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Abstract

We study the moduli space of M-theories compactifiedsormanifolds which are asymptotic to a
cone over quotients @ x S3. We show that the moduli space is composed of several components,
each of which interpolates smoothly among various classical limits corresponding to low energy
gauge theories with a given number of masslégb) factors. Each component smoothly interpolates
among supersymmetric gauge theories with different gauge graupe02 Published by Elsevier
Science B.V.

1. Introduction

The study of M-theory compactifications on seven-dimensional manifslddg G2
holonomy has been motivated by the fact that such compactifications result in unbroken
supersymmetry in four dimensions. The properties of the compactification matifold
determine the particle spectrum of the corresponding four-dimensional theory. It has been
shown in recent years that compactifications on singular manifolds can result in low energy
physics containing interesting massless spectra. Specifically, certain siGgutanifolds
give rise to\ = 1 supersymmetric gauge theories at low energies, as shown, for example,
in [1-3]. There,X was taken to be asymptotic to a quotient of a coneSdix S8, and
the singularities ofX took the form of families ofADE singularities givingADE gauge
theories at low energies.

Subsequently, the quantum moduli space of M-theorie§ pmanifoldsX which are
asymptotic to a cone of® x S° or quotients thereof has been studied in [4]. It was shown
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that the moduli space is a Riemann surface of genus zero, which interpolates smoothly
between different semiclassical spacetimes.

The purpose of this paper is to generalize the construction of [4] to other quotients
of S® x S® and obtain the moduli spaces for those as well. Our quotients contain those
in [4] as special cases. We propose that the moduli space for our quotients consists of
several branches classified according to the number of mags(@sdactors that appear
in the low energy gauge theories corresponding to semiclassical points. Each branch of the
moduli space interpolates smoothly between the different semiclassical points appearing
on it; hence, we get smooth interpolation between supersymmetric gauge theories with
different gauge groups.

This paper is organized as follows: in Section 2 we review the M-theory dynamics on
the cone or¥ = S® x S® given in [4]. In Section 3, we describe quotients of this cone by
discrete groups of the form = I'y x I'> x I'3 where thel; are ADE subgroups o8U (2);
theseADE groups must be chosen carefully in order to obtain known low energy gauge
theories from the compactification. In Section 4, we turn to the description of the moduli
spaceN of M-theories on these quotients, beginning with the classical moduli space and
concluding with the quantum moduli space.

While this paper was being completed, we received [5] which has overlap with the case
wherer3 is trivial (or » = 1 in our notation of Section 3).

2. Dynamicsof M-theory on the coneover S® x S3

In this section, we review the M-theory dynamics on a maniféléf G2 holonomy
which is asymptotic at infinity to a cone ové&r= S% x S [4]. The manifoldY can be
described as a homogeneous sp#ce SU(2)3/SU(2), where the equivalence relation
is (g1, g2, g3) ~ (g1h, g2h, g3h), gi,h € SJ(2). Viewed this way, this manifold has
SU(2)® symmetry via left action on each of the three factord’jras well as a “triality”
symmetryS3 permuting the three factors. Up to scaling, there is a unique metric with such
symmetries given by

d2? =da®+ db® + dc?, (1)
where a, b, ¢ € U(2), da® = —Tr(a 1da)?, the trace is taken in the fundamental
representation o8U(2), anda, b, ¢ are related tog1, g2, g3 by a = gzggl and cyclic
permutations thereof.

The metric for a cone off is
ds® =dr? +r?d?, 2)

whered 22 is the metric ort. Such a cone can be constructed by filling in one of the three
SU(2) ~ S® factors ofY to a ball. We denote the manifold obtained by filling in a gigen

by X;. The metric on a manifold’, asymptotic taX; at infinity, can be written with a new
radial variabley, which is related ta by

3

y:r—%+0(l/r5), 3)
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as

3 6
ds?=dy? + 2 (da? + ab? + dc? ——O(flda2+f2db2+f3dc2)+0 0)),
36 y3 y6

4)
whererg is a parameter denoting the length scal&pfand( f;_1, fi, fi+1) = (1, —2,1)
(indices are understood mod 3). When— oo or r — oo, this becomes precisely the
cone (2).

