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On Reconfiguring Tree Linkages:

Trees can Lock

Therese Biedl∗ Erik Demaine∗ Martin Demaine∗

Sylvain Lazard† Anna Lubiw∗ Joseph O’Rourke‡ Steve Robbins§

Ileana Streinu‡ Godfried Toussaint§ Sue Whitesides§

February 1, 2008

Abstract

It has recently been shown that any simple (i.e. nonintersecting) polyg-
onal chain in the plane can be reconfigured to lie on a straight line, and
any simple polygon can be reconfigured to be convex. This result can-
not be extended to tree linkages: we show that there are trees with two
simple configurations that are not connected by a motion that preserves
simplicity throughout the motion. Indeed, we prove that an N-link tree
can have 2Ω(N) equivalence classes of configurations.

1 Introduction

Consider a graph, each edge labelled with a positive number. Such a graph may
be thought of as a collection of distance constraints between pairs of points in
a Euclidean space. A realization of such a graph maps each vertex to a point,
also called a joint, and maps each edge to the closed line segment, called a
link, connecting its incident joints. The link length must equal the label of the
underlying graph edge. If a graph has one or more such realizations, we call it
a linkage.

An embedding of a linkage in space is called a configuration of the linkage
if any pair of links whose underlying edges are incident on a common vertex
intersect only at the common joint and all other pairs of links are disjoint. Some
authors allow the term configuration to refer to objects that self-intersect. In
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contrast, we require all configurations to be simple; i.e. non self-intersecting. A
motion of a linkage is a continuous movement of its joints such that it remains
in a valid configuration at all times. A natural question is whether a motion
exists between two given configurations of a linkage.

For a linkage in the plane whose underlying graph is a path, a related ques-
tion is whether it can always be straightened ; i.e. whether it can be moved from
any configuration to lie on a straight line. Similarly, we wonder whether a cycle
linkage (polygon) can always be convexified ; i.e. whether it can be moved to a
configuration that is a convex polygon. If a linkage cannot be so reconfigured,
it is called locked. These questions have been in the math community since the
1970’s [22] and in the computational geometry community since 1991 [18, 19],
but first appeared in print in 1993 and 1995: [20] and [16, p. 270]. Initial com-
putational geometry results focused on certain classes of configurations such as
“visible” chains [4], star-shaped polygons [9] and monotone polygons [3]. Con-
nelly, Demaine, and Rote have recently proved that in the plane, no chain or
polygon is locked [7]; Streinu [28] provides an alternative proof. In three dimen-
sions, while a complete characterization isn’t known, there are configurations
of open polygonal chains and of polygons that can be straightened, or convexi-
fied, respectively, and other configurations that can not be [1]. In four or more
dimensions, no chain or polygon is

Related linkage motion results in the computational geometry literature (e.g.
[10–14,17, 21, 23–26, 29–31]) allow the links to cross or to pass through or over
one another. In other words, the links represent distance constraints between
joints, not physical obstacles that must avoid each other. There is also the
very general algebraic approach to motion planning of [5] and [27], since the
constraint that the links not cross can be specified algebraically. For related
work from a topological point of view, see [15] and references therein; again,
this work allows links to cross.

There is a natural equivalence relation on the set of linkage configurations:
two configurations are equivalent if there is a motion that takes the linkage from
one configuration to the other. The Connelly-Demaine-Rote result states that
chains in the plane have a single equivalence class of configurations. In this
report we show that their result cannot be generalized to tree linkages: trees
can have many configuration classes.

This report establishes that a suitably-constructed tree linkage has two con-
figurations (pictured in Figure 1) for which no motion between them is possible.
(This result also answers a question posed in [8], arising from a paper folding
problem.) As a corollary, we obtain the result that an N -link tree linkage can
exhibit 2Ω(N) equivalence classes of configurations.

The rest of this report is organized as follows. Section 2 gives definitions and
the basic idea for constructing a locked tree configuration, Section 3 gives the
construction itself, and Sections 4 and 5 give the correctness proof. Section 6
concludes with some open problems.
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Figure 1: A tree linkage with disconnected configuration space: no motion is
possible from one configuration to the other.

