot be strengthened to shortest paths by an
explicit example.

Let Q be a doubly-covered rectangle with vertices vi, i = 1, 2, 3, 4, as
shown in Fig. 5(a). Let x be the midpoint of edge v1v4. Let TC be the path
(v1, v2, x, v3, v4), where the subpath (v2, x, v3) is half on the upper rectangu-
lar face, and half on the bottom face. Clearly this subpath is not a shortest
path, although it is a geodesic. The corresponding convex unfolding is shown
in Fig. 5(b).

v4

v1

v3

v2

x

v1

v3

v2 v2

v4v3

x

x

(a) (b)
v4

v1

v3

v2 v1

v3

v2 v2

v4v3

(c) (d)

Figure 5: (a)Doubly covered rectangle with cut path; (b) Unfolding. (c-d):
Another cut path and its unfolding.

This example can be modified to a nondegenerate “sliver” tetrahedron by
perturbing one vertex to lie slightly out of the plane of the other three. 2

Fig. 5(c-d) shows that we cannot even bound the length of a geodesic arc of TC .
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One immediate corollary of Lemma 4.1 is that cuts need not follow polytope
edges (which are all shortest paths), i.e., not every convex unfolding is an edge
unfolding.

4.2 Necessary Conditions: Sharp Vertices

We define a vertex of a polytope to be sharp if it has curvature ≥ π, and round
if its curvature is < π. The following theorem gives a simple necessary condition
for a polytope to have a convex unfolding. We employ this fact implied by the
Gauss-Bonnet theorem:

Fact 4.1 The sum of the curvatures of all the vertices of a polytope is exactly
4π.

Theorem 4.2 If a polytope Q has a convex unfolding via a cut tree TC, then
each leaf of TC is at a sharp vertex. Moreover, Q must have at least two sharp
vertices.
Proof: Let P be a convex polygon to which Q unfolds via cut tree TC . By
Lemma 3.1(3), the leaves of TC are at vertices of Q. Let x be a leaf of TC , at a
vertex v with curvature γ(v) = γ. Point x ∈ ∂Q corresponds to a unique point
y ∈ ∂P by Lemma 3.1(4). The internal angle at y in P is 2π − γ. Because P is
convex, we must have

2π − γ ≤ π

and so γ(v) ≥ π. Thus v is sharp. Because TC must have at least two distinct
leaves, the lemma follows. 2

Corollary 4.3 Of the five Platonic solids, only the regular tetrahedron has a
convex unfolding.
Proof: The curvatures at the vertices of the solids are:

2π − 3(π/3) = π

2π − 3(π/2) = π/2 < π

2π − 4(π/3) = 2π/3 < π

2π − 3(3π/5) = π/5 < π

2π − 5(π/3) = π/3 < π

Only the tetrahedron has sharp vertices. 2

We next show that two natural extensions of the previous results fail.

Lemma 4.4 There is a tetrahedron with no convex unfolding.
Proof: Let Q1 be a tetrahedron whose vertices v1, v2, v3 form an equilateral
triangle base in the xy-plane, with apex v4 centered at a great height z above.
See Fig. 6. Let γi be the curvature of vertex vi. If the face angle of each triangle
incident to v4 is ǫ, then γ4 = 2π − 3ǫ, and γi for i = 1, 2, 3 is

2π − [π/3 + 2(π − ǫ/2)] = 2π/3 + ǫ

10



v1

v4

v3

v2

Figure 6: A tetrahedron Q1 without
a convex unfolding.

v1

v4

v5

v3

v2

Figure 7: A polytope Q2 with two
sharp vertices but no convex unfold-
ing.
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Choosing z large makes ǫ small, and then Q1 has just one sharp vertex. Theo-
rem 4.2 then establishes the claim. 2

Lemma 4.5 There is a polytope with two sharp vertices but with no convex
unfolding.
Proof: Our proof of this lemma is less straightforward, although the example
is simple. Let Q2 be the polytope formed by joining two copies of Q1 from
Lemma 4.4 at their bases, as shown in Fig. 7. Q2 is a 5-vertex polytope, with
vertices v1, . . . , v4 as in Q1, and v5 the reflection of v4 in the central triangle
C = △v1v2v3. Again let ǫ be the face angle incident to v4 (and symmetrically
v5), and choose ǫ small so that only v4 and v5 are sharp vertices.

By Lemma 3.1(3), if Q2 has a convex unfolding, the cut tree must be a path
with its two leaves at the two sharp vertices. By Lemma 3.1(5), the path must
be composed of geodesics. We now analyze the geodesics starting at v5 and
show that there can be no piecewise simple geodesic path that passes through
all the vertices of Q2.

We group the geodesics starting at v5 into three classes:

1. The three geodesics that pass through a midpoint of an edge of triangle
C. Each of these passes through v4 before encountering any of the other
vertices, and so cannot serve as the cut path.

2. The three geodesics that pass through a vertex of C. Because these vertices
have low curvature (2ǫ), the geodesic must emerge nearly headed toward
v4: it cannot turn to hit another vertex of C without creating a reflex
angle in the unfolding. If the geodesic goes directly to v4, then again this
cannot serve as the cut path. So it must head towards v4 but miss it. We
group this type of geodesic with the third class.

3. Geodesics that pass though an interior point of an edge of C, but not the
midpoint. These geodesics all head toward v4 but miss it.

We now argue that all the geodesics in the third class (the only remaining
candidates) self-intersect after looping around v4. This will then establish the
lemma.

An unfolding of a typical geodesic is shown in Fig. 8. By choosing ǫ small,
we can arrange that every such geodesic crosses several unfoldings of the three
faces incident to v4 before returning back down to triangle C. As can be seen
from the copy of face △v1v2v4 to the side, the path crosses each face several
times slanting one way, and then returns slanting the other way. In the vicinity
of the closest approach to v4, the path must self-cross. We now establish this
more formally.

Consider the unfolding of the three faces incident to v4 (now viewed as a
unit) that includes the point p of closest approach between the geodesic and v4;
see Fig. 9. Let the geodesic cross the edge v1v4 at points a, x, y, and b in that
order, with xy including p. Then |v4b| > |v4x| and |v4a| > |v4y|, because the
distance from v4 monotonically increases on either side of p. Thus the images
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v2

v1

v2

Figure 8: A geodesic from v5 that passes by v4. The path of the geodesic on
△v1v2v4 is shown to the left.
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x ya b
b'

a'

v4

v1
v3

v2
v1

geodesicp

Figure 9: xa′ and yb′ necessarily cross below the point p of the geodesic closest
to v4.

a′ and b′ of a and b must fall below y and x respectively in the figure. Thus the
geodesic must cross somewhere in the stretch immediately before and after the
closest approach.

All we need for this argument to hold in general is for the geodesic to cross
three complete unfoldings of the three faces incident to v4 before returning to
the lower half of Q2. But this is easily arranged by choosing ǫ small.

We have shown that no geodesic starting from v5 may serve as a cut path
for a convex unfolding. Therefore Q2 has no convex unfolding. 2

4.3 Necessary Conditions: Combinatorial Structure

We now study the combinatorial structure of cut trees that lead to convex
unfoldings. The following theorem is due to Shephard [She75], although under
different assumptions and with a different proof.5

Theorem 4.6 If a polytope Q of n 6= 4 vertices has a convex unfolding, then
the corresponding cut tree TC has two or three leaves: it is either a path, or a ‘Y’
(a single degree-3 node). If n = 4, then additionally it may have four leaves, and
have the combinatorial structure of ‘+’ (a single degree-4 node), or two degree-3
nodes connected by an edge, which we will call a ‘I’.
Proof: Let the cut tree TC unfold Q to a convex polygon. By Theorem 4.2,
each leaf of TC must be at a sharp vertex v, and so have curvature γ(v) ≥ π. If
TC has more than four leaves v (and therefore n > 4, i.e., we are in the n 6= 4

5 Shephard concludes that cut trees cannot have four leaves, an incorrect claim under our
assumptions.
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case of the theorem claim),
∑

v γ(v) > 4π, which violates the Gauss-Bonnet
theorem. Therefore TC has no more than four leaves. If TC has just two or
three leaves, then the only possible combinatorial structures for TC are the two
claimed in the theorem: a path, and a ‘Y’. (Note that it is possible that n = 3,
when Q is a doubly-covered triangle.)

So assume that TC has exactly four leaves. Because each leaf vertex is sharp,
∑

v γ(v) ≥ 4π; on the other hand, we know the sum over all vertices is equal 4π.
Therefore we know that each leaf has curvature exactly π and that the leaves
of TC are at the only vertices of Q. Thus n = 4 and Q is a tetrahedron. The
only additional possible combinatorial structures for a tree with four leaves are
the two claimed in the theorem: a ‘+’ and a ‘I’. Note that in both these cases,
the internal node(s) of TC are not at vertices of Q. 2

A simple example of the ‘I’ possibility is shown in Fig. 10. If the rectangle
is modified to become a square, the ‘I’ becomes a ‘+’.

(a)

(b)

Figure 10: A doubly-covered rectangle unfolds with a ‘I’ cut tree whose leaves
are the four rectangle corners. Note all four rectangle corners are fold vertices.

5 Counting Foldings: Gluing Trees

In this section we move beyond Lemma 2.1, which shows that every convex
polygon folds to a polytope, and explore how many different ways there are to
fold a given polygon, as measured by the number of combinatorially distinct
Aleksandrov gluing trees. In Section 6 we count instead the number of distinct
polytopes that might be produced from a given polygon. In both cases, we will
also examine the restriction to convex polygons, which not surprisingly yields
sharper results.

5.1 Unfoldable Polygons

We start with a natural and easily proved claim:
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Lemma 5.1 Some polygons cannot be folded to any polytope.
Proof: Consider the polygon P shown in Fig. 11. P has three consecutive

a

b

c

Figure 11: An unfoldable polygon.

reflex vertices (a, b, c), with the exterior angle β at b small. All other vertices
are convex, with interior angles strictly larger than β.

