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Abstract

We study the moduli space of M-theories compactified onG2 manifolds which are asymptotic to a
cone over quotients ofS3 × S3. We show that the moduli space is composed of several components,
each of which interpolates smoothly among various classical limits corresponding to low energy
gauge theories with a given number of masslessU(1) factors. Each component smoothly interpolates
among supersymmetric gauge theories with different gauge groups. 2002 Published by Elsevier
Science B.V.

1. Introduction

The study of M-theory compactifications on seven-dimensional manifoldsX of G2

holonomy has been motivated by the fact that such compactifications result in unbroken
supersymmetry in four dimensions. The properties of the compactification manifoldX

determine the particle spectrum of the corresponding four-dimensional theory. It has been
shown in recent years that compactifications on singular manifolds can result in low energy
physics containing interesting massless spectra. Specifically, certain singularG2 manifolds
give rise toN = 1 supersymmetric gauge theories at low energies, as shown, for example,
in [1–3]. There,X was taken to be asymptotic to a quotient of a cone onS3 × S3, and
the singularities ofX took the form of families ofADE singularities givingADE gauge
theories at low energies.

Subsequently, the quantum moduli space of M-theories onG2 manifoldsX which are
asymptotic to a cone onS3 × S3 or quotients thereof has been studied in [4]. It was shown
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that the moduli space is a Riemann surface of genus zero, which interpolates smoothly
between different semiclassical spacetimes.

The purpose of this paper is to generalize the construction of [4] to other quotients
of S3 × S3 and obtain the moduli spaces for those as well. Our quotients contain those
in [4] as special cases. We propose that the moduli space for our quotients consists of
several branches classified according to the number of masslessU(1) factors that appear
in the low energy gauge theories corresponding to semiclassical points. Each branch of the
moduli space interpolates smoothly between the different semiclassical points appearing
on it; hence, we get smooth interpolation between supersymmetric gauge theories with
different gauge groups.

This paper is organized as follows: in Section 2 we review the M-theory dynamics on
the cone onY = S3 × S3 given in [4]. In Section 3, we describe quotients of this cone by
discrete groups of the formΓ = Γ1 ×Γ2 ×Γ3 where theΓi areADE subgroups ofSU(2);
theseADE groups must be chosen carefully in order to obtain known low energy gauge
theories from the compactification. In Section 4, we turn to the description of the moduli
spaceNΓ of M-theories on these quotients, beginning with the classical moduli space and
concluding with the quantum moduli space.

While this paper was being completed, we received [5] which has overlap with the case
whereΓ3 is trivial (or r = 1 in our notation of Section 3).

2. Dynamics of M-theory on the cone over S3 × S3

In this section, we review the M-theory dynamics on a manifoldX of G2 holonomy
which is asymptotic at infinity to a cone overY = S3 × S3 [4]. The manifoldY can be
described as a homogeneous spaceY = SU(2)3/SU(2), where the equivalence relation
is (g1, g2, g3) ∼ (g1h,g2h,g3h), gi, h ∈ SU(2). Viewed this way, this manifold has
SU(2)3 symmetry via left action on each of the three factors inY , as well as a “triality”
symmetryS3 permuting the three factors. Up to scaling, there is a unique metric with such
symmetries given by

(1)dΩ2 = da2 + db2 + dc2,

where a, b, c ∈ SU(2), da2 = −Tr(a−1da)2, the trace is taken in the fundamental
representation ofSU(2), and a, b, c are related tog1, g2, g3 by a = g2g

−1
3 and cyclic

permutations thereof.
The metric for a cone onY is

(2)ds2 = dr2 + r2dΩ2,

wheredΩ2 is the metric onY . Such a cone can be constructed by filling in one of the three
SU(2) ∼ S3 factors ofY to a ball. We denote the manifold obtained by filling in a givengi
by Xi . The metric on a manifoldX, asymptotic toXi at infinity, can be written with a new
radial variabley, which is related tor by

(3)y = r − r3
0

4r2 +O
(
1/r5),
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as

(4)

ds2 = dy2 + y2

36

(
da2 + db2 + dc2 − r3

0

2y3

(
f1 da

2 + f2 db
2 + f3 dc

2)+O

(
r6
0

y6

))
,

wherer0 is a parameter denoting the length scale ofXi , and(fi−1, fi , fi+1) = (1,−2,1)
(indices are understood mod 3). Wheny → ∞ or r → ∞, this becomes precisely the
cone (2).