We will need to study the 3-cycles @fin order to understand the relations between the
periods of the M-theory -field and the membrane instanton amplitudes, which we shall
need in order to describe the moduli space.

The 3-cyclesD; of Y are given by projections of thih factor ofSU(2)3 to Y. Hence,

D; = S3. The third Betti number of is two, so the thre®; satisfy the relation

D1+ D2+ D3=0. (5)

The intersection numbers of thg are given by
Di-Dj=368ji+1—8i-1. (6)

At X;, where theth factor is filled in,D; shrinks to zero and the relation (5) reduces to
D;_1+ D;;+1 =0 (where again the indices are understood mod 3).

At eachX;, there is a supersymmetric 3-cyd@kg given byg; = 0. It can be shown that
Q; is homologous ta:-D; 3 andF D; 41, where the sign depends on orientation.

A manifold still hasG, holonomy up to third order img/y if we take thef; of (4) to
be any linear combination afl, —2, 1) and its permutations—so we ha@ holonomy
aslong as

fi+ fo+ fz=0. (7)

Thesef; can be interpreted as volume defects of the cyzjeat infinity: the volume
of D; depends linearly on a positive multiple ¢f. Furthermore, since at the classical
manifold X;, only one of theD; vanishes, only one of thg; (namely f;) can be negative.
So the classical moduli space may contain manifolds with the relation (7) as long as only
one of thef; is negative [4,6].

The periods of th&'-field along the cycle®; area; = fD C. We combine them with

the f; into holomorphic observableg where now theC- field period is a phase:

2k k )
ﬂj=eXp<§fj1+§fj+zaj), (8)

wherek is a parameter. The relation (7) means thatvthare not independent, but instead
they obey

nin2n3 = exp(i Z Olj)~ 9)

(It can be shown that due to a global anomaly in the membrane effective action, the right-
hand side aboveis1.)
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The moduli space at the classical approximation is given by three bran¢hesch
of which contains one of the point&; with ro — oco. On X;, «; vanishes and the
parameterg; are such that; = 1. So onV; the functions); obey

ni=1 mi—amiqa=-1 (10)

At the quantum level, there are corrections to this statement. It has been suggested in [3]
that the different classical point§; are continuously connected to one another. Hence
they should appear on the same branch of the moduli spad&e proceed now with the
assumption that the only classical points are Xhewhich are the points where some of
then; have a zero or pole. As explained in [4], since a componeif efhich contains a
zero of a holomorphic function; must also contain its pole, and since the only points at
which then; are singular are associated with one of & it follows indeed that allX;
are contained on a single component\éf Furthermore, each; has a simple zero and
simple pole inV. The existence of such functions &f means that the branch containing
the zero and pole has genus zero. In addition, any ofjthean be identified as a global
coordinate of\/. Choosing any); gives a complete description for this branch\6f

3. Quotientsand low ener gy gauge groups

Here, we begin our study of manifolds which are asymptotic to a cone over quotients
of Y. We shall consider a discrete group actionfof= I'y x Iz x I'3 onY where therl;
will be chosen fromADE subgroups 08U (2) in such a way that the low energy physics is
known.

