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Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice

B. DeMarco,1 C. Lannert,2 S. Vishveshwara,1 and T.-C. Wei1
1University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

2Wellesley College, Wellesley, Massachusetts 02481, USA
sReceived 9 February 2005; published 7 June 2005d

We consider the feasibility of creating a phase of neutral bosonic atoms in which multiple Mott-insulating
states coexist in a shell structure and propose an experiment to spatially resolve such a structure. This spatially
inhomogeneous phase of bosons, arising from the interplay between the confining potential and the short-
ranged repulsion, has been previously predicted. While the Mott-insulator phase has been observed in an
atomic gas, the spatial structure of this phase in the presence of an inhomogeneous potential has not yet been
directly probed. In this paper, we give a simple recipe for creating a structure with any desired number of
shells, and explore the stability of the structure under typical experimental conditions. The stability analysis
gives some constraints on how successfully these states can be employed for quantum information experi-
ments. The experimental probe we propose for observing this phase exploits transitions between two species of
bosons, induced by applying a frequency-swept, oscillatory magnetic field. We present the expected experi-
mental signatures of this probe, and show that they reflect the underlying Mott configuration for large lattice
potential depth.

DOI: 10.1103/PhysRevA.71.063601 PACS numberssd: 03.75.Lm, 32.80.Pj

I. INTRODUCTION

Recent experimental results involving quantum degener-
ate atom gases trapped in optical lattices have stimulated
interest from the perspectives of condensed matter and quan-
tum information science. Ultracold atoms confined in an op-
tical lattice are predicted to display a rich variety of quantum
phasesssee Refs.f1,2g, for exampled. The ability to precisely
control the physical parameters of this system enables prob-
ing a vast range of related fundamental physics including
quantum phase transitions, the behavior of collective excita-
tions in the quantum regime, and the physics of defects. The
properties of these phases may permit new applications, such
as neutral atom quantum computing or quantum simulation
f3g.

Neutral bosons trapped in optical lattices can exhibit com-
plex spatial configurations of coexisting superfluid and Mott-
insulator phasesf1g. There have been detailed studies of the
superfluid to Mott-insulator phase transition in the atomic
system using techniques such as quantum Monte Carlo simu-
lation and mean-field theoryssee Refs.f4–8g, for examplesd.
In this paper we offer a practical and simple recipe for real-
izing specific Mott-insulator configurations and we study the
limitations posed by realistic experimental conditions. Moti-
vated by proposals for using the Mott-insulator state to ini-
tialize a fiducial state for neutral atom quantum computing
f9,10g, we focus on the tight-binding regime where intersite
tunneling is suppressed. We formulate a straightforward
method, primarily using counting arguments, for obtaining
the constraints on lattice parameters that yield states of defi-
nite spatially varying occupation number.

The effects of finite temperature, tunneling, and dissipa-
tion in a periodic potential have been studied in the literature
f11–13g. Atomic systems are a unique tool for studying out-
standing questions regarding these phenomena. Furthermore,
deviations from the zero-temperature and tightly bound
ground state will have an important impact on potential ap-

plications using atoms trapped in a lattice. We investigate
processes which disturb the stability of the Mott-insulator
ground state and estimate their influence for characteristic
experimental conditions. Specifically, we initiate an analysis
of the emergence of superfluid order when there is a finite
but small degree of tunneling and we study thermally acti-
vated defects and their dynamics. Our work is not meant to
be an exhaustive study of stability. Instead, we take the first
steps toward addressing these considerations and point to
existing literature from the condensed matter community ap-
propriate to the atomic system.

To complement our theoretical work, we propose a set of
experiments using microwave spectroscopy to map out the
spatial structure of the bosonic states hosted in the optical
lattice. The proposed techniques can identify Mott-insulator
states with any site occupation number and resolve the spa-
tial distribution of sites with different occupation number.
We view this method as intermediate between less general
techniquesf14g and high-resolution direct imagingf15g
which will be necessary for long-term development of neu-
tral atom quantum computing.

This paper focuses on experimental parameters similar to
those first used to observe the superfluid to Mott-insulator
phase transition in an atomic gasf16g. We consider using
87Rb atoms confined in an optical lattice formed from three
pairs of intersecting laser beams with wavelengthl
=850 nm. The resulting lattice has cubic three-dimensional
symmetry with lattice spacinga=l /2. The effect of an ex-
ternal potential that changes over many lattice sites, formed
from magnetic or optical fields, is included. The lattice depth
is V0=30ER, where the recoil energyER is approximatelyh
33.7 kHz sh is Plank’s constantd. The resulting tunneling
strength between sites is of orderw<h310 Hz. The on-site
interactionU between particles can be changed by changing
V0 or using a Feshbach resonance. ForV0=30ER and at zero
magnetic bias field,U<h32.5 kHz.
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The outline of this paper is as follows. In Sec. II, we
present a scheme for realizing Mott-insulator configurations
with specified occupation numbers. In Sec. III, we address
the stability of the Mott-insulator configuration, in particular,
against superfluid order and defect formation. In Sec. IV, we
describe experiments that exploit microwave transitions be-
tween hyperfine states to probe the Mott-insulator structure.
We conclude with a summary of our discussions in Sec. V.

II. COEXISTENCE OF MOTT-INSULATOR PHASES

In this section, we describe an optical lattice in a radially
symmetric geometry that permits the coexistence of concen-
tric Mott-insulating regions with differing occupation num-
bers. We derive the constraints on lattice parameters neces-
sary for this coexistence. In contrast to previous workf1g, we
employ counting arguments to describe the spatial structure
of the Mott-insulator state, which allows us to consider a
general spatial geometry. Our starting point is the Bose-
Hubbard Hamiltonianf1,17g

Ĥ = Ho
i

fVsr id − mgn̂i +
U

2 o
i

n̂isn̂i − 1dJ − wo
ki,jl

sb̂i
†b̂j

+ b̂j
†b̂id ; Ĥ0 + Ŵ, s1d

wherem is the chemical potential,Vsr id is the value of the
external confining potential at sitei of the optical latticesat

the pointr i in spaced, b̂i
† and b̂i are the boson creation and

destruction operators at sitei, n̂i ; b̂i
†b̂i is the number opera-

tor for bosons on sitei, U is the on-site interaction energy

between two bosons, andŴ represents the tunneling that
tends to delocalize bosons, withw being the tunneling matrix
element for bosons between nearest-neighbor siteski , jl on
the lattice.