Either the gluing “zips” at b, leaving b a leaf of TG, or some other point(s)
of ∂P glue to b. The first possibility forces a to glue to c, exceeding 2π there;
so this gluing is not Aleksandrov. The second possibility cannot occur with P ,
because no point of ∂P has small enough internal angle to fit at b. Thus there
is no Aleksandrov gluing of P . 2

It is natural to wonder what the chances are that a random polygon could
fold to a polytope. This is difficult to answer without a precise definition of
“random,” but we feel any reasonable definition would lead to the same answer:

Conjecture 5.1 The probability that a random polygon of n vertices can fold
to a polytope approaches 0 as n → ∞.
Proof: (Sketch.) Assume that random polygons on n vertices satisfy two prop-
erties:

1. The distribution of the polygon angles approaches the uniform distribution
on the interval (0, 2π) as n → ∞. In particular, the number of reflex and
convex vertices approaches balance.

2. The distribution of polygon edge lengths approaches some continuous den-
sity distribution.

For large n, we expect P to have r = n/2 reflex vertices. Each of these reflex
vertices a faces one of two fates in the gluing tree: either it becomes a leaf
by “zipping” at a; or at least one convex vertex b (of sufficiently small angle)
is glued to a. The number of reflex vertices that can be zipped is limited by
Fact 4.1: if a has angle α, zipping there adds 2π − α to the curvature; but the
total curvature is limited to 4π. Suppose we zip the largest k angles out of the
r reflex vertices (the largest angles increment the curvature the least). Then
one can compute that, under the uniform angle distribution assumption, these
k angles have an expected curvature sum of

1

2

π

r
k2 . (1)
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(For example, for r = 100, the largest k = 10 have an expected curvature sum of
π/2.) Limiting this to 4π implies that the expected maximum number of reflex
vertices that can be zipped without exceeding 4π curvature is

k ≤ 2
√

2r = 2
√

n . (2)

(For example, for r = 1000 reflex vertices, the largest k = 89 lead to a curvature
of ≈ 4π.) Thus, at most a small portion of the reflex vertices can be zipped;
the remainder (expected number: n/2−2

√
n) must be glued to convex vertices.

We now show that this gluing is not in general possible.
Let a be a reflex vertex with angle α, and b a convex vertex whose angle β

satisfies β ≤ 2π − α, so that b can glue to a. It could be that this gluing forces
one or more reflex vertices adjacent to a or b to glue to edges incident to a or b,
in which case the gluing is not possible (i.e., it is not an Aleksandrov gluing).
If the adjacent vertices are convex, and/or the edge lengths are such that the
gluing is Aleksandrov, then, in general, two new reflex vertices are created, as
is illustrated in Fig. 12.

a

b

a b

c
d

(a) (b)

Figure 12: (a) Reflex vertex a, convex vertex b; (b) Two new reflex vertices
produced by gluing b to a.

To be more precise, let A = |aa1| be the length of the edge incident to a
which is glued to the length B = |bb1| of an edge incident to b. If A > B and b1

is reflex, the gluing is not Aleksandrov; but if b1 is convex, a new reflex vertex
is created at b1. Symmetrically, if B > A and a1 is reflex, the gluing is not
possible; but if a1 is convex, a new reflex vertex is created at a1. The only
circumstance in which the gluing is Aleksandrov and a new reflex vertex is not
created is when A = B and both a1 and b1 are convex with an angle sum of no
more than π.

Under the assumption that the edge lengths approach some continuous dis-
tribution, the probability that two lengths match exactly approaches 0. Thus
we conclude that gluing convex vertices to reflex vertices does not remove reflex
vertices, but rather creates new ones in shorter polygonal chains, one new reflex
vertex in each of the two chains produced by the gluing. Note that gluing sev-
eral convex vertices to one reflex vertex does not change matters: we can view
the first convex vertex as simply leaving a reflex remainder, and argue as above.
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Thus, any gluing of a random polygon for large n will lead to shorter and
and shorter chains “pinched” between reflex-convex gluings, each of which will
contain at least one reflex vertex (actually, two reflex vertices for those pinched
on both sides). Eventually these chains reach the point where either there are
no convex vertices that fit into the reflex vertex gap, or there are no convex
vertices at all. In either case, the chain cannot be glued: the reflex vertex would
have to glue to a point interior to an edge, violating the Aleksandrov condition
that no point have more than 2π glued angle. 2

The proof above hinges on the unlikeliness of matching edge lengths. It is
therefore natural to wonder if the same result holds for polygons all of whose
edge lengths are the same. Again we believe it does:

Conjecture 5.2 The probability that a random polygon of n vertices, all of
whose edges have unit length, can fold to a polytope, approaches 0 as n → ∞.
Proof: (Sketch.) Assume a model of random polygons such that the angles are
probabilistically independent and uniformly distributed in (0, 2π) as n → ∞.
The restriction to unit edge lengths means that all gluings are vertex to vertex
(no vertex is ever glued to the interior of an edge). The gluing is Aleksandrov
iff the angles glued together sum to at most 2π everywhere.

Consider gluing two vertices to one another. Because their angles are inde-
pendent, the chance that the gluing is legal is 1/2 (the sum of their distributions
is uniform between 0 and 4π). Gluing k pairs then has a 1/2k chance of being
Aleksandrov.

As in the above proof sketch, the gluing tree cannot have too many leaves.
Zipping just 2

√
n reflex vertices uses up all 4π of curvature. So the number of

leaves is only about 2
√

n. As we will see in Theorem 5.11 below, specifying a
“source” for each leaf pins down the whole tree structure. So by selecting 4

√
n

vertices for the leaves and their sources, the gluing tree is determined.
Therefore we should compare the number of different gluing trees,

(

n
4
√

n

)

(3)

to the probability that each one is Aleksandrov,

1

2n−4
√

n
(4)

Note here we conservatively only concern ourselves with degree-2 vertex-to-
vertex gluings; junctions of degree d > 2 have a lower probability of summing
to no more than 2π. We also ignore the change to the angle distribution caused
by the removal of the leaf vertices.

Using Stirling’s approximation shows that the log of Eq. (3) grows as 2
√

n log n;
but the log of Eq. (4) grows as n. So their ratio approaches 0 as n → ∞. 2

We leave these results on random polygons as conjectures, as it would require
a more precise definition of what constitutes a random polygon, and more careful
probabilistic analyses, to establish them formally.
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5.2 Lower Bound: Exponential Number of Gluing Trees

In contrast to the likely paucity of foldable polygons, some polygons generate
many foldings.

Theorem 5.2 For any even n, there is a polygon P of n vertices that has 2Ω(n)

combinatorially distinct Aleksandrov gluings.
Proof: The polygon P is illustrated in Fig. 13(a). It is a centrally symmetric

α

β

y

x

α β α βα β α β α β α

α β α βα β α β α β α β
x

β
y

α

β

βα β α β α

α β βα β α β

β

x
β

y
α

β

α

β

αα
αα

(b)

(c)

(a)

...

...

Figure 13: (a) Star polygon P , m = 16, n′ = 32, n = 34. (b) Base gluing tree.
(c) A gluing tree after several contractions.

star, with m vertices, m even, with a small convex angle α ≈ 0, alternating with
m vertices with large reflex angle β < 2π. All edges have the same (say, unit)
length. We call this an m-star. We first specify the constraints on α and β.
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P has n′ = 2m vertices (ignoring x and y, to be described shortly). So
m(α + β) = (n′ − 2)π, which implies that

α + β = (1 − 1

m
)2π . (5)

We choose α small enough so that m copies of α can join with one of β and still
be less than 2π:

mα + β < 2π . (6)

Substituting this relationship into Eq. (5) and solving for α yields:

α <
2π

m(m − 1)
. (7)

Now we add two vertices x and y at the midpoints of edges, symmetrically
placed so that y is half the perimeter around ∂P from x. Let n = n′ + 2 be the
total number of vertices of P .

The “base” gluing tree is illustrated in Fig. 13(b). x and y are fold vertices
of the gluing. Otherwise, each α is matched with a β. Because all edge lengths
are the same, and because α + β < 2π by Eq. (5), this path is an Aleksandrov
gluing. We label it T00···0,00···0, where m/2 zeros 00 · · ·0 represent the top chain,
and another m/2 zeros represent the bottom chain.

The other gluing trees are obtained via “contractions” of the base tree.
A contraction makes any particular β-vertex not adjacent to x or y a leaf of
the tree by gluing its two adjacent α-vertices together. Label a β-vertex 0 or
1 depending on whether it is uncontracted or contracted respectively. Then
a series of contractions can be identified with a binary string. For example,
Fig. 13(c) displays the tree T010100···,00110···0. Note that k adjacent contractions
result in 2k α-vertices glued together.

We now claim that if the number of contractions in the top chain is the
same as the number in the bottom chain (call such a series of contractions
balanced), the resulting tree represents an Aleksandrov gluing. Fix the position
of x to the left, and contract leftwards, as in Fig. 13(c). Then it is evident that
the alternating “parity” pattern of α’s and β’s is not changed by contractions.
Ignoring the arcs attached to the central path, each contraction replaces α → 2α,
and shortens the path by 2 units. Because the contraction shortens by an even
number of units, it does not affect the parity pattern. If the top and bottom
chains are contracted the same number of times (twice each in (c) of the figure),
then their lengths are the same.

Thus after a balanced series of contractions, we have a number of β-leaves,
and gluings of 2k α-vertices to one β-vertex. The β-leaves are legal gluings
because β < 2π. Because there are m/2 − 1 contractible β-vertices in each
chain, the longest series of adjacent contractions is m/2 − 1. So k ≤ m/2 − 1,
and 2k < m. Eq. (6) then shows that each gluing produces less than 2π angle,
and so is Aleksandrov.
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Finally, we bound the number of gluings. There are 2m/2−1 binary numbers
of m/2− 1 bits. Thus there are this many ways to contract the top chain. The
bottom chain must be contracted with the same number of 1’s for a balanced
series. Rather than count this explicitly, we simply note that P has at least
2m/2−1 Aleksandrov gluings, and because P has n = n′ + 2 = 2m + 2 vertices,
Ω(2m/2−1) = Ω(2(n−6)/4) = 2Ω(n). 2

Figure 14: Six gluing patterns for a 4-star.

