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Abstract

Models of particle physics based on manifolds of G2 holonomy are in
most respects much more complicated than other string-derived mod-
els, but as we show here they do have one simplification: threshold
corrections to grand unification are particularly simple. We compute
these corrections, getting completely explicit results in some simple
cases. We estimate the relation between Newton’s constant, the GUT
scale, and the value of αGUT , and explore the implications for proton
decay. In the case of proton decay, there is an interesting mechanism
which (relative to four-dimensional SUSY GUT’s) enhances the gauge
boson contribution to p → π0e+

L compared to other modes such as
p → π0e+

R or p → π+νR. Because of numerical uncertainties, we do
not know whether to intepret this as an enhancement of the p → π0e+

L

mode or a suppression of the others.
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1 Introduction

In the original estimation of the running of coupling constants in grand
unified theories [1], it was found that the low energy SU(3)× SU(2)×U(1)
couplings can be unified in a simple gauge group such as SU(5) [2] at an
energy of about 1015 GeV. This energy is suggestively close to the Planck
mass MPl = 1.2×1019 GeV, at least on a log scale. This hints at a unification
that includes gravity as well as the other forces.

Subsequently, with more precise measurements of the low energy cou-
plings, it became clear that coupling unification occurs much more precisely
in supersymmetric grand unification. Supersymmetry raises the unification
scale MGUT to about 2 − 3 × 1016 GeV [3], assuming that the running of
couplings can be computed using only the known particles plus Higgs bosons
and superpartners. Incorporating supersymmetry reduces the discrepancy
between the unification scale and the Planck scale, measured logarithmically,
by about one third.

In this discussion, it is not clear if the unification mass should be com-
pared precisely to MPl or, say, to MPl/2π. For this question to make sense,
one needs a more precise unified theory including gravity. The first suffi-
ciently precise model was the perturbative E8 × E8 heterotic string [4]. In
this model, the discrepancy between the scales of grand unification and grav-
ity was again reduced, relative to the original estimates, essentially because
the string scale is somewhat below the Planck scale. The remaining dis-
crepancy, evaluated at tree level, is about a factor of 20 – that is, the GUT
or grand unification scale as inferred from low energy couplings is about 20
times smaller than one would expect based on the tree level of the heterotic
string. For a discussion, see [5].

This discrepancy, which is about six percent on a log scale (and thus
roughly a third as large as the mismatch originally estimated in [1]), is small
enough to raise the question of how much the one-loop threshold corrections
might close the gap. The threshold corrections have been calculated [6],
generalizing the corresponding computations in field theory [7], [8]. The
threshold corrections depend on the detailed choice of a heterotic string
compactification. In most simple models, they seem too small to give the
desired effect.

An alternative is to assume additional charged particles with masses far
below the unification scale, so as to modify the renormalization group esti-
mate of the unification scale. To preserve the usual SUSY GUT prediction
for the weak mixing angle sin2 θW , one might limit oneself to complete SU(5)
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multiplets; for assessment of possibilities in this framework, see [9],[10],[11].

Another alternative is to consider the strongly coupled E8×E8 heterotic
string, in which an eleventh dimension opens up and gauge fields propagate
on the boundaries [12]. In this case, rather than a prediction for the relation
between Newton’s constant GN = 1/M2

Pl and the scale of grand unifica-
tion, one gets only an inequality [13]. The inequality is difficult to evaluate
precisely; the estimate given in [13] is

GN ≥ α2
GUT

16π2

∣∣∣∣∣
∫

Z
ω ∧ trF ∧ F − 1

2R ∧R

8π2

∣∣∣∣∣ , (1.1)

where ω is the Kahler form of the Calabi-Yau manifold Z, and one would
expect the integral in (1.1) to be of order 1/M2

GUT times a number fairly close
to 1; a further estimate was given in [14] , where this bound was lowered by
a factor of 2/3. The observed value of GN is rather close to saturating this
inequality and probably does so within the uncertainties.1 If this inequality,
or the one derived in the present paper, is saturated, this is a very interesting
statement about nature, but a theoretical reason to expect the inequality to
be saturated is not clear.

The purpose of the present paper is to study this and related questions
in the context of another related type of model, namely M -theory compact-
ification on a (singular) manifold of G2 holonomy. Such models can be dual
to heterotic strings; in many (but presumably not all) instances, a compact-
ification of M -theory on a G2 manifold X is dual to the compactification
of a heterotic string on a Calabi-Yau threefold Z. So many models actually
have (at least) three different dual descriptions: as a perturbative E8 × E8

heterotic string; as a strongly coupled heterotic string with gauge fields on
the boundary; and in terms of M -theory on a singular G2 manifold. As in
most examples of duality, when one of these descriptions is useful, the others
are strongly coupled and difficult to use.

Apart from duality with the heterotic string, G2 models that might be
relevant to phenomenology can be constructed via duality with certain Type
II orientifolds [15]-[18], which in turn may have descriptions via the Type I
string or SO(32) heterotic string.

A particular approach to constructing semirealistic particle physics mod-
els based on G2 manifolds was described in [19]. The ability to generate chiral

1There is also a special case, with equal instanton numbers in the two boundaries, in
which one does not obtain such an inequality, and GN can be much smaller. This case was
not pursued seriously in [13], because of a preference to maintain the successes of grand
unification.
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fermions depended on somewhat subtle singularities that have been studied
in [20] - [23]. We will pursue this approach further in the present paper.

G2 manifolds are much more difficult and less fully understood than the
Calabi-Yau threefolds that can be used in constructing heterotic string com-
pactifications. However, as we will see, they have at least one nice simplifi-
cation relative to the generic Calabi-Yau models: the threshold corrections
are rather simple in the case of compactification on a G2 manifold. They
are in fact given by a topological invariant, the Ray-Singer analytic torsion
[24],[25]. As a result, the threshold corrections can be computed explicitly
based on topological assumptions, without needing to know the detailed form
of the G2 metric. That is convenient, since explicit G2 metrics are unknown.

In this paper, we will carry out for G2 manifolds as much as we can of the
usual program of grand unification. We compute the threshold corrections,
obtain as precise an estimate as we can for the radius of compactification,
derive the inequality which is analogous to (1.1), and attempt to estimate
the proton lifetime. Of course, there is some serious model dependence here;
we attempt to make statements that apply to classes of interesting models.
For example, to discuss proton decay in a sensible fashion, we need to assume
a mechanism for doublet-triplet splitting; here, we assume the mechanism of
[19] (which in turn is a close cousin of the original mechanism for doublet-
triplet splitting in Calabi-Yau compactification of the heterotic string [26];
this mechanism has been reconsidered recently from a bottom-up point of
view [27] - [31]). One consequence of the particular doublet-triplet splitting
mechanism that we use is that dimension five (or four) operators contribut-
ing to proton decay are absent; proton decay is dominated, therefore, by
dimension six operators. In four dimensions, those operators are induced
by gauge boson and Higgs boson exchange; we will see that in the present
context, in a sense, there is a direct M -theory contribution. We will focus
in this paper on SU(5) models, partly for simplicity and partly because the
doublet-triplet splitting mechanism of [19] has been formulated for this case.

The results we get are as follows:

(1) For SU(5) models, the threshold corrections due to Kaluza-Klein
harmonics do not modify the prediction for sin2 θW obtained from four-
dimensional supersymmetric GUT’s. (This is somewhat analogous to a sim-
ilar result for massive gauge bosons in four-dimensional SU(5) models.) But
they do modify the unification scale; that is, they modify the relation be-
tween the compactification scale and the scale of grand unification as esti-
mated from low energy gauge couplings. This modification is significant in
estimating the predictions for Newton’s constant and for proton decay.
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(2) The inequality analogous to (1.1) is again rather close to being sat-
urated and perhaps even more so. The details depend on the threshold
corrections as well as on other factors that will appear in the discussion.

(3) In four-dimensional SUSY GUT’s, the gauge boson exchange contri-
butions to proton decay, if they dominate, lead to a proton lifetime that has
been estimated recently as 5× 1036±1 years [32]. (Four-dimensional GUT’s
also generally have a dimension five contribution that can be phenomeno-
logically troublesome; it is absent in the models we consider. See also [33]
for another approach.) Relative to four-dimensional GUT’s, we find a mech-
anism that enhances proton decay modes such as2 p → π0e+

L relative to
p → π0e+

R or p → π+νR; these are typical modes that arise from gauge
boson exchange. Given numerical uncertainties that will appear in section
5, it is hard to say if in practice this mechanism enhances the p → π0e+

L

modes relative to GUT’s or suppresses the others. Because of these issues,
to cite a very rough estimate of the proton lifetime, we somewhat arbitrarily
keep the central value estimated in the four-dimensional models and double
the logarithmic uncertainty, so that the proton lifetime in these models if
gauge boson exchange dominates might be 5 × 1036±2 years.3 (In practice,
the uncertainty could be much larger if because of additional light charged
particles, the unification scale is modified; the same statement applies to
four-dimensional GUT models.)

This paper is organized as follows. In section 2, we review how semi-
realistic models of particle physics can be obtained by compactification of
M -theory on a singular manifold of G2 holonomy. In section 3, we express
the threshold corrections in terms of Ray-Singer torsion and make everything
completely explicit in the case of a lens space. In section 4, we work out the
implications for Newton’s constant. In section 5, we discuss proton decay.
In section 6, we discuss some unresolved issues about these models. Finally,
in the appendices, we do some calculations of torsion to fill in some loose
ends in section 3.

2 Review Of Models

As we will now recall, duality with the heterotic string implies that semi-
realistic models of particle physics can be derived by compactification of

2And similar modes with π0 replaced by K0, or e+
L by µ+

L . As in most four-dimensional
GUT’s, we do not have precise knowledge of the flavor structure.