We will need to study the 3-cycles ofY in order to understand the relations between the
periods of the M-theoryC-field and the membrane instanton amplitudes, which we shall
need in order to describe the moduli space.

The 3-cyclesDj of Y are given by projections of thej th factor ofSU(2)3 to Y . Hence,
Dj

∼= S3. The third Betti number ofY is two, so the threeDj satisfy the relation

(5)D1 +D2 +D3 = 0.

The intersection numbers of theDi are given by

(6)Di ·Dj = δj,i+1 − δj,i−1.

At Xi , where theith factor is filled in,Di shrinks to zero and the relation (5) reduces to
Di−1 +Di+1 = 0 (where again the indices are understood mod 3).

At eachXi , there is a supersymmetric 3-cycleQi given bygi = 0. It can be shown that
Qi is homologous to±Di−1 and∓Di+1, where the sign depends on orientation.

A manifold still hasG2 holonomy up to third order inr0/y if we take thefj of (4) to
be any linear combination of(1,−2,1) and its permutations—so we haveG2 holonomy
as long as

(7)f1 + f2 + f3 = 0.

Thesefj can be interpreted as volume defects of the cycleDj at infinity: the volume
of Dj depends linearly on a positive multiple offj . Furthermore, since at the classical
manifoldXi , only one of theDj vanishes, only one of thefj (namelyfi ) can be negative.
So the classical moduli space may contain manifolds with the relation (7) as long as only
one of thefj is negative [4,6].

The periods of theC-field along the cyclesDj areαj = ∫
Dj

C. We combine them with
thefj into holomorphic observablesηj where now theC-field period is a phase:

(8)ηj = exp

(
2k

3
fj−1 + k

3
fj + iαj

)
,

wherek is a parameter. The relation (7) means that theηj are not independent, but instead
they obey

(9)η1η2η3 = exp
(
i
∑

αj

)
.

(It can be shown that due to a global anomaly in the membrane effective action, the right-
hand side above is−1.)
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The moduli space at the classical approximation is given by three branchesNi , each
of which contains one of the pointsXi with r0 → ∞. On Xi , αi vanishes and the
parametersfj are such thatηi = 1. So onNi the functionsηj obey

(10)ηi = 1, ηi−1ηi+1 = −1.

At the quantum level, there are corrections to this statement. It has been suggested in [3]
that the different classical pointsXi are continuously connected to one another. Hence
they should appear on the same branch of the moduli spaceN . We proceed now with the
assumption that the only classical points are theXi , which are the points where some of
theηj have a zero or pole. As explained in [4], since a component ofN which contains a
zero of a holomorphic functionηj must also contain its pole, and since the only points at
which theηj are singular are associated with one of theXi , it follows indeed that allXi

are contained on a single component ofN . Furthermore, eachηj has a simple zero and
simple pole inN . The existence of such functions onN means that the branch containing
the zero and pole has genus zero. In addition, any of theηj can be identified as a global
coordinate ofN . Choosing anyηj gives a complete description for this branch ofN .

3. Quotients and low energy gauge groups

Here, we begin our study of manifolds which are asymptotic to a cone over quotients
of Y . We shall consider a discrete group action ofΓ = Γ1 × Γ2 × Γ3 on Y where theΓi

will be chosen fromADE subgroups ofSU(2) in such a way that the low energy physics is
known.

We begin with the simplest case whereΓ = Zp × Zq × Zr . EachZn is embedded in
SU(2) via

(11)βk =
(
e2πik/n 0

0 e−2πik/n

)
,

where β is the generator ofZn and k = 0,1, . . . , n − 1. The action ofΓ on Y =
SU(2)3/SU(2) is given by

(12)(γ, δ, ε) ∈ Zp × Zq × Zr : (g1, g2, g3) �→ (γg1, δg2, εg3),

and we denote the resulting quotient space byYΓ .
The spacesXi,Γ , obtained by filling in theith SU(2) factor ofYΓ , are quotients ofR4 ×

S3 where theR4 corresponds to the filled-in factor. Choosingi = 1 and gaugingg2 away
using the right diagonalSU(2) action, the identification corresponding to(γ k, δl, εm) ∈ Γ

is

(13)(g1,1, g3) ∼ (
γ kg1δ

−l ,1, εmg3δ
−l
)
,

whereg1 ∈ R4 andg3 ∈ SU(2) ∼ S3. The set(0,1, g3) with g3 varying inSU(2) is a fixed
point of the action of theZp subgroup ofΓ , and this singularity is identical to the standard
Ap−1 singularity of codimension four of the formR4/Zp or C2/Zp , which gives anSU(p)

gauge theory at low energies.
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Depending on the values of the integersq andr, there may be additional, unfamiliar
singularities for which we do not know the low energy physics. Namely, there may be
values ofg3 which are fixed under a nontrivial subgroup ofZq × Zr , i.e., where the
following holds

(14)εmg3δ
−l = g3.