Fig. 14 shows six gluings of a 4-star. The first two in the top row correspond
to the perimeter-halving construction used in the proof. By Aleksandrov’s the-
orem, each corresponds to a unique polytope, but as mentioned in Section 2, we
do not know how to compute the 3D structure of these polytopes. Nevertheless,
our hand-exploration suggest that all fold to noncongruent polytopes, each with
the combinatorial structure of the regular octahedron. Two of our conjectured
crease patterns are shown in Fig. 15.

5.3 Upper Bound: Few Leaves

Our goal is now to provide upper bounds on the number of gluings, both for
arbitary polygons and for convex polygons. Both will rely on upper bounds for
gluing trees with a small number of leaves. Let a gluing tree TG have λ leaves.
In this section, we prove results for λ = 2 and λ = 3. We then use these to
obtain a general upper bound in Section 5.4, and a bound for convex polygons
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Figure 15: Conjectured crease patterns for the first two gluing patterns in the
top row of Fig. 14. [Constructions performed in Cinderella.]

in Section 5.6. In between, we summarize the structural properties of gluing
trees in Section 5.5.

It will sometimes be easier to work with “gluing instructions” rather than
with gluing trees. Toward that end, we define the combinatorial type of a gluing.
Again let polgyon P have vertices vi and edges ei, labeled counterclockwise, The
combinatorial type ΓG of a gluing G specifies to which vertex or edge of P each
vertex of P glues via a set of ordered pairs: ΓG = {(vi, zj)}, where zj is either
vj or ej , the first element j to which vi glues counterclockwise around ∂P . If
vi is a leaf of the cut tree, then the pair (vi, vi) is included; otherwise vi must
glue to an element different from itself. For example, the combinatorial type of
the gluing illustrated earlier in Fig. 3a is

{(v1, v3), (v2, v2), (v3, e3)}

We now prove that the combinatorial type of a gluing determines the gluing
tree.

Lemma 5.3 The combinatorial type ΓG of a gluing G determines the gluing
tree TG.
Proof: A node of degree 2 of TG is directly labeled in ΓG as either (vi, vj) or
(vi, ej). It is only nodes of degree 6= 2 for which TG contains information not
immediately supplied by ΓG. Nodes of degree 1 (leaves) of TG correspond to
two possible types of gluings: either (vi, vi), which are directly labeled in ΓG, or
fold vertices, a vertex produced by folding at a point x in the interior of an edge
ej. (Cf. Fig. 1 for an example of fold vertices.) Fold vertices can be identified
in ΓG as gluings of vi to either ei or ei−1: gluing to an incident edge necessarily
implies a fold vertex on that edge. Or vi can be glued to the next vertex, folding
the edge in half. In Fig. 3, the pair (v3, e3) identifies fold vertex x as labeled
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with e3; that v1 also glues to incident edge e3 is known after the degree 3 node’s
labels are determined.

Nodes of degree d > 2 in TG have d labels. Because every such node can
involve at most one edge (because two edges glued to a point already gives an
angle of 2π there, and the other elements glued to the same point would cause
the angle sum to exceed this), the labels can be gathered by following the gluings
counterclockwise:

(vi1 , vi2), (vi2 , vi3), . . . , (vid−2
, vid−1

), (vid−1
, ej) .

In Fig. 3, the node at point z has labels {v1, v3, e3}, which can be identified
from the pairs (v1, v3), (v3, e3) of ΓG. 2

This lemma permits us to count gluing trees by counting combinatorial types
of gluings.

Lemma 5.4 A polygon P of n vertices has Θ(n2) different gluing trees of two
leaves, i.e., paths.
Proof: View ∂P as rolling continuously between the two leaves x and y, like a
conveyor belt or tank tread. Each specific position corresponds to a perimeter-
halving gluing G (Fig. 1). The combinatorial type ΓG changes each time a
vertex vi either passes another vertex vj , or becomes the leaf x or y. Each such
event corresponds to two distinct types: the type at the event, and the type just
beyond it: e.g., (vi, vj) and (vi, ej). So counting events undercounts by half. If
we count the possible pairs (vi, vj) for all i 6= j, we will double count each type:
the event (vi, vj) leads to the same type as (vj , vi). The undercount by half
and overcount by double cancel; thus n(n − 1) is the number of types without
a vertex at a leaf. Adding in the n possible (vi, vi) events, each of which leads
to two types, yields an upper bound of n(n − 1) + 2n = O(n2) on the number
of combinatorial types.

A lower bound of Ω(n2) is achieved by the example illustrated in Fig. 16(a).
Here n/2 vertices of P are closely spaced within a length L of ∂P , and n/2
vertices are spread out by more than L between each adjacent pair. Then each
of the latter vertices (on the lower belt in the figure) can be placed between
each pair of the former vertices (on the upper belt), yielding n2/4 distinct
types. This example can be realized geometrically by making the internal angle
at each vertex nearly π, i.e., by a convex polyon that approximates a circle.

Lemma 5.3 shows that the bound just obtained of Θ(n2) on the number of
combinatorial types applies as well to the number of gluing trees. 2

Lemma 5.5 A polygon P of n vertices folds to at most O(n4) different gluing
trees of three leaves, i.e., ‘Y’s.
Proof: Observe that the degree-3 node of the ‘Y’ is either comprised by the
gluing two vertices and an edge together (call this type-vve), or three vertices
(type-vvv). It is not possible to glue two or more edges together without violating
the ≤ 2π angle restriction of an Aleksandrov gluing.

There are O(n3) possible type-vvv nodes for the ‘Y’. Once this type of node is
specified, the entire gluing tree is determined, so this bounds the number of ‘Y’s
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vi

vk

vj

vl

Figure 16: (a) Ω(n2) combinatorial types can be achieved by rolling this perime-
ter “belt”; (b) There are only O(n) possible disjoint vv-pairings.

with type-vvv nodes. Now consider type-vve nodes. There are O(n2) possible
vv-gluings, which determine one branch of the ‘Y’. The remainder of the ‘Y’
can be viewed as a path between its leaves; essentially this view corresponds
to a conveyor belt with an appendage. Applying Lemma 5.4 yields a bound of
O(n4).

2

We leave open the question of whether this bound is tight. We will improve
it for convex polygons in Section 5.6.

5.3.1 Four Fold-Point Gluing Trees

We now embark on a study of a special case that will play two roles: in the
proof of our main combinatorial upper bound, Theorem 5.11, and in counting
noncongruent polytopes in Section 6. Define a four fold-point gluing tree to be a
gluing tree with (at least) four leaves, each fold points, i.e., creases in the interior
of polygon edges leading to polytope vertices of curvature π. We have already
encountered one such tree in Fig. 4(b). We start with this straightforward
lemma.

Lemma 5.6 A four fold-point gluing tree must have exactly four leaves, and so
have combinatorial structure ‘+’ or ‘I’.
Proof: Because each fold point leads to a vertex of the resulting polytope Q
which has curvature π, Fact 4.1 implies that all the curvature of the polytope
is at the four fold vertices. Thus all vertices of P must glue to points that have
total angle 2π, so that the curvature there is zero.

A leaf of a gluing tree cannot have zero curvature. This is because a leaf is
either a fold point (curvature π) or a “zipped” polygon vertex v. The only way
to achieve zero curvature at a zipped vertex is to have an internal polygon angle
at v of 2π. But this violates simplicity of P : all internal angles are strictly less
than 2π.
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Therefore, a four-fold gluing tree must have exactly four leaves. So there are
only two possible combinatorial structures: ‘+’ and ‘I’ (as in Lemma 3.1). 2

Before counting the number of gluing trees, we detail one example that will
be the basis for the remainder of our analysis. Start with an L×W rectangle P ,
and fold it as follows. Glue the two opposite edges of length W together to form
a cylinder. Now glue the bottom rim of the cylinder to itself by creasing at two
diametrically opposed points x1 and y1. Similarly glue the top rim to itself by
creasing at two points x2 and y2. The gluing tree is of structure ‘I’: see Fig. 17.
It is easy to see this is an Aleksandrov gluing. Note both internal nodes of the

W

L/2

x2 y2

x1 y1

Figure 17: ‘I’ gluing tree for an L × W rectangle.

gluing tree glue two π/2 rectangle corners to the interior of an L-edge; so the
angle sum there is 2π. The gluing is Aleksandrov even if the crease points on
the top and bottom are not located at corresponding points on their rims. In
particular, identify the points xi with their distance from the rectangle corner to
the left. If x1 = x2, then the crease points correspond, and the gluing produces
a flat, L/2 × W rectangle. If x1 6= x2, the gluing is still Aleksandrov, but the
“twist” in the gluing results in a nondegenerate tetrahedron, with all vertices
of curvature π. Let x = |x2 − x1| characterize amount of the twist, with x = 0
representing no twist.

Because the 1-skeleton of a tetrahedron is combinatorially K4, each vertex is
adjacent to all the others via polytope edges. This makes it trivial to decide the
structure of the polytope Qx created by this rectangle gluing with twist x. The
six distances between pairs of vertices are easily computed from the gluing, and
each represents an edge length. These six lengths uniquely determine the 3D
shape of the tetrahedron. It is not difficult to compute 3D vertex coordinates
from the six lengths, and we have written code for this computation. An example
is shown in Fig. 18. Here a 2 × 2 rectangle is folded with a variety of different
twists x. For both x = 0 and x = 1, the result is a flat 1 × 2 rectangle, with a
smooth interpolation between for 0 < x < 1.

We have proven this lemma:

Lemma 5.7 Any rectangle may fold via a ‘I’ gluing tree to a uncountably infi-
nite number of noncongruent tetrahedra.
Proof: Two tetrahedra with different edges lengths are not congruent. The
edge lengths of Qx for twist x are L/2 (twice), u(x) =

√
x2 + W 2 (twice), and
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Figure 18: Tetrahedra formed by folding a rectangle according to the gluing
tree shown in Fig. 17.

v(x) =
√

(1 − x)2 + W 2 (twice). For a 6= b, u(a) 6= u(b); and for x < L/4,
u(x) 6= v(x). Thus the number of noncongruent tetrahedra is at least the
number of distinct x ∈ [0, L/4), which is nondenumerable. 2

We return now to the task of upper-bounding the number of four fold-point
gluing trees possible for a polygon of n vertices. Although we do not at this
point have tight bounds, they suffice for our purposes in the next section.