3The current experimental bound on p → π0e+ is 4.4× 1033 years (for a recent report,
see [34]) and the next generation of experiments may improve this by a factor of 10 to 20
(for example, see [35]).
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M -theory on a manifold of G2 holonomy. (One could also use Type II
orientifolds as the starting point here [15]-[18].) Semi-realistic means that
gauge groups and fermion quantum numbers come out correctly, but there is
no good understanding of things that depend on supersymmetry breaking,
like the correct fixing of moduli, as well as fermion masses (which depend
on the moduli).

In fact, semi-realistic models of particle physics can be derived by com-
pactification of the E8 × E8 heterotic string on a Calabi-Yau threefold Z.
Most Calabi-Yau threefolds participate in mirror symmetry. Mirror symme-
try is interpreted to mean [36] that in a suitable region of its moduli space,
Z is fibered over a three-manifold Q with fibers that are generically copies
of a three-torus T3.

Now, we take Q to be very large in string units, while keeping the size
of the T3 fixed and taking the string coupling constant to infinity. The
strong coupling limit of the heterotic string on T3 is M -theory on K3. So
in this limit, we replace all of the T3’s by K3’s. The heterotic string on Z
then turns into M -theory on a seven-manifold X that is fibered over Q with
generic fibers being copies of K3. Supersymmetry requires that X actually
has G2 holonomy.

Suppose that the original heterotic string model had an unbroken gauge
group G ⊂ E8 × E8. If G is simple, for example G = SU(5), then it is a
group of type A, D, or E (as these are the simple gauge groups that occur
in heterotic string models at level one), and will appear in M -theory on K3
as an orbifold singularity of the appropriate type. Such a singularity will
appear in each fiber of the fibration X → Q. They will fit together into a
copy of Q embedded in X along which X has the appropriate A, D, or E
orbifold singularity. In the present paper, when we want to be specific, we
consider G = SU(5), in which case Q is a locus of Z5 orbifold singularities.
This means, concretely, that the normal space to Q in X can be parametrized
locally by complex coordinates w1, w2 with the identification

(w1, w2) → (e2πi/5w1, e
−2πi/5w2). (2.1)

Though our focus in this paper is on the case that G is simple, we briefly
note that if G is semi-simple, this means that the K3 contains several disjoint
singularities, one for each factor in G. These will lead, generally, to different
components of the singular set of X. (They might intersect, in which case
chiral superfields may be supported at the points of intersection.) Also,
U(1) factors in G appear in M -theory as modes of the three-form field C of
M -theory.
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We can abstract what we have learned from the way that we have learned
it and say that in M -theory on a G2 manifold X, gauge theory of type
A, D, or E arises from the existence on X of a three-dimensional locus Q
of A, D, or E orbifold singularities. Many such examples arise by duality
with the heterotic string, but there may also be examples that have this
structure but are not dual in this way to heterotic string compactifications.
This mechanism of generating gauge symmetry from G2 manifolds has been
discussed in [37] and elsewhere.

In analyzing the four-dimensional effective gauge and gravitational cou-
plings, the volumes of Q and of X, which we denote as VQ and VX , will be
important. We will meet the dimensionless number

a =
VX

V
7/3
Q

. (2.2)

In models with K3 fibrations, we have VX = VK3 · VQ. (Volumes are multi-
plicative in fibrations such as X → Q.) In the region in which one can see the
duality with the heterotic string (so that the manifold X definitely exists),
Q is very large compared to the T3 or K3, and hence a << 1. Another class
of models arises from Type II orientifolds [15] -[18]; in this case, the radius
of the M -theory circle is a factor in the volume of X but not of Q, so again
a << 1 when the duality can be used to deduce the existence of X. It seems
reasonable to guess that at least for many or most G2 manifolds obtained
by these dualities and useful for phenomenology, there is an upper bound
of order one on the possible values of a, with a singularity developing if one
tries to make a too large. This would be analogous to what happens in the
strongly coupled heterotic string if, for most values of the instanton numbers
at the two ends, one tries to make the length of the eleventh dimension too
long compared to the scale of the other compact dimensions. Unfortunately,
we have no way to prove our conjecture that a is generally bounded above
or to determine the precise bound.

One can also construct G2 orbifolds in which it is possible to have any
value of a. (They lack the singularities, discussed momentarily, that generate
chiral fermions.) Also, in a local picture , explicit G2 metrics with Q = S3

or a finite quotient of S3 are known [38],[39], and have been studied in a
number of recent papers [40],[41],[20],[42]. (These can be used to get gauge
symmetry but not chiral fermions; symmetry breaking by Wilson lines was
incorporated in the last of those papers.) Those papers focused on the
behavior as Q shrinks to a point, whereupon topology-changing transitions
may occur, as first proposed in [40]. When Q shrinks to a point, a singularity
develops that is a cone on S3×S3, or a finite quotient. It is not known that
such a singularity can develop in a compact G2 manifold X, but presumably
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this is possible. In an example in which this can occur, there is no upper
bound on a, but there may instead be a lower bound on a!

Since the heterotic string on a Calabi-Yau manifold (or a Type II orien-
tifold) can readily have chiral fermions, it must also be possible to get chiral
fermions in M -theory on a G2 manifold. The precise mechanism was deter-
mined in [22]: chiral multiplets are supported at points on Q at which X has
a singularity that is worse than an orbifold singularity. At these points, Q
itself is smooth but the normal directions to Q in X have a singularity more
complicated than the orbifold singularity (2.1). The relevant singularities
have been studied in [20] - [23]. Their details will not be important in the
present paper.

Model Of Grand Unification

In constructing a model similar to a four-dimensional grand unified model,
we start with M -theory on R4×X, where R4 is four-dimensional Minkowski
space and X has G2 holonomy. We assume that X contains a three-manifold
Q with a Z5 orbifold singularity (described locally by (2.1)) in the normal
direction. This means that SU(5) gauge fields propagate on R4 ×Q.

We further assume that the first Betti number of Q vanishes, b1(Q) = 0.
This is actually true in all known examples (and notably it is true for exam-
ples arising by duality with the heterotic string; in that context, b1(Q) = 0,
since the first Betti number of the Calabi-Yau threefold Z is actually zero).
This means that, in expanding around the trivial SU(5) connection on Q,
there are no zero modes for gauge fields. Such zero modes would lead to
massless chiral superfields in the adjoint representation of SU(5).

Instead, we assume that that there is a nontrivial finite fundamental
group π1(Q) and first homology group H1(Q). A typical example (which
can arise in duality with the heterotic string) is a lens space, Q = S3/Zq for
some q. We will keep this in mind as a concrete example, for which we will
give a completely explicit formula for the threshold corrections. Having a
finite and nontrivial first homology makes it possible to break SU(5) to the
standard model subgroup SU(3)× SU(2)×U(1) by a discrete choice of flat
connection in the vacuum. Just as in the case of the heterotic string on a
Calabi-Yau manifold [26], the discreteness leads to interesting possibilities for
physics, including options for solving the doublet-triplet splitting problem.

For example, if π1(Q) = Zq, we take the holonomy around a generator
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of π1(Q) to be

U =




e4πiw/q

e4πiw/q

e4πiw/q

e−6πiw/q

e−6πiw/q




(2.3)

with some integer q. This breaks SU(5) to the standard model subgroup as
long as 5w is not a multiple of q.

For a more realistic GUT-like model, we also need various chiral super-
fields. These include Higgs bosons transforming in the 5 and 5 of SU(5),
as well as quarks and leptons transforming as three copies of 5 ⊕ 10, and
possibly additional fields in real representations of SU(5). Such chiral super-
fields are localized at points Pi on Q at which the singularity in the normal
direction is more severe than the orbifold singularity (2.1).

Doublet-triplet splitting can be incorporated by assuming suitable dis-
crete symmetries. In the example considered in [19], Q was the lens space
S3/Zq, and the discrete symmetry group was a copy of F = Zn acting on Q.
The fixed point set of F consisted of two circles, and by suitable assignments
of the points Pi to the two circles, doublet-triplet splitting was ensured. We
will not recall the details here as we will not make explicit use of them. (For
another approach to making the proton sufficiently long-lived, see [43].)

Kaluza-Klein Reduction

Now we consider the Kaluza-Klein reduction of the vector supermultiplet
on R4 ×Q to give massive particles on R4.

We begin with the gauge field A. It can be expanded around the Wilson
loop background Acl as

A = Acl + aµdxµ + φαdyα, (2.4)

where xµ, µ = 1, . . . , 4 are coordinates on R4, and yα, α = 1, . . . , 3 are
coordinates on Q. Here aµ transforms as a gauge field on R4 and a scalar
field on Y , and φα transforms as a scalar on R4 and a one-form on Y . Both
aµ and φα are functions of both the x’s and the y’s, and thus can be expanded

aµ(x, y) =
∑

n

a(n)
µ (x)χ(n)(y)

φα(x, y) =
∑
m

φ(m)(x)ψ(m)
α (y).

(2.5)
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Here χ(n) and ψ(m) are eigenfunctions, respectively, of ∆0 and ∆1, where
by ∆k we mean the Laplacian acting on k-forms with values in the adjoint
representation of SU(5):

∆0χ
(n) = λ(0)

n χ(n)

∆1ψ
(m) = λ(1)

m ψ(m).
(2.6)

The k-form eigenvalues λ
(k)
n , k = 0, 1, are interpreted in four dimensions as

the mass squared. The a
(n)
µ are vector fields in four dimensions, and form

part of a vector multiplet, while the φ(n) are scalars and form part of a chiral
multiplet.

