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Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice

B. DeMarco® C. Lannerf S. Vishveshward,and T.-C. Wel
lUniversity of lllinois at Urbana-Champaign, Urbana, lllinois 61801, USA
AWellesley College, Wellesley, Massachusetts 02481, USA
(Received 9 February 2005; published 7 June 2005

We consider the feasibility of creating a phase of neutral bosonic atoms in which multiple Mott-insulating
states coexist in a shell structure and propose an experiment to spatially resolve such a structure. This spatially
inhomogeneous phase of bosons, arising from the interplay between the confining potential and the short-
ranged repulsion, has been previously predicted. While the Mott-insulator phase has been observed in an
atomic gas, the spatial structure of this phase in the presence of an inhomogeneous potential has not yet been
directly probed. In this paper, we give a simple recipe for creating a structure with any desired number of
shells, and explore the stability of the structure under typical experimental conditions. The stability analysis
gives some constraints on how successfully these states can be employed for quantum information experi-
ments. The experimental probe we propose for observing this phase exploits transitions between two species of
bosons, induced by applying a frequency-swept, oscillatory magnetic field. We present the expected experi-
mental signatures of this probe, and show that they reflect the underlying Mott configuration for large lattice
potential depth.

DOI: 10.1103/PhysRevA.71.063601 PACS nuntber03.75.Lm, 32.80.Pj

I. INTRODUCTION plications using atoms trapped in a lattice. We investigate

Recent experimental results involving quantum degenerProcesses which disturb the stability of the Mott-insulator
ate atom gases trapped in optical lattices have stimulatedround state and estimate their influence for characteristic
interest from the perspectives of condensed matter and qua@Xperimental conditions. Specifically, we initiate an analysis
tum information science. Ultracold atoms confined in an opOf the emergence of superfluid order when there is a finite
tical lattice are predicted to display a rich variety of quantumbut small degree of tunneling and we study thermally acti-
phasegsee Refs[1,2], for example. The ability to precisely vated defects and their dynamics. Our work is not meant to
control the physical parameters of this system enables prolbe an exhaustive study of stability. Instead, we take the first
ing a vast range of related fundamental physics includingteps toward addressing these considerations and point to
guantum phase transitions, the behavior of collective excitaexisting literature from the condensed matter community ap-
tions in the quantum regime, and the physics of defects. Thpropriate to the atomic system.
properties of these phases may permit new applications, such To complement our theoretical work, we propose a set of
as neutral atom guantum computing or quantum simulatiorexperiments using microwave spectroscopy to map out the
[3]. spatial structure of the bosonic states hosted in the optical

Neutral bosons trapped in optical lattices can exhibit com{attice. The proposed techniques can identify Mott-insulator
plex spatial configurations of coexisting superfluid and Mott-states with any site occupation number and resolve the spa-
insulator phasefl]. There have been detailed studies of thetial distribution of sites with different occupation number.
superfluid to Mott-insulator phase transition in the atomicWe view this method as intermediate between less general
system using techniques such as quantum Monte Carlo simtechniques[14] and high-resolution direct imagin¢15]
lation and mean-field theorigee Refs[4—8|, for examples  which will be necessary for long-term development of neu-
In this paper we offer a practical and simple recipe for realtral atom quantum computing.
izing specific Mott-insulator configurations and we study the This paper focuses on experimental parameters similar to
limitations posed by realistic experimental conditions. Moti-those first used to observe the superfluid to Mott-insulator
vated by proposals for using the Mott-insulator state to ini-phase transition in an atomic g@$6]. We consider using
tialize a fiducial state for neutral atom quantum computing®’Rb atoms confined in an optical lattice formed from three
[9,10], we focus on the tight-binding regime where intersitepairs of intersecting laser beams with wavelength
tunneling is suppressed. We formulate a straightforward=850 nm. The resulting lattice has cubic three-dimensional
method, primarily using counting arguments, for obtainingsymmetry with lattice spacing=A/2. The effect of an ex-
the constraints on lattice parameters that yield states of defiernal potential that changes over many lattice sites, formed
nite spatially varying occupation number. from magnetic or optical fields, is included. The lattice depth

The effects of finite temperature, tunneling, and dissipais Vo=30Eg, where the recoil energl¢g is approximatelyn
tion in a periodic potential have been studied in the literaturex 3.7 kHz (h is Plank’s constant The resulting tunneling
[11-13. Atomic systems are a unique tool for studying out- strength between sites is of order=h X 10 Hz. The on-site
standing questions regarding these phenomena. FurthermoigteractionU between particles can be changed by changing
deviations from the zero-temperature and tightly boundV, or using a Feshbach resonance. ¥gr 30Eg and at zero
ground state will have an important impact on potential apmagnetic bias fieldJ ~hXx 2.5 kHz.
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The outline of this paper is as follows. In Sec. Il, we 4
present a scheme for realizing Mott-insulator configurations E SF
with specified occupation numbers. In Sec. Ill, we address 3

the stability of the Mott-insulator configuration, in particular,
against superfluid order and defect formation. In Sec. IV, we
describe experiments that exploit microwave transitions be-
tween hyperfine states to probe the Mott-insulator structure.
We conclude with a summary of our discussions in Sec. V.

Il. COEXISTENCE OF MOTT-INSULATOR PHASES 0.0 0.1 0.2 0.3

. . . . L . Zw/U
In this section, we describe an optical lattice in a radially v

symmetric geometry that permits the coexistence of concen- FIG. 1. The mean-field phase diagram for the Bose-Hubbard
tric Mott-insulating regions with differing occupation num- Hamiltonian at first perturbative order in/U. Here, 2= u—V(r),
bers. We derive the constraints on lattice parameters necess described in the text, aitlis the coordination number of the
sary for this coexistence. In contrast to previous wdrkwe lattice (Z=6 for the three-dimensional cubic lattice under consider-
employ counting arguments to describe the spatial structuration herg¢. The shaded regions are Mott insulating with the indi-
of the Mott-insulator state, which allows us to consider acated number of bosons per siteThe white regions are superfluid.
general spatial geometry. Our starting point is the BoseNotice that the superfluid regions at integer valueg.axtend all

Hubbard Hamiltoniari1,17] the way to zero tunnelingv/U=0). While the exact location of the
boundaries between superfluid and Mott regions at finite tunneling
2 L U, A is diff t at high ders i turbation th th litati
_ N Y e _ . is different at higher orders in perturbation theory, the qualitative
H= {2 [V(ri) - i + 2 E. (P 1)} W% (b by features of the phase diagram pergid].