Define a conveyor belt (or just belt) in a gluing tree to be a path between two
leaf fold points. Let a belt have fold points x and y, with x an interior point of
edge e. A belt can roll if there is a nonzero-length interval I ⊂ e such that for
every x ∈ I, the belt folded at x is an Aleksandrov gluing. A belt could instead
have a finite number of distinct gluings, perhaps just one. We first show that
rolling belts must be vertex-free in four fold-point trees.

Lemma 5.8 A rolling belt in a four fold-point tree T cannot contain any ver-
tices except those at the attachment points to other branches of T .
Proof: Suppose to the contrary that a rolling belt contains at least one vertex
v in its interior, i.e., not at an attachment point. Because under our definition,
all vertices of P are essential, the internal angle at v is different from π. Let
x ∈ I be a particular fold point that determines the gluing of the belt. In this
position, v must match up with another vertex v′ with supplementary angle.
Rolling the belt in a neighborhood of x breaks the match, leaving both v and
v′ glued to points internal to an edge. At these points, the curvature is greater
than zero, violating the fact that all curvature at a four fold-point gluing are
concentrated at the leaves. 2

Note that the angles at the attachment points must be π.
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Lemma 5.9 A belt in a four-fold gluing tree T has at most O(n) combinatori-
ally distinct gluings.
Proof: Let B be a belt with attachment points a and b. Note that because each
attachment point is an internal node of T , the limited structural possibilities
established in Lemma 5.6 allow only one or two attachment points. Consider
two cases:

1. B can roll. Then by Lemma 5.8, B contains no internal vertices. Thus its
only vertices are at a and b. Rolling can produce just two combinatorially
distinct positions of the belt.

2. B cannot roll. Then B can assume a finite number of possible positions.
Define a kink in B to be either a vertex, or an attachment point at which
the angle is different from π, composed of two glued vertices. The kinks
must match up in pairs. Matching one pair forces the remaining matches.
Thus This can be seen by distributing the kinks around a topological circle
representing B. Once one chord v1vi is drawn in this circle, all other chords
are forced by the pairwise matching requirement. Because there are only
m − 1 < n choices for the mate for v1, B has only O(n) legal gluings.

2

Lemma 5.10 The number of four fold-point gluing trees for a polygon of n
vertices is Ω(n2) and O(n4).
Proof: The lower bound is established by a variation on the foldings of a
rectangle to tetrahedra (Fig. 18). The idea is to make each of the two conveyor
belts in a ‘I’ structure (Fig. 17) realize Ω(n) gluings independently. This can
be accomplished by alternating supplementary angles along the belt at equal
intervals. This is illustrated in Fig. 19 with angles π/2 and 3π/2. The figure
illustrates one possible folding; the fold points are midpoints of edges. The
tetrahedra produced are the same as that obtained by folding a rectangle: the
“teeth” mesh seamlessly.

For the upper bound, Lemma 5.6 restricts the structures to ‘+’ and ‘I’.

1. ‘+’. Here we rely on the crude O(n4) bound determined by the four ver-
tices, or three vertices and one edge, glued together to form the interior
node of TG. This fixes the combinatorial type of the gluing, which by
Lemma 5.3 determines TG.

2. ‘I’. Let a and b be the upper and lower nodes of the ‘I’. There are two
cases to consider for the upper node:

(a) a is of type ‘vv’: vertices vi and vj glue to form the belt attachment
point. Then the path from a to b is determined by the require-
ment that the curvature must be zero at each point: the two sides
“zip” closed from vi/vj until the first point at which the curvature is
nonzero, which then must be the lower node b.

(b) a is of type ‘ve’: vertex vi glues to the interior of edge ej to form
the attachment point. The “zipping” down to b is again determined,
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(a)

(b)

Figure 19: (a) Polygon P ; (b) One four fold-point gluing. The dashed lines
indicate tips of front teeth bent over and glued behind.
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but this takes more argument. Let vi+1 and vj be the two vertices
closest to a on the path to b. Both of their angles must differ from
π (because all vertices are essential). They must glue to one another
with an angle sum of 2π (because the curvature must be zero). We
want to show that vi cannot “slide” along ej to another position and
still result in an Aleksandrov gluing. Sliding vi up ej places vi+1

in the interior of ej , and sliding vi down places vj in the interior of
ei, in both cases producing a point of nonzero curvature. Therefore
no sliding is possible. Because any respositioning of vi on ej can be
viewed as such a sliding, no repositioning is possible.

In both cases there are at most O(n2) choices for the constituents glued at
a. Together with the O(n2) bound on the two belts from Lemma 5.9, this
establishes the claimed O(n4) bound. 2

It seems likely that this lemma could be strengthened:

Conjecture 5.3 The number of four fold-point gluing trees for a polygon of n
vertices is Θ(n2).

5.4 Upper Bound: General Case

We finally are positioned to establish an upper bound on the number of gluing
trees, as a function of the number leaves.

Theorem 5.11 The number of gluing trees with λ leaves for a polygon P with
n vertices is O(n2λ−2).
Proof: Let g(n, λ) be the number of gluing trees for P that have λ leaves. The
proof is by induction on λ. We know from Lemma 5.6 that at most four leaves
can be fold-points. We assume for the general step of the induction that λ > 4,
and so there is at least one non-fold-point leaf. The base cases for λ ≤ 4 will be
considered later.

The bound will use one consequence of the angles or curvature of a gluing
(described in this paragraph), and one consequence of the matching edge lengths
of a gluing (described in the next paragraph). Because a point interior to an
edge of P has angle π, a node of degree d of a gluing tree (d = 1, 2, . . .) glues
together d vertices of P or d−1 vertices and one edge of P . Apart from this, we
will use nothing else about the angles of the polygon, and in fact, our argument
will hold more generally for a closed chain of n vertices, with specified edge
lengths.

Given a tree TG that is not a path, and a leaf l, define the source of l as the
first node of degree more than 2 along the (unique) path from l into T . The
path in TG from l to its source is called the branch of l. For a tree TG and
a non-fold-point leaf corresponding to polygon vertex l, let s(l) be a vertex of
P closest to l glued at the source of the leaf. Note that there must be such a
vertex, since we cannot glue together two points interior to polygon edges at
the source of the leaf. For example, in Fig. 3, s(v2) can be v3 or v1. Note—this
is the single consequence of matching edge lengths referred to above—that the
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pair (l, s(l)) determines the portion of P ’s boundary that is glued together to
form the branch of l. We can simplify T by cutting off l’s branch, resulting in a
tree with λ − 1 leaves. The corresponding simplification of ∂P is to excise the
portion of its chain of length 2d(l, s(l)) centered at l, resulting in a closed chain
on at most n− 1 vertices. Since there are n choices for l and at most n choices
for s(l) we obtain g(n, λ) ≤ n2g(n − 1, λ− 1). For the general case there are at
most 3 fold leaves, hence: g(n, λ) ≤ n2(λ−3)g(n − (λ − 3), 3).

Lemmas 5.4 and 5.5 established the base cases g(n, 2) = O(n2) and g(n, 3) =
O(n4). Substituting, this yields

g(n, λ) ≤ n2(λ−3)O([n − (λ − 3)]4) (8)

= n2(λ−3)O(n4) (9)

= O(n2λ−2) (10)

It remains to handle the case of λ = 4 leaves. We will separate into the
cases when at least one of these leaves is not a fold-point leaf, where arguments
as above yield O(n6), and the case when all 4 vertices are fold leaves. In this
case, Lemma 5.10 establishes a bound of O(n4), smaller than that claimed by
the lemma. 2

Of course because λ could be Ω(n), there is no contradiction between this
upper bound and the exponential lower bound in Theorem 5.2. We specialize
the upper bound to convex polygons in Section 5.6, but first we summarize the
structural characteristics of gluing trees we have uncovered.

5.5 Gluing Tree Characterization

Our previous results imply that gluing trees are fundamentally discrete struc-
tures, with one or two rolling conveyor belts, and two such belts only in very
special circumstances.

Theorem 5.12 Gluing trees satisfy these properties:

1. At any gluing tree point of degree d 6= 2, at most one point of ∂P in the
interior of an edge may be glued, i.e., at most one nonvertex may be glued
there.

2. At most four leaves of the gluing tree can be fold points, i.e., points in the
interior of an edge of ∂P . The case of four fold-point leaves is only possible
when the tree has exactly four leaves, with the combinatorial structure ‘+’
or ‘I’.

3. A gluing tree can have at most two rolling belts.

4. A gluing tree with two rolling conveyor belts must have the structure ‘I’,
and result from folding a polygon that can be viewed as a quadrilateral with
two of its opposite edges replaced by complimentary polygonal paths.

Proof:

30



1. That d 6= 2 points of a gluing tree have at most one edge-interior points
glued is immediate from the definition of an Aleksandrov gluing, and our
insistence that all vertices are essential.

2. The structure of four fold-point trees was established in Lemma 5.6.

3. The definition of “rolling belts” (p. 26) implies four fold points, so the
constraints from the previous item apply.

4. Two rolling belts cannot be accommodated by the ‘+’ structure, which
is determined by the four vertices glued at the central node. So the tree
structure must be ‘I’. Lemma 5.8 established that the belts are vertex-free,
corresponding to two opposite edges of the quadrilateral. The central path
of the ‘I’ must be formed by gluing vertices together whose angle sum is
2π, and they are in this sense complimentary polygonal paths.

2

Thus a generic gluing tree has one rolling belt, with trees hanging off it, and
one of those trees having a fold-point leaf. See Fig. 20.

Figure 20: A generic gluing tree: three fold-point leaves (indicated by smooth
arcs), two forming a rolling belt. Vertices indicated by open circles.

5.6 Upper Bound: Convex Polygons

For convex polygons we can prove a polynomial upper bound. We first handle
the special case of λ = 4.