Along with the gauge field, the seven-dimensional vector multiplet con-
tains three additional scalar fields, which, in compactification on R4 × Q,
behave as another one-form φ̃α on Q. As explained in [37], this happens
because of the twisting of the normal bundle. φ̃α has a similar Kaluza-Klein
expansion:

φ̃α(x, y) =
∑
m

φ̃(m)(x)ψ(m)
α (y). (2.7)

The fields φ(m) and φ̃(m) together make up the bosonic part of a chiral
multiplet.

In sum, then, each zero-form eigenfunction χ(n) leads to a vector multi-
plet, with helicities 1,−1, 1/2,−1/2, and each one-form eigenfunction ψ(m)

leads to a chiral multiplet, with helicities 0, 0, 1/2,−1/2. (The origin of the
fermionic states in these multiplets is described in [37] and depends again
on the twisting of the normal bundle.) This is all the information we need
to compute the threshold corrections in section 3. However, we pause to
describe in more detail the Higgs mechanism, by virtue of which some chiral
and vector multiplets combine into massive vector multiplets.

If χ(n) is a zero mode of the Laplacian, then a
(n)
µ is a generator of the

unbroken SU(3)× SU(2)×U(1). If a
(n)
µ is one of these 12 modes, then it is

part of a massless vector multiplet. For all the infinitely many other values
of n, a

(n)
µ is part of a massive vector multiplet, obtained by combining a

vector multiplet and a chiral multiplet, via a Higgs mechanism.

Let us see how this comes about. Since we have assumed that b1(Q) = 0,
there are no harmonic one-forms. Thus, any one-form ψ on Q is a linear
combination of a closed one-form dAχ and a co-closed one-form d∗Aλ (dA

and d∗A are the gauge-covariant exterior derivative and its adjoint, defined
using the background gauge field Acl; χ is a zero-form and λ is a two-form).
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In particular, the eigenfunctions ψ(m) are either closed or co-closed. The
co-closed eigenfunctions yield massive chiral multiplets in four dimensions
that do not participate in any Higgs mechanism. But a closed one-form
eigenfunction is the exterior derivative of a zero-form eigenfunction,

ψ(m) = dAχ(n), (2.8)

for some n. Here χ(n) is a zero-form eigenfunction of the Laplacian with
the same eigenvalue as ψ(m). In this situation, the vector multiplet derived
from χ(n) and the chiral multiplet derived from ψ(m) combine via a Higgs
mechanism into a massive vector multiplet. The Higgs mechanism is most
directly seen using the transformation of the gauge field A under a gauge
transformation generated by the zero-form χ(n). This is δA = dAχ(n). In
terms of four-dimensional fields, it becomes

δa(n)
µ =

D

Dxµ
χ(n), δφ(m) = χ(n), (2.9)

where in the last formula, the shift in φ(m) under a gauge transformation
demonstrates the Higgs mechanism.

For our purposes, a vector multiplet, massless or not, has four states
of helicities ±1,±1/2, and a chiral multiplet has four states of helicities
0, 0,±1/2. A massive vector multiplet is the combination of a vector multi-
plet and a chiral multiplet via the Higgs mechanism to a multiplet with eight
helicity states 1, 1/2, 1/2, 0, 0,−1/2,−1/2,−1. We will not use the concept
of a massive vector multiplet in the rest of the paper, since for computing
the threshold corrections, one need not explicitly take account of the way
the Higgs effect combines a vector multiplet and a chiral multiplet into a
single massive vector multiplet.

For more detail, with also some information that will be useful later, see
the table. As we note in the table, massless states come from harmonic forms
(in the above discussion and in the rest of the paper, we make topological
restrictions on Q so that there are no harmonic one-forms leading to massless
chiral multiplets, but in the table we include them for completeness and
possible future generalizations). We have also indicated in the table which
massive multiplets are Higgsed and become part of massive vector multiplets,
and which are not.

3 The Threshold Corrections

In this section, we will get down to business and compute the threshold
corrections to gauge couplings in grand unification. In doing the compu-
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Table 1: Field content in four dimensions.
Form on Q Type Supermultiplet χ Str ( 1

12 − χ2)
massive 0–forms vector Higgsed 1, 1/2,−1/2,−1 −3/2

” 1–forms closed chiral Higgsed 1/2, 0, 0,−1/2 1/2
” ” co-closed chiral un-Higgsed 1/2, 0, 0,−1/2 1/2

massless 0–forms harmonic vector 1, 1/2,−1/2,−1 −3/2
” 1–forms harmonic chiral 1/2, 0, 0,−1/2 1/2

tation, it is necessary to assume that the radius RQ of Q is much greater
than the eleven-dimensional Planck length 1/M11, since otherwise M -theory
is strongly coupled at the scale 1/RQ. Having RQ >> 1/M11 also means
that the Kaluza-Klein harmonics, with masses of order MGUT ∼ 1/RQ, are
much lighter than generic M -theory excitations, whose masses are of order
M11. So it makes sense to compute their effects without knowing exactly
what happens at the Planck scale. In section 4, we show that RQ >> 1/M11

to the extent that αGUT is small.

In most of this section, we consider only the case that the normal bundle
to Q has only the standard orbifold singularity, so that the only charged
light fields are those of the seven-dimensional vector multiplet, compactified
on Q. After analyzing this case thoroughly, we consider in section 3.5 the
case in which singularities of the normal bundle generate additional light
charged fields.

A priori, one would expect the one-loop threshold corrections to gauge
couplings to depend on the chiral multiplets that describe the moduli of X.
However, the imaginary parts of those multiplets are axion-like components
of the C-field and manifestly decouple from the computation of one-loop
threshold corrections.4 Those computations depend only on the particle
masses – that is, the eigenvalues of the Laplacian. Hence the perturbative
threshold corrections are actually constants, independent of the moduli of
X.

The threshold corrections are given by a sum over contributions of dif-
ferent eigenvalues. The sum makes sense for any metric on Q, but we want
to evaluate it for metrics that are induced by G2 metrics on X. From the
argument in the last paragraph, the threshold correction is independent of
the metric on Q as long as it comes from a G2 metric on X. We do not
know any useful property of such metrics on Q. So the most obvious way

4Nonperturbatively small threshold corrections due to membrane instantons will de-
pend on the C-field. These effects, though extremely small for G2 manifolds, can be
substantial in a dual heterotic string or Type II orientifold description.
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for the threshold correction to be independent of the moduli of X is for it
to be entirely independent of the metric of Q, that is, to be a topological
invariant.

The most obvious topological invariant of a three-manifold Q, endowed
with a background flat gauge field A, that can be computed from the spec-
trum of the Laplacian is the Ray-Singer analytic torsion [25]. We will show
that torsion does indeed give the right answer.

From a physical point of view, the torsion can be represented by a very
simple topological field theory [44]. Another hint that torsion is relevant is
that analytic torsion (in this case, ∂ analytic torsion, which varies holomor-
phically and is not a topological invariant) governs the threshold corrections
for the heterotic string, as shown in section 8.2 of [45]. The relation of the
threshold corrections for G2 manifolds to torsion can possibly also be ar-
gued using methods in [45], at least in the case of gauge groups of type A
or D, plus duality of M -theory with Type IIA superstrings and D-branes.
We will establish this relation directly. (Torsion also enters in the theory of
membrane instantons [46].)

3.1 The Analytic Torsion

Let H be the subgroup of the unified group G that commutes with the
standard model group SU(3)×SU(2)×U(1). For G = SU(5), H is just the
U(1) of the standard model. Let Ri be the standard model representations
appearing in the adjoint representation of G, and suppose that the part of
the adjoint representation of G transforming asRi under the standard model
transforms as ωi under H. (Some of the ωi may be the same for different
Ri; also, the ωi are not necessarily irreducible, though they are irreducible
for G = SU(5).)

In vacuum, we suppose that G is broken to the standard model by a
choice of a flat H-bundle on Q, that is, by a choice of Wilson lines. Each
ωi determines a flat bundle that we will denote by the same name. We
want to define the analytic torsion Ti for the representation ωi. Let ∆k,i,
k = 0, . . . , 3, be the Laplacian acting on k-forms with values in ωi. If there
is no cohomology with values in ωi, that is, if the ∆k,i have no zero modes,
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then the torsion is defined by the formula5

Ti =
1
2

3∑

k=0

(−1)k+1k log det
(
∆k,i/Λ2

)
, (3.1)

where Λ is an arbitrary constant (which in our physical application will be
the gauge theory cutoff). The determinants in (3.6) are defined using zeta
function regularization (for more detail on this, see Appendix A where a
simple example is computed). By the theorem of Ray and Singer, Ti is
independent of the metric of Q, and hence also independent of Λ, which can
be eliminated by scaling the metric of Q. (In the mathematical theory, Λ
is usually just set to 1, but physically, since ∆k,i is naturally understood to
have dimensions of mass squared, we introduce a mass parameter Λ and use
the dimensionless ratio ∆k,i/Λ2.) Because the Laplacian commutes with the
Hodge ∗ operator which maps k-forms to (3−k)-forms, ∆k,i and ∆3−k,i have
the same spectrum. So we can simplify (3.6):

Ti =
3
2

log det
(
∆0,i/Λ2

)− 1
2

log det
(
∆1,i/Λ2

)
. (3.2)

If ωi is such that the ∆k,i do have zero modes, then the log det’s in
(3.6) are not well-defined. In this more general case, we define objects Ki by
replacing det∆k,i (which vanishes when there are zero modes) with det ′∆k,i,
the product (regularized via zeta functions) of the non-zero eigenvalues of
∆k,i:

Ki =
3
2

log det ′
(
∆0,i/Λ2

)− 1
2

log det ′
(
∆1,i/Λ2

)
. (3.3)

Since log det is the same as Tr log, we can equally well write

Ki =
3
2
Tr′ log

(
∆0,i/Λ2

)− 1
2
Tr′ log

(
∆1,i/Λ2

)
, (3.4)

where Tr′ is a trace with zero modes omitted.