In this section, we concentrate on the limitw/U=0 where

tunneling is negligible andĤ→ Ĥ0. sFor small tunneling

w/U, Ŵ can be treated as a perturbation; we return to this in
a later section.d The sites are decoupled in this limit and the

Hamiltonian, Ĥ0, is diagonalized by the set of states with
specific occupation number on each siteunli =sbi

†dniu0li /Îni!.
For a givenunli, the energy isEn=−m̃n+sU /2dsn2−nd, where
m̃ is an “effective” local chemical potentialm̃;m−Vsrd. The
occupation numbern that minimizes the energy is deter-
mined by ]En/]n=0=−m̃−sU /2ds2n−1d, which gives n
=m̃ /U+ 1

2. Sincen can take on only integer values, the mini-
mization condition becomes

n − 1 ,
m̃

U
, n, En is minimum. s2d

The state withn bosons, which we refer to as then Mott-
insulator state, is an incompressible Mott-insulator phase.

With finite but small tunnelingsw/UÞ0d, the regions
wherem̃ /U is nearly an integer become superfluid, leading to
the well-known phase diagram shown in Fig. 1. At finite
temperature but negligible tunneling, all Mott-insulator
phases are replaced by normal fluid phases of bosons which

display thermally activated hoppingf17g. At suitably low
temperatureskT!DE, whereDE is the excitation energy for
adding or removing a particle, the system is most likely to be
found in its ground state, which is the situation we consider
in this section; we discuss the effects of finite temperature
and tunneling in subsequent sections.

For a spatially varying external potentialVsr d, and there-
fore spatially varying effective chemical potentialm̃, the sys-
tem can have coexisting regions of different Mott-insulator
statesf1,18g. If the external potential is spherically symmet-
ric and of the formVsrd=arj, then m̃ is the largest atr =0
and decreases for increasingr. Note that the arguments in
this section can be extended for more general potentials lack-
ing spherical symmetry. In thew/U=0 limit, the site occu-
pation numberm at the center is determined by the condition
m−1,m /U,m, where the chemical potentialm is deter-
mined by the total number of particlesN. The number of
bosons per site changes by one at each radius wherefm
−Vsr dg /U is an integer, leading to a shell structure. The radii
for the boundaries, as illustrated in Fig. 2, are given byRn
=sfm−nUg /ad1/j sn=0,1, . . . ,m−1d, where thenth Mott-
insulator state lies betweenRn andRn−1. This shell structure
is established by the competition between interaction and
potential energy. The edge of the occupied lattice is defined
by the outermost boundary of the Mott-insulator states where
the occupation drops to zero

R0 = Sm

a
D1/j

. s3d

All other radii can be expressed in terms ofR0:

Rn = R0f1 − n/sm/Udg1/j. s4d

For a given interaction energyU and total number of
bosonsN, coexistence of a total ofm Mott shells will occur

FIG. 1. The mean-field phase diagram for the Bose-Hubbard
Hamiltonian at first perturbative order inw/U. Here,m̃;m−Vsrd,
as described in the text, andZ is the coordination number of the
lattice sZ=6 for the three-dimensional cubic lattice under consider-
ation hered. The shaded regions are Mott insulating with the indi-
cated number of bosons per siten. The white regions are superfluid.
Notice that the superfluid regions at integer values ofm̃ extend all
the way to zero tunnelingsw/U=0d. While the exact location of the
boundaries between superfluid and Mott regions at finite tunneling
is different at higher orders in perturbation theory, the qualitative
features of the phase diagram persistf19g.
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only for a specific range of the parametera. We find that
range as follows: the chemical potentialm is determined via
the global constraint

N = o
i

nismd. s5d

If the spacing between sites in the optical lattice,a, is small
compared withR0, we can approximate each Mott region by
a three-dimensional continuous spherical shell with inner ra-
dius Rn, outer radiusRn−1 and uniform densityn/a3. In this
continuum limit,

N =
1

a3 E nsrdd3r s6d

=
4p

3a3sR0
3 + R1

3 + R2
3 + ¯ Rm−1

3 d s7d

=
4p

3a3 o
n=0

m−1 Sm − nU

a
D3/j

. s8d

With some rearrangement, we arrive at the condition

x ;
3Na3

4p
S a

U
D3/j

= o
n=0

m−1

sm/U − nd3/j. s9d

Becausem−1,m /U,m, we can obtain from Eq.s9d the
upper and lower bounds onxsm /Ud necessary to realize a
shell structure with any desired maximum site occupancym.
For example, forj=2 sa harmonic external potentiald,

1 ,
3Na3

4p
S a

U
D3/2

, 3.82, m= 2, s10d

3.83,
3Na3

4p
S a

U
D3/2

, 9.03, m= 3. s11d

As an example, we consider the experimental parameters
detailed in the Introduction andN=106 atoms. To support
three Mott-insulator shells in a harmonic trapVsrd=ar2 the
curvature of the trap needs to satisfy the constrainth
38.8 Hz/mm2,a,h315.6 Hz/mm2. For a typical value
in this range, for instance,m /U=2.5 sand hencea=h
312.1 Hz/mm2d, Eqs.s3d and s4d show that the size of the
entire Mott-insulator structure is given byR0=22.8mm, and
that the radii separating the three Mott shells areR1
=17.6mm andR2=10.2mm.

In this section, we have shown how the spatial structure
of the Mott-insulator ground state in the absence of tunneling
depends on a limited number of experimental parameters.
Based on counting arguments, we have derived a series of
constraints on these parameters for realizing a shell structure
with a specific core occupancy.

III. STABILITY OF THE MOTT-INSULATOR PHASES

The stability of the Mott structure is relevant to experi-
ments probing the physics described in Sec. II. Of particular
practical concern is the elimination of number fluctuations
when using the Mott-insulator state as a fiducial state for
neutral atom quantum information experiments. Several pro-
posals suggest creating the Mott-insulator state followed by a
purification scheme to prepare a well-defined state with one
atom per lattice sitef9,10g. These schemes cannot eliminate
sites that are initially vacant and suffer inaccuracy when
number fluctuations become large.