This is the same as looking for elementsg3 of SU(2) which diagonalizeδl :

(15)εm = g3δ
lg−1

3 .

Choosing the ordersq andr of δ andε to be relatively prime,(q, r)= 1, ensures that there
are no solutions of this equation (since then the orders of the left- and right-hand sides
of (15) are relatively prime). Similarly, we choose(p, q) = (p, r) = 1, and so there are no
singularities atXi,Γ other than theADE singularities whose low energy physics is known:
an Ap−1 singularity onS3/(Zq × Zr ) at X1,Γ , an Aq−1 singularity onS3/(Zr × Zp)

atX2,Γ , and anAr−1 singularity onS3/(Zp × Zq ) atX3,Γ , with the discrete group action
on S3 given by the appropriate cyclic permutation of the action ong3 in (13).

Now consider also the non-abelianADE groups. Again, we would like to chooseΓ such
that we will only get singularities whose physics at low energies we understand—namely,
ADE singularities. For this purpose we review the relevant properties of theDE groups.
For information about these groups, see [7].

As in the abelian case, we letΓ = Γ1 × Γ2 × Γ3 act onY by

(16)(γ, δ, ε) ∈ Γ1 × Γ2 × Γ3 : (g1, g2, g3) �→ (γg1, δg2, εg3),

from which Eqs. (13) and (14) follow in the same way as before.
The binary dihedral groupsDq have order 4q − 8 and are generated inSU(2) by two

elements:

(17)Dq =
〈(

e
πi
q−2 0
0 e

− πi
q−2

)
,

(
0 1

−1 0

)〉
.

Since allDq groups share an element of order 4, we cannot choose more than one of the
Γi to be a dihedral group, since otherwise we would get solutions to (14). Hence we let
Γ = Zp × Dq × Zr with (p, r) = (p,2(q − 2)) = (r,2(q − 2)) = 1.

We turn to theE series. A singularityR4/G which gives at low energiesE6, E7,
or E8 gauge groups corresponds toG being the tetrahedral groupT24, the octahedral
groupO48, or the icosahedral groupI120. The orders of these groups are 24, 48, and 120,
respectively, and each of them has elements of orders 3 and 4, so we cannot have more
than oneE group appearing inΓ . The groupI120 also has elements of order 5. Hence,
in addition to(p, r) = 1, for Γ = Zp × E6 × Zr or Γ = Zp × E7 × Zr , we need also
(p,2·3) = (r,2·3) = 1, and forΓ = Zp ×E8×Zr , we need(p,2·3·5) = (r,2·3·5) = 1.

Therefore, our groupΓ is always chosen to be of the formΓ = Zp × Γ2 × Zr where
Γ2 is anA, D, orE group, andp, r, andΓ2 satisfy the conditions noted above, which can
be summarized by

(p,N) = (r,N) = (p, r) = 1,
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Table 1
Low energy gauge theories atXi,Γ

Γ2 X1,Γ X2,Γ X3,Γ

Zq SU(p) S3/(Zq × Zr ) SU(q) S3/(Zr × Zp) SU(r) S3/(Zp × Zq )

Dq SU(p) S3/(Dq × Zr ) SO(2q) S3/(Zr × Zp) SU(r) S3/(Zp × Dq )

T24 SU(p) S3/(T24 × Zr ) E6 S3/(Zr × Zp) SU(r) S3/(Zp × T24)

O48 SU(p) S3/(O48 × Zr ) E7 S3/(Zr × Zp) SU(r) S3/(Zp × O48)

I120 SU(p) S3/(I120× Zr ) E8 S3/(Zr × Zp) SU(r) S3/(Zp × I120)

where N is the order of the groupΓ2. At X1,Γ we have anAp−1 singularity on
S3/(Γ2 × Zr ), at X3,Γ we have anAr−1 singularity onS3/(Zp × Γ2), and atX2,Γ we
have anA, D, or E singularity onS3/(Zr × Zp), where here the discrete group action is
given by the appropriate cyclic permutation of the action ong3 in (13).