2 Preliminaries

In this section, we introduce the technical definitions used. From now on, we
often do not distinguish between vertices and edges in the underlying tree,
the corresponding joints and links in the tree linkage, and the points and line
segments occupied by the joints in links in a particular configuration. The
context should make the meaning clear.

The trees considered in this report consist of n petals, each comprised of
three links. The initial configuration is sketched in Figure 2 and detailed as the
report unfolds.

1

l2

l1

Ai

Ai−1O

Ci Bi

Figure 2: An example linkage with enlarged view of petal i, showing the joint
labels and the link lengths.

The petals all meet at joint O; the other joints of petal i are labelled Ai, Bi,
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and Ci. Designate the petal angle as θi = 6 Ai−1OAi; let θ̄ = 2π/n. All index
arithmetic is taken mod n; all angles are measured in the interval [0, 2π). The
link lengths are as follows: ‖OAi‖ = 1, ‖AiBi‖ = l1, and ‖BiCi‖ = l2, where
for two points in the plane, X and Y , we use XY to designate the closed line
segment between X and Y , and ‖XY ‖ to denote its length. The values of l1
and l2 will be discussed in Section 3.

We often focus on a single petal at a time, so the notation is simplified by
suppressing the petal index. Joints of petal i are referred to as A, B, and C,
joint Ai−1 is denoted A′, and the petal angle, i.e., 6 A′OA, as just θ. Let L be
the line through OA′, and choose a reference frame with L oriented horizontally,
O to the left of A′.

2.1 The Intuition

We first give a brief outline of the main argument, before delving into the details.

O

Q

S

A

R P

A′

C

L

B

θ

C

Figure 3: Illustrating the definition of restricted configuration.

In the initial configuration, all petals are in a congruent configuration, pic-
tured in Figure 3, with petal angle θ̄ = 2π/n. By choosing l1 long enough, we
ensure that link AB cannot swing out so as to straighten joint A. Thus, the
petal angle must be increased before joint A can straighten. Because the petals
all join at O, opening up one petal necessitates squeezing the other petals.

Consider now how small we can squeeze a petal angle. By choosing l2 long
enough, we ensure that link BC cannot swing over to fold up against link
AB. In fact, joint C is trapped inside quadrilateral 2ORBS. We show later
that the smallest petal angle is obtained by moving joint C to O, pictured in
Figure 4. Lengthening l2 increases this minimum petal angle, so by choosing l2
long enough, we can ensure that squeezing n− 1 petals to their minimum angle
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is still not enough to let the last petal open. This, in essence, is why the tree is
locked.

From the above discussion, we note that l1 and l2 must be chosen “long
enough”. On the other hand, they must also be “short enough” that the con-
figuration shown in Figure 3 is achievable. Section 3 details all the constraints
needed to satisfy these two requirements. Section 4 defines a “restricted” class of
petal configurations (to which the configuration in Figure 3 belongs) and proves
that there is a non-zero minimum petal angle for this class of configurations.
Finally, Section 5 proves that a linkage with parameters n, l1, and l2, satisfying
all the constraints of Section 3, can be put into a initial configuration that is
locked.

3 Constructing a Locked Tree

This section details the constraints on the parameters n, l1, and l2 that are
necessary to construct our locked linkage. Lemma 1, at the end of this sec-
tion, demonstrates that the constraints are simultaneously satisfiable. Refer to
Figure 3 throughout this section.

A three-link petal cannot be locked if the petal angle is greater than or equal
to π/2. Thus we must have the initial petal angle (θ̄ = 2π/n) strictly less than
π/2, or

n > 4. (1)

Henceforth, assume θ < π/2. We want to have joint B to the left of the
vertical line through A. In order that link AB fits, we must have

l1 < 1. (2)

For any configuration of a petal, let C be the circle centred at A with radius
l1. Let β be the petal angle at which C is tangent to L,

β = arcsin l1. (3)

The range for the principal value of arcsine is [−π/2, π/2]. However, we know
that l1 must be positive, and less than 1 (Inequality 2), so β is actually in the
range (0, π/2).