Lemma 5.13 A convex polygon P may fold to gluing trees of four leaves only if
it is a quadrilateral, a pentagon, or a hexagon; P may fold to O(1) such gluing
trees.
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Proof: As in the proof of Theorem 4.6, the two conditions γ(v) ≥ π and
∑

v γ(v) = 4π for the four leaves v of the tree imply that γ(v) = π for each.
This implies that the internal angle at v in P is π, which, by our assumption
that all vertices are essential, implies that all four are fold vertices.

Because all available curvature is consumed by the four leaves, the internal
nodes of the gluing tree must be flat. If the T has shape ‘+’, four vertices whose
angles sum to 2π join there. Recalling that the turn angle at each vertex is
τi = π − αi and that the total turn angle is 2π, this angle sum implies that
∑

i τi = 4π − 2π = 2π, for the four vertices at the ‘+’, and so the turn angle is
completely consumed by these four vertices. Thus P must be a quadrilateral,
and there is just one way to form the gluing tree.

If T is a ‘I’ shape, then each of the two internal nodes of the ‘I’ are formed
either by gluing together three vertices, or two vertices and an edge. For a
three-vertex node, the turn angle sum is 3π−2π = π; for a two-vertex and edge
node, the turn angle sum is 2π − π = π. So both nodes together consume of all
the 2π turn angle. Therefore P has at most six vertices. The hexagon permits
the most groupings of vertices, six; and so there are at most six gluing trees. 2
See Fig. 21 for an irregular hexagon that folds with a ‘I’ gluing tree.

4 3

6 1

5

2

Figure 21: A hexagon that folds by gluing together vertices {v1, v2, v3} to form
one node, and {v4, v5, v6} to form the other. Note the angle sum at the former
is π/2 + π/2 from the right angles at v1 and v3, and π from △(v1, v2, v3), for a
total of 2π. The four fold vertices are marked.

Theorem 5.14 A convex polygon P of n vertices folds to at most O(n3) dif-
ferent gluing trees.
Proof: Theorem 4.6 limits the combinatorial possibilities to trees with four or
fewer leaves. We have settled each case for λ ≤ 4 earlier:

λ = 4 Lemma 5.13: O(1).

λ = 3 Lemma 5.5: O(n4).

λ = 2 Lemma 5.4: O(n2).

We now improve the λ = 3 case to O(n3) for convex polygons. We can tighten
the O(n4) bound with the following two observations:

1. The two internal angles at the two vertices glued at a type-vve node must
sum to no more than π.
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2. A convex polygon cannot have too many vertices with small angles.

To quantify the second observation, define the turn angle τi at a vertex vi with
internal angle αi to be τi = π−αi. For any polyon, we must have

∑

i = 2π. For
a convex polygon, τi > 0. Now suppose vi and vj glue at a type-vve node. Then
αi + αj ≤ π, and so τi + τj ≥ π. Thus two distinct vv-gluings, involving four
different vertices, already consume the available 2π turn angle of the polygon.
Call two pairs of vertices disjoint if all four vertices are different. The turn angle
bound implies that any polygon can have at most two disjoint pairs of vertices
glued to a type-vve node. We now show that this implies a O(n) bound on the
number of type-vve nodes.

Construct a bipartite graph H with n nodes for the first vertex and n nodes
for the second vertex of vv-gluings. Let (vi, vj) and (vk, vl) be disjoint pairs in
vv-gluings, as depicted in Fig. 16(b). Then because there cannot be another
pair disjoint from either of these, every other pair must be incident to one of
the four vertices vi, vj , vk, vl. This limits H to at most 4n edges (and even this
bound is loose, for this permits as many as four disjoint pairs, as is evident in
the figure).

Thus there are at most O(n) type-vve nodes. Repeating the argument that
a vv-gluing determines one leg of the ‘Y’ and Lemma 5.4 bounds the remaining
path to O(n2) possibilities, leads to the claimed O(n3) bound. 2

We leave open the question of whether this bound is tight.
It is straightforward to list all possible gluing trees for a given convex polygon

with an O(n3 log n) time algorithm. We have implemented such an algorithm,
with, however, less than maximally efficient data structures.

6 Counting Foldings: Noncongruent Polytopes

We have so far been counting the number of different ways to fold up a given
polygon, but have not addressed the question of whether all these foldings pro-
duce distinct polytopes. There are several notions of what constitutes distinct-
ness. One natural definition relies on the combinatorial structure of the poly-
tope, as explored by Shephard [She75]. We will have little to say on this topic
here. Instead, we will focus on counting noncongruent polytopes.

We have already established in Lemma 5.7 that any rectangle can fold to
an uncountably infinite number of noncongruent tetrahedra. We extend this
result in this section to the “obvious” fact that any convex polygon folds (via
perimeter-halving) to an uncountably infinite number of noncongruent poly-
topes. Despite the naturalness of this claim, our inability to determine the 3D
structure of the polytope guaranteed by an Aleksandrov gluing makes our proof
less than satisfactory. In the absence of any 3D information, we concentrate in-
stead on the pattern of geodesics between vertices, for of course two congruent
polytopes have the exact same set of geodesics.

Lemma 6.1 A polytope Q resulting from a perimeter-halving fold of polygon P
has a countable number of geodesics between any pair of vertices.
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Proof: Let x and y be the fold vertices produced by the perimeter-halving
(as in Fig. 1). We will assign each geodesic a unique integer, which establishes
that there are only a countable number of them. The integers are based on a
“layout” of the surface of Q in the plane. Fix P in the plane, and designate it as
level-0 of the layout. Around ∂P layout 2n copies of P (where P has n vertices)
corresponding to the perimeter gluing. These are level-1 P copies of the layout.
This level is illustrated in Fig. 22. For example, because edge e4 = v4v5 of
∂P is glued into the edge e1 = v1v2 by the perimeter halving, a level-1 copy
of P is placed exterior to e4 arranged so that the glued portions of e4 and e1

match. There are 2n level-1 copies of P because the n vertices around ∂P are
interspersed by a reversed sequence of the same n vertices.

Continuing the construction, level-i of the layout is formed by surrounding
each level-(i−1) copy of P with 2n additional copies. Give these copies a “se-
quence number” j = 1, . . . , 2n. Now every copy of P at level-i in the layout
may be assigned a unique integer by listing the sequence numbers for each level
0, . . . , i and interpreting it as a base-2n number.

It is clear from the layout construction that any geodesic on Q “unrolls” to
a straightline in the layout. Because we can number the copies of P , we can
number the geodesics between any given pair of vertices. Therefore the number
of geodesics is denumerable. 2

Although this proof is specialized to polytopes formed from perimeter halving,
it would not be difficult to extend it to all polytopes formed by gluings including
a “rolling” fold-point.

Theorem 6.2 Any convex polygon P folds, via perimeter halving, to a uncount-
ably infinite number of noncongruent polytopes.
Proof: Select x, a fold point for perimeter halving, interior to an edge ei =
vivi+1 of P . The segment xvi ⊂ ∂P in level-0 of the layout used in the previous
lemma corresponds to a geodesic on Qx. Now let x vary within some neighbor-
hood N ⊂ ei; let x′ 6= x be a point in N . The segment x′vi corresponds to a
geodesic on Qx′ of a different length. We use this fact to establish our claim.

Let Q = {Qx′ : x′ ∈ N} be the set of all the polytopes produced as x varies
over the neighborhood. Assume, for the purposes of contradiction, that the
number of distinct, noncongruent polytopes in Q is denumerable: Q1, Q2, . . ..
By Lemma 6.1, each has a countable number of geodesics: a pair of numbers
suffice to uniquely identify them. Thus the total number of distinct lengths of
geodesics represented by all these polytopes is denumerable. But this contradicts
the nondenumerable number of lengths of segments |x′vi| for x′ ∈ N . Therefore
the number of noncongruent polytopes in Q is nondenumerable. 2

Although this theorem establishes the result even for regular polygons, there
is much more to say about the structure of the polytopes that can be folded
from regular polygons. We explore this in Section 9.
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Figure 22: Layout of a perimeter-halving folding of a pentagon. Several
geodesics are shown from x to level-1 vertices.

35



7 Counting Unfoldings: Cut Trees

In this section we explore unfolding from the point of view of cut trees. The
general situation is that we are given one polytope Q of n vertices, and we would
like to know how many different ways it can be cut and unfolded to a polygon.
We start with some straightforward observations before proving enumeration
bounds.

First, every polytope admits at least the n cut trees provided by the star
unfolding [AO92], one with each vertex as source. So in particular, every poly-
tope unfolds to at least one polygon. (As we mentioned in the Introduction, the
corresponding question for edge-unfoldings remains open.)

Second, because we permit arbitary polygonal paths between the nodes of a
cut tree (Section 3), there is no upper bound on the number of polygon vertices
in potential unfoldings of a given polytope. This might lead one to wonder if
any polygon (of the appropriate area) can be unfolded from a given polytope.
The answer is no, as is easily established by this lemma.

Lemma 7.1 Every polygon P cut from Q must have at least two vertices whose
interior angles are of the form 2π − γi for some i = 1, . . . , n, where γi are the
curvatures of the vertices of Q.
Proof: Let the n vertices of Q have curvatures γi, i = 1, . . . , n. The cut tree TC

must have at least two leaves, and by Lemma 3.1 these leaves must be vertices
of Q. Say they coincide with the vertices of curvatures γ1 and γ2. Then any
polygon P that unfolds from TC must have two vertices with interior angles
2π − γ1 and 2π − γ2. 2

So let P be a polygon with no interior angle equal to 2π − γi for i = 1, . . . , n.
Then P cannot be cut from Q.

7.1 Lower Bound: Exponential Number of Unfoldings

In this section we provide an exponential lower bound.

Theorem 7.2 There is a polytope Q of n vertices that may be cut open with
exponentially many (2Ω(n)) combinatorially distinct cut trees, which unfold to
exponentially many geometrically distinct simple polygons.
Proof: Q is a truncated cone, as illustrated in Fig. 23: the hull of two regular
n-gons of different radii, lying in parallel planes and similarly oriented. We call
this the volcano example. We require that n be even; in the figure, n = 16.
Label the vertices on the top face a0, . . . , an−1 and b0, . . . , bn−1 correspondingly
on the bottom face. The “base” cut tree, which we notate as T0000000, unfolds Q
as shown in Fig. 24. T0000000 consists of a path on the top face (a0, a1, . . . , an−1)
supplemented by arcs (ai, bi) for all i = 0, . . . , n − 1. The polygon P produced
consists of the base face, n attached trapezoids (bi, bi+1, ai+1, ai), with the top
face attached to an−1a0.