+bby) = Ho+ W, (1)  display thermally activated hoppingl7]. At suitably low

where u is the chemical potential(r;) is the value of the tem.peraturekT<<.AE, WheFeAE is the exmtgtlon energy for

external confining potential at siteof the optical lattice(at ?ddlng_ or removing a part|cle_, th‘? system Is most likely to be
) _ ~ ~ ) ound in its ground state, which is the situation we consider

the pointr; in spacg, b andb; are the boson creation and j, this section; we discuss the effects of finite temperature

destruction operators at siteﬁizbfbi is the number opera- and tunneling in subsequent sections.

tor for bosons on sité, U is the on-site interaction energy ~ For a spatially varying external potentl(r), and there-

between two bosons, and/ represents the tunneling that fore spatially varying effective chemical potentjal the sys-
tends to delocalize bosons, withbeing the tunneling matrix tem can have coexisting regions of different Mott-insulator
element for bosons between nearest-neighbor ¢itg¢son  stated1,18]. If the external potential is spherically symmet-
the lattice. ric and of the formV(r)=aré, then is the largest at=0

In this section, we concentrate on the limitU=0 where and decreases for increasingNote that the arguments in
tunneling is negligible and:|ﬂl:|o. (For small tunneling _this sectiqn can be extended for more .ge.neral po_tentials lack-

A _ - .ing spherical symmetry. In the/U=0 limit, the site occu-

w/U, Wean be treatgd asa perturbauon_; we return to this Thation numbem at the center is determined by the condition
a later secuor).The sites are decoupled in this limit and the m-1< u/U<m, where the chemical potentigl is deter-
Hamiltonian, Ho, is diagonalized by the set of states with mined by the total number of particld$. The number of
specific occupation number on each sitg=(b))"0);/Vn!.  bosons per site changes by one at each radius where
For a givenn);, the energy i€,=-un+(U/2)(n~n), where  —V(r)]/U is an integer, leading to a shell structure. The radii
w is an “effective” local chemical potential= u—V(r). The  for the boundaries, as illustrated in Fig. 2, are givenRyy
occupation numben that minimizes the energy is deter- =([u-nU]/a)¥¢ (n=0,1,... m-1), where thenth Mott-
mined by JE,/on=0=-p-(U/2)(2n-1), which givesn insulator state lies betwed®, andR,_;. This shell structure
:ﬁ/U+%. Sincen can take on only integer values, the mini- is established by the competition between interaction and
mization condition becomes potential energy. The edge of the occupied lattice is defined
by the outermost boundary of the Mott-insulator states where

n-1< ﬁ <n, E,is minimum. (2)  the occupation drops to zero
e
(M
The state withn bosons, which we refer to as tmeMott- Ro= (;) : (3

insulator state, is an incompressible Mott-insulator phase.

With finite but small tunneling(w/U # 0), the regions All other radii can be expressed in termsRy:
wheren/U is nearly an integer become superfluid, leading to _ _ ¢
the well-known phase diagram shown in Fig. 1. At finite Rn = Rol1 =n/(u/U)J. @)
temperature but negligible tunneling, all Mott-insulator  For a given interaction energy and total number of
phases are replaced by normal fluid phases of bosons whidfosonsN, coexistence of a total ah Mott shells will occur
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FIG. 2. lllustration of the bounding values ofor an spherically
symmetric confining potential centered a£0 which supports

shells of Mott-insulator phases.

only for a specific range of the parameter We find that
range as follows: the chemical potentjalis determined via

the global constraint
N= 2 ni(w). (5
|

If the spacing between sites in the optical lattiagis small

compared withR,, we can approximate each Mott region by
a three-dimensional continuous spherical shell with inner ra-

dius R,, outer radiusR,_; and uniform densityr/a3. In this
continuum limit,

Nz%fﬂ(r)d% (6)
47 3 3
=Q(R3+Ri+R2+ R (7)
477'mz_1<,(,b—nU>3/é
= . 8
3a o, ®

With some rearrangement, we arrive at the condition

N[ o\ T
- (U) =3 (ulU -, ©
n=0

X=

Becausem—-1<u/U<m, we can obtain from Eq(9) the

upper and lower bounds ox(u/U) necessary to realize a
shell structure with any desired maximum site occupamcy

For example, fog=2 (a harmonic external potentjal

3Na3 @ 3/2
1< (U) <3.82, m=2,

4 (10
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3.83<

3
3Na (a (11)

3/2

—) <9.03, m=3.
7 \U

As an example, we consider the experimental parameters
detailed in the Introduction anbl=10° atoms. To support
three Mott-insulator shells in a harmonic tr&jr) = ar? the
curvature of the trap needs to satisfy the constrdint
X 8.8 Hz/[um?< a<h X 15.6 Hz/um?. For a typical value
in this range, for instancex/U=2.5 (and hencea=h
X 12.1 Hzjum?), Egs.(3) and(4) show that the size of the
entire Mott-insulator structure is given 8y=22.8 um, and
that the radii separating the three Mott shells d&e
=17.6 um andR,=10.2 um.

In this section, we have shown how the spatial structure
of the Mott-insulator ground state in the absence of tunneling
depends on a limited number of experimental parameters.
Based on counting arguments, we have derived a series of
constraints on these parameters for realizing a shell structure
with a specific core occupancy.

IIl. STABILITY OF THE MOTT-INSULATOR PHASES

The stability of the Mott structure is relevant to experi-
ments probing the physics described in Sec. Il. Of particular
practical concern is the elimination of number fluctuations
when using the Mott-insulator state as a fiducial state for
neutral atom quantum information experiments. Several pro-
posals suggest creating the Mott-insulator state followed by a
purification scheme to prepare a well-defined state with one
atom per lattice sit¢9,10]. These schemes cannot eliminate
sites that are initially vacant and suffer inaccuracy when
number fluctuations become large.