Deviations from the nested Mott-insulator shell structure
will be driven by finite tunneling between lattice sites and
finite temperature. The dynamic evolution of the system is a
result of the complex interplay between the Bose-Hubbard
Hamiltonian, dissipation, and finite temperature. While a
complete study of stability is beyond the scope of this paper,
we summarize the effects of tunneling and finite temperature
and provide estimates relevant to a typical experiment.

We assume that the lattice parameters described in the
previous section determine the initial conditions for the
bosons and that the lattice potential is free of imperfections.
In the following sections, we first discuss global deviations
from the Mott-insulator structure coming from the tendency
to form superfluid regions. We show that the effects of su-
perfluidity can be made negligible in the optical lattice. We
then discuss the local fluctuations caused by “particle” and
“hole” sp-hd defects in the Mott-insulator structure. We ana-
lyze the emergence and dynamics ofp-h defects at finite
temperature and tunneling.

A. Superfluidity

In principle, even the smallest amount of tunneling can
alter the Mott-insulator phase. At finite tunneling, the natural
source of instability is the formation of superfluid regions.
As shown in the phase diagram of Fig. 1, the system is par-
ticularly susceptible to forming regions of superfluid at the

FIG. 2. Illustration of the bounding values ofr for an spherically
symmetric confining potential centered atr =0 which supports
shells of Mott-insulator phases.

STRUCTURE AND STABILITY OF MOTT-INSULATOR… PHYSICAL REVIEW A 71, 063601s2005d

063601-3



boundaries between Mott states of different occupation num-
ber. For a specfic set of values for the tunnelingw, interac-
tion energyU, and external potential curvaturea, we can
estimate the size of the superfluid regions formed between
Mott phases. The Mott states remain relatively robust against
delocalization if the expected thickness of the superfluid
shells is less than a lattice spacing.

To estimate the size of the superfluid region atT=0, we
invoke a mean-field treatment that decouples lattice sites
even in the presence of tunnelingf19g. To summarize the
treatment, the effective Hamiltonian takes the form

HMF = o
i
F− m̃in̂i +

U

2
n̂isn̂i − 1d − CBb̂i

† − CB
* b̂iG . s12d

HereCB=Zwkbl is related to the superfluid order parameter
and is obtained self-consistently, withZ being the coordina-
tion number sthe number of nearest neighbors per sited.
Terms involvingCB andCB

* can be treated as a perturbation
to the Mott-insulator statesknl. To second order inCB, the
perturbed eigenstates at a single site are

uCnl = unl + CBa1
+În + 1un + 1l + CB

* a1
−Înun − 1l + CB

2a2
+un

+ 2l + sCB
* d2a2

−un − 2l, s13d

where a1/2
± are functions ofn, m, and U. The energies are

shifted to

Ẽn = En + xnuCBu2 + OsuCBu4d, s14d

whereEn is the energy of the unperturbed Mott stateknl, and
xn=sn+1d / sUn−md+n/ fm−Usn−1dg. Self-consistently

minimizing Ẽn0
−Zwkblkb†l−kblCB

* −kb†lCB=En0
+ruCBu2

+OsuCBu4d determinesCB. Here,n0 is the Mott ground-state
occupation number appropriate form̃. The superfluid bound-
aries are determined by the sign ofrsm ,w,Ud; kbl has a
nonzero expectation value wherersm ,w,Ud is negative. We
have to first nonvanishing order inZw/U, r=xn0

sm /Udf1
−Zwxn0

sm /Udg with

xn0
=

n0sm/Ud + 1

Un0sm/Ud − m
+

n0sm/Ud
m − Ufn0sm/Ud − 1g

. s15d

The superfluid boundary satisfies the condition 1−Zwxn0
=0.

For fixed tunneling, this determines the boundary values of
the effective chemical potential along each Mott-insulator
lobe in Fig. 1. ForZw/U!1, we have for the effective
chemical potential at the uppersm̃n0

+ d and lowersm̃n0

− d bound-
aries of then0 Mott-insulator lobe

m̃n0

+

U
< n0s1 − Zw/Ud,

m̃n0

−

U
< sn0 − 1ds1 + Zw/Ud.

s16d

Equations16d can be used to determine the radiirn0−1
+ andrn0

−

between which superfluidity will exist in the continuum
limit. If the distance between the radii where superfluidity
can exist is smaller than a lattice spacingsDr =rn0−1

+ −rn0

−

,ad, then number fluctuations due to superfluid tendencies
are expected to be negligible.

As an example, we again consider the experimental situ-
ation detailed in the Introduction with a harmonic external
potential andm /U=2.5. The thickness of the superfluid be-
tween then0=1 and n0=2 Mott-insulator states isDr1−2
<0.82ÎU /aZw/U. Using the valuea<h312.1 Hz/mm2

from the previous section, we obtainDr1−2<0.07mm and
Dr2−3<0.24mm, which is smaller than the lattice spacing
a<0.43mm. Therefore, for this specific case, no superfluid
regions will exist. Equations16d could also be used to deter-
mine the experimental parameters leading to the existence of
superfluid shells, which may be of fundamental interest in
and of themselves.

B. Defects

While global instabilities coming from a tendency for the
bosons to condense can be made negligible, local instabilities
can still permeate the Mott-insulator structure in the form of
defects. In this section, we discuss two types of local
excitations—isolated defects where a site has an extra par-
ticle or one lesssholed compared with the Mott-insulator
ground state, and excitations where a particle has hopped to
a neighboring site and leaves behind a hole. The former,
which we call “site defects” can arise from random removal
of atoms from the lattice, for example, by heating from spon-
taneous emission driven by the lattice light or by collisions
with room-temperature residual gas molecules in the vacuum
system. We refer to the latter as “particle-hole”sp-hd excita-
tions and these are natural perturbations to the Mott-insulator
ground state. Site defects can also arise when components of
p-h excitationssdue to finite temperature or imperfect adia-
batic transferd that were present during initial loading of the
Bose-Einstein condensate into the lattice become widely
separated.