Define a cut tree Tm(n−1)/2···m2m1m0 , where mi are the digits of a binary
number of n/2 − 1 bits, as an alteration of the base tree T0···0 as follows. If
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Figure 24: Unfolding via shaded cut tree T0000000.
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Figure 25: Unfolding via shaded cut tree T1001101.
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mi = 1, then the arc (a2i+1, b2i+1) is deleted and replaced by (a2i, b2i+1). If
mi = 0, then the arc (a2i+1, b2i+1) is used as in T0···0. Thus the cut tree
T1001101 shown in Fig. 25 replaces (a1, b1) with (a0, b1) because m0 = 1, (a5, b5)
with (a4, b5) because m2 = 1, and so on.

There are 2n/2−1 = 2Ω(n) cut trees.
It is clear by construction that all these cut trees lead to simple polygon

unfoldings. It only remains to argue that each leads to a distinct polygon, not
congruent to any other. This is not strictly true for Q as defined, for any bit
pattern leads to a P that is congruent (by reflection) to the polygon obtained
from the reverse of the bit pattern. However, it is a simple matter to introduce
some asymmetry, by, for example, lengthening edge an−1a0 slightly. Then all
cut trees lead to distinct polygons. 2

A simpler example is a drum, the convex hull of two regular polygons in parallel
planes. Because some of the unfoldings used in the above proof overlap, there
is a bit more argument needed to establish the exponential lower bound.

Even restricting the cut tree to a path permits an exponential number of
unfoldings:

Theorem 7.3 There is a polytope Q of n vertices that may be cut open with
exponentially many (2Ω(n)) combinatorially distinct cut trees, all of which are
paths, which unfold to exponentially many geometrically distinct simple poly-
gons.
Proof: Q is formed by pasting two halves of a regular 2n-gon together to
form a semicircle approximation with some small thickness w > 0. Label the
vertices on the front face a0, . . . , an and b0, . . . , bn correspondingly on the back
face, as illustrated in Fig. 26(a). Let α = 2π/n be the turn angle at each
vertex ai (and at bi), i.e., the angle α = π − ∠(ai−1, ai, ai+1). (In the figure,
α = π/32 ≈ 11◦.) We specify a series of cut trees Tm, where m is an n-digit
base-3 integer mn · · ·m2m1, with the following interpretation. T0···00 is the
“base” cut tree on which all others are variations:

T0···00 = (a0, a1, . . . , an, bn, bn−1, . . . , b1, b0) (11)

Note that T0···00 is a path, as are all the Tm. We call the half of the path on
the front face the a-path, and that on the back the b-path. The unfolding P
determined by T0···00 is a regular 2n-gon, fattened by a strip (a0, b0, bn, an) of
width w down its middle, with a “tail” of n rectangles attached to edge a0b0.
If |aiai+1| = h, then each rectangle is w × h.

In cut tree Tmn···m2m1 the index mi is 1 if the a-path deviates to touch bi

on the back face via the path (. . . , ai−1, bi, ai, ai+1, . . .), and the index mi is
2 if the b-path similarly deviates to include ai on the front face via the path
(. . . , bi−1, ai, bi, bi+1, . . .). In both cases, the opposite path skips the vertex
deviated to: if mi = 1, the b-path skips bi by shortcutting on the back face,
and if mi = 2, the a-path skips ai by shortcutting on the front face. Fig. 26(a)
illustrates Tmn···0022020100, with a-path

(a0, a1, a2, b3, a3, a4, a6, a9, a10, . . . , an) (12)
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Figure 26: (a) Polytope Q, cut tree T···0022020100. The a-path is shown solid,
the b-path dashed. (b) Unfolding to polygon P . L strictly separates the head
from the tail.
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and b-path

(b0, b1, b2, b4, a5, b5, b6, a7, b7, a8, b8, b9, b10, . . . , bn) (13)

Note that when mi 6= 0, the rectangle bounded between ai−1bi−1 and aibi is
crossed by an ab-diagonal. We insist that m1 = 0, so that the cut tree starts
with an uncrossed rectangle (a0, b0, b1, a1). Finally, the edge anbn is included
in Tm, so that it is a path from a0 to an to bn and returning to b0. The digits
mn · · ·m2 are each free to be any one of {0, 1, 2}. Thus there are an exponential
number of combinatorially distinct Tm: 3n−1. We return below to the issue of
how many of these lead to geometrically distinct unfoldings.

It should be clear by construction that Tm spans the vertices. To show that it
is a tree, we need to argue that it is non-self-intersecting. This is again clear by
construction, for each nonzero mi uses a diagonal in the rectangle prior to aibi,
and because mi has only one value, no such rectangle has both diagonals used.
Together with the shortcutting that prevents the a- and b-paths from touching
the same vertex, it follows that Tm is indeed a tree; so it is a legitimate cut tree.
Thus it unfolds to a single piece. It only remains to show that this unfolding is
a simple polygon, i.e., it avoids overlap.

This is obvious for T0···00, as mentioned previously. For general Tm, consider
the layout of the unfolding P that places a0b0 horizontally, as in Fig. 26(b).
Let L be the horizontal line through a1b1; this segment is necessarily horizontal
because we stipulated that m1 = 0. We will argue that L strictly separates the
tail of P (the portion attached above a1b1) from its body (the portion attached
below a1b1).

First, it is clear that the body unfolds without overlap. For it is simply
truncations (due to path shortcuttings) of halves of a regular polygon glued to
either side of the rectangle (a0, b0, bn, an), with attached triangle “spikes” for
each nonzero mi. None of these spikes can overlap, even when adjacent, for
their length-w edge juts out orthogonal to their length-h edge glued to the body
(see the body image of b7 in Fig. 26(b)).

The tail consists of h × w rectangles, or half-rectangles, glued end-to-end,
with turns to the right by α for every mi = 1 digit, and turns to the left by α
for every mi = 2 digit. Thus, T···0022020100 in (b) of the figure turns right once
and left three times. Because there are at most n − 1 nonzero digits, the tail
can turn at most n−1 times. Because α is the turn angle of a regular 2n-gon, it
takes n turns of α to turn a full π. Thus the tail turns strictly less than π, and
so cannot return to line L. Thus the tail remains strictly above L. Choosing
w < h guarantees that no body spike protrudes vertically as much as h above
a0b0; so the body remains strictly below L.

It remains to argue that the tail does not self-intersect. But this follows from
the same turn argument above. By construction, there are no local overlaps
between two adjacent tail rectangles or half-rectangles. Thus the only overlap
conceivable would result from the tail curling back to overlap itself. Choosing
w ≪ h makes the tail essentially a series of segments of length h, with attached
pieces of the regular polygon clipped by shortcutting. For the tail segments to
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curl back and overlap would require a total turn by at least π, contradicting the
bound on the sum of α’s.

Finally, we turn to the question of how many of the 3n−1 combinatorially
distinct Tm lead to geometrically distinct (noncongruent) P . Let x and y be two
base-3 numbers, and let S(x) be the base-3 number obtained by changing each
1-digit in x to a 2, and each 2-digit in x to a 1. (For example, S(1021) = 2012.)
Then if S(x) = y, Tx and Ty lead to congruent P , in that Py is the reflection of
Px about a vertical line (in the layout used above).

Although we could easily ensure noncongruency for all Tm by altering Q
to be less symmetric, we opt here for a counting argument. Let x be a base-3
number. Define B(x) to be the binary number obtained by changing each 2-digit
in x to a 1. (For example, B(2012) = 1011.) Now it should be clear that for any
two base-3 numbers x and y, if B(x) 6= B(y), then Px is noncongruent to Py.
For then the pattern of spikes on the body are different in Px and Py . Thus,
among the 3n−1 combinatorially distinct P , there are at least 2n−1 geometrically
distinct P . 2

7.2 Lower Bound: Convex Unfoldings

It seems possible that the exponential lower bound holds even in the case of
convex unfoldings, via an example similar to that used in Fig. 26.

Conjecture 7.1 There is a polytope with an exponential number of convex un-
foldings.

This represents the only ‘?’ in Table 1.

7.3 Upper Bound

Theorem 7.4 The maximum number of edge-unfolding cut trees of a polytope
of n vertices is 2O(n), and the maximum number of arbitary cut trees 2O(n2).
Proof: For edge unfoldings, the bound depends on the number of spanning
trees of a polytope graph. We may obtain a bound here as follows.6 First,
triangulating a planar graph only increases the number of spanning trees, so we
may restrict attention to triangulated planar graphs. Second, it is well known
that the number of spanning trees of a connected planar graph is the same as
the number of spanning trees of its dual. So we focus just on 3-regular (cubic)
planar graphs. Finally, a result of McKay [McK83] proves an upper bound of
O((16/3)n/n) on the number of spanning trees for cubic graphs. This bound is
2O(n).

For arbitrary cut trees, the underlying graph might conceivably have a
quadratic number of edges, which leads to the bound 2O(n2). (Note that our
definition of cut tree in Section 3.1 would not count different polygonal paths
between two vertices as distinct arcs of TC .) 2

6 We thank B. McKay [personal communication, Jan. 2000] for guidance here.
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8 Counting Unfoldings: Noncongruent Polygons

We have already seen in Theorem 7.2 that one polytope can have an exponential
number of noncongruent polygon unfoldings. In fact the possibilities range from
0 to ∞, even for convex unfoldings, as this simple counterpart of Theorem 6.2
shows:

x

(b)(a)

Figure 27: Unfolding a flat triangle (a) to a convex polygon (b).

Theorem 8.1 Although some polytopes unfold to a nondenumerable number
of noncongruent convex polygons, others have only a finite number of convex
unfoldings.
Proof: For the former claim, consider a doubly-covered equilateral triangle.
Choose any point x interior to the top face, as shown in Fig. 27(a). This leads
to a ‘Y’ cut tree that unfolds to a convex polygon (b) for every choice of x. All
these polygons have different angles, and so are noncongruent.