Deviations from the nested Mott-insulator shell structure
will be driven by finite tunneling between lattice sites and

finite temperature. The dynamic evolution of the system is a
result of the complex interplay between the Bose-Hubbard
Hamiltonian, dissipation, and finite temperature. While a
complete study of stability is beyond the scope of this paper,
we summarize the effects of tunneling and finite temperature
and provide estimates relevant to a typical experiment.

We assume that the lattice parameters described in the
previous section determine the initial conditions for the
bosons and that the lattice potential is free of imperfections.
In the following sections, we first discuss global deviations
from the Mott-insulator structure coming from the tendency
to form superfluid regions. We show that the effects of su-
perfluidity can be made negligible in the optical lattice. We
then discuss the local fluctuations caused by “particle” and
“hole” (p-h) defects in the Mott-insulator structure. We ana-
lyze the emergence and dynamics ph defects at finite
temperature and tunneling.

A. Superfluidity

In principle, even the smallest amount of tunneling can
alter the Mott-insulator phase. At finite tunneling, the natural
source of instability is the formation of superfluid regions.
As shown in the phase diagram of Fig. 1, the system is par-
ticularly susceptible to forming regions of superfluid at the
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boundaries between Mott states of different occupation num<a), then number fluctuations due to superfluid tendencies
ber. For a specfic set of values for the tunnehmginterac-  are expected to be negligible.

tion energyU, and external potential curvatuwe we can As an example, we again consider the experimental situ-
estimate the size of the superfluid regions formed betweeation detailed in the Introduction with a harmonic external
Mott phases. The Mott states remain relatively robust againgiotential andu/U=2.5. The thickness of the superfluid be-
delocalization if the expected thickness of the superfluidween then,=1 and n,=2 Mott-insulator states ig\r;_,
shells is less than a lattice spacing. ~0.82/U/aZw/U. Using the valuea=~hx12.1 Hz/jum?

To estimate the size of the superfluid regionTatO, we  from the previous section, we obtaikr; ,~0.07 um and
invoke a mean-field treatment that decouples lattice sitear,_;~0.24 um, which is smaller than the lattice spacing
even in the presence of tunnelif@9]. To summarize the a=0.43 um. Therefore, for this specific case, no superfluid
treatment, the effective Hamiltonian takes the form regions will exist. Equatiori16) could also be used to deter-

mine the experimental parameters leading to the existence of
Hye = 2 | - 2 + Eﬁi(ﬁi -1 _\PBBiT_\II*BE)i . (12) superfluid shells, which may be of fundamental interest in
i 2 and of themselves.

HereWVz=2Zwb) is related to the superfluid order parameter
and is obtained self-consistently, withbeing the coordina-
tion number (the number of nearest neighbors per )site  While global instabilities coming from a tendency for the
Terms involvingWg and\If*B can be treated as a perturbation bosons to condense can be made negligible, local instabilities
to the Mott-insulator state§)). To second order inV'g, the  can still permeate the Mott-insulator structure in the form of

B. Defects

perturbed eigenstates at a single site are defects. In this section, we discuss two types of local
o _ excitations—isolated defects where a site has an extra par-
(W) =) + WgapVn+ 1n+ 1) + Ygaivnn - 1) + Waaz|n ticle or one less(hole) compared with the Mott-insulator
9 - ground state, and excitations where a particle has hopped to
+2)+ (Vg) azn-2), (13 a neighboring site and leaves behind a hole. The former,
where a7, are functions ofn, u, andU. The energies are which we call “site defects” can arise from random removal
shifted to of atoms from the lattice, for example, by heating from spon-
taneous emission driven by the lattice light or by collisions
En =E,+ xn| Vg2 + O(|WglY), (14)  with room-temperature residual gas molecules in the vacuum

system. We refer to the latter as “particle-hol@*h) excita-
whereE, is the energy of the unperturbed Mott statg, and  tions and these are natural perturbations to the Mott-insulator
xn=(N+1)/(Un=w)+n/[u—U(n-1)]. Self-consistently ground state. Site defects can also arise when components of
minimizing  E, -Zwb)(b")—(b)yW5—(bHWy=E, +p|Wg2  P-h excitations(due to finite temperature or imperfect adia-
+O(|Wglh deterr%ines\IfB. Here,n, is the Mott grgund-state batic tra_msfe?rthat were pre;ent during |n!t|al loading of 'ghe
occupation number appropriate far The superfluid bound- Bose-Einstein condensate into the lattice become widely
aries are determined by the sign pfu,w,U); (b) has a separated.

nonzero expectation value wheséu,w,U) is negative. We In the following discussion, we first consider the energy
have to first nonvanishing order Bw/U, P=Xno(M/U)[1 gap associated with these excitations; the energy gap plays a

. key role in the statics and dynamics of defects. We then
= ZWxn,(u/ U)] with study the static perturbative effects ph excitations on the
no(/U) + 1 no(/U) Mott-insulator state in the presence of finite tunneling. Next,
0= oM + oL . (15) we consider the dynamics of defects within the framework of

° Ung(u/U) = p=U[ne(u/U) = 1] a toy two-site model. We comment on defect dynamics over

The superfluid boundary satisfies the conditionZiN;\/nO=0. ;C: deigglrjesssiﬁéeglgr;? f?r:}t;hteerigzclfgstu?fe_d'SS'patlon' Finally,