We begin with the simplest case whefe=Z7, x Z, x Z,. EachZ,, is embedded in
U(2) via

2mik/n 0
k e
B = ( 0 e—27rik/n) ) (11)

where g8 is the generator oZ, andk = 0,1,...,n — 1. The action ofl" on Y =
SU(2)%/3U(2) is given by

(ya (Sa E) € Zp X Zq X Zr . (g19 g29 g3) = (ygla (ng’ Eg3)9 (12)

and we denote the resulting quotient spacé& by

The spaceg; r, obtained by filling in theéth SU(2) factor of Y-, are quotients odR* x
S® where theR* corresponds to the filled-in factor. Choosihg: 1 and gauging» away
using the right diagonaU (2) action, the identification corresponding(e®, 8!, ¢”) e I
is

(81,1, g3) ~ (v* 187", 1, €mg3s ™), (13)

whereg: € R* andgs € U(2) ~ S°. The set(0, 1, g3) with g3 varying inSU(2) is a fixed
point of the action of th& , subgroup ofl”, and this singularity is identical to the standard
A1 singularity of codimension four of the forﬁh"’/zp or CZ/ZP, which gives arBU (p)
gauge theory at low energies.
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Depending on the values of the integgrandr, there may be additional, unfamiliar
singularities for which we do not know the low energy physics. Namely, there may be
values ofgz which are fixed under a nontrivial subgroup 8§ x Z,, i.e., where the
following holds

€"g38 ™! = ga. (14)
This is the same as looking for elemeptsof SU(2) which diagonalize’:
" = g381g51. (15)

Choosing the orderig andr of § ande to be relatively prime(q, r) = 1, ensures that there
are no solutions of this equation (since then the orders of the left- and right-hand sides
of (15) are relatively prime). Similarly, we chooég, ¢) = (p, r) = 1, and so there are no
singularities atX;  other than theADE singularities whose low energy physics is known:
an A,_1 singularity onS*/(Z, x Z,) at X1,r, an A4_1 singularity onS3/(Z, x Z )
at X, r, and and,_1 singularity 0nS3/(Z,, x Z,) at X3 r, with the discrete group action
on S given by the appropriate cyclic permutation of the actiorggim (13).
Now consider also the non-abeliaDE groups. Again, we would like to choogésuch
that we will only get singularities whose physics at low energies we understand—namely,
ADE singularities. For this purpose we review the relevant properties obtfiegroups.
For information about these groups, see [7].
As in the abelian case, we I€t= I x I, x I'3 actonY by

(y,8,€) e ' x I'> x I'3:(g1, 82, 83) — (¥&1, 882, €83), (16)

from which Egs. (13) and (14) follow in the same way as before.
The binary dihedral groupd, have order 4 — 8 and are generated BU(2) by two
elements:

0[5 25 D)

Since allD, groups share an element of order 4, we cannot choose more than one of the
I; to be a dihedral group, since otherwise we would get solutions to (14). Hence we let
I'=7Z,xDy xZ, with (p,r)=(p,2(q —2))=(r,2(q — 2)) =1.
We turn to theE series. A singularityR*/G which gives at low energieEs, E7,
or Eg gauge groups corresponds @ being the tetrahedral groupy4, the octahedral
groupQOyg, or the icosahedral groupzo. The orders of these groups are 24, 48, and 120,
respectively, and each of them has elements of orders 3 and 4, so we cannot have more
than oneE group appearing id”. The groupl 120 also has elements of order 5. Hence,
in addition to(p,r) =1,forI' =7, xEg x Z, or I =Z, x E7 x Z,, we need also
(p,2-3)=(r,2-3)=1,andforl" =7, x Eg xZ,, we needp,2-3-5) = (r,2-3-5) = 1.
Therefore, our groug™ is always chosen to be of the form=Z, x I> x Z, where
I;isanA, D, or E group, andp, r, and/» satisfy the conditions noted above, which can
be summarized by

(p,N)=(r,N)=(p,r)=1,
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Table 1