For a three-manifold Q with finite fundamental group, and a non-trivial
irreducible representation ωi, there are no zero modes. If ωi is trivial, there
are zero modes: they are simply the zero-form 1 and a three-form which is the
covariantly constant Levi-Civita volume form. When there are zero modes,
Ti does not simply equals Ki; there is a correction for the zero modes. The
correction is explained in Appendix B, and in the present situation is very

5We define the torsion as in [25] and much of the physics literature; the definition differs
by a factor of −2 from that in [24]. We also note that what we call eT is called the torsion
by many authors.
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simple. If VQ is the volume of Q, then the torsion of the trivial representation
(which we denote by O) is

TO = KO − log(VQΛ3). (3.5)

The Ray-Singer theorem again implies that TO is independent of the metric
of Q, and hence in particular independent of Λ. In the mathematical liter-
ature, (3.5) would be written with Λ = 1. In general, for any irreducible
representation ωi, trivial or not,

Ti = Ki − δωi,O log(VQΛ3). (3.6)

3.2 Sum Over Massive Particles

Now we will describe the threshold correction. We let gM be the underlying
gauge coupling as deduced from M -theory in the supergravity approximation
(we compute it in detail in section 4), and we let ga(µ), a = 1, 2, 3 be the
standard model U(1), SU(2), and SU(3) gauge couplings measured at an
energy µ, which we assume to be far below the cutoff Λ.

The tree level relations among the ga depend on how they are embedded
in G. For the usual embedding6 of the standard model in SU(5), the tree
level relations are g2

a = g2
M/ka, with (k1, k2, k3) = (5/3, 1, 1).

The one-loop relation is7

16π2

g2
a(µ)

=
16π2ka

g2
M

+ ba log(Λ2/µ2) + Sa, (3.7)

where ba are the one-loop beta function coefficients, and Sa are the one-loop
threshold corrections. They are given by very similar sums over, respectively,
the massless and massive states. The formula for ba is

ba = 2 Str m=0Q
2
a

(
1
12
− χ2

)
. (3.8)

Here Str is a supertrace (bosons contribute with weight +1, fermions with
weight −1) over massless helicity states; χ is the helicity operator; and Qa is
a generator of the ath factor of the standard model group with TrQ2

a = ka/2.

6Conventionally, SU(2) and SU(3) are generated by 5 × 5 matrices of trace-squared
equal to 1/2, and U(1) is generated by the hypercharge, diag(1/2, 1/2,−1/3,−1/3,−1/3),
whose trace-squared is (5/3) · 1/2.

7The threshold corrections are called ∆a in [6], but we will call them Sa to avoid
confusion with the use of ∆ for the Laplacian.
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As explained in the introduction to this section, until section 3.5 we consider
the effects of the seven-dimensional vector multiplets only. In this case, the
massless particles are simply the vector multiplets of the unbroken group
SU(3)× SU(2)× U(1). So, letting RA denote the adjoint representation of
the standard model, and recalling that the helicities of a vector multiplet
are 1,−1, 1/2,−1/2, we see that for this case,

ba = −3TrRAQ2
a. (3.9)

The definition of Sa is rather similar to (3.8) except that the trace runs
over massive states and includes a logarithmic factor depending on the mass:

Sa = 2 Str m6=0Q
2
a

(
1
12
− χ2

)
log(Λ2/m2). (3.10)

If we combine these formulas, we can write

16π2

g2
a(µ)

=
16π2ka

g2
M

+ 2 Str m=0Q
2
a

(
1
12
− χ2

)
log(Λ2/µ2)

+ 2 Str m6=0Q
2
a

(
1
12
− χ2

)
log(Λ2/m2).

(3.11)

We see that every helicity state, massless or massive, makes a contribution
to the low energy couplings that has the same dependence on the cutoff Λ,
independent of its mass.

In a unified four-dimensional GUT theory, the quantum numbers of the
tree level particles are G-invariant, though the masses are not. Hence, the
coefficient of log Λ in (3.11) is G-invariant. The precise value of Λ is therefore
irrelevant in the sense that a change in Λ can be absorbed in redefining the
unified coupling (which in a four-dimensional theory would usually be called
gGUT rather than gM ).

In our supersymmetric gauge theory on R4 × Q, the sum (3.11) arises
from a one-loop diagram in the seven-dimensional gauge theory; the cou-
pling renormalization from the one-loop diagram has been expanded as a
sum over Kaluza-Klein harmonics. The seven-dimensional gauge theory is
unrenormalizable, and divergences in loop diagrams should be expected. The
divergences, however, are proportional to gauge-invariant local operators on
Q. Since we have assumed that the G-symmetry is broken only by the choice
of a background flat connection, all local operators are G-invariant. Hence
the divergences are G-invariant and can be, again, absorbed in a redefinition
of gM .
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In practice (by using the relation to analytic torsion), we will define the
sum in (3.11) with zeta-function regularization, and then it will turn out
that there are no divergences at all – Λ will cancel out completely. With a
different regularization, there would be divergences, but they would be G-
invariant. Of course, if we really had a proper understanding of M -theory,
we would use whatever regularization it gives.

3.3 Relation Of The Threshold Correction To The Torsion

The threshold correction Sa can be written Sa =
∑

i Sa,i, where Sa,i is the
contribution to the sum in (3.10) coming from states that transform in the
representation Ri. We can further factor the trace of Q2

a – which depends
only on Ri – from the rest of the sum:

Sa,i = 2TrRiQ
2
a StrHi

(
1
12
− χ2

)
log

(
Λ2

m2

)
. (3.12)

Here Hi is defined by saying that the space H of one-particle massive states
decomposes under the standard model as H = ⊕Ri ⊗Hi.

Now let us evaluate the sum over helicity states. As we reviewed in
section 2, each eigenvector of the zero-form Laplacian ∆0,i contributes to
Hi a vector multiplet, with helicities 1,−1, 1/2,−1/2. m2 for this mul-
tiplet is equal to the eigenvalue of ∆0,i. For such a multiplet, we have
Str

(
1
12 − χ2

)
= −3/2. Each eigenfunction of the one-form Laplacian ∆1,i

similarly contributes to Hi a chiral multiplet, with helicities 0, 0, 1/2,−1/2,
for which Str

(
1
12 − χ2

)
= 1/2. Inserting these values in (3.12) and using

(3.4) and (3.6), we find that

Sa,i = 2TrRiQ
2
a · Ki = 2TrRiQ

2
a ·

(Ti + δωi,O log(VQΛ3)
)
. (3.13)

Here δωi,O is 1 if ωi is the trivial representation (which we denote as O)
and otherwise zero.8

Elimination Of Λ Dependence

Now we can eliminate the Λ dependence, which appears explicitly in (3.7)
in the contribution from the massless particles, and arises in (3.13) because
massless contributions are omitted in Sa. The Λ dependence of 1/g2

a(µ)
8If it should happen that ωi is reducible for some i, then δωi,O should be understood

as the number of copies of O in ωi. In what follows, we assume for ease of exposition that
the ωi are all irreducible, as occurs for G = SU(5). This restriction is inessential.
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cancels only when we include all states, massive and massless, and we will
now exhibit this cancellation.

The total Λ-dependent contribution to Sa is, using (3.13),

2
∑

i

TrRiQ
2
aδωi,O log(VQΛ3). (3.14)

We can write the adjoint representation A of the low energy gauge group
SU(3)× SU(2)× U(1) as

A = ⊕′iRi, (3.15)

where the sum ⊕′i runs over all Ri such that ωi = O. The reason for this is
that when we turn on a flat gauge background of a subgroup H ⊂ G to break
the gauge group G to a subgroup, the unbroken group is the subgroup that
transforms trivially under H, in other words, its Lie algebra is the union of
the Ri for which ωi = O. With (3.15), we can rewrite (3.14) as

2TrAQ2
a log(VQΛ3), (3.16)

and this is the Λ dependence of Sa.

The Λ-dependence that is explicit in (3.7) is in the term ba log(Λ2/µ2).
Using (3.9), we see that the Λ dependence cancels with that in (3.16), and
moreover, making use of (3.13) and (3.16) as well as (3.9), we can rewrite the
formula for the threshold corrections in a Λ-independent and useful form:

16π2

g2
a(µ)

=
16π2ka

g2
M

+ ba log


 1

V
2/3
Q µ2


 + S ′a, (3.17)

with
S ′a = 2

∑

i

Ti TrRiQ
2
a. (3.18)

3.4 Evaluation For SU(5)

Now, let us evaluate this formula for G = SU(5). The adjoint representation
decomposes under the standard model as

(8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2)−5/6 ⊕ (3,2)5/6, (3.19)

where SU(3)× SU(2) representations have been labeled mostly by their di-
mension, and the superscript is the U(1) charge. Thus, the representations
of H = U(1) that enter are the trivial representation O, a nontrivial repre-
sentation ω that corresponds to charge −5/6, and the dual representation ω
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for charge 5/6. Since complex conjugation of the eigenfunctions exchanges ω
and ω without changing the eigenvalues of the Laplacian, we have Tω = Tω.
Hence, the can write the formula for S ′a just in terms of the two torsions TO
and Tω.

To make this explicit, we need to take a few traces. The traces of
(Q2

1, Q
2
2, Q

2
3) in the representation (8,1)0⊕ (1,3)0⊕ (1,1)0 are (0, 2, 3), and

their traces in the representation (3,2)−5/6 ⊕ (3,2)5/6 are (25/3, 3, 2). So

S ′1 =
50
3
Tω

S ′2 = 4TO + 6Tω

S ′3 = 6TO + 4Tω.

