
Masthead Logo Smith ScholarWorks

Computer Science: Faculty Publications Computer Science

11-2001

Polygonal Chains Cannot Lock in 4D
Roxana Cocan
Smith College

Joseph O'Rourke
Smith College, jorourke@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs

Part of the Computer Sciences Commons, and the Geometry and Topology Commons

This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized administrator of Smith ScholarWorks. For
more information, please contact scholarworks@smith.edu

Recommended Citation
Cocan, Roxana and O'Rourke, Joseph, "Polygonal Chains Cannot Lock in 4D" (2001). Computer Science: Faculty Publications, Smith
College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/80

http://www.smith.edu/?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.smith.edu/?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/80?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu

ar
X

iv
:c

s/
99

08
00

5v
3

 [c
s.

C
G

]
20

 F
eb

 2
00

1 Polygonal Chains Cannot Lock in 4D

Roxana Cocan and Joseph O’Rourke∗

February 1, 2008

Abstract

We prove that, in all dimensions d ≥ 4, every simple open polygonal

chain and every tree may be straightened, and every simple closed polyg-

onal chain may be convexified. These reconfigurations can be achieved by

algorithms that use polynomial time in the number of vertices, and re-

sult in a polynomial number of “moves.” These results contrast to those

known for d = 2, where trees can “lock,” and for d = 3, where open and

closed chains can lock.

Smith Technical Report 063
(Major revision of the August 1999 version with the same report number.)

∗Dept. of Computer Science, Smith College, Northampton, MA 01063, USA. {rcocan,-
orourke}@cs.smith.edu. Research supported by NSF Grant CCR-9731804. Results first re-
ported in [CO99].

i

http://arXiv.org/abs/cs/9908005v3

Contents

1 Introduction 1
1.1 Summary . 1
1.2 Background . 2

2 Straightening Open Chains in 4D 3
2.1 Algorithm 1a . 4

2.1.1 Step 1: sg is free . 4
2.1.2 Step 2: sg is intersected 7
2.1.3 Motion Planning . 9

2.2 Algorithm 1b . 9
2.2.1 Step 1: w is free . 11
2.2.2 Step 2: w is obstructed (but sg is not intersected) 11
2.2.3 Algorithm 1b Complexity 13

2.3 Implementation . 13

3 Straightening Trees in 4D 13

4 Convexifying Closed Chains in 4D 16
4.1 Choosing L . 17
4.2 Line Tracking in 3D . 19

4.2.1 Topology of Configuration Space in 3D 19
4.2.2 Obstruction Diagram in 3D 19
4.2.3 Disconnected Free Space in 3D 20

4.3 Line Tracking in 4D . 21
4.3.1 Topology of Configuration Space in 4D 21
4.3.2 Obstruction Diagram in 4D 21
4.3.3 Connected Free Space in 4D 24

4.4 Motion Planning . 27

5 Higher Dimensions 27

ii

1 Introduction

1.1 Summary

A polygonal chain P = (v0, v1, . . . , vn) is a sequence of consecutively joined seg-
ments si = vivi+1 of fixed lengths ℓi = |si|, embedded in space. A chain is
closed if the line segments are joined in cyclic fashion, i.e., if vn = v0; other-
wise, it is open. A polygonal tree is a collection of segments joined into a tree
structure. A chain or tree is simple if only adjacent edges intersect, and only
then at the endpoint they share. We study reconfigurations of simple polygonal
chains and trees, continuous motions that preserve the lengths of all edges while
maintaining simplicity. One basic goal is to determine if an open chain can be
straightened—stretched out in a straight line, and whether a closed chain can
be convexified—reconfigured to a planar convex polygon. For trees, straighten-
ing permits noncrossing violations of simplicity to allow the segments to align
along the common straight line. If an open chain or tree cannot be straightened,
or a closed chain convexified, it is called locked. This terminology is borrowed
from [BDD+99] and [BDD+98].1

Most of the work in this area was fueled by the longstanding open problem of
determining whether every open (or closed) chain in 2D can be straightened (or
convexified). This was recently settled [CDR00] in the affirmative: 2D chains
cannot lock. In contrast it was earlier established that trees in 2D [BDD+98],
and both open and closed chains in 3D [CJ98, BDD+99] can lock. In this paper
we prove that, for all dimensions d ≥ 4, neither chains (open or closed) nor trees
can lock. We partition our results into four main theorems:

Theorem 1 Every simple open chain in 4D may be straightened, by an algo-
rithm that runs in O(n2) time and O(n) space, and which accomplishes the
straightening in O(n) moves.

Here “move” is used in the sense defined in [BDD+99].2 Essentially each move is
a simple monotonic rotation of a few joints. We have implemented this algorithm
for the case when the vertices are in general position, when it is straightforward.

Nearly the same algorithm proves the same result for trees, within the same
bounds:

Theorem 2 Every simple tree in 4D may be straightened, by an algorithm that
runs in O(n2) time and O(n) space, and which accomplishes the straightening
in O(n) moves.

Closed chains require more effort:

1 Straightening for trees is never defined in [BDD+98]. Instead they rely on mutually
unreachable simple configurations.

2 “During each move, a (small) constant number of individual joint moves occur, where
for each a vertex vi+1 rotates monotonically about an axis through joint vi, with the axis of
rotation fixed in a reference frame attached to some edges.”

1

Theorem 3 Every simple closed chain in 4D may be convexified, by an algo-
rithm that runs in O(n6 log n) time, and which accomplishes the straightening
in O(n6) moves.

All these results easily extend to higher dimensions:

Theorem 4 Theorems 1, 2, and 3 hold for all dimensions d ≥ 4, i.e., neither
polygonal chains nor trees can lock in dimensions greater than three.