The low energy gauge theories obtained from compactifying M-theory onR4×Xi,Γ are
listed in Table 1. Each entry contains the gauge group and the compact 3-manifold which
is the locus of theADE singularity.

As we shall see below, for the cases whereΓ2 is aD or E group, there are additional
semiclassical points where the low energy gauge group is different from those listed above.

We note that for the case withr = 1, X3,Γ is smooth and its low energy theory has no
gauge symmetry. If alsop = 1,X1,Γ is smooth as well (this is the case studied in [4]).

4. The curve of M theories on the quotient

4.1. Classical geometry

The 3-cyclesD′
i of YΓ are the projections of theith factor ofSU(2)3 to YΓ . Hence, for

Γ = Zp × Γ2 × Zr we have

(18)D′
1 = S3/Zp,

(19)D′
2 = S3/Γ2,

(20)D′
3 = S3/Zr .

Using the relation (5) inY and the fact thatD1 ∈ Y projects to ap-fold cover ofD′
1 ∈ YΓ ,

as well as cyclic permutations of this fact, we find

(21)pD′
1 +ND′

2 + rD′
3 = 0,

whereN is the order of the groupΓ2. To study the intersection numbers of theD′
i we note

thatD′
1 ∈ YΓ lifts to NrD1 ∈ Y , and similar statements are true for the otherD′

i . Counting
the intersection numbers inY and then dividing bypNr (since there arepNr points inY
which project to one point inYΓ ), we get

(22)D′
1 · D′

2 = r, D′
2 ·D′

3 = p, D′
3 ·D′

1 = N.

Here we see that theD′
i generate the third homology group ofYΓ : since(r,N) = 1, we

can find integersm,n such that

(23)D′
1 · (mD′

2 + nD′
3) = mr − nN = 1,
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and similarly for the other cycles.
We define the periods of the M-theoryC-field at infinity by

(24)α′
j =

∫
D′

j

C mod2π.

Note that these are related to theαj of Y by

(25)α1 = pα′
1, α2 = Nα′

2, α3 = rα′
3.

4.2. Classical moduli space

We define our holomorphic observables to be the following functions of the periodsα′
j

and of the volumesfj :

η1 = exp

(
2k

3p
f3 + k

3p
f1 + iα′

1

)
,

η2 = exp

(
2k

3N
f1 + k

3N
f2 + iα′

2

)
,

η3 = exp

(
2k

3r
f2 + k

3r
f3 + iα′

3

)
.

These functions are adopted from (8), where we substitute the expressions in (25) for
the periods and then take the largest possible root that still leaves theηi invariant under
α′
j �→ α′

j + 2π .
The periods of theC-field are interpreted as the phases of the holomorphic observables.
Due to (7), we have

(26)η
p

1η
N
2 ηr3 = exp

(
i
∑
j

α′
j

)
.

Theηj have zeros or poles at the semiclassical pointsXi,Γ with larger0 in which thefj
diverge. As in Section 2, classically at the pointX1,Γ , η1 = 1 andα′

1 = 0. Hence, at this
point

(27)ηN2 ηr3 = exp
(
i(α′

2 + α′
3)
)
,

so whenη2 has a pole,η3 has a zero and vice versa. In fact, the order of the zeros or
poles ofη2 must be a multiple ofr, and similarly the order of the zeros or poles ofη3
must be a multiple ofN for this equation to hold. In the classical approximation, there are
three branchesNi of the moduli space, on which we haveηi = 1 andηi±1 obeying the
relation (27) fori = 1 or cyclic permutations of it fori = 2,3.

4.3. Quantum curve via membrane instantons

To study the quantum curve, we study the singularities, i.e., the zeros and poles of the
holomorphic observablesηj , which correspond to the classical pointsXi,Γ with r0 → ∞.
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We shall use a relation between theηj and the amplitude for membrane instantons which
wrap on supersymmetric cyclesQ in X. Using chiral symmetry breaking of the low energy
gauge theories, we find a clear relation between the local parameter on the moduli space
and our observables, and hence can describe the moduli space.

A supersymmetric cycle inXi,Γ is given by the 3-manifoldsQi given bygi = 0:

(28)Q1 = S3/(Γ2 × Zr ),

(29)Q2 = S3/(Zr × Zp),

(30)Q3 = S3/(Zp × Γ2).