(3.20)

Since (b1, b2, b3) = −3(0, 2, 3), we can write this as

S ′a = −2
3
ba (TO − Tω) + 10kaTω. (3.21)

So we get our final formula for the low energy gauge couplings in the one-loop
approximation:

16π2

g2
a(µ)

=
(

16π2

g2
M

+ 10Tω

)
ka + ba log


exp

(
2
3(Tω − TO)

)

µ2V
2/3
Q


 . (3.22)

We might compare this to a naive one-loop renormalization group for-
mula that we might write in a GUT theory. This would read

16π2

g2
a(µ)

=
(

16π2

g2
GUT

)
ka + ba log(M2

GUT /µ2). (3.23)

We see that the two formulas agree if

16π2

g2
GUT

=
16π2

g2
M

+ 10Tω

M2
GUT =

(
exp(Tω − TO)

VQ

)2/3

.

(3.24)

The first formula tells us how the coupling gM used in M -theory should
be compared to the gGUT that is inferred from low energy data. Our com-
putation really only makes sense if the difference between gM and gGUT is
much smaller than either, since otherwise higher order corrections would be
important. Moreover, a different regularization (such as M -theory may sup-
ply) might have given a different answer for the shift in gM , so this shift is
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unreliable. The second formula shows how the parameter VQ of the com-
pactification is related to MGUT as inferred from low energy data.9 This
relationship is meaningful and independent of the regularization. We can
write the relation as

VQ =
L(Q)
M3

GUT

, with L(Q) = exp(Tω − TO). (3.25)

A noteworthy fact – though a simple consequence of SU(5) group theory
– is that the massive Kaluza-Klein harmonics have made no correction at all
to the prediction of the theory for sin2 θW .

We now want to make our result completely explicit in a simple example.
To allow for SU(5) breaking, Q cannot be the most obvious compact three-
manifold with b1 = 0, which would be a sphere S3. We can, however, take Q
to be what is arguably the next simplest choice, a lens space. We describe
S3 by complex variables z1, z2 with |z1|2 + |z2|2 = 1, and take Zq to act by

γ : zi → exp(2πi/q)zi (3.26)

for some positive integer q. Then we define

Q = S3/Zq. (3.27)

To break SU(5) to the standard model, we assume that the action of γ is
accompanied by a gauge transformation by

Uγ = exp (2πi(w/q)diag(2, 2, 2,−3,−3)) (3.28)

with some integer w such that 5w is not divisible by q. The torsions in this
case are

TO = − log q, Tω = log
(
4 sin2(5πw/q)

)
, (3.29)

giving
L(Q) = 4q sin2(5πw/q). (3.30)

(See [24],[25] as well as Appendix A for some computations.) Hence the
relation between MGUT and VQ is in this model

MGUT =
(

4q sin2(5πw/q)
VQ

)1/3

, VQ =
4q sin2(5πw/q)

M3
GUT

. (3.31)

We actually can generalize (3.26) slightly to a transformation γ that
maps zi → exp(2πimi/q)zi for integers mi that are prime to q. The quotient

9We define MGUT as the mass parameter that appears in making a fit like (3.23) to
low energy data; it is of course not necessarily the mass of any particle.
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S3/Zq is still called a lens space. By replacing γ by a power of itself, there
is no loss of generality to take, say m2 = 1; we then denote m1 simply
as m. In this more general case (see [25], pp. 168-9), TO is unchanged,
and Tω becomes log(4| sin(5πw/q) sin(5πjw/q)|) where jm ≡ 1 modulo q, so
L(Q) = 4q| sin(5πw/q) sin(5πjw/q)|.

3.5 Inclusion Of Quarks, Leptons, And Higgs Bosons

So far we have solely considered the case that the normal space to Q has
only the standard orbifold singularity, so that the only charged particles
with masses ≤ 1/RQ are the Kaluza-Klein harmonics. Now we want to
introduce quarks, leptons, Higgs bosons, and possibly other charged light
fields such as messengers of gauge-mediated supersymmetry breaking. We
do this by assuming at points Pi ∈ Q the existence of certain more compli-
cated singularities of the normal bundle. These generate charged massless
SU(5) multiplets (which may ultimately get masses at a lower scale if a
superpotential is generated or supersymmetry is spontaneously broken). If
the singularities of the Pi are generic, each one contributes a new irreducible
SU(5) multiplet Mi of massless chiral superfields. Specific singularities that
generate chiral multiplets transforming in the 5, 10, 10, and 5 of SU(5)
have been studied in [20] - [23].

It is believed that these singularities are conical. This is definitely true
in a few cases in which the relevant G2 metrics are conical metrics that were
constructed long ago [38],[39] (and found recently [20] to generate massless
chiral multiplets). Since a conical metric introduces no new length scale that
is positive but smaller than the eleven-dimensional Planck length, we expect
that these singularities, apart from the massless multiplets Mi, introduce no
new particles of masses ≤ 1/RQ that need to be considered in evaluating the
threshold corrections.

We can also argue, a little less rigorously, that the singularities of the
normal bundle that produces massless chiral superfields in the 5, 10, etc.,
have no effect on the Kaluza-Klein harmonics of the seven-dimensional vec-
tor multiplet on R4×Q. To show this, we consider the construction in [22],
where the association of massless chiral multiplets with singularities was ar-
gued using duality with the heterotic string. In this argument, the existence
in the G2 description of a conical singularity that generates massless chiral
superfields was related, in a heterotic string description that uses a T3 fi-
bration, to the existence of a certain zero mode of the Dirac equation on
a special T3 fiber. The existence of this zero mode generates a localized
massless multiplet in the 5, 10, etc., as shown in [22], but does nothing at
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all to the seven-dimensional vector multiplet (which has no exceptional zero
mode on the T3 in question).

Granted these facts, to incorporate the effects of the multiplets Mi, all
we have to do is add their contributions to the starting point (3.7) or to the
final result (3.22). If all of the new multiplets are massless down to the scale
of supersymmetry breaking, then, for µ greater than this scale, all we have
to do is add a contribution to (3.7) due to the new light fields. Let ∆ba be
the contribution of the new light fields to the beta function coefficients ba –
note that since the Mi form complete SU(5) multiplets, they contribute to
each ba in proportion to ka. The contribution of the new fields to (3.7) is to
add to the right hand side

∆ba log(Λ̃2/µ2), (3.32)

which is the contribution due to renormalization group running of the Mi

from their cutoff Λ̃ down to µ. We do not exactly know what effective cutoff
Λ̃ to use for the Mi, but it is of order M11. Anyway, the exact value of
Λ̃ does not matter; it can be absorbed in a small correction to gM (this
correction is no bigger than other unknown corrections due for example to
possible charged particles with masses of order M11). In fact, up to a small
shift in gM , it would not matter if we replace Λ̃ by the (presumably lower)
mass exp

(
1
3(Tω − TO)

)
/V

1/3
Q that appears in (3.22). So if all components of

the Mi are light, we can take our final answer to be simply that of (3.22),
but with all ba redefined (by the shift ba → ba +∆ba) to include the effects of
the Mi. In other words, if all components of Mi are light, we simply have to
take the ba in (3.22) to be the exact β function coefficients of the low energy
theory.

The assumption that all components of the Mi are light is inconsistent
with the measured value of the weak mixing angle sin2 θW . That measured
value (and the longevity of the proton) is instead compatible with the hy-
pothesis that all components of the Mi are light except for the color triplet
partners of the ordinary SU(2) × U(1) Higgs bosons; we call those triplets
T and T̃ . Let mT be the mass of T and T̃ (we assume this mass comes
from a superpotential term T T̃ , in which case T and T̃ have equal masses),

and let ∆bT,eT
a be their contribution to the beta functions. These are not

proportional to ka since T and T̃ do not form a complete SU(5) multiplet!
Then (3.32) should be replaced by

(∆ba − bT,eT
a ) log(Λ̃2/µ2) + bT,eT

a log(Λ̃2/m2
T ), (3.33)

the idea being that the T , T̃ contributions run only from Λ̃ down to mT ,
while the others run down to µ. Up to a small correction to gM , we can
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again replace Λ̃ in (3.33) by

Λ̃ → exp
(

1
3
(Tω − TO)

)
V
−1/3
Q . (3.34)

If we do this, then (3.22) is replaced by

16π2

g2
a(µ)

=
(

16π2

g2
M

+ 10Tω + δ

)
ka + ba log


exp(2

3(Tω − TO))

µ2V
2/3
Q




+ bT,eT
a log


exp(2

3(Tω − TO))

m2
T V

2/3
Q


 .

(3.35)

Here ba are the full beta functions of the low energy theory below the mass
mT , and bT,eT

a is the additional contribution to the beta functions from T, T̃

between mT and the effective GUT mass MGUT = exp
(

1
3(Tω − TO)

)
/V

1/3
Q .

Finally, δ expresses an unknown shift in the effective value of gM ; this shift
is presumably unimportant within the accuracy of the computation.

Assuming that low energy threshold corrections are small, the fit to low
energy measurements of gauge couplings is improved if rather than mT ∼
MGUT we take

mT

MGUT
∼ 10−2. (3.36)

It is at least somewhat plausible in the present model that mT /MGUT would
be small since the superpotential term mT T T̃ probably has to arise (like the
terms that lead to quark and lepton masses) from membrane instantons. We
discuss this issue further in section 6.

4 Couplings And Scales

One virtue of computing the threshold corrections is that we can make some-
what more precise the formulas for the parameters MGUT , αGUT , and GN

that are read off from the eleven-dimensional supergravity action.