In the following discussion, we first consider the energy
gap associated with these excitations; the energy gap plays a
key role in the statics and dynamics of defects. We then
study the static perturbative effects ofp-h excitations on the
Mott-insulator state in the presence of finite tunneling. Next,
we consider the dynamics of defects within the framework of
a toy two-site model. We comment on defect dynamics over
the entire system and on the effects of dissipation. Finally,
we discuss the role of finite temperature.

Energy gap. In the Mott-insulator ground state at zero
tunneling, the functionalEsnd=−m̃n+sU /2dnsn−1d is mini-
mized at each site. The energy gap associated with single site
defects isDE+=En0+1−En0

=−m̃+Un0 for the addition of an
extra particle andDE−=En0−1−En0

=m̃−Usn0−1d for the re-
moval of a particlesaddition of a holed, where n0 is the
ground-state occupation number. Sincen0−1,m̃ /U,n0,
DE± is positive and of orderU in the bulk of the system.
Close to Mott boundaries, though, the energy gap becomes
arbitrarily small asm̃ /U approaches eithern0 or n0−1. Be-
cause of the underlying lattice and inhomogeneous confining
potential, however, the energy cost for a site defect rarely
vanishes: there is always a change in potential energyDV
over a lattice spacing and it is unlikely for a boundary to
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exactly coincide with a lattice site. For the experimental pa-
rameters detailed in the Introduction, Vi =sh
312.1 Hz/mm2dr i

2, we haveDV=h3181 Hz sh3104 Hzd
at the boundaryR1=17.6mm sR2=10.2mmd.

The energy cost for ap-h excitation in the bulk is

Ei
hopsn0d ; DEi

+ + DEi+1
− = DVi + U, s17d

where i is a site index,DVi =Vi −Vi+1, andVi is the on-site
potential energy from the confining potential. For a particle
hopping across a boundary between a Mott-insulatorn0
phase on sitei andn0−1 phase on sitei +1, the energy cost
is

Ei
hopsn0↓d ; DEi

−sn0d + DEi+1
+ sn0 − 1d = DV,

Ei
hopsn0↑d ; DEi

+sn0d + DEi+1
− sn0 − 1d = 2U − DV. s18d

The symbol↓ denotes hopping from ann0 to ann0−1 Mott-
insulator state and↑ denotes the reverse process. The most
favorablep-h excitation therefore involves a particle hopping
across a Mott-insulator boundary from higher to lower occu-
pation.

Finite tunneling: statics. At small tunnelingsw!Ud, cor-
rections to thew=0 Mott-insulator ground stateuc0l can be
written in terms ofp-h excitations provided thatw!Ei

hop. As
found in the previous discussion, since the smallestEi

hop is
across Mott boundaries withEi

hopsn0↓ d=DV, the change in
potential energy must be much larger than the tunneling en-
ergy sDV@wd, which is achieved by the parameters under
consideration, namely,w<h310 Hz andDV=h3181 Hz
sh3104 Hzd across the boundary atR1=17.6mm sR2

=10.2mmd. This inequality is related to the condition found
in Sec. III A for the putative superfluid regions to occupy
less than a lattice site.

To first order inw/Ehop, the perturbative ground stateucl
of Eq. s1d is given by

ucl = cSuc0l + o
exc

uexcl
kexcuŴuc0l

DEexc D , s19d

wherec is a normalization constant. The excitations and cor-
responding activation energies areuexcl and DEexc, respec-
tively, and the sum is over allp-h excitations. Comparingucl
and uc0l, we can estimate the deviation of the many-body
state or the single site occupancy from the zero-tunneling
Mott-insulator ground state.

As an example, consider the case of a finite-sized uniform
lattice with no external potential and occupancyn0 at each
site in the absence of tunneling. To lowest order, tunneling
perturbs the Mott-insulator ground state uc0l
= un0,n0, . . . ,n0l to

ucl = cSun0, . . . ,n0l

+
wÎn0sn0 + 1d

U
o
ki,jl

un0, . . . ,sn0 ± 1di,sn0 7 1d j, . . . ,n0lD .

s20d

Deviations of this many-body state fromuc0l can be quanti-
fied by the zero-temperature fidelityf20g, defined as

f0 = ukcuc0lu2. s21d

1− f0 is essentially the probability that the system is not in
the zero-temperature Mott-insulator ground state. For the
wave function in Eq.s20d, the fidelity takes the form

f0 < F1 +
w2n0sn0 + 1dZNs

U2 G−1

, s22d

whereNs is the total number of occupied sites. A high fidelity
requires the possibly severe requirementÎNsZn0w/U!1.
For experiments involving local probes, however, the more
relevant quantity is the defect probabilityPi,w

def at a given site
i. The probability for a site to be in the stateun0±1l can be
obtained from Eq.s20d:

Pi,w
def < FZw2n0sn0 + 1d

U2 G/F1 +
w2n0sn0 + 1dZNs

U2 G . s23d

Low defect probability locally, then requiresÎZwn0/U!1,
which is satisfied for the experimental parameters considered
in the Introduction.

Modifying these arguments for the Mott-insulator shells
in an inhomogeneous potential is straightforward. The num-
ber ofp-h excitations varies spatially with the energy gap for
excitations. The fidelity will therefore contain terms of order
DV from sites at boundaries and contributions of orderU
from sites in the Mott-insulator bulk. The condition for low
defect probability for sites in the bulk is the same as for the

uniform case. The probability of a defectP̃i,w
def for a boundary

site becomes of orderwn̄0/DV!1, wheren̄0 is the average
number of bosons per site near the boundary.

Finite tunneling: dynamics. To analyze the evolution of a
configuration of defects in time and the emergence ofp-h
excitations driven by quantum dynamics, we use a two-site
version of the Bose-Hubbard Hamiltonian

H = − wsb1
†b2 + b2

†b1d +
U

2 o
i=1,2

nisni − 1d + DVn2. s24d

Here,i =1,2 aresite indices andDV is the change in on-site
potential between sites 1 and 2.