When θ < β, circle C will properly intersect L. We want this to be true for
the initial configuration, in which all petal angles are θ̄, so we require

θ̄ < β. (4)

Suppose C properly intersects L and let P be the leftmost intersection point.
Applying the cosine rule to △OAP and noting that ‖OA‖ = 1 and ‖AP‖ = l1,
yields l21 = ‖OP‖2 + 1 − 2‖OP‖ cos θ. Since l1, the radius of C, is strictly less
than ‖OA‖ = 1 by Inequality 2, joint O is outside the circle C. From this, and
θ < π/2, it follows that P is to the right of O, and hence ‖OP‖ is the smaller
root of the quadratic equation. We define the function

lP (θ) = ‖OP‖ = cos θ −

√

l21 − sin2 θ. (5)

5



This function is only defined on values of θ for which C intersects L; i.e., for θ
in [0, β]. Differentiating 5 shows that lP is a strictly increasing function on this
interval.

Furthermore, P is to the left of the vertical line through A, and hence P ∈
OA′, but P is not at A′. We know that A is inside the circle C, while O is
outside, so C intersects OA; let Q be this intersection point. Note that the
small arc PQ of C lies inside △A′OA.

Suppose θ < β, and B is on the small arc PQ of C. Then B is inside △A′OA.
Since the triangle is isosceles, and the angle θ is < π/2, △A′OA is acute. This
ensures that there is a line passing through B perpendicular to each edge of
the triangle. Let R ∈ OA′ be such that BR ⊥ OA′ and S ∈ OA be such that
BS ⊥ OA. We want to have joint C inside quadrilateral 2ORBS. This is
feasible for the initial configuration if we choose

l2 < lP (θ̄), (6)

for then we may place B near P , and C along OB. At the same time, we wish
to have l2 long enough that C remains trapped in 2ORBS. This is ensured by
choosing

l2 > sin β cosβ, (7)

as we show later in Section 4.
Define

α = (2π − β)/(n − 1). (8)

Later, we will see that if a petal angle is opened past β, then some other petal
angle must be smaller than α. The proof that the tree is locked then hinges on
showing that there is a minimal petal angle, which is greater than α.

To obtain a non-zero minimal petal angle, we require

l1 + l2 > 1, (9)

for otherwise, links AB and BC could fold flat against link OA, and the petal
angle could squeeze to zero. Indeed, we show later, in Lemma 3, that the
minimum possible petal angle is bounded from below by the petal angle obtained
in the non-simple configuration with C at O, and B ∈ OA′, pictured in Figure 4.
Define θm to be the resulting petal angle. With △OAB, the cosine rule yields
l21 = l22 + 1 − 2l2 cos θm, or

θm = arccos

(

1 − l21 + l22
2l2

)

. (10)

We are using the principal value of arccosine, so θm ∈ [0, π].
Finally, in order to prove Theorem 5, we assume that l1 and l2 are such that

α < θm. (11)

We prove, in Appendix A, the following lemma which states that all the
constraints of this section may be simultaneously satisfied by an appropriate
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O, C B A′

l1

A

1

θm

l2

Figure 4: For calculating θm.

choice of n, l1, and l2. For n = 5, calculation shows that l1 = 0.9511 and l2 =
0.299 satisfy the system of inequalities above, with 71.997984 < 71.998224 <
72 < 72.008064 (angles in degrees) for α, θm, θ̄, and β, respectively.

Lemma 1 For each integer n > 4, there exists two real numbers l1 and l2
satisfying simultaneously all the constraints of Section 3 (i.e., Inequalities 2, 4,
6, 7, 9, and 11).

In the sequel, we assume some choice of parameters has been made such that
all the constraints of this section hold.