For fixed _tunneling,_ this deter_mines the boundary \_/alues 0 Energy gap In the Mott-insulator ground state at zero
the e_ffect!ve chemical potential along each MOtt"nSL_"atortunneling, the functionaE(n)=-7zn+(U/2)n(n-1) is mini-
lcohbeemliga::;)go.telﬁ tiZIO ;tzm/euui;éﬁ\iw)a azzvﬁwfgr(g] _e) Egﬁﬁg\_’e mized at each site. The energy gap associated with single site
) i No Mo defects isAE+=EnO+1—EnO=—ﬁ+UnO for the addition of an
aries of then, Mott-insulator lobe extra particle and&E‘:EnO_l—Enozﬁ—U(no—1) for the re-
~+ ~- moval of a particle(addition of a hole wheren, is the
Mg Mg - ' -
—=ny(1-ZwllU), — = (ng—1)(1+ZwU). ground-state occupation number. Sinog-1<u/U<n,,
U U AE* is positive and of ordel) in the bulk of the system.
(16) Close to Mott boundaries, though, the energy gap becomes
arbitrarily small asi/U approaches either, or n—1. Be-
Equation(16) can be used to determine the ragii ; andr,  cause of the underlying lattice and inhomogeneous confining
between which superfluidity will exist in the continuum potential, however, the energy cost for a site defect rarely
limit. If the distance between the radii where superfluidity vanishes: there is always a change in potential enérgy
can exist is smaller than a lattice spacifzgr=r;0_1—rgo over a lattice spacing and it is unlikely for a boundary to
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exactly coincide with a lattice site. For the experimental pa-

rameters  detailed in the Introduction, V,=(h ) = c<|n0, -+ sNg)

X 12.1 Hz/um?r?, we haveAV=hx 181 Hz (hx 104 H2

at the boundanR;=17.6 um (R,=10.2 um). wyng(ng + 1)
2,

The energy cost for a-h excitation in the bulk is U 2 1Mo .. (Nox1);,(Ng + 1)y, ... ,n0>).
i

(20)

Deviations of this many-body state frof#,) can be quanti-
fied by the zero-temperature fidelif20], defined as
wherei is a site indexAV;=V;-V,,4, andV, is the on-site

— 2
potential energy from the confining potential. For a particle fo=Kutuo)l*. @D
hopping across a boundary between a Mott-insulatpr 1-f, is essentially the probability that the system is not in
phase on sité andn,—1 phase on site+1, the energy cost the zero-temperature Mott-insulator ground state. For the

E'Png) = AE + AE;,; = AV, + U, (17)

is wave function in Eq(20), the fidelity takes the form
w2no(ng + 1)ZN. |1
hop . _ + _ fO = 1 + 0( 0 5 ) 'S ' (22)

whereNs is the total number of occupied sites. A high fidelity
hon - - B requires the possibly severe requirememMZnyw/U<<1.
B (o) = AE{(ng) + AE;y(no— 1) =2U - AV. (18)  For experiments involving local probes, however, the more
relevant quantity is the defect probabilila}’ffvf at a given site
i. The probability for a site to be in the stdt+1) can be

The symbol| denotes hopping from am, to anny—1 Mott- Pbtained from Eq(20)

insulator state and denotes the reverse process. The mos

favorablep-h excitation therefore involves a particle hopping def ZwWPno(ng+ 1) wW?no(ng + 1)ZNg
across a Mott-insulator boundary from higher to lower occu- iw = U2 i+ U2 - (23
pation.

Finite tunneling: staticsAt small tunnelingw<U), cor-  Low defect probability locally, then requireZwn,/U<1,
rections to thev=0 Mott-insulator ground state),) can be  Which is satisfied for the experimental parameters considered
written in terms ofp-h excitations provided thav<E'P. As  in the Introduction. _
found in the previous discussion, since the small€Sf is Modifying these arguments for the Mott-insulator shells
across Mott boundaries WitEihOp(nol):AV, the change in in an inhomogeneous potential is straightforward. The num-
potential energy must be much larger than the tunneling er2€r ofp-h excitations varies spatially with the energy gap for
ergy (AV>w), which is achieved by the parameters undereXcitations. The fidelity will therefore contain terms of order
consideration, namelyw~hx 10 Hz andAV=hx 181 Hz AV from sites at boundaries and contributions of ortler
(hx 104 H2) :across the boundary aR,=17.6um (R, from sites in the Mott-insulator bulk. The condition for low
=10.2 um). This inequality is related to the condition found defect probability for sites in the bulk is the same as for the

in Sec. Il A for the putative superfluid regions to occupy uniform case. The probability of a defeRfS' for a boundary

less than a lattice site. site becomes of ordewny/AV<1, whereJn_O is the average
To first order inw/E"P, the perturbative ground stag) ~ humber of bosons per site near the boundary.
of Eq. (1) is given by Finite tunneling: dynamicsTo analyze the evolution of a

configuration of defects in time and the emergencep-df
excitations driven by quantum dynamics, we use a two-site
xdW version of the Bose-Hubbard Hamiltonian
|¢>:c(|wo>+ > |exc>%>, (19 U
exe H = - w(bjb, + blby) + 5 2 nn-1)+AVn. (24
i=1,2
wherec is a normalization constant. The excitations and corHere,i=1,2 aresite indices and\V is the change in on-site
responding activation energies dexc and AE®*S, respec-  potential between sites 1 and 2.
tively, and the sum is over aii-h excitations. Comparinfy}) As the simplest case, we consider the restricted Hilbert
and |¢q), we can estimate the deviation of the many-bodyspace of just one particle present, i.e., stéte€) and|0, 1)
state or the single site occupancy from the zero-tunnelingn the |n,,n,) basis. This situation could correspond to site-
Mott-insulator ground state. defects composed of either a hole in threl bulk or a par-

As an example, consider the case of a finite-sized unifornicle in then=0 bulk, or to the boundary between the 1
lattice with no external potential and occupangyat each andn=0 states. FoAV=0, corresponding to site defects at
site in the absence of tunneling. To lowest order, tunnelindgixed radius in the external potential, the quantum state tun-
perturbs  the  Mott-insulator  ground  state|¢p)  nels back and forth betwedh, 0) and|0, 1) at a ratew/h.
=|ng,Ng, ... ,Np) to For AV# 0 and the particle initially in statd, 0), the prob-
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ability for the particle to remain in staté, 0) is present, we refer the reader to the exhaustive spin-boson lit-
erature[11]. In the analogous situation of defects in solids,
PY (=1~ wiAv (1 - cosast), (25)  dissipation arising from coupling to phonons is believed to
- [1+(2w/AV)?] be “super-Ohmic,” leading to weak damping of the oscilla-

tions of the equivalent two-level systefhl,12.
is depleted at most by/AV for AVsw, which is true for In the absence of d|SS|pat|pn, there is no complete tunnel-
ing between ground and excited states. However, we would

the experimental conditions described in the Introduction. expect dissipation to relax an excited metastable state to the
Interactions come into play when there are at least two P P