As the simplest case, we consider the restricted Hilbert
space of just one particle present, i.e., statesu1, 0l and u0, 1l
in the un1,n2l basis. This situation could correspond to site-
defects composed of either a hole in then=1 bulk or a par-
ticle in the n=0 bulk, or to the boundary between then=1
andn=0 states. ForDV=0, corresponding to site defects at
fixed radius in the external potential, the quantum state tun-
nels back and forth betweenu1, 0l and u0, 1l at a ratew/h.
For DVÞ0 and the particle initially in stateu1, 0l, the prob-
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ability for the particle to remain in stateu1, 0l is

P1→1
s1d std = 1 −

w/DV

f1 + s2w/DVd2g
s1 − cosa1td, s25d

wherea1=ÎDV2+4w2/". The probability to remain inu1, 0l
is depleted at most byw/DV for DV@w, which is true for
the experimental conditions described in the Introduction.

Interactions come into play when there are at least two
particles and the Hilbert space is confined ton1+n2=2. To
focus on the effect of interactions, we setDV=0. The state
u1, 1l corresponds to a state in then=1 in the Mott-insulator
bulk, while u0, 2l and u2, 0l correspond top-h excitations.
Only the statesu11l and uc2+l;su20l+ u02ld /Î2 are coupled
via the hopping term. The probabilityP1→1

s2d std for particles to
remain in the stateu11l is identical toP1→1

s1d std from Eq. s25d
with U replacingDV and double the value ofw. The prob-
ability for u11l to decay intop-h excitations is at most of
order w/U, which is 4310−3 for the experimental param-
eters discussed in the Introduction. The same probability and
rate hold for the decay of anyp-h excitations already present.

We expect the most pronounced long-range dynamics to
come from site-defects tunneling along sites of equipotential.
In fact, since the kinetic energy of a site defect is reduced by
tunneling, site defects will tend to delocalize, corresponding
to superfluidlike behavior. As the simplest possibility, we can
model a particle in then=0 Mott bulk or a hole in then=1
Mott-insulator bulk moving along an equipotential surface
by setting the potential energyDV and the interaction energy
U to zero in the Bose-Hubbard Hamiltonian. In this purely
tight-binding limit, the amplitude for a particle starting at site
labelled by an integer vectorr to propagate to a site labeled
by s is given by

ksue−iHtur l =E ddk

s2pdde−ik·sr−sd+i2wtoi=1
d coski s26d

=e−sp/2doiDrip
i=1

d

JDri
s− 2wtd, s27d

whered is the effective spatial dimension,k is the momen-
tum, Dr ;sr −sd, andJnsxd is the Bessel function of the first
kind. The maximum probability amplitude is transferred
from r to s on a time scalet<"ur −su / s2wd, suggesting that
site defects can exhibit ballistic motion along the equipoten-
tial surfaces.

We have so far neglected the effects of dissipation. One
source of dissipation is spontaneous emission driven by the
lattice light which will occur at relatively lows1–10 Hzd
rates. We expect the major source of dissipation at any given
site to come from the interactive coupling of the site to the
entire system. The calculation of such a dissipative term for
optical lattices has not been performed to our knowledge.
Tunneling of site defects between nearest neighbors in the
presence of dissipation can be treated phenomenologically
by the well-studied “spin-boson” Hamiltonian, which de-
scribes the physics of a particle in a double well system
coupled to an environmentf11g. We have yet to analyze the
effects of dissipation on defects in optical lattices, and at

present, we refer the reader to the exhaustive spin-boson lit-
eraturef11g. In the analogous situation of defects in solids,
dissipation arising from coupling to phonons is believed to
be “super-Ohmic,” leading to weak damping of the oscilla-
tions of the equivalent two-level systemf11,12g.

In the absence of dissipation, there is no complete tunnel-
ing between ground and excited states. However, we would
expect dissipation to relax an excited metastable state to the
ground state over a long time scaletdis=fgsw/DEd2g−1,
whereg is the dissipative rate andDE is the energy of the
excited state. Dissipation and decoherence of the site-defect
wave function can also result in a crossover to classical be-
havior. In this case, we expect site defects to propagate dif-
fusively rather than ballistically.

Finite temperature. The stability of the Mott-insulator
shell structure requires temperatures sufficiently low for ther-
mal excitations to be insignificantskBT!U ,DVd. The state at
finite temperature is captured by the statistical density matrix

r = o
n

e−En/kBTuEnlkEnu, s28d

wherekB is Boltzmann’s constant,T is the temperature, and
En and uEnl are excitation energies and corresponding states,
respectively. The finite temperature generalization of the fi-
delity given in Eq.s21d becomes

f = kc0uruc0l/Trsrd, s29d

where uc0l is again the Mott-insulator ground state. At low
temperature,p-h excitations occur with Boltzmann weight
and the effect of tunneling can be accounted for perturba-
tively. The finite temperature fidelity in Eq.s29d for devia-
tions from the uniform Mott-insulator ground state is given
by

fsTd < f0
1

1 + ZNse
−U/kBT , s30d

where f0 is the fidelity at zero temperature. Likewise, the
probability of finding a defect at a sitei, given by Eq.s23d,
becomes

Pi,w
defsTd < fPi,w

defs0d + Ze−U/kBTg/f1 + ZNse
−U/kBTg. s31d

Compared to zero temperature, the defect probability at finite
temperature becomes enhanced by a Boltzmann term appro-
priate for p-h excitations. The defect probability is largest
across a boundary:

P̃i,w
defsTd <

P̃i,w
defs0d + e−DV/kBT

1 + Nbe
−DV/kBT + ZNse

−U/kBT , s32d

whereNb is the number of pairs of sites across the boundary,

DV is the potential difference, andP̃i,w
defs0d is the correspond-

ing zero-temperature defect probability.
We have simulated the equilibrium configuration for a

system ofN<33104 atoms using a Metropolis algorithm, in
contrast to a slave-boson model employed in Ref.f21g. Fig-
ure 3 shows the spatial profile of occupation number from
this simulation for various temperatures. The simulation in-
dicates that the temperature must be smaller thanU / s10kBd
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for thermal fluctuations of particle number to be substantially
suppressed. A plot of the probability distribution for different
site occupancies is shown in Fig. 4. Well-defined spatial re-
gions where most sites are occupied by the same number of
atoms disappear for temperatures higher thanU / s10kBd. The
data in Fig. 4scd also show how thermally activated hopping
is most likely at boundaries between the Mott-insulator states
closest to the minimum of the external potential.