The second claim of the theorem is trivially satisfied by polytopes with zero
convex unfoldings. To establish it for a polytope that has at least one convex
unfolding is more difficult, and we only sketch a construction. Consider the
doubly-covered trapezoid shown in Fig. 28. It has just two sharp vertices, v1

and v4, and so, by Theorem 4.6, the cut tree must be a path connecting those
vertices. The path (v1, v2, v3, v4) unfolds to a convex polygon. Now consider
a geodesic that starts with the segment v1v3 as illustrated. As in the proof of
Lemma 4.5, this geodesic will either hit v4 directly, in which case it is not a
valid cut tree because v2 is not spanned, or it spirals around the trapezoid and
self-crosses. We will not prove this claim. 2

v1 v4

v2 v3

Figure 28: A geodesic on a trapezoid from v1 through v3.
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9 Folding Regular Polygons

In this section we study folding regular polygons of n vertices. Because all
polygon vertices have the same interior angle θ = (n − 2)π/n, only a limited
variety of different polytope vertex curvatures may be created. We find, not
surprisingly, that this leads to a limited set of possibilities: in general, only one
“class” of nonflat polytopes can be produced. This is established in Lemma 9.2.

Let αk, k ≥ 1, be the curvature at a polytope vertex formed by gluing k
P -angles of θ together, and βk, k ≥ 0, be the curvature at a vertex formed by
gluing k angles to a point interior to an edge of ∂P . The next lemma details
the possible αk and βk values achievable.

Throughout this section we will find that the situation is more uniform for
n > 6 than it is for small n.

Lemma 9.1 For n > 6, only four vertex curvatures can be obtained by folding
a regular n-gon P ; for n ≤ 6, additional curvature values are possible. More
precisely, for all n, these four curvature values are always achievable:

• α1 = π(1 + 2/n).

• α2 = π(4/n).

• β0 = π.

• β1 = π(2/n).

The additional values possible for n ≤ 6 are detailed in Tables 2 and 3.
Proof:

1. α1 = 2π − θ = 2π − (n − 2)π/n = π(1 + 2/n). This vertex is a leaf of the
gluing/cut tree. We call this a zipped vertex, for ∂P is “zipped shut” at
the vertex.

2. α2 = 2π − 2θ = 2π − 2(n − 2)π/n = π(4/n). This vertex is a degree-1
node of the gluing tree.

3. β0 = π. This is a fold vertex, when nothing is glued to an edge of ∂P ,
and therefore a leaf of the gluing tree.

4. β1 = 2π − [π + θ] = 2π − [π + (n − 2)π/n] = π(2/n). This is a degree-1
node of the gluing tree.

The additional possibilities for n ≤ 6 are as follows. α3 is possible for all n ≤ 6;
α4 is possible only for n = 4; and no other αk is possible. See Table 2.

For n = 3, β2, β3, and for n = 4, β2, are all possible. See Table 3.
Explicit computation shows that all higher values of k lead to nonconvex

vertices, whose total face angle exceeds 2π and so which have negative curvature.
2

Let ai and bi be the number of polytope vertices of curvature αi and βi

respectively, formed by folding a regular n-gon P . Of course ai and bi are
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αk k
1 2 3 4

3 5
3

4
3 1

4 3
2 1 1

2 0

5 7
5

4
5

1
5

6 4
3

2
3 0

n 1 + 2
n

4
n

Table 2: Possible αk curvature values, in units of π.

βk k
0 1 2 3

3 1 2
3

1
3 0

4 1 1
2 0

n 1 2
n

Table 3: Possible βk curvature values, in units of π.

nonnegative integers, but there are additional significant restrictions imposed
by the requirement that the total curvature be 4π:

∑

i=1

aiαi +
∑

i=0

biβi = 4π . (14)

We now explore the implications of this constraint, separately for n > 6 and for
n ≤ 6. Note that our notation implies that

∑

i=1

aii +
∑

i=0

bii = n , (15)

because the subscripts on α and β indicate the number of vertices involved in
the gluing.

Now we prove that perimeter-halving is the only possible kind of folding for
n > 6.

Lemma 9.2 For all n ≥ 3, regular n-gons fold via perimeter-halving, using
path gluing trees, to two classes of polytopes:

1. A continuum of “pita” polytopes of n + 2 vertices.

2. One or two flat, “half-n-gons”:

(a) n even: Two flat polytopes, of n
2 + 2 and n

2 + 1 vertices.
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(a)

(c)

(b)

Figure 29: (a,b) Flat foldings of an n-gon, n even (n = 8). (c) Flat folding of
an n-gon, n odd (n = 7).
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(b) n odd: One flat polytope, of n+1
2 + 1 vertices.

For n > 6, these are the only foldings possible of a regular n-gon.
Proof: A perimeter-halving fold produces a path gluing tree. This has two
leaves and all other nodes internal. From Lemma 9.1, the only two curvatures
can be leaves: {α1, β0}; and only two can be degree-1 nodes: {α2, β1}. Moreover,
these are the only curvatures possible for n > 6. Thus Eq. (14) reduces to

a1α1 + a2α2 + b0β0 + b1β1 = 4π . (16)

Substituting the curvature values from Lemma 9.1 and solving for n yields

n =
2(a1 + 2a2 + b1)

4 − (a1 + b0)
(17)

Because only α1 and β0 are leaf vertex curvatures, we must have a1 + b0 ≥ 2.
The requirement that the denominator of Eq. (17) be positive yields a1+b0 < 4.
Therefore we know that a1 +b0 ∈ {2, 3}. We now show that the case a1 +b0 = 3
is not possible when n > 6.

As both a1 and b0 count leaves, a tree formed with a1 + b0 = 3 must have
at least three leaves. By Theorem 4.6, because n 6= 4, it cannot have more than
three leaves. So it has exactly three leaves, and has the combinatorial structure
of a ‘Y’. The interior node must be formed by gluing three distinct points of ∂P
together (by Lemma 3.1(4)). This corresponds to curvatures αk, k ≥ 3, or βk,
k ≥ 2. But Lemma 9.1 shows that none of these are possible for n > 6. (Note,
for later reference, that for n ≤ 6, these possibilities will need consideration.)

Therefore we must have a1 + b0 = 2. Therefore the gluing tree must be a
path for n > 6, and the folding must be a perimeter-halving folding. We now
explore the three possible solutions to a1 + b0 = 2.

Case a1 = 0, b0 = 2. The two leaves are both folds at interior points of edges
of ∂P , a perimeter-halving folding similar to that previously illustrated
in Fig. 1. If neither fold point x and y is the midpoint of its edge, then
no pair of vertices glue together, so a2 = 0 and therefore b1 = n. This
produces a continuum of polytopes Qx of n + 2 vertices. We call these
pita polytopes (Fig. 32), and will study them in Section 9.1 below.

Suppose one fold point x is at an edge midpoint. If n is even, then y is also
at a midpoint, and P ’s vertices are glued in pairs. Therefore a2 = n/2
and b1 = 0. The polytope is a flat half-n-gon of n/2 + 2 vertices. See
Fig. 29(a). If n is odd, then y must be at a vertex. This means that
a1 6= 0, and this case does not apply.

Case a1 = 2, b0 = 0. Both leaves are at vertices, and so n must be even. All
other vertices are glued in pairs, so a2 = (n−2)/2 and b1 = 0. The folding
produces a flat half-n-gon of n/2 + 1 vertices. See Fig. 29(b).

Case a1 = 1, b0 = 1. One vertex is zipped to a leaf; half the perimeter around
is a fold vertex. This implies that n is odd. All other vertices are glued in
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pairs, so a2 = (n−1)/2 and b1 = 0. The folding produces a flat half-n-gon
of (n − 1)/2 + 2 vertices. See Fig. 29(c).

The details derived above are gathered into Table 4, and the flat foldings illus-
trated in Fig. 29. 2

n a1 b0 a2 b1 N description

any 0 2 0 n n + 2 pita polyhedra

even 0 2 n
2 0 n

2 + 2 flat half-n-gon

even 2 0 n
2 − 1 0 n

2 + 1 flat half-n-gon

odd 1 1 n−1
2 0 n+1

2 + 1 flat half-n-gon

Table 4: Fold cases for regular n-gons, n > 6. N is the number of polytope
vertices.

Lemma 9.3 For n ≤ 6, regular polygons fold to additional polytopes (beyond
those listed in Lemma 9.2) as detailed in Table 5.
Proof: Lemma 3.1 limits the possible nonpath cut trees to ‘Y’, ‘+’, and ‘I’. We
first argue that ‘I’ is only possible for n = 6. The two interior nodes of the
tree must have curvatures in {α3, β2}. For n = 3, there are not enough vertices
to make these nodes. For n = 4, there are enough vertices to make two β2

nodes, but this then forces the ‘+’ structure, i.e., the interior edge of the ‘I’ has
length zero. For n = 5 and n = 6, β2 is not possible. For n = 5, there are
not enough vertices to make two α3 vertices. And finally, for n = 6, there are
enough vertices, and the folding produces a flat rectangle.

Thus only ‘Y’ and ‘+’ are possible. The ‘+’ can only be realized in two ways:
by gluing four vertices together, which is only possible for n = 4 (see α4 column
in Table 2), and by gluing three vertices to an edge, which is only possible for
n = 3 (see β3 column in Table 3).

There are a number of ways to realize ‘Y’-trees. The constraint that the cur-
vature add to 4π, Eq. (14), together with the discrete set of possible curvatures
in Tables 2 and 3, lead to the possibilities listed in Table 5. (The second line of
the table was previously illustrated in Fig. 3.) 2

If we treat the n vertices of a regular n-gon as assigned the same label (as
seems appropriate), Lemmas 9.2 and 9.3 together show that there are only O(1)
ways to fold up a regular polygon, justifying the entry in Table 1. If we label
the vertices with distinct labels, then there are O(n) foldings.