Low energy gauge theories &t

I X1,r Xor X3r

Z4 V(p)  S%/(ZqxZr) V) /2 xZp) V) S¥/ZpxZy)
Dy U(p)  S/(Dg xZp) 02q)  SB/2Zrx2Zp) U(r)  S3/(Zp xDy)
Toa V(p)  S/(TaaxZp) Ee /2y x Zp) V) S/Zp xToa)
Oug U(p)  S%/(OsgxZr) E7 S3/(Zr x Zp) U S¥/(Zp x Osg)
1120 V() S¥/120% Zr) Es S3/(Z, xZ)p) V@) S¥/Zp x 1120

where N is the order of the groug™». At X1 we have anA,_; singularity on
S3/(I» x Z,), at X3 we have anA,_; singularity onS3/(Z,, x I2), and atXo r we
have anA, D, or E singularity onS®/(Z, x Z,), where here the discrete group action is
given by the appropriate cyclic permutation of the actiorggin (13).
The low energy gauge theories obtained from compactifying M-theoBfonX; r are
listed in Table 1. Each entry contains the gauge group and the compact 3-manifold which
is the locus of thDE singularity.
As we shall see below, for the cases whé&peis a D or E group, there are additional
semiclassical points where the low energy gauge group is different from those listed above.
We note that for the case with= 1, X3 i is smooth and its low energy theory has no
gauge symmetry. If alsp = 1, X1 r is smooth as well (this is the case studied in [4]).

4. Thecurveof M theorieson the quotient

4.1. Classical geometry

The 3-cyclesD; of Y are the projections of thi¢h factor ofSU (2)% to Y. Hence, for
I'=27, xI>xZ, we have

D, =5%z,, (18)
Dy=S/1>, (19)
Dy=S%Z,. (20)

Using the relation (5) iy and the fact thaD; € Y projects to g-fold cover of D] € Yr,
as well as cyclic permutations of this fact, we find

pD}+ ND5+rD5=0, (21)
whereN is the order of the group>. To study the intersection numbers of théwe note
thatD/l € Yr liftsto NrD1 € Y, and similar statements are true for the otD?rCounting
the intersection numbers in and then dividing byp Nr (since there ar@ Nr points inY
which project to one point i), we get

Dy-Dy=r,  Dy-Dy=p, Dy D) =N. (22)

Here we see that thB] generate the third homology group Bf: since(r, N) =1, we
can find integers:, n such that

D - (mD5+nD3) =mr —nN =1, 23
1 2 3
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and similarly for the other cycles.
We define the periods of the M-theoGyfield at infinity by

o) = / C mod 2. (24)
D]
Note that these are related to heof ¥ by

o1 = pay, a2 = Naj, o3 =ros. (25)
4.2. Classical moduli space

We define our holomorphic observables to be the following functions of the per}ods
and of the volumeg;:
2k k L,
n= eXp<§f3 + 5]‘1 + tal>,
P L,
=X\ gy it gy fatiey ).

% k.,
n3 = exp §f2+ §f3+toz3 .

These functions are adopted from (8), where we substitute the expressions in (25) for
the periods and then take the largest possible root that still leaves theariant under
o — o + 2.
The periods of th&€-field are interpreted as the phases of the holomorphic observables.
Due to (7), we have

nyns ns = exp(i Za}>~ (26)
J
Then; have zeros or poles at the semiclassical paifats with largerg in which the f;

diverge. As in Section 2, classically at the poit 1, n1 = 1 andaj = 0. Hence, at this
point

névng = exp(i (o + aé)), (27)
so whenn2 has a poleps has a zero and vice versa. In fact, the order of the zeros or
poles ofn2 must be a multiple of, and similarly the order of the zeros or polesmaf
must be a multiple ofV for this equation to hold. In the classical approximation, there are
three branchegd/; of the moduli space, on which we haye= 1 andn;+1 obeying the
relation (27) fori = 1 or cyclic permutations of it for = 2, 3.

4.3. Quantum curve via membrane instantons

To study the quantum curve, we study the singularities, i.e., the zeros and poles of the
holomorphic observableg;, which correspond to the classical poiis, with rg — oo.
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We shall use a relation between thgand the amplitude for membrane instantons which
wrap on supersymmetric cyclgsin X. Using chiral symmetry breaking of the low energy
gauge theories, we find a clear relation between the local parameter on the moduli space
and our observables, and hence can describe the moduli space.