At X1,Γ , Q1 is homologous (up to orientation) to theD′
j as follows:

(31)rQ1 ∼D′
2,

(32)NQ1 ∼D′
3,

and cyclic permutations of that give the relations atX2,Γ to bepQ2 ∼ D′
3 andrQ2 ∼ D′

1,
and atX3,Γ we haveNQ3 ∼ D′

1 andpQ3 ∼ D′
2.

We now study the zeros and poles of theηj . To understand the orders of the zeros and
poles, we must compare theηj to the true local parameter onNΓ around eachXi,Γ with
larger0.

One would expect at first that the membrane instanton amplitudeu itself, given
nearXi,Γ by

(33)u = exp

(
−T V (Qi)+ i

∫
Qi

C

)
,

whereT is the membrane tension andV (Qi) is the volume ofQi , would be a good local
parameter nearXi,Γ . However, at low energies we have a supersymmetricA,D, or E
gauge theory in four dimensions, and due to chiral symmetry breaking, we expect the good
local parameter—the gluino condensate—to beu1/h whereh is the dual Coxeter number
of the gauge group.

We now compare phases of theηj to the phase ofu. Let Pi,Γ correspond to the
manifoldsXi,Γ with larger0. For the case whereΓ2 = Zq , atP1,Γ Eq. (31) implies that
the phase

∫
D′

2
C of η2 is related to the phase

∫
Q1

C of u by
∫
D′

2
C ∼ r

∫
Q1

C. Since the

good local parameter is actuallyu1/p due to chiral symmetry breaking of theSU(p) gauge
theory atP1,Γ , the true order of the zero ofη2 atP1,Γ is pr. The same calculation for the
otherηj andPi,Γ gives the orders of zeros and poles shown in Table 2.

Table 2
Behavior ofηi for Γ2 = Zq

Γ2 = Zq P1,Γ P2,Γ P3,Γ
η1 1 ∞qr 0qr

η2 0pr 1 ∞pr

η3 ∞pq 0pq 1



392 T. Friedmann / Nuclear Physics B 635 (2002) 384–394

Table 3
Behavior ofηi for Γ2 = Dq

Γ2 = Dq P1,Γ P2,Γ P2′,Γ P3,Γ

η1 1 ∞rh ∞2rh′
0rN

η2 0rp 1 −1 ∞rp

η3 ∞Np 0hp 02h′p 1

Table 4
Behavior ofηi for Γ2 = Ea

Γ2 = Ea P1,Γ P2,Γ Pµt,Γ P3,Γ

η1 1 ∞rh ∞rtht 0rN

η2 0rp 1 e2πiµ/t ∞rp

η3 ∞Np 0hp 0ptht 1

The cases whereΓ2 is aD or E group give similar tables, except that in these cases
we get extra semiclassical points in the same way as in [4]: for the caseΓ2 = Dq , we have
Table 3, whereh = 2q − 2, h′ = q − 3, andh + 2h′ = N . The low energy gauge theory at
P2′,Γ has gauge groupSp(q − 4).

ForΓ2 in theE series, we have Table 4, wheret, ht ,µ are given for eachEa as follows:
let ki be the Dynkin indices ofEa , and lett be the positive integers which divide some of
theki ; µ runs over positive integers less thant that are prime tot , unlesst = 1 in which
caseµ = 0; ht is the dual Coxeter number of the associated groupKt whose Dynkin
indices areki/t where here theki run through the indices ofEa that dividet . Thet andht
obey the relation

∑
tht = N . The low energy gauge group is given by theADE group

corresponding toKt .
From the relation

∑
tht = N and Tables 2–4, we see that for eachηj , the total number

of zeros and poles is equal. Since the total number of zeros is the same as the total number
of poles for each of theηj , it seems reasonable to assume that we have found all the
zeros and poles, and hence all the semiclassical limits in our moduli space. It would seem,
therefore, that we can now proceed to describe the moduli space completely, by writing
our functionsηi explicitly and identifying the pointsPi,Γ with values of a good coordinate
on the moduli space. However, as we shall see, we run into a few puzzles.

The first question we ask is: what can be said about the genus ofNΓ ? For the cases
p = r = 1, which are the cases considered in [4], the functionη2 has a simple zero and
a simple pole, and hence can be identified with a global coordinate on the moduli space,
which can then be claimed to have genus zero. Ifp, r > 1, this is not so: none of ourηj
have just a simple zero and pole, so we cannot identify the moduli space with any of theηj ,
and we do not know the genus.