The time scale for thermally activated hopping can be
probed in experiments and will play a role in schemes where
a zero entropy state is initialized for neutral atom quantum
computingf15g. At the crudest level of approximation, the
tunneling rates due to quantum and thermal effects can be
added to obtain the net rate, particularly if the time scales are
widely separatedf13g. At zero temperature we found that

dynamic fluctuations ofp-h excitations and site-defect
propagation across potential barriers are largely suppressed
due to interactions. However, at finite temperature, these pro-
cesses can be thermally activated. To describe hopping be-
tween sites, one can invoke a phenomenological double well
model and appeal to the exhaustive knowledge of reaction-
rate theories for hopping between metastable statesf13g.

IV. MICROWAVE SPECTROSCOPY

In this section we describe a technique for probing the
spatial structure and energy spectrum of the Mott-insulator
state discussed in Sec. II. The method, an extension of work
in Ref. f9g, is compatible with any lattice geometry and is
capable of resolving the effects of finite temperature. In con-
trast to the previous sections of this paper where only one
atomic internal state was considered, multiple hyperfine
states are employed in our spectroscopic technique. Transi-
tions between hyperfine states are driven using a microwave-
frequency magnetic field. Information on the interaction en-
ergy U and the density profile of the gas is obtained by
manipulating the resonant transition frequency between hy-
perfine states. Dependence on site occupancy is achieved by
changing the interaction energyU using a Feshbach reso-
nance, while a spatially inhomogeneous, state-dependent op-
tical potential provides spatial resolution.

A. Interaction with an oscillating magnetic field

We first address the atomic interaction with an oscillating
magnetic field in anticipation of explaining the detailed ex-
perimental procedure in subsequent sections. In the presence
of an oscillating magnetic field, the exact Hamiltonian at one
lattice site in the absence of tunneling is

FIG. 3. Spatial profile of occupation number for six different
temperaturesssee legend, color available onlined. A Metropolis al-
gorithm is used to calculate the distribution of roughly 33104 at-
oms among lattice sites with a harmonic external potential charac-
terized by a=h3113 Hz/mm2 and the experimental parameters
detailed in the Introduction. The average number of atoms per site
knl is shown at radiir which are multiples of the lattice spacing.
The radius is measured from the minimum of the external potential.

FIG. 4. Probability distribution of occupation
number for six different temperatures:sad
U / s100kBd, sbd U / s30kBd, scd U / s10kBd, sdd
U / s3kBd, sed U /kB, andsfd 2U /kB. The probabil-
ity Pn to find a site occupied byn atoms is shown
for radii r which are multiples of the lattice spac-
ing. The data are extracted from the Metropolis
algorithm used in Fig. 3 and are displayed as a
stacked column plotssee legend, color available
onlined.
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hĤabj + ĤI = HUbb

2
n̂bsn̂b − 1d +

Uaa

2
n̂asn̂a − 1d + Uabn̂an̂b

+ "vabn̂bJ − o
i

mŴ sid ·BW , s33d

where n̂a and n̂b are the number operators for atoms in hy-
perfine statesual and ubl, Uaa, Ubb, andUab are the interac-
tion energy for two atoms in statesual or ubl or one atom in

each state, the sum runs over the atoms, andmŴ is the atomic
magnetic moment operator. The energy difference"vab be-
tween statesual and ubl takes into account the effect of any
external optical and magnetic potentials, including a static
magnetic bias field that defines thez direction. We also as-
sume that the lattice potential is identical for both hyperfine
states; specifically we consider a far off-resonance lattice.

The applied microwave-frequency magnetic fieldBW

=Bl cosfvstdtgêx may have a time-dependent frequencyv.
The interaction with the magnetic fieldfthe last term in Eq.

s33dg can be rewritten asĤI ="Vfeivstdt+e−ivstdtgoisŝ+
sid+ŝ−

sidd,
where "V=−mabBl /4, mab is the magnetic moment matrix
element between theual and ubl states, andŝ±

sid are the Pauli
raising and lowering operators for atomi.

Because the statesual and ubl form an effective spin-1/2

system, the eigenstates ofĤab are eigenstates of total angular

momentumĴ=oi=1
n Ŝsid, whereŜsid is the effective spin opera-

tor for atom i. The interaction with the oscillating magnetic

field, which can be rewritten asĤI =Vfeivstdt+e−ivstdtgsĴ+

+ Ĵ−d, causes a rotation of the total spin vector. Since we

assume that all of the atoms start in one hyperfine state,ĤI
couples states with differentmj, but fixed total angular mo-
mentum quantum numberj =n/2 fn=na+nb and J2u j ,mjl
="2js j +1du j ,mjlg. All states with j =n/2 are properly sym-
metrized with respect to two-particle exchange for bosons.

We take advantage of the Schwinger representation and
write the eigenstatesu j ,mjl, which are states ofn spin-1/2

particles, as una,nbl. In this representation,Ĵ+una,nbl
=Înasnb+1duna−1,nb+1l and Ĵ−una,nbl=Înbsna+1duna

+1,nb−1l.
The interaction picture is convenient for calculating the

effect of the oscillating field. Taking into account that the
interaction Hamiltonian can only couple states wherena
changes by 1, thatna+nb is constant, and by making the
rotating-wave approximation, we obtain

ĤI8 = "VhĴ+e−ifvstd−sEna−1,nb+1−Ena,nb
d/"gt

+ Ĵ−eifvstd−sEna,nb
−Ena+1,nb−1d/"gtj s34d

in the interaction picture. In Eq.s34d, the energy

Ena,nb
una,nbl=Ĥabuna,nbl is determined by the eigenvalues of

Ĥab. The quantum state of the atoms on a lattice site can be

written in terms of the time-independent eigenvectors ofĤab
as

C = o
na=0

n

Cna,nb=n−na
una,nb = n − nal, s35d

wheren=na+nb. In general, the Schrödinger equation gives
rise to coupled equations for theCna,nb

that can be solved
numerically.