A supersymmetric cycle iX; r is given by the 3-manifoldg®; given byg; = 0:

01=S*/(I2x Z,), (28)

02=S%/(Z, x Z,), (29)

03=5/(Z, x I). (30)
At X1, Q1 is homologous (up to orientation) to tbwj as follows:

rQ1~ D5, (31)

NQ1~ D3, (32)

and cyclic permutations of that give the relations(at- to be p Q> ~ Dj andr Q2> ~ Dj,
and atX3 - we haveN Q3 ~ D} andp Q3 ~ D).

We now study the zeros and poles of the To understand the orders of the zeros and
poles, we must compare theg to the true local parameter oxi around eaclX; i with
largero.

One would expect at first that the membrane instanton amplitudiself, given
nearX; r by

u:exp(—TV(Qi)—H/ C), (33)
0i

whereT is the membrane tension afd Q;) is the volume ofQ;, would be a good local
parameter neak; . However, at low energies we have a supersymmetii®, or E
gauge theory in four dimensions, and due to chiral symmetry breaking, we expect the good
local parameter—the gluino condensate—tadb€" wherer is the dual Coxeter number
of the gauge group.

We now compare phases of thg to the phase ofi. Let P; r correspond to the
manifoldsX; r with largero. For the case wherg> =Z,, at P1 r Eq. (31) implies that
the phasefDéC of n2 is related to the phasg, C of u by fDéC ~r [y, C. Since the

good local parameter is actually/? due to chiral symmetry breaking of ti$J (p) gauge
theory atPy, r, the true order of the zero @b at Py, is pr. The same calculation for the
othern; and P;  gives the orders of zeros and poles shown in Table 2.

Table 2
Behavior ofy; for Iy =27,
=2, Pir Por P3
n 1 ood” 01"
n2 orr 1 ooPr
3 coPd or4 1
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Table 3
Behavior ofy; for I'; =Dy

I=Dq | PLr Por Pyp Par
m 1 oo’ OOZrh/ oN
2 or 1 -1 oo'P
3 ooNP o OZh/p 1
Table 4

Behavior ofy; for I =E,

2=Bs | Air Par Pur.r Par
m 1 ool ool tht oN
2 or 1 e2rin/t oo'P
i | oM ow  omm g

The cases wheré» is a D or E group give similar tables, except that in these cases
we get extra semiclassical points in the same way as in [4]. for thelGaseD,,, we have
Table 3, wherdr = 2¢ — 2, i’ = ¢ — 3, andh + 21’ = N. The low energy gauge theory at
Py 1 has gauge groufio(g — 4).

For I'; in the E series, we have Table 4, whetd:,, u are given for eack, as follows:
let k; be the Dynkin indices oE,, and letr be the positive integers which divide some of
thek;; p runs over positive integers less thathat are prime ta, unlesst = 1 in which
caseu = 0; h, is the dual Coxeter number of the associated gr&ypvhose Dynkin
indices arek; /t where here thé; run through the indices d&, that divider. Ther andh;,
obey the relation)_th; = N. The low energy gauge group is given by tABE group
corresponding t&;.

From the relatiord _ri, = N and Tables 2—4, we see that for eaghthe total number
of zeros and poles is equal. Since the total number of zeros is the same as the total number
of poles for each of the;, it seems reasonable to assume that we have found all the
zeros and poles, and hence all the semiclassical limits in our moduli space. It would seem,
therefore, that we can now proceed to describe the moduli space completely, by writing
our functionsy; explicitly and identifying the point®;  with values of a good coordinate
on the moduli space. However, as we shall see, we run into a few puzzles.

The first question we ask is: what can be said about the genti§-8fFor the cases
p =r =1, which are the cases considered in [4], the functjgias a simple zero and
a simple pole, and hence can be identified with a global coordinate on the moduli space,
which can then be claimed to have genus zerg, if > 1, this is not so: none of ouy;
have just a simple zero and pole, so we cannot identify the moduli space with anygf the
and we do not know the genus.