4 Restricted Configurations

Referring to Figure 3, recall from the definition of β (Equation 3) that θ < β
implies that circle C properly intersects link OA′. Thus, points P and Q are
well-defined. When joint B is on the small arc PQ, recall that points R and
S are also well-defined. And finally, joint C also fits inside 2ORBS, due to
Inequality 6.

Definition: A petal configuration is said to be restricted if the following con-
ditions hold:

(i) θ < β,

(ii) B is on the open small arc PQ of C, and

(iii) C is in the open region bounded by the quadrilateral 2ORBS.

Note in Figure 3 that ‖BR‖ and ‖BS‖ are both smaller than ‖BC‖. We
show now that this is always the case in a restricted configuration.

Lemma 2 In a restricted configuration, both ‖BR‖ and ‖BS‖ are strictly less
than l2.

7



Proof: For a point X , let d(X, L) denote the distance from X to the line L
through O and A′. We have that ‖BR‖ = d(B, L). Because B is on the small
arc PQ, d(B, L) ≤ d(Q, L) = ‖OQ‖ sin θ. Hence,

‖BR‖ ≤ ‖OQ‖ sin θ. (12)

By similar reasoning,
‖BS‖ ≤ ‖OP‖ sin θ. (13)

Note that ‖OQ‖ = 1 − l1 = 1 − sinβ, by Equation 3. For x ∈ [0, π/2],
sin x + cosx ≥ 1, so ‖OQ‖ ≤ cosβ. Because lP is an increasing function,
‖OP‖ = lP (θ) ≤ lP (β), and lP (β) ≤ cosβ, by Equation 5.

Both ‖OP‖ and ‖OQ‖ are ≤ cosβ. Hence, by Inequalities 12 and 13, both
‖BR‖ and ‖BS‖ are bounded from above by cosβ sin θ < cosβ sin β, as θ <
β ≤ π/2 by assumption. But this is strictly less than l2 by Inequality 7. 2

Lemma 3 In a restricted configuration, θ ≥ θm.

Proof: Suppose, for contradiction, the petal is in a restricted configuration
with θ < θm.

Consider the two triangles △OAB and △OAP . These triangles share the
common side OA, and ‖AB‖ = ‖AP‖ = l1. Two sides of △OAB are equal
length with two sides of △OAP . Moreover the included angles satisfy 6 OAB <
6 OAP , since by definition of restricted configuration (condition (ii)), joint B
lies on the small arc PQ of C. Applying the cosine law to the remaining side in
each triangle (or using Euclid’s Proposition 24, Book I) we see 6 OAB < 6 OAP
implies ‖OB‖ < ‖OP‖. By definition (Equation 5) ‖OP‖ = lP (θ), which is less
than lP (θm) since lP is an increasing function. A direct computation shows that
lP (θm) = l2, so we have ‖OB‖ < l2.

By Lemma 2, we have also ‖BR‖ < l2 and ‖BS‖ < l2.
All four points O, R, B and S are strictly inside the circle of radius l2 centred

at B. Joint C is of course on this circle, so it cannot be inside 2ORBS. This
contradicts condition (iii) of a restricted configuration. 2

Lemma 4 Consider a petal in a restricted configuration. Throughout any mo-
tion during which θ is strictly less than β, the petal remains in a restricted
configuration.

Proof: Note that the points P , Q, R, S, and the circle C, are defined by the
positions of the joints A and B; as the joints move, so do the points P , Q, etc.
For simplicity, we omit displaying this dependence on time.

Consider, in turn, the three conditions required for a restricted configuration.
Condition (i) holds throughout the motion by assumption.

In any configuration, B must be on C. Since B starts the motion on the
small arc PQ, for condition (ii) to be violated, B must pass through point P or
through point Q. P and Q are on the interior of links OA′ and OA, respectively,
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and since θ < β, C always properly intersects these links. Thus B may not move
through P or Q, and hence condition (ii) holds throughout the motion.