To illustrate the salient features of this interaction Hamil-
tonian, we will ignore off-resonant excitation and discuss the
casevstd=sEna−1,nb+1−Ena,nb

d /"+dstd. While for 87Rb the in-
teraction energy matrix elements are normally hyperfine-
state independent to within a few percent, we consider using
a Feshbach resonance so that we can haveUab=Uaa and
Ubb=bUaa. We discuss only the statesn=0,1,2,3 even
though the proposed experimental techniques will work for
any site occupancy. For typical experimental conditions,
three-body recombination rates will limit the lifetime of the
n.2 state to a few ms. However, we include analysis of that
state here in light of a recent proposalf22g for reducing
three-body recombination rates by a factor of 100.

The energy spectrum of the eigenstates ofĤab for states
with different n is shown in Fig. 5sad. Solving the
Schrödinger equation for the atomic wavefunction gives
coupled equations of the form

Ċna,nb
= − iVna,nb

Cna+1,nb−1e
−idstd, s36d

Ċna+1,nb−1 = − iVna,nb
Cna,nb

eidstd, s37d

where Vna,nb
=Îsna+1dnbV. In the absence of off-resonant

excitation and ford independent of time, the problem re-
duces to oscillations between two states with Rabi frequency
Vna,nb

fshown in Fig. 5sbdg. There are two important features

FIG. 5. The energy spectrum ofĤab for lattice sites withn
=1,2,3 sad and the Rabi frequencies for transitions between states
that are coupled by the interaction Hamiltoniansbd. In sad, the en-
ergy difference between states and the shift of the ground state are
shown.
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of the coupled problem that are apparent in Fig. 5. The first is
that there are no degenerate energy splittings in any manifold
for constantn. However, the transition frequencies are de-
generate when the transition involves states with the samenb
between manifolds of differentn. Also, the Rabi rates for
transitionsu0,nl↔ u1,n−1l and un,0l↔ un−1,1l are unique
to each manifold of constantn, regardless of the value ofb
si.e., u1,1l↔ u0,2l andu2,1l↔ u3,0ld. In the next section, we
will describe two experiments that will take advantage of
these features.

B. Experimental proposals

The two experimental techniques that we describe in this
section are a simple method for determining the ratios of
sites with differentn, and a more developed technique for
mapping out the spatial structure of the insulator state. We
consider experiments using87Rb atoms and the experimental
parameters outlined in the introduction. With the laser inten-
sity required to reach 30ER lattice depths, spontaneous emis-
sion rates driven by the lattice light will be negligible on
experimental timescales. The limiting timescale for experi-
ments will therefore be collisions with residual gas mol-
ecules in the vacuum system or spontaneous scattering from
an additional optical potential.

1. Rabi oscillations

The first experiment that we propose uses Rabi oscilla-
tions as a probe of the total population in the lattice of sites
with any n. A similar technique has been used in ion-trap
experiments to measure populations in different harmonic
oscillator levelsf23–25g. The total number of sites withn
atoms is identified by the Rabi oscillation amplitude at the
Rabi rateVn,0 for the un,0l↔ un−1,1l transition. Because
the resonant frequency and Rabi oscillation rate for this tran-
sition are independent of interaction energy, this method is
insensitive to the motional state of the atoms.

The gas is first prepared in the Mott-insulator state in the
lattice; harmonic confinement is provided by an inhomoge-
neous magnetic field. The atoms in the lattice are initialized
in the stateual sthrough optical pumping, for exampled. A
magnetic field at frequencyvab is applied to couple theual
and ubl states, and the population inubl is measured for dif-
ferent lengths of time of the applied couplingsvia resonance
fluorescence, for exampled. The data are fitted to a sum of
oscillating functions with frequencies that differ by a factor
Îk wherek=1,2,3, . . . . Thetotal population in the lattice in
states of differentn are then directly connected to the ampli-
tudes of each oscillating term in the fit.

One complication with this scheme is that the inhomoge-
neous magnetic field will introduce a spread invab across the
lattice, which will cause dephasing of the Rabi oscillations at
different sites. To suppress shifts invab across the lattice, the
energy difference between statesual andubl should be insen-
sitive to magnetic field. This can be accomplished using a
first-order magnetic field insensitive transition, for example
between the statesuF=2,mF=1l and uF=1,mF=−1l near

3.24 G f26g. For 106 atoms, to realize sites withn=3 will
require at least a 7 mG spread across the gas using either of
these states. With a 3.24 G magnetic bias field, there will be
less than a 2p30.1 Hz shift invab across the occupied sites.

2. Rapid adiabatic passage

In this section, we explain an experimental technique to
probe the Mott-insulator spatial structure directly, where the
occupation of sites is identified using the interaction energy.
Rapid adiabatic passage is used to transfer atoms in stateual
to stateubl. The interaction energy is manipulated by using a
Feshbach resonance such that the resonant microwave fre-
quency shifts for transitions betweenual and ubl in a mani-
fold of states with constantn. The maximum frequency shift
dependence onn permits unique identification of sites with
different n.

To change the interactions between atoms in stateubl, we
choose ubl= uF=1,mF=1l and apply a uniform magnetic
field with magnitude close to the87Rb Feshbach resonance at
1000.7 Gf27,28g. The magnitude of the field is adjusted so
that b=5 sUbb=5Uaad. Because this particular Feshbach is
exceptionally narrow, applying a uniform magnetic field is
necessary to avoid spatially varying interaction energy shifts.
Therefore, rather than obtaining spatial information by em-
ploying an inhomogeneous magnetic field, a spatially inho-
mogeneous near-resonant optical potential is used to shift
vab. The near-resonant laser fields are engineered to provide
a harmonic external potential; this may be accomplished us-
ing diffractive opticsf29,30g to produce a focused laser beam
with a parabolic intensity profile in three dimensions. To
maximize the shift invab while minimizing spontaneous
emission rates, we chooseual= uF=2,mF=2l and tune the
laser wavelength and polarization so that the optical potential
for the ubl state vanishes. For different atoms, such as85Rb,
with broader Feshbach resonances, the complication of em-
ploying an optical potential may not be necessary.