; = 21-1
particles and the Hilbert space is confinednte-n,=2. To ground _state over a _Iong tme SC&."@'S [AW/AB)TT™,
focus on the effect of interactions, we sE¥=0. The state whgrey is the d_|ss_|pat_|ve rate andiE is the energy O.f the

|1, 1) corresponds to a state in the:1 in the Mott-insulator excited state. Dissipation and decoherence of the site-defect

bulk, while |0, 2 and |2, 0) correspond top-h excitations wave function can also result in a crossover to classical be-

Only the stated11) and |¢,.) = (|20)+|02))/\2 are coupled havior. In this case, we expect site defects to propagate dif-

. . . . fusively rather than ballistically.
2)
via the hopping term. The probabmt?( () for particles to Finite temperature The stability of the Mott-insulator

o R 6]
remain in the statél1) is identical toP",(t) from Eq.(25)  shell structure requires temperatures sufficiently low for ther-
with U replacingAV and double the value of. The prob-  mga| excitations to be insignificatksT<U,AV). The state at

ability for |11) to decay intop-h excitations is at most of finjte temperature is captured by the statistical density matrix
order w/U, which is 4x 1072 for the experimental param-

eters discussed in the Introduction. The same probability and p= E e—En/kBT| EEql, (28)
rate hold for the decay of arprh excitations already present. n

We expect the most pronounced long-range dynamics t‘\9vherek3 is Boltzmann’s constan is the temperature, and

come from site-defects tunneling along sites of equotentlalEn and|E,) are excitation energies and corresponding states,

In fact_, since the kinetic energy of a site d_efect 1S reduced_ b¥espectively. The finite temperature generalization of the fi-
tunneling, site defects will tend to delocalize, correspondlngdelity given in Eq.(21) becomes

to superfluidlike behavior. As the simplest possibility, we can
mode_l a particle in the1=.0 Mott bulk or a hole in 'then=1 f = (olp| o) Tr(p), (29)
Mott-insulator bulk moving along an equipotential surface ) . i

by setting the potential energyV and the interaction energy Where|o) is again the Mott-insulator ground state. At low
U to zero in the Bose-Hubbard Hamiltonian. In this purely temperaturep-h excitations occur with Boltzmann weight
tight-binding limit, the amplitude for a particle starting at site @nd the effect of tunneling can be accounted for perturba-

labelled by an integer vectarto propagate to a site labeled tively. The finite temperature fidelity in Eq29) for devia-
by s is given by tions from the uniform Mott-insulator ground state is given

wherea;=VAV?+4w?/#. The probability to remain ifi, 0

' di% o ed >
<S|e-|Ht|r> :j (2,”-)(]e—|k.(r—s)+|2wt2i:1 cosk; (26) f(T) iy 1 20
01 4 ZN e Ve (30
o (mAEAn d _ where fq is thg figjelity at zero temperature. Likewise, the
= ' 'H Jar, (= 2wt), (27)  probability of finding a defect at a siie given by Eq.(23),
=1 becomes

whered is the effective spatial dimensiok, is the momen- def def _ _
tum, Ar =(r -s), andJ,(x) is the Bessel function of the first Piw(T) = [PIL(0) + ZeeT)[1 +ZNeeT]. (31)
kind. The maximum probability amplitude is transferred Compared to zero temperature, the defect probability at finite
from r to s on a time scalé~#|r —s|/(2w), suggesting that temperature becomes enhanced by a Boltzmann term appro-
site defects can exhibit ballistic motion along the equipotenpriate for p-h excitations. The defect probability is largest
tial surfaces. across a boundary:

We have so far neglected the effects of dissipation. One
source of dissipation is spontaneous emission driven by the
lattice light which will occur at relatively low(1-10 H2

rates. We expect the major source of dissipation at any given . ) )

site to come from the interactive coupling of the site to theWhereNy is the number of pairs of sites across the boundary,
entire system. The calculation of such a dissipative term foAV is the potential difference, arﬂff,’vf(O) is the correspond-
optical lattices has not been performed to our knowledgeing zero-temperature defect probability.

Tunneling of site defects between nearest neighbors in the We have simulated the equilibrium configuration for a
presence of dissipation can be treated phenomenologicallsystem ofN~=3x 10* atoms using a Metropolis algorithm, in
by the well-studied “spin-boson” Hamiltonian, which de- contrast to a slave-boson model employed in R2&f). Fig-
scribes the physics of a particle in a double well systemure 3 shows the spatial profile of occupation number from
coupled to an environmefil]. We have yet to analyze the this simulation for various temperatures. The simulation in-
effects of dissipation on defects in optical lattices, and adicates that the temperature must be smaller thafi0kg)

Ddef -
B )~ Puwl0) + eV
i 1+ Nbe—AV/kBT + ZNSe—U/kBT ’

W

(32
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30 ' ' dynamic fluctuations ofp-h excitations and site-defect
U geeae ] . . .
= —e— T=U/(100k,) propagation across potential barriers are largely suppressed
25 [, X e | due to interactions. However, at finite temperature, these pro-
- e T3k cesses can be thermally activated. To describe hopping be-
2.0 ——T=Uk; ] tween sites, one can invoke a phenomenological double well
= 15L4 R | model and appeal to the exhaustive knowledge of reaction-
Tl rate theories for hopping between metastable sfai@ls
1.0k 4
0.5+ E
- Mepeo IV. MICROWAVE SPECTROSCOPY
0'00 5 10 15

T (uwm) In this section we describe a technique for probing the

spatial structure and energy spectrum of the Mott-insulator

temperaturegsee legend, color available onliné Metropolis al- §tate dlscus.sed n Sep. . The method', an extension of Work
X ) in Ref. [9], is compatible with any lattice geometry and is

gorithm is used to calculate the distribution of roughlx 30* at- . .
ot ) . . capable of resolving the effects of finite temperature. In con-
oms among lattice sites with a harmonic external potential charac:

c . . .