We write the gravitational action in eleven dimensions as

1
2κ2

11

∫

R4×X
d11x

√
gR. (4.1)

Denoting the volume of X as VX , this reduces in four dimensions simply to

VX

2κ2
11

∫

R4

d4x
√

gR. (4.2)
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The four-dimensional Einstein-Hilbert action is
1

16πGN

∫

R4

d4x
√

gR. (4.3)

So

GN =
κ2

11

8πVX
. (4.4)

Now let us work out the correctly normalized Yang-Mills action on R4×
Q. For a system of n Type IIA D6-branes, the Yang-Mills action (see eqns.
(13.3.25) and (13.3.26) of [47]) is

1
4(2π)4gs(α′)3/2

∫
d7x

√
gTrFµνF

µν , (4.5)

where gs is the string coupling constant and Tr is the trace in the fundamen-
tal representation of U(n). In the GUT literature, one usually writes Fµν =∑

a F a
µνQa, where Qa are generators of U(n) normalized to TrQaQb = 1

2δab.
So (4.5) can be written

1
8(2π)4gs(α′)3/2

∫
d7x

√
g

∑
a

F a
µνF

µν a. (4.6)

Going to M -theory, the relation between κ11, gs, and α′ is (eqn. (14.4.5) of
[47])

κ2
11 =

1
2
(2π)8g3

s(α
′)9/2. (4.7)

Combining these, we see that the Yang-Mills action in seven dimensions is

1
4g2

7

∫
d7x

√
g

∑
a

F a
µνF

µν a =
1

8(2π)4/321/3κ
2/3
11

∫
d7x

√
g

∑
a

F a
µνF

µν a.

(4.8)
The conventional action in four dimensions is

1
4g2

GUT

∫
d4x

√
g F a

µνF
µν a, (4.9)

with αGUT = g2
GUT /4π. So after reducing (4.8) to four dimensions on R4×Q

and getting a factor of VQ, the volume of Q, from the integral over Q, we
identify

αGUT =
(4π)1/3κ

2/3
11

VQ
. (4.10)

Combining (4.4) and (4.10), we have

GN =
α3

GUT V
2/3
Q

32π2a
, (4.11)
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with a = VX/V
7/3
Q . Using (3.25), we can write this as

GN =
α3

GUT L(Q)2/3

32π2aM2
GUT

. (4.12)

Here MGUT is the unification scale as inferred from low energy data (but if
there are extra light particles not presently known, they must be included
in the extrapolation). For the simplest lens space, L(Q) = 4q sin2(5πw/q),
as noted in (3.29). As we explained in discussing eqn. (2.2), we consider
it plausible that for many phenomenologically interesting manifolds of G2

holonomy, there is an upper bound on a that is of order 1. If this is so
(and of course it could be proved in principle, and the upper bound on a
computed, for a given G2 manifold X), then (4.12) is a lower bound on GN

that depends on the values of the GUT parameters, the readily computed
constant L(Q), as well as the more problematic bound on a.

Within the uncertainties, such a bound may well be saturated in nature.
If we use the often-quoted values MGUT = 2.2×1016 GeV and αGUT ∼ 1/25,
then, with GN = 6.7×10−39 GeV−2, we need approximately L(Q)2/3/a = 15.
We recall, however, that these values correspond to a minimal three family
plus Higgs boson spectrum below the GUT scale, and that the doublet-
triplet splitting mechanism [19] that we are assuming in the present paper
really leads to extra light fields in vector-like SU(5) multiplets. If we use the
values MGUT ∼ 8× 1016 GeV, αGUT ∼ .2, which are typical values found in
[9] for certain models that have TeV-scale vector-like fields transforming as
5⊕10 plus their conjugates, then we get L(Q)2/3/a = 1.7. Raising the value
of αGUT to .2 or .3 will also significantly reduce the membrane action and
so alleviate the problems with quark and lepton masses that we consider in
section 6.

Alternatively, (4.4) and (4.11) can be combined to give

κ2
11 =

α3
GUT L(Q)3

4πM9
GUT

. (4.13)

This formula is attractive because it is expresses the fundamental eleven-
dimensional coupling κ11 in terms of quantities – αGUT and MGUT – about
whose values we have at least some idea from experiment, and another quan-
tity – L(Q) – that is readily calculable in a given model.

The eleven-dimensional Planck mass M11 has been defined ([47], p. 199)
by 2κ2

11 = (2π)8M−9
11 . So we can express (4.13) as a formula for M11:

M11 =
2πMGUT

α
1/3
GUT L(Q)1/3

. (4.14)
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One important result here is that MGUT is parametrically smaller than M11

– by a factor of α
1/3
GUT . This factor of α

1/3
GUT is the reason that it makes

sense to use perturbation theory – as we have done in computing threshold
corrections in section 3.10

Regrettably, the precise factors in the definition of M11 have been chosen
for convenience. We really do not know if the characteristic mass scale at
which eleven-dimensional supergravity breaks down and quantum effects be-
come large is M11, or 2πM11, or for that matter M11/2π. 11 This uncertainty
will unfortunately be important in section 5.

5 Proton Decay

In this section, we will analyze the gauge boson contribution to proton decay
in the present class of models.

First, we recall how the analysis goes in four-dimensional GUT’s. We
will express the analysis in a way that is convenient for the generalization
to R4 × Q. The gauge boson contribution to proton decay comes from the
matrix element of an operator product

g2
GUT

∫
d4xJµ(x)J̃µ(0)D(x, 0), (5.1)

where J and J̃ are the currents in emission and absorption of the color triplet
gauge bosons. We have used translation invariance to place one current at
the origin, and D(x, 0) is the propagator of the heavy gauge bosons that
transform as (3,2)−5/6 of SU(3)× SU(2)× U(1). Because the proton is so
large compared to the range of x that contributes appreciably in the integral,
we can replace Jµ(x) by Jµ(0), and then use

∫
d4xD(x, 0) =

1
M2

(5.2)

(with M the mass of the heavy gauge bosons) to reduce (5.1) to

g2
GUT JµJ̃µ(0)

M2
. (5.3)

10It also means that the radius of Q and presumably of X is of order α
−1/3
GUT in eleven-

dimensional Planck units, so that membrane instanton actions (which scale as length
cubed) are of order 1/αGUT . This fact will be troublesome in section 6.

11Just to get a feel for what the characteristic mass scale might be, note that for (q, w) =
(2, 1), we have M11 = 2.0× 1017GeV for the often-quoted values of MGUT and αGUT , and
M11 = 4.3× 1017GeV for the values in [9] .
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(5.2) is a direct consequence of the equation for the propagator, which is

(
∆ + M2

)
D(x, 0) = δ4(x), (5.4)

with ∆ = −ηµν∂µ∂ν the Laplacian. Of course, in deriving (5.2), we should
be careful in defining the operator product JµJ̃µ; doing so leads to some
renormalization group corrections to the above tree level derivation. These
can be treated the same way in four dimensions and in the G2-based models,
and hence need not concern us here.

In R4 × Q, the idea is similar, except that the currents are localized
at specific points on Q, which we will call P1 and P2. The gauge boson
propagator is a function D(x, P ; y, P ′) with x, y ∈ R4, and P, P ′ ∈ Q; the
equation it obeys is

(∆R4 + ∆Q) D(x, P ; y, P ′) = δ4(x− y)δ(P, P ′). (5.5)

Here ∆R4 is the Laplacian on R4, acting on the x variable, and similarly ∆Q

is the Laplacian on Q, acting on P . Now we set P and P ′ to be two of the
special points P1 and P2 on Q (with enhanced singularities in the normal
directions) at which chiral matter fields are supported. The analog of (5.1)
is

g2
7

∫
d4xJµ(x, P1)J̃µ(0, P2)D(x, P1; 0, P2), (5.6)

where we have used translation invariance to set y = 0. Again, because the
proton is so large compared to the range of x that contributes significantly
to the integral, we can set x to 0 in Jµ(x, P1), giving us

g2
7Jµ(0;P1)J̃µ(0;P2)

∫
d4x D(x, P1; 0, P2). (5.7)

Now it follows from (A.15) that the function

F (P, P ′) =
∫

d4xD(x, P ; 0, P ′) (5.8)

obeys
∆QF (P, P ′) = δ(P, P ′). (5.9)

In other words, F is the Green’s function of the scalar Laplacian on Q (for
scalar fields valued in the (3,2)−5/6 representation). In particular, F is
bounded for P away from P ′, and for P → P ′,

F (P, P ′) → 1
4π|P − P ′| , (5.10)
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with |P − P ′| denoting the distance between these two points. The proton
decay interaction is

g2
7Jµ(0;P1)J̃µ(0;P2) F (P1, P2). (5.11)

More exactly, this is the contribution for fermions living at the points P1,
P2. It must be summed over possible Pi.

Given (5.10), if it is possible to have P1 very close to P2, this will give
the dominant contribution. But how close will the Pi be? The smallest
that the denominator in (5.10) will get is if P1 = P2, in other words if the
currents Jµ and J̃µ in the proton decay process act on the same 10 or 5 of
SU(5), living at some point P = P1 = P2 on Q. If this is the case, then the
result (5.7) is infinite. M -theory will cut off this infinity, but we do not know
exactly how. The best we can say is that the cutoff will occur at a distance
of order the eleven-dimensional Planck length, as this is the only scale that
is relevant in studying the conical singularity at P . If we naively say that
setting P1 = P2 means replacing 1/|P1 − P2| by 1/R11 = M11 (with R11

the eleven-dimensional Planck length; M11 was evaluated in (4.14)), then we
would replace F (P, P ) by M11/4π. Unfortunately, as noted at the end of
section 4, we have no idea whether M11 or some multiple of it is the natural
cutoff in M -theory. This is an important uncertainty, since (for example)
4π is a relatively large number and the proton decay rate is proportional to
the square of the amplitude! All we can say is that the effective value of
F (P, P ), though uncalculable with the present understanding of M -theory,
is model-independent; it does not depend on the details of X or Q, but is a
universal property of M -theory with the conical singularity P . The effective
interaction is ∑

P

C
M11g

2
7

4π
JµJ̃µ(P ), (5.12)

where C is a constant that in principle depends only on M -theory and not
the specific model. So C might conceivably be computed in the future (if
better methods are discovered) without knowing how to pick the right model.
We have made explicit the fact that the interaction is summed over all pos-
sibilities for P = P1 = P2. Subleading (and model-dependent) contributions
with P1 6= P2 have not been written.