Given that B remains on the small arc PQ, points R and S are well defined.
As C starts the motion inside 2ORBS, condition (iii) is violated only if C
passes through one of the sides of this quadrilateral. Sides OR and OS are
portions of links, so C may not pass through them. By Lemma 2, ‖BR‖ and
‖BS‖ are both strictly less than ‖BC‖, so C cannot pass through side BR or
side BS. Thus, condition (iii) holds throughout the motion. 2

5 Trees Can Lock

This section describes our main result: two inequivalent configurations of a tree
linkage.

Recall that θm is defined by a triangle with sides 1, l1, and l2, pictured in
Figure 4. With △OAB, the cosine rule yields

l21 = l22 + 1 − 2l2 cos θm,

while from Inequality 6 we can obtain

l21 < l22 + 1 − 2l2 cos θ̄,

which implies θm < θ̄. Putting this together with Inequalities 11 and 4, we have

α < θm < θ̄ < β, (14)

hence (α, β) is a non-empty interval.
Consider a tree in a configuration in which the petal configurations are all

congruent, with petal angles all equal to θ̄ ∈ (α, β). We place joint B on the
small arc PQ. Because l2 < lP (θ̄) = ‖OP‖ (Inequality 6) we can place B near,
but not at, P to ensure ‖OB‖ > ‖BC‖. This ensures that joint C may be
placed along OB, which is inside 2ORBS. This is a valid configuration, and
furthermore each petal configuration restricted. The next theorem shows all
petals remain bounded from below by α.

Theorem 5 Consider a tree of n petals in a configuration such that θi ∈ (α, β)
for 0 ≤ i < n, and with each petal in a restricted configuration. During any
motion, all petal angles remain in the range (α, β).

Proof: Suppose, to the contrary, a motion exists that takes some petal angle
out of the range (α, β). Let tα be the first instant that some petal angle, say for
petal k, reaches α. Let tβ be the first instant that some petal angle reaches β.

If tβ < tα, then at time tβ all angles are strictly greater than α and at least
one is equal to β. This means

2π =
n−1
∑

i=0

θi > (n − 1)α + β = 2π,

9



a contradiction. Hence tα ≤ tβ .
During the supposed motion, the joint angles change continuously in time.

Since α < θm by Inequality 11, and θk approaches α from above as t approaches
tα from below, we may choose t0 < tα such that θk ∈ (α, θm) at time t0.

Note that during the motion up to time t0, all petal angles are strictly
less than β, as t0 < tα ≤ tβ . By Lemma 4 all petals remain in a restricted
configuration before time t0, so Lemma 3 applies to petal k. This means θk ≥
θm, contradicting the choice of t0. 2

Recall that two simple configurations of a tree linkage are equivalent if one
can be moved to the other. Our main result is that a tree linkage can have two
inequivalent configurations: one with all petals in a restricted configuration,
and the other with one or more petal angles less than α. These configurations
are illustrated in Figure 1. This result can easily be extended to the following
corollary.

Corollary 6 There exist N -link tree linkages such that the linkages have 2Ω(N)

equivalence classes of simple configurations.

Figure 5: A tree linkage formed by joining k copies of a lockable tree. Each
subtree may be in either an open (as is the middle subtree) or a closed (the
first and last subtrees) configuration. This linkage has at least 2k configuration
classes.

Proof: Consider the linkage in Figure 5, in which there are k copies of an eight-
petal lockable tree connected by long links joining the O joints of the subtrees.
The connecting links are long enough that when they are stretched out to form
a straight chain, each subtree can be in either an open or a closed configuration
without crossing links.

Consider simple configurations in which the long links form a straight chain,
and each subtree is in either an open or a closed configuration. Label such
configurations by a k-bit vector, specifying for each subtree, whether its con-
figuration is open or closed. Configurations with different labels are clearly not
equivalent, as a motion of the entire linkage that would take some subtree in
a closed configuration to an open configuration would imply, by removing links
outside the subtree, the existence of a motion that would make petal angle of

10



the subtree inferior to α. Hence the number of inequivalent configurations is at
least 2k ∈ 2Ω(N), as N = 24k + (k − 1). 2

6 Conclusion

While no chain or polygon in the plane may lock, we showed in this report that
for a tree linkage can; i.e. that there can be more than one equivalence class of
simple configurations. Indeed, some N -link trees have 2Ω(N) equivalence classes.