terized by a=hx 113 Hz/um? and the experimental parameters trast .to Fhe previous sections of .thls paper W.here only Qne
detailed in the Introduction. The average number of atoms per sité‘tomIC internal State, was conSIdered,. muItlpIQ hyperfme.
(n) is shown at radiir which are multiples of the lattice spacing. states are employed in our spectroscopic technique. Transi-

The radius is measured from the minimum of the external potentiallions between hyperfine states are driven using a microwave-
frequency magnetic field. Information on the interaction en-
. . ._ergy U and the density profile of the gas is obtained by
for thermal fluctuations of particle number to be SUbStam'allymanipulating the resonant transition frequency between hy-

zﬁgpﬁiﬁei},ggéoitsoéﬁgmr?nbi?"'tﬁ d\'/f‘/terl'lt_)gg]fi)gggrsd'gg;??;perfine states. Dependence on site occupancy is achieved by
P 9. = P cPanging the interaction enerdy using a Feshbach reso-

g{grrﬁsvé?sge rggrsiosr'tfesmareer:gﬁzg'ﬁ? Egrﬂt:de a?ﬂa(r)ln(e) n_lrjrrreber ﬂance, while a spatially inhomogeneous, state-dependent op-
PP P 9 B tical potential provides spatial resolution.

data in Fig. 4c) also show how thermally activated hopping
is most likely at boundaries between the Mott-insulator states
closest to the minimum of the external potential. _ . o o

The time scale for thermally activated hopping can be A. Interaction with an oscillating magnetic field
probed in experiments and will play a role in schemes where
a zero entropy state is initialized for neutral atom quantum We first address the atomic interaction with an oscillating
computing[15]. At the crudest level of approximation, the magnetic field in anticipation of explaining the detailed ex-
tunneling rates due to quantum and thermal effects can beerimental procedure in subsequent sections. In the presence
added to obtain the net rate, particularly if the time scales aref an oscillating magnetic field, the exact Hamiltonian at one
widely separated13]. At zero temperature we found that lattice site in the absence of tunneling is

FIG. 3. Spatial profile of occupation number for six different

T ARESN
PR RN RN ANNRNNNNRN N

| iy FIG. 4. Probability distribution of occupation
: number for six different temperatures(a)
b) U/(10%kg), (b) U/(30kg), (c) U/(10kg), (d)
o @ RIS HIHRINRHNRAY U/(3ks), (€) U/kg, and(f) 2U/kg. The probabil-
a I | ity P, to find a site occupied by atoms is shown
0.8 s o for radii r which are multiples of the lattice spac-
I 3 . \ | = =0 ) ing. The data are extracted from the Metropolis
0.6 § u = =T ] algorithm used in Fig. 3 and are displayed as a
o | i - -2 stacked column plotsee legend, color available
§ g 5 I n=3 p gena,
0.4 § . =4 online).
I g _In=5}{
0.2 T
§ (d) () M
0.0 b NNNNASA INNNNFAN o
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- - Uy U... L (a) 0.3) —
{Hab}+H.={ (P, = 1) + =25 g(fla = 1) + Uafiafly "3
10,+2U,,(8-1)
+hwabﬁb} -2 "B, (33 10.2) R 1o, +U o (B-1)
' g tUa(B-1) 2,1y f— =

0,1)
wherefi, andf, are the number operators for atoms in hy- \1,o>£
perfine statesa) and |b), U, Upp, andU,, are the interac-
tion energy for two atoms in statés) or |b) or one atom in n=1

each state, the sum runs over the atoms, arglthe atomic ()
magnetic moment operator. The energy differefiag, be- 10.3) —
tween state$a) and |b) takes into account the effect of any V30
external optical and magnetic potentials, including a static
magnetic bias field that defines tkedirection. We also as- 1.2) %
sume that the lattice potential is identical for both hyperfine T Ba | 20
states; specifically we consider a far off-resonance Igttice. 0,1) = 11,1)-% 5o 3.0y 3
The applied microwave-frequency magnetic fielB \1,0)3: ROI————e= =
=B, cod w(t)t]é, may have a time-dependent frequensy n=1 n= n=
The interaction with the magnetic fie[the last term in Eq. A
(33)] can be rewritten aéh=fLQ[ei“’(t)t+e’i“’(‘)‘]2i(&f)+&9)), FIG. 5. The energy spectrum &i,, for lattice sites withn
where AQ=—uB)/4, wap is the magnetic moment matrix =1,2,3(a) and the Rabl_frequer_lues for_tran_smons between states
element between th|a) and|b) states, an(il}<') are the Pauli that are coupled by the interaction Hamlltc_)méh). In (a), the en-

ergy difference between states and the shift of the ground state are
raising and lowering operators for atdm

Because the statéa) and|b) form an effective spin-1/2 shown.
system, the elgenstates}dgb are eigenstates of total angular .

momentum)=3",S", whereS" is the effective spin opera- W= Ch 1 onn NNy =N— 1YY, (35)
tor for atomi. The interaction with the oscillating magnetic ng=0 b

; ; i 9 j ot 4 amie®t] ]
field, which can be rewritten asi;=Q[e""+e 1], wheren=n,+ny. In general, the Schrodinger equation gives
+J.), causes a rotation of the total spin vector. Since waise to coupled equations for th@,_, that can be solved
assume that all of the atoms start in one hyperfine sHate numerically.
couples states with differemt;, but fixed total angular mo- To illustrate the salient features of this interaction Hamil-
mentum guantum numbejr= n/2 [n=n,+n, and J4j,m)  tonian, we will ignore off-resonant excitation and discuss the
=1%j(j+1)[j,m)]. All states withj=n/2 are properly sym- casew(t)=(Ey 1 +1~En_n)/fi+5(t). While for *'Rb the in-
metrized with respect to two-particle exchange for bosons. teraction energy matrix elements are normally hyperfine-
We take advantage of the Schwinger representation anstate independent to within a few percent, we consider using
write the eigenstatef§,m;), which are states ofi spin-1/2  a Feshbach resonance so that we can Hays=U,, and
particles, as|n,,n,). In this representation,J,|n,,ny,) L;]bb:'ghuaﬁ" We d'SCgSS only the IStater!]SZ‘o’LZ":l)’leverllf
=lena—1,nb+l> and J-Ina.nb>=v’mlna though the proposed experimental techniques will work for
any site occupancy. For typical experimental conditions,
101, three-bod bination rates will limit the lifetime of th
The interaction picture is convenient for calculating the ree-body recombination rafes wi imit the filetime ot the
ffect of th illating field. Taking int nt that th n>2 state to a few ms. However, we include analysis of that
etiect of the osciiiating hield. 1axing 1nto accou at € state here in light of a recent propoda@?2] for reducing
interaction Hamiltonian can only couple states whege