However, the simplest result would be that the curve has genus zero, and we proceed
with this assumption. Hence, we assign the curve a global coordinatgte then; as
holomorphic functions of, and see how well we can describe the curve.

For the casd’ = Z,,, this turns out to be straightforward; we may ®% r atz =0,

P> r atz=1, andPs r atz = co, and then write our functions:
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1
=— 34
M=o (34)
n2=z", (35)
_$-a% 36

This description is unique up to possible overall factors which are related to an anomaly in
the membrane effective action, analogous to the one described in Section 5 of [4].

ForI; =D,, we run into a puzzle. Once we fix the first three points, we have to find at
what valuez,4 the fourth pointPy - sits: our functions in this case are

erh’

_ , 37
" - 02 (37)
=277, (38)

(L—2)Ph(zq— 2)2'P
= N , (39)

again up to overall factors. The forms gf and n3 do not constrairy4, but to satisfy
n2(z4) = —1, we needzZr = —1 for which there arepr solutions. A similar situation
arises forl; in the E series, where there age- choices for each point beyond the first
three.

The pr solutions, however, should correspond to the same point in the moduli space
of M-theories, since they correspond to the same theory. Hence, it seems that we have a
redundancy in our description of the moduli space; we should impose a symmetfy on
which identifies the different values o4.

There is another, more serious puzzle which shows up, also involving possible extra
classical points onVr: from Table 1, we see that our low energy gauge theory is
compactified on a manifold which is not simply connected, but rather is of the 83y
for some discrete groufl. Hence its fundamental group is equalit Therefore, it is
possible to construct theories which have gauge fields with nontrivial Wilson loops which
break the gauge symmetry. WhereNfy do these theories lie?

Forthe casd>» = Z,, the pointP, - can have Wilson loops which are conjugacy classes
of elements of8U(p) of ordergr. One can show that, whem ¢, r are relatively prime,
the number of inequivalent such elements is

l(p—l—qr—l)_ (p+qgr—21
p\ qr—1 plgr)!

with cyclic permutations forP> - and Ps . Furthermore, for Wilson loops that break
U(p) in away that leaves — 1 factors ofU (1), i.e.,

(40)

)
VU(p) — [[V@) x U@y,
i=1
where)_ n; = p, the number of inequivalent Wilson loops is

=0
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Each set of theories with a given number 1 of U (1) factors should lie on a separate
componentV; - of the moduli space, since smooth interpolation means that the number of
massless modes—which correspond#&1d) fields—is constant on each component. For

s > 1, we know that the theories o - do not have a mass gap due to the masdl&ds

field. On the other hand, the theories corresponding to the pBintswith no nontrivial
Wilson loops are believed to have a mass gap. Hence we claimVihatcontains theories

with a mass gap.

For the case = 1, we obtain no singularity atz . Hence, for that case the mass gap
of the theory afX3 i means that all afV; - has a mass gap.

Continuing with the case where= 1, we note a manifest symmetry betwgeandg in
the expression (41) for the number of possible Wilson loops at eachslefeffirst sight,
this could support the assertion that these points lie on their own branch of the moduli
space, which will interpolate smoothly among them and contain no other singular points.
However, chiral symmetry breaking means that the number of vacua at each classical point
is given by[ [ n; which is clearly not symmetric betwegnandg, and spoils the counting
of the orders of zeros and poles.

Going back to generat and looking atA3  only, we see that we have smooth
interpolation among theories with different gauge gro@k:p), U(g), andSU(r) when
=274, U(p), 0(2q), (g —4), andSU(r) whenI: = D,; and analogously for> in
the E series, where we interpolate betweh(p), K;, andSU(r), with K, as described
before. Similarly, the other branch&§ - smoothly interpolate among theories with these
gauge groups broken by Wilson lines.
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