The overall effect of the applied, parabolic optical poten-
tial is to shift vab=v0−gr2 parabolically in space. The cur-
vatureg is related to the curvature of the intensity profile of
the near-resonant optical field,v0<9.126 GHz is determined
by the atomic hyperfine structure and the magnetic bias field,
and r is the distance from the minimum of the parabolic
optical potential. The spectrum for transitions between states
ual andubl for sites withn=1,2,3 isshown in Fig. 6. For our
experimental procedure, the curvatureg is adjusted so that
the minimum interaction energy shift is at least equal to the
shift from the parabolic optical potential for then=2 state at
the boundary with then=1 state. While this may be incom-
patible with supporting the desired Mott-insulator structure,
the applied state-dependent potential can be switched quickly
before the spectroscopy described next is performed.

The experiment is performed by first preparing the atoms
in the ual state. Storing the atoms for long times in theubl
state while the magnetic field is near the Feshbach resonance
is avoided to minimize effects due to inelastic collisions. A
microwave frequency magnetic field is then swept fromvl to
vh and the number of atoms transferred toubl is measured
susing resonance fluorescence, for exampled as the frequency
is changed.
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Atoms are transferred to stateubl in stages. As the fre-
quency is swept towardvh, one atom at all occupied sites is
transferred toubl. This process is interrupted atv0 by a gap
where no atoms are transferred toubl as the frequency is
changed. The size of that gap in frequencyUaasb−1d /"
−gR1

2 is related to the interaction energy, the size of the
region where there are at least two atoms per site, and the
curvatureg of the optical potential. After this gap in atom
transfer, one additional atom per site is transferred to stateubl
for all sites that have at least two atoms per site. Another gap
is encountered atv0+Uaasb−1d /" where no atoms are trans-
ferred that is 2Uaasb−1d /"−gR2

2 wide in frequency. Finally,
a third atom is transferred toubl in each site wheren=3 as
the frequency is swept tovh. No atoms are transferred toubl
as the frequency is increased pastv0+3Uaasb−1d /". The
interaction energy and the distribution of sites in space with
different occupancyn can be inferred from the number of
atoms transferred toubl as the frequency is changed.

This sequence of transfer between hyperfine states sepa-
rated by gaps is generic to any Mott-insulator structure.
Transfer begins atvrf =v0−gR0

2, which corresponds to the
boundary of the occupied sites atR0. The width of each gap
where atoms are not transferred toubl as the frequency is
changed iskUaasb−1d /"−gRk

2, where k=1,2,3, . . .. The
highest frequency where atoms are transferred is determined
by the occupancym at the core and isv0+mUaasb−1d /".

The results of a simulation of this experimental technique
are shown in Fig. 7 for a gas consisting of roughly 33104

atoms at six different temperatures. The Metropolis algo-
rithm is used to prepare the initial distribution of atoms
among lattice sites at each finite temperature. An additional
harmonic potential characterized bya=h3113 Hz/mm2 is
applied to generate a Mott-insulator state with a core ofn
=3 sites at zero temperature. This same curvatureg=113
32p Hz/mm2 is used for the state-dependent optical poten-

tial while the oscillating magnetic field is applied. The
Schrödinger equation is numerically solved on each lattice
site usingV=10032p Hz and vrfstd=6.4310432pt Hz.
We would like to have spectral discrimination between sites
at different radii, which limits the Rabi frequencyV since it
sets the effective bandwidth for transfer between states.
Therefore we choseV so that it is comparable to the differ-
ence invab between sites spaced radially bya near the mini-
mum of the optical potential. The sweep rate forV is chosen
so that Landau-Zener transitions are made with high prob-
ability. The data in Fig. 7 would be generated using a fre-
quency sweep lasting,1.26 s, which should be comparable
with spontaneous scattering times and much faster than loss
caused by collisions with residual background gas mol-
ecules.

From the simulation results shown in Fig. 7, it is clear that
the effects of a state-dependent interaction persist to rela-
tively high temperature compared with the interaction en-
ergy. The smallest frequency at which atoms are transferred
to ubl decreases with increasing temperature as the size of the
gas in the harmonic potential grows. In principle, the tem-
perature of the gas can be inferred from a fit of data obtained
using this technique to the simulation results.

V. CONCLUDING REMARKS

The possibility of exploring novel quantum phases of
matter using ultracold atoms trapped in optical lattices has
piqued the interest of many researchers. In this paper, we
have detailed the necessary conditions for creating and prob-
ing a shell structure of Mott-insulator phases in an optical
lattice. Instability of the Mott-insulator shell structure arises
principally from two effects: finite tunneling and finite tem-
perature. Finite tunneling of the bosons between neighboring
sites leads to superfluid regions between the shells and
particle-hole defects in the Mott-insulator regions. We have

FIG. 6. The spectrum for transitions betweenual and ubl for n
=1,2,3. Thetransition frequency between states with differentna

and nb is shown by the thick line. The dashed lines indicate the
boundaries between sites with differentn in the lattice, which occur
at radii R0, R1, and R2. Sites with n=1,2,3 areindicated with
green, blue, and red coloring, respectivelyscolor available onlined.
The interaction energy shifts are indicated, and the figure is drawn
assumingb.1.

FIG. 7. Simulation of rapid adiabatic passage experiment for
roughly 33104 atoms at six different temperaturesssee the legend,
wherekB is Boltzmann’s constantd. The number of atomsNb in state
ubl is shown as the frequencyvrf of an oscillating magnetic field is
sweptscolor available onlined.
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shown that for reasonable experimental parameters, these ef-
fects can be made negligible. The relevant conditions are
both that the tunneling parameter must be small compared
with the on-site repulsionsw/U!1d and small compared
with the typical change in the confining potentialV between
neighboring sitessw/DV!1d across the Mott-insulator
boundary. At finite temperature, while the Mott state for-
mally ceases to exist, we have found a reasonable suppres-
sion of defects for temperatures lower thanU / s10kbd from
Monte Carlo simulations of 33104 atoms. The existing lit-
erature on quantum tunneling at finite temperature provides a
starting point for a more detailed exploration of these issues
in this rich system, for instance, the effects of the coupling
between a single site defect and the rest of the system. In this
paper we have also proposed an experimental probe that has

the capacity to spatially resolve the Mott-insulator shell
structure.
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