changes by 1, than,+ny is constant, and by making the three-body recombination rates b.y afactoerf 100.

rotating-wave approximation, we obtain _The energy spectrum of thg e|g_enstatengg§ fqr states
with different n is shown in Fig. %a). Solving the
Schrodinger equation for the atomic wavefunction gives

= 7.0{J, e 0O~ En 1n17En o /ALt coupled equations of the form
+ J_ello®-Enyn Engrin,- /A1 (34 C oy = " 100, Cn s10,-16" o, (36)
in the interaction picture. In Eq.(34), the energy Cn 1n1= =100 0 C €0, (37

E, nb|na,nb)=Hab|na,nb> is determined by the eigenvalues of where Qn " _\/’/—(na+ DnQ. In the absence of off-resonant

Hap- The quantum state of the atoms on a lattice site can bgycitation: and fors independent of time, the problem re-
written in terms of the time-independent elgenvectorsigf duces to oscillations between two states with Rabi frequency
as Qn_n, [shown in Fig. $b)]. There are two important features
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of the coupled problem that are apparent in Fig. 5. The first i$.24 G[26]. For 10 atoms, to realize sites with=3 will
that there are no degenerate energy splittings in any manifolcequire at least a 7 mG spread across the gas using either of
for constantn. However, the transition frequencies are de-these states. With a 3.24 G magnetic bias field, there will be
generate when the transition involves states with the sgme less than a 2 X 0.1 Hz shift inw,, across the occupied sites.
between manifolds of differem. Also, the Rabi rates for
transitions|0,n) «<+|1,n-1) and|n,0)«|n-1,1) are unique 2. Rapid adiabatic passage
to each manifold of constamt, regardless of the value ¢ In this section, we explain an experimental technique to
(i.e,]1,1)+0,2) and[2,1)«[3,0)). In the next section, we probe the Mott-insulator spatial structure directly, where the
will describe two experiments that will take advantage ofgccupation of sites is identified using the interaction energy.
these features. Rapid adiabatic passage is used to transfer atoms in|aate
to state|b). The interaction energy is manipulated by using a
. Feshbach resonance such that the resonant microwave fre-
B. Experimental proposals quency shifts for transitions betweda and |b) in a mani-

fold of states with constamt. The maximum frequency shift

The two experimental techniques that we describe in thigjenendence on permits unique identification of sites with
section are a simple method for determining the ratios ofjiterentn.

sites with differentn, and a more developed technique for change the interactions between atoms in $kiteve

mapping out the spatial structure of the insulator state. W%hoose|b):|F:1 me=1) and apply a uniform magnetic

consider experiments usifigRb atoms and the experimental fie|q with magnitude close to tH¥Rb Feshbach resonance at
parameters outlined in the introduction. With the laser inten-9q 7 G[27,28. The magnitude of the field is adjusted so
s!ty required t.o reach SERIatti'ce d'epths,.spontanequ's emis- that 8=5 (U,,=5U,,). Because this particular Feshbach is
sion rates dr|v_en by the Iattlce_ I'.g.ht W.'" be negligible on exceptionally narrow, applying a uniform magnetic field is
expenme_ntal timescales. Th_e _Ilmltlng_ tlmes_cale for eXperI'necessary to avoid spatially varying interaction energy shifts.
ments W'” therefore be collisions with residual gas mOI'Therefore, rather than obtaining spatial information by em-
ecules in the vacuum system or spontaneous scattering fromoying an inhomogeneous magnetic field, a spatially inho-
an additional optical potential. mogeneous near-resonant optical potential is used to shift
wap The near-resonant laser fields are engineered to provide
1. Rabi oscillations a harmonic external potential; this may be accomplished us-
ing diffractive opticd29,30 to produce a focused laser beam
The first experiment that we propose uses Rabi oscillawith a parabolic intensity profile in three dimensions. To
tions as a probe of the total population in the lattice of sitesnaximize the shift inw,, while minimizing spontaneous
with any n. A similar technique has been used in ion-trapemission rates, we choosa)=|F=2,m:=2) and tune the
experiments to measure populations in different harmonidaser wavelength and polarization so that the optical potential
oscillator levels[23—25. The total number of sites with for the |b) state vanishes. For different atoms, suck b,
atoms is identified by the Rabi oscillation amplitude at thewith broader Feshbach resonances, the complication of em-
Rabi rate(),, for the [n,0)<|n-1,1) transition. Because ploying an optical potential may not be necessary.
the resonant frequency and Rabi oscillation rate for this tran- The overall effect of the applied, parabolic optical poten-
sition are independent of interaction energy, this method isial is to shift w,,=wo— yr? parabolically in space. The cur-
insensitive to the motional state of the atoms. vaturevy is related to the curvature of the intensity profile of
The gas is first prepared in the Mott-insulator state in thehe near-resonant optical fieldg~9.126 GHz is determined
lattice; harmonic confinement is provided by an inhomoge-by the atomic hyperfine structure and the magnetic bias field,
neous magnetic field. The atoms in the lattice are initializedand r is the distance from the minimum of the parabolic
in the state|a) (through optical pumping, for exampleA optical potential. The spectrum for transitions between states
magnetic field at frequency,, is applied to couple théa) |a) and|b) for sites withn=1,2, 3 isshown in Fig. 6. For our
and|b) states, and the population ) is measured for dif- experimental procedure, the curvatuyds adjusted so that
ferent lengths of time of the applied couplifiga resonance the minimum interaction energy shift is at least equal to the
fluorescence, for exampleThe data are fitted to a sum of shift from the parabolic optical potential for tme=2 state at
oscillating functions with frequencies that differ by a factor the boundary with the=1 state. While this may be incom-

vk wherek=1,2,3, ... . Theotal population in the lattice in patible with supporting the desired Mott-insulator structure,
states of differenh are then directly connected to the ampli- the applied state-dependent potential can be switched quickly
tudes of each oscillating term in the fit. before the spectroscopy described next is performed.