The tree construction of Section 3 constrains the link lengths to be non-equal
(it appears difficult to even get them nearly equal). This prompts the following
question: can a tree linkage with equal-length links have a locked configuration?
One “nearly equilateral” tree linkage is shown in Figure 6. We conjecture that if
the link lengths are very nearly equal, this configuration is locked; the intuition
is as follows. Each of the six triangular petals cannot collapse, so each remains
nearly an equilateral triangle. If that is the case, it seems that each petal can
only move by pivoting about its degree-3 joint, which it cannot do without
crossing a link of the adjacent petal. Notice, however, that if the links truly

Figure 6: A nearly equilateral tree linkage configuration.

are of equal length, the configuration pictured cannot be simple.
The nearly equilateral example has the feature that the graph has maximum

degree three. It is easy to replace a high-degree joint with a number of degree-
three joints joined by a chain of tiny links. Do equilateral locked tree linkages
with maximum degree three exist?

Finally, many interesting questions can be posed for linkages moving in
higher dimensions. See [1, 6] for recent work on chain and cycle linkages moving
under simple motion in three and more dimensions.
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A Proof of Lemma 1

This appendix proves the following lemma.

For each integer n > 4, there exists two real numbers l1 and l2 satis-
fying simultaneously all the constraints of Section 3 (i.e., Inequalities
2, 4, 6, 7, 9, and 11).

Proof:

We show that l1 = sin(θ̄ + ǫ) and l2 = lP (θ̄ − ǫ/n) are feasible link lengths,
where ǫ = 0.01◦ is feasible for n = 5, n = 6 and any 0 < ǫ < 0.4◦ is feasible for
n ≥ 7. The proof consists of checking, in turn, each of the constraints mentioned
above.

Constraint 2: l1 < 1
Given our choice of l1, this is satisfied as long as θ̄ + ǫ < π/2. Recall that

θ̄ = 2π/n and n ≥ 5 (Inequality 1), so θ̄ ≤ 2π
5 . Since ǫ < 0.4◦, the constraint is

satisfied.

Constraint 4: θ̄ < β
By the definition of β (Equation 3), and our choice of l1, we have β = θ̄ + ǫ.

Since ǫ > 0, the constraint is satisfied.

Constraint 6: l2 < lP (θ̄)
Since ǫ > 0, θ̄ − ǫ/n < θ̄. Using the definition θ̄ = 2π/n, we see that

θ̄ − ǫ/n = (2π − ǫ)/n. Since ǫ < 0.4◦, θ̄ − ǫ/n > 0. Now, lP (θ) is an increasing
function on [0, β] ⊃ (0, θ̄), and l2 = lP (θ̄ − ǫ/n), so the constraint is satisfied.

We summarize, for future reference, some inequalities derived so far,

0 < θ̄ − ǫ/n < θ̄ < β = θ̄ + ǫ < π/2. (15)

Constraint 7: l2 > sin β cosβ
This constraint is the only one for which we distinguish cases based on n.

For n = 5 and n = 6, a direct calculation shows that the given link lengths
(with ǫ = 0.01◦) satisfy the constraint.