However, the simplest result would be that the curve has genus zero, and we proceed
with this assumption. Hence, we assign the curve a global coordinatez, write theηj as
holomorphic functions ofz, and see how well we can describe the curve.

For the caseΓ2 = Zq , this turns out to be straightforward; we may fixP1,Γ at z = 0,
P2,Γ at z = 1, andP3,Γ at z = ∞, and then write our functions:
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(34)η1 = 1

(1− z)qr
,

(35)η2 = zpr,

(36)η3 = (1− z)pq

zpq
.

This description is unique up to possible overall factors which are related to an anomaly in
the membrane effective action, analogous to the one described in Section 5 of [4].

ForΓ2 = Dq , we run into a puzzle. Once we fix the first three points, we have to find at
what valuez4 the fourth pointP2′,Γ sits: our functions in this case are

(37)η1 = z2rh′
4

(1− z)rh(z4 − z)2rh
′ ,

(38)η2 = zrp,

(39)η3 = (1− z)ph(z4 − z)2h
′p

zNp
,

again up to overall factors. The forms ofη1 and η3 do not constrainz4, but to satisfy
η2(z4) = −1, we needzpr4 = −1 for which there arepr solutions. A similar situation
arises forΓ2 in theE series, where there arepr choices for each point beyond the first
three.

Thepr solutions, however, should correspond to the same point in the moduli space
of M-theories, since they correspond to the same theory. Hence, it seems that we have a
redundancy in our description of the moduli space; we should impose a symmetry onNΓ

which identifies the different values ofz4.
There is another, more serious puzzle which shows up, also involving possible extra

classical points onNΓ : from Table 1, we see that our low energy gauge theory is
compactified on a manifold which is not simply connected, but rather is of the formS3/H

for some discrete groupH . Hence its fundamental group is equal toH . Therefore, it is
possible to construct theories which have gauge fields with nontrivial Wilson loops which
break the gauge symmetry. Where inNΓ do these theories lie?

For the caseΓ2 = Zq , the pointP1,Γ can have Wilson loops which are conjugacy classes
of elements ofSU(p) of orderqr. One can show that, whenp,q, r are relatively prime,
the number of inequivalent such elements is

(40)
1

p

(
p + qr − 1
qr − 1

)
= (p + qr − 1)!

p!(qr)!
with cyclic permutations forP2,Γ andP3,Γ . Furthermore, for Wilson loops that break
SU(p) in a way that leavess − 1 factors ofU(1), i.e.,

SU(p) −→
s∏

i=1

SU(n1)× U(1)s−1,

where
∑

ni = p, the number of inequivalent Wilson loops is

(41)
s

pqr

(
p

s

)(
qr

s

)
.
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Each set of theories with a given numbers − 1 of U(1) factors should lie on a separate
componentNs,Γ of the moduli space, since smooth interpolation means that the number of
massless modes—which corresponds toU(1) fields—is constant on each component. For
s > 1, we know that the theories onNs,Γ do not have a mass gap due to the masslessU(1)
field. On the other hand, the theories corresponding to the pointsPi,Γ with no nontrivial
Wilson loops are believed to have a mass gap. Hence we claim thatN1,Γ contains theories
with a mass gap.

For the caser = 1, we obtain no singularity atX3,Γ . Hence, for that case the mass gap
of the theory atX3,Γ means that all ofN1,Γ has a mass gap.

Continuing with the case wherer = 1, we note a manifest symmetry betweenp andq in
the expression (41) for the number of possible Wilson loops at each levels. At first sight,
this could support the assertion that these points lie on their own branch of the moduli
space, which will interpolate smoothly among them and contain no other singular points.
However, chiral symmetry breaking means that the number of vacua at each classical point
is given by

∏
ni which is clearly not symmetric betweenp andq , and spoils the counting

of the orders of zeros and poles.
Going back to generalr and looking atN1,Γ only, we see that we have smooth

interpolation among theories with different gauge groups:SU(p), SU(q), andSU(r) when
Γ2 = Zq ; SU(p), SO(2q), Sp(q − 4), andSU(r) whenΓ2 = Dq ; and analogously forΓ2 in
theE series, where we interpolate betweenSU(p), Kt , andSU(r), with Kt as described
before. Similarly, the other branchesNs,Γ smoothly interpolate among theories with these
gauge groups broken by Wilson lines.
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