Let us compare this to the situation in four-dimensional GUT’s. The
currents J and J̃ receive contributions from particles in the 10 and 5 of
SU(5). Thus we can expand

JµJ̃µ = J10
µ J̃µ10 + J5

µ J̃µ5 + J10
µ J̃µ5 + J5

µ J̃µ10. (5.13)

Among these terms, the 10 · 10 operator product contributes to p → π0e+
L ,

5 · 5 does not contribute to proton decay, and the cross terms contribute to
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p → π0e+
R and p → π+νR. Assuming that the points supporting 10’s are

distinct from the points supporting 5’s, the above mechanism, in comparison
to four-dimensional GUT’s, enhances the decay p → π0e+

L relative to the
others.

Using the formulas in section 4, we can evaluate the product g2
7M11.

Reading off g2
7 from (4.8) and M11 from (4.14), we find that the effective

interaction is
∑

Pi

CJµJ̃µ(Pi) ·
2πL(Q)2/3α

2/3
GUT

M2
GUT

. (5.14)

The equivalent formula in four-dimensional GUT’s is

JT
µ J̃T µ g2

GUT

M2
= JT

µ J̃T µ 4παGUT

M2
, (5.15)

where the superscript T refers to the total current for all fermion multiplets.
Moreover, M is the mass of the color triplet gauge bosons, and so may
not coincide with MGUT , which is the unification scale as deduced from the
low energy gauge couplings; in some simple four-dimensional models, the
ratio M/MGUT is computable. The above formulas show that, in principle,
the decay amplitude for p → π0e+

L in the G2-based theory is enhanced as
αGUT → 0 by a factor of α

−1/3
GUT relative to the corresponding GUT amplitude.

The enhancement means that, in some sense, in the models considered here,
proton decay is not purely a gauge theory phenomenon but a reflection of
M -theory.

In practice, in nature, α
−1/3
GUT is not such a big number. Whether the effect

we have described is really an enhancement of p → π0e+
L or a suppression

of the other decays depends largely on the unknown M -theory constant C.
The factor L(Q)2/3 can also be significant numerically. For example, for
the simplest lens space, with the minimal choice w = 1, q = 2, we get
L(Q) = 4q sin2(5πw/q) = 8, whence L(Q)2/3 = 4.

Even if C and the other factors in (5.14) were all known, the proton life-
time would also depend on how the light quarks and leptons are distributed
among the different Pi, or equivalently, how they are distributed among
the different 10’s of SU(5). The same remark applies in four-dimensional
GUT’s: the proton decay rate can be reduced by mixing of quarks and lep-
tons among themselves as well as with other multiplets, including multiplets
that have GUT-scale masses.

The arrangement of the different quarks and leptons among the Pi will
also affect the flavor structure of proton decay. What we have referred to as
p → π0e+

L will also contain an admixture of other modes with π0 replaced by
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K0, and/or e+
L replaced by µ+

L . As in four-dimensional GUT’s, these relative
decay rates are model-dependent.

6 Difficulties With The Model

Finally, in this concluding section, we will explain some of the difficulties
in making a realistic model of physics based on the class of models that we
have been exploring.

One key cluster of issues is common to all known string and M -theory
approaches to phenomenology. These center around the need for a good
mechanism of supersymmetry breaking that solves problems such as the
SUSY flavor problem, the smallness of the cosmological constant, and the
high degree of stability of the vacuum we live in. We will not say anything
here about these general issues, and instead focus on issues that are more or
less special to the particular G2 framework.

In the models described in [19] and further explored here, SU(5) mul-
tiplets Mi containing Higgs bosons, quarks and leptons, and possibly mes-
sengers of gauge-mediated supersymmetry breaking are supported at points
Pi on Q. As long as the Pi are distinct, superpotential interactions that
ultimately lead to quark and lepton masses come from membrane instanton
corrections and hence are exponentially small as αGUT → 0. (For a study
of superpotentials from membrane instantons on smooth G2 manifolds, see
[46].)

In fact, the membrane action scales as (length)3, and hence, since we
saw in section four that RQ ∼ αGUT

−1/3, the membrane action scales as
1/αGUT if all lengths in X are scaled the same way. We would need to know
details about X in order to compute the coefficients of 1/αGUT for various
membrane instantons, so it is hard to be specific here. On the plus side of
the ledger, small changes in membrane instanton actions could produce a
wide range of quark and lepton masses, such as is seen in nature.

Quarks and leptons of the first two generations – and especially the
first – have very small masses, but probably not as small as one might
get from a membrane instanton with an action of order 1/αGUT if we take
the usual value αGUT ∼ 1/25. So it is probably necessary to assume that,
because of extra SU(5) multiplets that survive below the GUT scale, αGUT

is significantly larger than the usual estimate. For a proposal with extra
light vector-like matter leading to αGUT ∼ .2− .3, see [9] . (We recall that at
least some extra light vector-like matter – possibly serving as messengers of
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gauge-mediated supersymmetry breaking – is needed in the doublet-triplet
splitting framework of [19] because of certain anomalies. See also [11] .)

The top quark mass is so large that it is not plausible to interpret it as
being subject to any exponential suppression at all. So we might want to
assume that the point P1 that supports a Higgs 5 of SU(5) coincides with
the point P2 that supports one of the 10’s. In a case with such multiple
singularities, one obtains a superpotential coupling (hopefully 5 · 10 · 10 in
this example) that is “of order one,” with no exponential suppression at
all. (This is shown in an example in [20].) This might give us a large top
quark mass. However, if we want to split Higgs doublets and triplets using
the mechanism described in [19], we really must take the Higgs 5 to be
supported at a point P3 that is distinct from P1 and P2 (in fact, P3 and P1

lie on different components of the fixed point set of the global symmetry that
leads to doublet-triplet splitting). So the bottom quark mass presumably
has at least some exponential suppression involving a membrane instanton
action. Since mb/mt ∼ 1/40, which is not all that small, and mb can be
suppressed by large tanβ in supersymmetric models as well as by a large
membrane instanton action, in practice we will have to suppose that tanβ
is not too large and than a certain membrane instanton has rather small
action.

Light neutrino masses come from dimension five superpotential couplings
(of the form

∫
d2θH2L2, with H and L being Higgs boson and lepton dou-

blets), which again arise from membrane instantons, or possibly by inte-
grating out a heavy singlet (“right-handed neutrino”). So it is necessary
to arrange that the membrane instanton generating the H2L2 coupling has
rather small action, or that the heavy singlet is sufficiently light and suffi-
ciently strongly coupled to H and L. (The singlet mass and couplings to
HL both come from membrane instantons.)

Since the SU(5) relation mb = mτ , which is converted by renormaliza-
tion group running to the weak scale to something more like mb = 3mτ [48],
is fairly successful, we presumably want to preserve this relation by avoiding
significant mixing of the third generation with other multiplets. Since anal-
ogous relations for the first two genreations are not successful, we probably
do want mixing of the first two generations with other multiplets that have
large masses (the use of such mixing to modify fermion mass relations was
recalled in [19]). It is consistent to have significant mixing of the first two
generations with other multiplets while avoiding such mixing for the third
generation, because the observed values of the CKM quark mixing angles
suggest that (except for neutrinos) the mixing of the third generation with
the first two is very tiny. We do not have a good mechanism that would split
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off the third generation in this way.

Finally, we come to the question of whether the Higgs triplet mass mT

can really be as light as suggested in (3.36). In four-dimensional GUT’s
this might lead to trouble because of proton decay interactions mediated
by the Higgs triplets. In the present context, the doublet-triplet splitting
mechanism of [19] implies that, because of an exotic discrete symmetry, the
Higgs triplet exchange does not generate dimension five operators. We also
have to worry about dimension six operators mediated by the Higgs triplets;
these are unavoidable, and give proton decay amplitudes proportional to
λ1λ2/m2

T , where the λi are Yukawa couplings of the Higgs triplet to quarks
and leptons. The λi would plausibly12 be of order mq,l/mW , where mq,l

is a first or second generation quark and lepton mass and mW is the W
boson mass. Since the ratios mq,l/mW range from roughly 10−4 to 10−2,
with values closer to 10−4 for the quarks that are part of the initial state
in a proton decay process, this is plausibly enough suppression so that we
can accept a Higgs triplet mass as low as 10−2 MGUT . In fact, such a Higgs
triplet might not dominate proton decay, leaving the mechanism explored in
section 5 as the dominant mechanism.
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A On The Ray-Singer Torsion In The Trivial Rep-
resentation

In this appendix, we will calculate KO(S3) for the trivial representation O
directly by summing over the non-zero eigenvalues of the Laplacian and
using zeta function regularization. We did not find this calculation in the
literature, and wanted to fill this gap; for more examples of the use of zeta
function regularization in studying Ray-Singer torsions, see [49] .

Then we will calculate KO for the lens space S3/Zq by using the relation

KO(S3) = KO(S3/Zq) +
∑

ω 6=O
Kω(S3/Zq) (A.1)

where the sum is over non-trivial representations of Zq. For such non-trivial
representations, Kω(S3/Zq) has been computed by evaluating the zeta func-
tion [25]. The relation (A.1) holds simply because each eigenform on S3 is
in some representation of the Zq action on S3, so we can separate the sum
over eigenforms on S3 into a sum over the eigenforms living in the trivial
representation of Zq and those living in the non-trivial representations.