For the case n ≥ 7, we show that any 0 < ǫ < 0.4◦ yields l2 > 1
2 , whence the

constraint follows since sinβ cosβ = 1
2 sin(2β) ≤ 1

2 (the equality is an identity,
the inequality uses sinx ≤ 1).
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Plugging our choice of l2 into the definition of lP (5),

l2 = lP (θ̄ − ǫ/n) = cos(θ̄ − ǫ/n) −

√

l21 − sin2(θ̄ − ǫ/n). (16)

Cosine is a decreasing function on [0, π], so cos(θ̄ − ǫ/n) > cos θ̄ > cos(2π
7 )

given 0 < θ̄ − ǫ/n < θ̄ < 2π/7 (15 and n ≥ 7).
Under the radical of 16, substituting l1 = sin(θ̄ + ǫ) gives the expression

sin2(θ̄+ǫ)−sin2(θ̄−ǫ/n). Using the identity sin2 x−sin2 y = sin(x+y) sin(x−y),
this expression becomes sin(2θ̄ + ǫ− ǫ/n) sin(ǫ+ ǫ/n) ≤ sin(ǫ+ ǫ/n) < sin(2ǫ) <
sin(0.8◦). The last two inequalities follow by noting that 0 < ǫ + ǫ/n < 2ǫ <
0.8◦ < π/2, and sine is increasing on the interval [0, π/2].

Using these bounds for the two terms in Equation 16,

l2 > cos

(

2π

7

)

−
√

sin(0.8◦) ≈ 0.505 >
1

2
.

Constraint 9: l1 + l2 > 1
Define function f(θ) = l1+lP (θ) on [0, β]. We know lP is a strictly increasing

function on [0, β], hence so is f . Furthermore, f(0) = 1, so f(θ) > 1 for
θ ∈ (0, β].

From 15, we see θ̄ − ǫ/n ∈ (0, β), so f(θ̄ − ǫ/n) > 1. By definition of f , this
becomes l1 + lP (θ̄− ǫ/n) > 1. Since l2 = lP (θ̄− ǫ/n), we obtain that l1 + l2 > 1
as desired.

Constraint 11: α < θm

By definition, α = (2π − β)/(n − 1) (Equation 8). This shows α ≥ 0.
Rewriting 2π as nθ̄, and β as θ̄ + ǫ (15), the equation for α becomes α =
(nθ̄ − θ̄ − ǫ)/(n − 1) = θ̄ − ǫ/(n − 1) < θ̄ − ǫ/n. Combining all this with (15),
we find

0 < α < θ̄ − ǫ/n < θ̄ < β < π/2. (17)

From (17) we see that α ∈ (0, π). By definition (Equation 10), θm is also in
(0, π). Since cosine is decreasing on this interval, the constraint α < θm holds
if, and only if, cosα > cos θm. Using the definition of θm (Equation 10), this
latter inequality becomes 2l2 cosα > 1 − l21 + l22. We collect the terms in l2 to
one side, l22 − 2l2 cosα < l21 − 1, and complete the square to get

(l2 − cosα)2 < l21 − sin2 α.

Since l1 = sin β (by definition of β, Equation 3), the right hand side can be
written as sin2 β − sin2 α, which is positive since α < β by (17). Since both
sides of the inequality are positive, we can take square roots which leads to

|l2 − cosα| <

√

l21 − sin2 α,

so

−

√

l21 − sin2 α < l2 − cosα <

√

l21 − sin2 α,

13



and we deduce that l2 (which equals lP (θ̄ − ǫ/n)) must satisfy

cosα −

√

l21 − sin2 α < lP (θ̄ − ǫ/n) < cosα +

√

l21 − sin2 α. (18)

Comparing the left inequality of this with the definition of lP (5), we see
that the former can be written lP (α) < lP (θ̄ − ǫ/n). From (17) we note that α
is less than θ̄ − ǫ/n and both quantities are in the range [0, β]. The increasing
property of lP ensures that the left inequality of (18) is satisfied.

For the upper bound, note that by (15), θ̄−ǫ/n < θ̄ and both quantities are in
the range [0, β]. The increasing property of lP ensures that lP (θ̄− ǫ/n) < lP (θ̄).
By the definition of lP (5), lP (θ̄) < cos θ̄. Given 0 < α < θ̄ < π/2 (17), the
decreasing nature of cosine on this interval ensures cos θ̄ < cosα. Putting this
together, we find lP (θ̄ − ǫ/n) < cosα, so the upper bound of Inequality 18 is
satisfied.

2
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