One complication with this scheme is that the inhomoge- The experiment is performed by first preparing the atoms
neous magnetic field will introduce a spreadif, across the in the |a) state. Storing the atoms for long times in ti
lattice, which will cause dephasing of the Rabi oscillations atstate while the magnetic field is near the Feshbach resonance
different sites. To suppress shiftsdny, across the lattice, the is avoided to minimize effects due to inelastic collisions. A
energy difference between statasand|b) should be insen- microwave frequency magnetic field is then swept fronto
sitive to magnetic field. This can be accomplished using av, and the number of atoms transferred|l is measured
first-order magnetic field insensitive transition, for example(using resonance fluorescence, for examatethe frequency
between the stateg==2,mg=1) and |[F=1,mc=-1) near is changed.
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¢ 3.0x10* ; : —
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FIG. 7. Simulation of rapid adiabatic passage experiment for

FIG. 6. The spectrum for transitions betweah and|b) for n ~ roughly 3x 10* atoms at six different temperaturesee the legend,
=1,2,3. Thetransition frequency between states with differagt ~ Wherekg is Boltzmann’s constantThe number of atomi, in state
andn, is shown by the thick line. The dashed lines indicate thelb) is shown as the frequenay; of an oscillating magnetic field is
boundaries between sites with differemin the lattice, which occur ~ SWept(color available onling
at radii Ry, Ry, and R,. Sites withn=1,2,3 areindicated with
green, blue, and red coloring, respectivétplor available onling
The interaction energy shifts are indicated, and the figure is drawtial while the oscillating magnetic field is applied. The
assuming8>1. Schrodinger equation is numerically solved on each lattice

Atoms are transferred to stafe) in stages. As the fre- \s/\'/te u3|r;g(|}k:100r>]< 2m Hz andl “éﬁf(t).ze.'4x.lo4;<277t Hz. .
quency is swept toward,,, one atom at all occupied sites is /€ Would like to have spectral discrimination between sites

transferred tdby. This process is interrupted ak, by a gap &t different radii, which limits the Rabi frequen€y since it
where no atoms are transferred [ as the frequency is S€ts the effective bandwidth for transfer between states.

changed. The size of that gap in frequeridy,(8-1)/4  Therefore we chosg so that it is comparable to the differ-
—yRﬁ is related to the interaction energy, the size of theence inw,, between sites spaced radially ayear the mini-
region where there are at least two atoms per site, and th®um of the optical potential. The sweep rate fbis chosen
curvaturey of the optical potential. After this gap in atom so that Landau-Zener transitions are made with high prob-
transfer, one additional atom per site is transferred to ftate ability. The data in Fig. 7 would be generated using a fre-
for all sites that have at least two atoms per site. Another gaguency sweep lasting 1.26 s, which should be comparable
is encountered aty+U,,(8—1)/% where no atoms are trans- with spontaneous scattering times and much faster than loss
ferred that is ®J,,(8-1)/%—yR5 wide in frequency. Finally, caused by collisions with residual background gas mol-
a third atom is transferred t) in each site where=3 as  ecules.
the frequency is swept t@,. No atoms are transferred [io) From the simulation results shown in Fig. 7, it is clear that
as the frequency is increased pasj+3U,,(3-1)/%. The the effects of a state-dependent interaction persist to rela-
interaction energy and the distribution of sites in space witHively high temperature compared with the interaction en-
different occupancyn can be inferred from the number of €rgy. The smallest frequency at which atoms are transferred
atoms transferred tfb) as the frequency is changed. to |b) decreases with increasing temperature as the size of the
This sequence of transfer between hyperfine states sep@@s in the harmonic potential grows. In principle, the tem-
rated by gaps is generic to any Mott-insulator structurepPerature of the gas can be inferred from a fit of data obtained
Transfer begins a&,n‘:wo-ng, which corresponds to the Using this technique to the simulation results.
boundary of the occupied sites&§. The width of each gap
where atoms are not transferred [ as the frequency is

changed iskU,,(8-1)/%-yR%, where k=1,2,3,.... The V. CONCLUDING REMARKS
highest frequency where atoms are transferred is determined
by the occupancyn at the core and igg+mU,,(8-1)/%. The possibility of exploring novel quantum phases of

The results of a simulation of this experimental techniquematter using ultracold atoms trapped in optical lattices has
are shown in Fig. 7 for a gas consisting of roughlyx 30*  piqued the interest of many researchers. In this paper, we
atoms at six different temperatures. The Metropolis algohave detailed the necessary conditions for creating and prob-
rithm is used to prepare the initial distribution of atomsing a shell structure of Mott-insulator phases in an optical
among lattice sites at each finite temperature. An additiondhttice. Instability of the Mott-insulator shell structure arises
harmonic potential characterized lay=hx 113 Hz/um? is principally from two effects: finite tunneling and finite tem-
applied to generate a Mott-insulator state with a corenof perature. Finite tunneling of the bosons between neighboring
=3 sites at zero temperature. This same curvatrd 13  sites leads to superfluid regions between the shells and
X 27 Hz/um? is used for the state-dependent optical poten{article-hole defects in the Mott-insulator regions. We have
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shown that for reasonable experimental parameters, these ¢fie capacity to spatially resolve the Mott-insulator shell
fects can be made negligible. The relevant conditions arstructure.

both that the tunneling parameter must be small compared

with the on-site repulsiorfw/U<1) and small compared

with the typical change in the confining potentidbetween ACKNOWLEDGMENTS
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