We recall the definition13 of K:

K(S3) =
3
2

log det ∆0(S3)− 1
2

log det ∆1(S3). (A.2)

So we need the eigenvalues of the Laplacian and their multiplicities for 0–
forms and 1–forms on S3. We shall calculate everything first for a sphere of
radius 1, and include the dependence on the radius later.

The 0–forms have eigenvalues λ0,n = n(n + 2) with multiplicities y0,n =
(n + 1)2. There are two types of 1–forms: closed ones, which have the same
eigenvalues and multiplicities as the 0–forms, and co-closed 1–forms, which
have eigenvalues λ1,n = (n + 1)2 and multiplicities y1,n = 2n(n + 2) (see
(3.19) of [49] ).

The logarithm of the determinant of the Laplacian is defined by ana-
lytic continuation using zeta functions and comparing to the known analytic
continuation of the Riemann zeta function. We begin by writing the zeta
function of the Laplacian on 0–forms or closed 1–forms, and the zeta function

13In discussing K(S3), we omit the subscript O as the fundamental group of S3 is trivial.
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of the Laplacian on co-closed 1–forms:

ζ0(s) =
∑ y0,n

λs
0,n

=
∞∑

n=1

(n + 1)2

(n(n + 2))s
, (A.3)

ζ1(s) =
∑ y1,n

λs
1,n

=
∞∑

n=1

2n(n + 2)
(n + 1)2s

. (A.4)

These converge for sufficiently large Re(s). We want to analytically continue
them to s = 0, after which we define

−ζ ′0(0) = log det ∆′
0 = log det∆closed

1 , − ζ ′1(0) = log det∆co−closed
1 . (A.5)

In terms of these zeta functions, we have

1
2

[
3 log det ∆′

0 − (log det ∆
′ closed
1 + log det ∆

′ co−closed
1 )

]
=

1
2
ζ ′1(0)− ζ ′0(0).

(A.6)
We wish to rewrite the sums ζ0(s) and ζ1(s) in terms of the well known
Riemann zeta function ζ(s) so that they can be continued to s = 0. This is
straightforward for ζ1(s):

ζ1(s) = 2
∞∑

n=1

( (n + 1)2

(n + 1)2s
− 1

(n + 1)2s

)
. (A.7)

So we can write ζ1(s) in terms of the Riemann zeta function ζ(s):

ζ1(s) = 2((ζ(2s− 2)− 1)− (ζ(2s)− 1)) = 2(ζ(2s− 2)− ζ(2s)). (A.8)

Since the analytic continuation of ζ(s) is well-known, this solves the problem
of analytically continuing ζ1(s). As for ζ0(s), we rewrite it as follows:

ζ0(s) =
∞∑

n=1

(n + 1)2
[(

1− 1
(2s + 1)

)
1

(n + 1)2s
+

1
2(2s + 1)

( 1
n2s

+
1

(n + 2)2s

)]

+
∞∑

n=1

(n + 1)2
[ 1
(n(n + 2))s

−
(

1− 1
(2s + 1)

)
1

(n + 1)2s

− 1
2(2s + 1)

( 1
n2s

+
1

(n + 2)2s

)]
.

(A.9)
The sum on the second line converges absolutely for Re(s) > −1/2: rewriting
it with u = 1

n+1 , it becomes

∞∑

n=1

u2s−2
[ 1
(1− u2)s

−
(

1− 1
(2s + 1)

)
− 1

2(2s + 1)

( 1
(1− u)2s

+
1

(1 + u)2s

)]
,

(A.10)
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and one can see that the leading order term for large n (small u) is u2s−2u4 =
u2s+2. Hence it is bounded by 1/(n + 1)2s+2 which converges absolutely for
Re(2s + 2) > 1 or Re(s) > −1/2. So for Re(s) > −1/2, we can do the sum
term by term. At s = 0, each term in the sum vanishes, and furthermore
the derivative of each term with respect to s at s = 0 vanishes. Therefore,
for small s we can write

ζ0(s) =
∞∑

n=1

(n + 1)2
[(

1− 1
(2s + 1)

)
1

(n + 1)2s
+

1
2(2s + 1)

( 1
n2s

+
1

(n + 2)2s

)]
,

(A.11)
which becomes, by analytic continuation,

ζ0(s) = ζ(2s− 2) +
1

(2s + 1)
ζ(2s)−

(
1− 1

(2s + 1)

)
− 1

(2s + 1)22s+1
.

(A.12)
Using known values of the Riemann zeta function

ζ(−2) = 0 , ζ(0) = −1/2 , ζ ′(0) = −1
2

log 2π, (A.13)

we have at s = 0 the following values of the zeta functions of our Laplacians
and their derivatives:

ζ0(0) =ζ(−2) + ζ(0)− 1
2

= −1,

ζ1(0) =2(ζ(−2)− ζ(0)) = 1,
ζ ′0(0) =2ζ ′(−2)− log π,

ζ ′1(0) =4(ζ ′(−2)− ζ ′(0)) = 4ζ ′(−2) + 2 log(2π).

(A.14)

(The value of ζ ′0(0) can also be obtained from Proposition 3.1 of [50], or from
[51].)

Now we include the dependence on the radius. The quantity that comes
into the physical calculation is actually

−Tr log
(m2

k,n

Λ2

)
= −

∑
n

yn log
λk,n

Λ2R2
, (A.15)

where Λ is the cutoff and R is the radius of S3. So we should replace ζ0 and
ζ1 as defined in equations (A.3) and (A.4) by

η0(s) =(RΛ)2sζ0(s),

η1(s) =(RΛ)2sζ1(s).
(A.16)

The derivatives at s = 0 are

η′0(0) =− log R2Λ2 + ζ ′0(0),

η′1(0) = log R2Λ2 + ζ ′1(0).
(A.17)
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We now have
K(S3, 1) =

1
2
η′1(0)− η′0(0)

=
3
2

log R2Λ2 + log(2π2).
(A.18)

Finally, we can use equation (A.1) to extend this result to a lens space.
By evaluating zeta functions, Ray showed14 [24] that for non-trivial ω,

Tω(S3/Zq) = log |ω − 1||ω−j − 1|. (A.19)

Here ω is any non-trivial qth root of unity, and j is prime to q, so
∑

ω 6=O
Kω(S3/Zq) =

∑

ω 6=O
Tω(S3/Zq) =

∑

ω 6=O
log |ω − 1||ω−j − 1| = 2 log q .

(A.20)
Therefore,

KO(S3/Zq) =
3
2

log R2Λ2 + log 2π2 − 2 log q

= log
(

2π2

q2

)
+

3
2

log R2Λ2.
(A.21)

In terms of the volume V = 2π2R3/q of the lens space, this becomes

KO(S3/Zq) = log
(2π2

q2

)
+ log

q

2π2
V Λ3

= log
V Λ3

q
.

(A.22)

The torsion of the lens space for the trivial representation is TO(S3/Zq) =
log(1/q). To compute this, we use the fact that, as described in [24], the lens
space has a cell decomposition in which the chain group Ck is isomorphic
to Z for k = 0, . . . , 3. The only non-trivial boundary operator is ∂2→1 :
C2 → C1, which equals multiplication by q. To compute TO(S3/Zq), relative
to a basis of the integral homology, we should first remove subgroups of
the chain groups that generate the homology. In this case, we do this by
dropping C0 and C3. Then the Reidemeister torsion of the lens space for the
trivial representation is defined as an alternating sum of logarithms of the
boundary maps; in the present case, this reduces to − log ∂2→1 = log(1/q).
The Reidemeister torsion equals the Ray-Singer torsion by the conjecture of
Ray and Singer, which was later proved by Cheeger, so TO = log(1/q). In
[24], (A.19) was obtained by a similar computation.

14We express this result using the normalization of the torsion that is used in [25] and
in the present paper. Also, we include the integer m described in the last paragraph of
section 3.4, with jm ≡ 1 mod q.
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So (A.22) implies that

KO = TO + log(V Λ3) (A.23)

for lens spaces. In the next appendix, we show that this relation is actually
true for all three-manifolds with b1 = 0. This relation was used in section 3
in evaluating the threshold corrections.

B The Volume Correction

Here we show the relation (A.23) for every three-manifold Q. In the deriva-
tion, we set Λ = 1, though from a physical point of view it is natural to
include Λ.

In defining Reidemeister torsion for a representation that has non-trivial
real cohomology, one has to pick a basis for the cohomology. In the case
of the trivial representation O, we can pick a basis of integral classes that
generate the integral cohomology mod torsion; the Reidemeister torsion is
independent of the choice of such a basis. When we speak of TO(Q), we
mean the torsion defined relative to such a basis, which we call a topological
basis.

In Ray-Singer torsion, instead, the natural basis would be a basis of zero
modes αi of the Laplacian that are orthonormal in the L2 sense, that is,∫
Q αi ∧ ∗αj = δij . We call such a basis an L2 basis. The theorem relating

Ray-Singer and Reidemeister torsion asserts that

TO(Q) = KO(Q) +A, (B.1)

whereA is defined as follows. For each k = 0, . . . , 3, we let Ak be an invertible
map from a topological basis of the kth cohomology to an L2 basis. Then
the quantities |det(Ak)| are independent of the choices of bases and maps,
and the general definition of A is

A =
3∑

k=0

(−1)k log |det(Ak)|. (B.2)

For a three-manifold Q of b1(Q) = 0, everything simplifies drastically.
The nonzero Betti numbers are b0 = b3 = 1. For a topological basis, we
can pick the zero-form 1 and the three-form εijkdxidxjdxk/VQ, where the
volume is

∫
εijkdxidxjdxk = VQ. For an L2 basis, we pick 1/

√
VQ and

εijkdxidxjdxk/
√

VQ. So detA0 = 1/
√

VQ, detA3 =
√

VQ, and we arrive at
(A.23).
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