9.1 Pita Polytopes

We define a pita polytope as one obtained by a perimeter-halving folding of a
regular polygon at a point on an edge that is not a midpoint, as per the first
line of Table 4. Let the regular n-gon P have unit edge length, and let the fold
points x be distance a from v0 along edge v0v1. Let b = 1 − 2a. Call the point
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n Tree Gluing Description Curvatures N Polytope Description

3 ‘Y’ 3 v α3 + 3β0 4 tetrahedron
3 ‘Y’ 2 v + inc e α1 + 2β0 + β2 4 ∞ tetrahedra
3 ‘Y’ 2 v + adj e 3β0 + 3β1 4 ∞ 5v polytopes
3 ‘+’ 3 v + e 4β0 + β3 4 ∞ tetrahedra

4 ‘Y’ 3 v α1 + 2β0 + α3 4 tetrahedron
4 ‘Y’ 2 adj v + opp e 3β0 + 2β1 + β2 5 ∞ 5v polytopes
4 ‘Y’ 2 adj v + inc e 4β0 + 2β2 4 ∞ tetrahedra
4 ‘Y’ 2 adj v + adj e 3β0 + 2β1 + β2 5 ∞ 5v polytopes
4 ‘Y’ 2 opp v 2β0 + 2β1 + β2 4 ∞ tetrahedra
4 ‘+’ 4 v α4 + 4β0 4 flat square

5 ‘Y’ 2 adj v + 1 opp v 2α1 + α3 + β0 4 tetrahedron
5 ‘Y’ 3 adj v α2 + α3 + 3β0 5 5v polytope

6 ‘Y’ 3 alt v 3α1 + α3 3 flat triangle
6 ‘Y’ 3 adj v α1 + α2 + α3 + 2β0 4 tetrahedron
6 ‘Y’ 2 adj v + v α1 + α2 + α3 + 2β0 4 tetrahedron
6 ‘I’ 3 adj v, 3 adj v 2α3 + 4β0 4 flat rectangle

Table 5: Additional fold possibilities for regular n-gons, n ≤ 6. N is the number
of polytope vertices. Notation in Gluing Description column: v = vertex, e =
edge, adj = adjacent, alt = alternate, opp = opposite, inc = included. In
the Polytope Description column: ∞ = continuum of, 5v polytope = 5-vertex
polytope. Each entry of the Curvatures column satisfies Eqs. (14) and (15).
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along ∂P to which vi glues v′i. See Fig. 30 for an example with n = 12. We will
use this example throughout the section.
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Figure 30: Duodecagon, n = 12, α = 30◦, a ≈ 0.2, b ≈ 0.6. x and y are
perimeter-halving fold vertices. The dashed lines are (largely) conjectured
creases. The vertices vi, and the gluing points v′i, are labeled with i and i′

respectively. The left and right quadrilaterals play a role in Fig. 33 below.

As mentioned in Section 1, we have no method for computing the 3D struc-
ture of the unique polytope determined by a particular Aleksandrov gluing.
Moreover, we do not even have a general method for computing the creases, i.e.,
the edges of the polytope. We will therefore largely conjecture the structure
of the pita polytopes in this section, although we will establish a subset of the
creases. We will only explore the situation for even n. Let α = 2π/n, the turn
angle at each vertex of the polygon.

We view each pita polytope as composed of four parts:7

1. A central parallelogram with short side a: (x, v′0, y, v′n/2).
7 The relationship to the example in Fig. 26 should be evident.
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2. A top, nearly half-n-gon: (v′0, v
′
n−1, v

′
n−2, . . . , v

′
n/2+1).

3. A bottom, nearly half-n-gon, congruent by reflection to the top: (x, v′1, v
′
2, . . . , v

′
n/2).

4. A “mouth,” a strip of triangular teeth; see Fig. 31. n−2 of the triangles in
the strip are congruent; call their generic shape T1. T1 has sides of length b,
2a, and 1, with an angle α between b and 2a. The two extreme triangles
of the mouth are smaller, of shape T2: lengths b and a surrounding an
angle α.
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y

Figure 31: Mouth strip of teeth corresponding to Fig. 30. (Not to same scale.)

We conjecture that the central parallelogram’s edges are creases, as is its cen-
tral perimeter-splitting diagonal xy. Call the top and bottom nearly half-n-gons
pita polygons. We have no conjectures about how the pita polygons are trian-
gulated (except that they are triangulated the same). Finally, we prove below
in Lemma 9.7 that the mouth is creased at the edges displayed in Fig. 31.

The final 3D shape looks something like Fig. 32. As n → ∞, the polytope
approaches a doubly-covered flat semicircle.
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Figure 32: Two views of the approximate 3D shape of pita polytope folded as
per Fig. 30.

We now establish the structure of the mouth of pita polytopes. We start
with this obvious claim:

Lemma 9.4 Pita polytopes are not flat.
Proof: A flat polytope is a pasting of two congruent polygons, oriented and
aligned the same. The vertices of the polygons are the only spots on the poly-
tope surface with curvature. We know the location of all these n + 2 ver-
tices: x, y, and v0, . . . , vn−1. Thus the two polygons must be (y, x, v1, . . . , vn/2)
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(x, y, vn/2+1, . . . , v0). However, because x and y are not at the midpoints of their
edges (by definition of a pita polytope), these two polygons are not congruent.
2

Our tools will be two facts about edges of triangulated polytopes, neither of
which we will prove:

Fact 9.1 Every edge of a polytope is a shortest path between its endpoint ver-
tices.

Call two polytope edges incident to the same polytope vertex v adjacent if
they are consecutive in a circular sorting around v.

Fact 9.2 The smaller surface angle between two adjacent edges incident to a
polytope vertex is less than π. In other words, within every open semicircle of
face angle at a polytope vertex v, there is at least one edge incident to v.

We use Fact 9.1 to eliminate certain geodesics as candidates for polytope
edges. The following lemma gathers together some basic distance relationships
to be used later to show that some geodesics are not shortest paths:

Lemma 9.5 The following distance relationships hold for the length of chords
between points of a pita polygon:

1. |vi − v′j | = |v′i − vj |.

2. |v′i − v′j | < |vi − vj | for all |i − j| > 1, i.e., for all j 6= i and j 6= i ± 1.

3. |v′i − x| < |vi − x| for all i 6= 0.

4. |v′i − y| < |vi − y| for all i 6= n/2.

Proof:

1. The polygons cut off by the chords (vi, v
′
j) and (v′i, vj) are congruent. For

example, in Fig. 30, the chord (v4, v
′
0) cuts off a polygon of edge lengths

(b, 1, 1, 1), and the chord (v′4, v0) cuts off a polygon of lengths (b, 1, 1, 1),
both of whose outer interior angles are all α.

2. Distances between the v′i vertices are in general less than distances between
the corresponding unprimed vertices, because the primed vertices form a
regular figure inscribed in the n-gon. A particular instance is illustrated
in Fig. 33. For j = i + 1, the distances are equal.

3. Here the reason is similar: the primed vertices are inscribed in the n-gon
determined by the unprimed vertices. For example, |v1 − x| = a + b,
but |v′1 − x| is the length of the hypotenuse of a T2 triangle, with sides
a and b, which is shorter by the triangle inequality. We will not detail
the computations necessary to establish this claim for all i. The only
exception to the inequality is for v0, when |v0 − x| = |v′0 − x| = a.

4. Symmetric with previous case.

51



1

2

3

4

1'

2'

3'

4'

Figure 33: |v′1 − v′4| < |v1 − v4| (cf. Fig. 30).

2

To eliminate the equal-length geodesics in Lemma 9.5(1), we will need the
following:

Lemma 9.6 An edge e = vu of a nonflat polytope Q is a uniquely shortest path,
i.e., there is not another geodesic of the same length from v to u.
Proof: Suppose e = vu is an edge of Q. Let g be another geodesic between
v and u of the same length as e. Then because e is a straight segment in 3D,
and because any nonstraight path is strictly longer, it must be that g is also
a straight segment in 3D. Thus it must be coincident with e. If e and g are
nevertheless distinct, then they must be on opposite sides of a flat surface. But
then Q must be flat (“pinched”) at e = g, which by convexity implies that Q is
entirely flat. This contradicts the assumption of the lemma. 2

We now have assembled enough information to pin down the structure of
the mouth:

Lemma 9.7 The mouth of a pita polytope is triangulated as in Fig. 31: the
edges

(x, v1, . . . , vn/2, y, vn/2+1, . . . , vn−1, v0)

surrounding the mouth, and the diagonals (vi, vn−i) and (vn−i+1, vi) that delimit
its “teeth” (cf. Fig. 31), are all polytope edges.
Proof: Let vi, i ∈ {1, . . . , n/2 − 1} be a vertex of the mouth. (It may help to
think of v4 in Fig. 30 as a typical vi in this proof.) By Fact 9.2, there must be a
polytope edge e incident to vi on the top face in the half plane bounded by the
line through vi−1vi. By Lemma 9.5(2), the other endpoint of e cannot be any
vj , |i − j| > 1, for all those are longer than |v′i − v′j |, the length of an alternate
geodesic. So they are not shortest paths, and are ruled out by Fact 9.1. By
Lemma 9.5(3-4), the other endpoint of e cannot be x or y, for we have restricted
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i so that i 6= 0 and i 6= n/2. This leaves v′j as a possible endpoint of e. But by
Lemma 9.5(1), viv

′
j is not uniquely shortest, which by Lemma 9.6 then implies

that Q must be flat, which we know is false by Lemma 9.4.
We have excluded all candidates for the endpoint of e except for j = i ± 1.

Because we are examining the semicircle bounded by vi−1, vi, this leaves vi+1

as the only possible endpoint. Thus vivi+1 is an edge of the polytope.
Repeating this argument for the bottom face, i ∈ {n/2 + 1, . . . , n − 1},

establishes the outer boundary of the mouth, excluding the edges incident to x
and y. Those can be argued similarly. The teeth diagonals are now easy to see.
We illustrate with v4 in Fig. 30. We have just proved that no edge is incident to
v4 across the top face. But that top face must be triangulated somehow. The
only way to triangulate it without using a diagonal incident to v4 is to include
the diagonal v′9v

′
8. This means that v4v8 and v4v9 are edges of the polytope. 2
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