We summarize our results in the context of earlier work in the table below.

Dimension Chains Trees

2 Cannot lock Lockable
3 Lockable Lockable

d ≥ 4 Cannot lock Cannot lock

1.2 Background

Before commencing with our technical arguments, we start with some back-
ground, with the intent of providing intuition to support our results.

No Knots in 4D. In [CJ98] and [BDD+99], the same example of a locked
open chain in 3D is provided. The version in the latter paper is shown in Fig. 1.

v0 v5

v3 v2

v4 v1

Figure 1: The “knitting needles” example, based on Fig. 1 in [BDD+99] (by
permission).

One proof (used in [BDD+99]) that this chain K is locked depends on closing
the chain by connecting v0 to v5 to form K ′, and then arguing that K can be
straightened iff the corresponding trefoil knot K ′ can be unknotted, which of
course it cannot. Thus there is a close connection in 3D between unknotted,
locked chains and knots. However, the following theorem is well known:

Theorem 5 No 1D closed, tame,3 non-self-intersecting curve C is knotted in
R

4.

3 A curve is tame if it is topologically equivalent to a polygonal curve [CF65, p.5]. Any
curve that is continuously differentiable, i.e., in class C1, is tame.

2

See, e.g., [Ada94, pp.270-1] for an informal proof. Because proofs of this
theorem employ topological deformations, it seems they are not easily modified
to help settle our questions about chains in 4D. The rigidity of the links prevents
any easy translation of the knot proof technique to polygonal chains. However,
it does suggest that it would be difficult to construct a locked chain by extending
the methods used in 3D.

No Cages in 4D. A second consideration lends support to the intuition be-
hind our main claim. This is the inability to confine one segment in a “cage”
composed of other segments in 4D. Consider segment s0 = v0v1 in Fig. 1. It
is surrounded by other segments in the sense that it cannot be rotated freely
about one endpoint (say v0) without colliding with the other segments. Let S
be the 2-sphere in R

3 of radius ℓ0 centered at v0. Each point on S is a possible
location for v1. Segment s0 is confined in the sense that there are points of S
that cannot be reached from s0’s initial position without collision with the other
segments. This can be seen by centrally projecting the segments from v0 onto
S, producing an “obstruction diagram.” It should be clear that v1 is confined
to a cell of this diagram. Although this by no means implies that the chain in
Fig. 1 is locked, it is at least part of the reason that the chain might be locked.

We now argue informally that such confinement is not possible in 4D. Again
let s0 = v0v1 be fixed at v0, and let S be the 3-sphere in R

4 of radius ℓ0

centered on v0 that represents the possible locations for v1. Again we project
the other segments onto S producing an obstruction diagram. As in the lower
dimensional case, this diagram is composed of 1D curves, being the projection
of 1D segments. But in the 3-sphere S, v1 has three degrees of freedom, and
cannot be confined by a (finite) set of 1D curves. Our next task is to make this
intuitive argument more precise.

2 Straightening Open Chains in 4D

Let P be a simple, open polygonal chain in 4D with n ≥ 2 vertices. Each vertex
vi is also called a joint of the chain. The segment si = vivi+1 we sometimes
call a link of the chain. We say a joint vi is straightened if (vi−1, vi, vi+1) are
collinear and form a simple chain; in this case, the angle at vi is π.

We prove Theorem 1 by straightening the first joint v1, “freezing” it, and
repeating the process until the entire chain has been straightened. This is
a procedure which, of course, could not be carried out in 3D. But there is
much more room for maneuvering in 4D. We have two different algorithms
for accomplishing this task. The first (Algorithm 1a) is easier to understand,
but only establishes a bound of O(n4) on the number of moves, and requires
O(n4 log n) time. The second (Algorithm 1b) is a bit more intricate but achieves
O(n) moves in O(n2) time. Both follow the rough outline just sketched. We
provide full details for Algorithm 1a, but only sketch Algorithm 1b.

Define the goal position vg for v0 (and sg = vgv1 the goal position for s0)
as the unique position that represents straightening of joint v1. Call the goal

3

position intersected if sg ∩ si 6= ∅ for some i > 2; and otherwise call it free.

2.1 Algorithm 1a

A high-level view of the algorithm is as follows:

Algorithm 1a: Open Chains
repeat until chain straightened do

1: if sg is free then

Construct obstruction diagram Ob(v0) on 3-sphere.
Apply motion planning to move v0 to vg.

2: else sg is intersected
Construct obstruction diagram Ob(v1) on 2-sphere.
Move v1 so that the goal position is not intersected.

2.1.1 Step 1: sg is free

Our argument depends on some basic intersection facts, which we formulate in
R

d in a series of lemmas before specializing to the d = 3 and d = 4 cases we
need.

Geometric Intersections in R
d. Let the coordinates of R

d be x1, x2, . . . , xd.
A k-flat is the translate of a subspace spanned by k linearly independent vectors.
Flats for k = 0, 1, 2 are also called points, lines, and planes. A k-sphere is the
set of points in a (k + 1)-flat at a fixed radius from a point (its center) in that
flat. A 0-sphere is a set of two points, a circle is a 1-sphere, and the surface of a
ball in R

3 is a 2-sphere. When emphasizing the topology of a k-sphere, we will
use the symbol S

k.

Lemma 1 The intersection of a 2-flat H (i.e., a plane) with a (d−1)-sphere S
in R

d is a circle, a point, or empty.
Proof: Translate and rotate the sphere and plane so that the sphere is centered
on the origin, and the plane is parallel to the x1x2-plane. The equations of the
sphere S and the plane H are then:

S : x2
1 + x2

2 + · · · + x2
d = r2 (1)

H : x3 = a3 , x4 = a4 , · · · , xd = ad (2)

where the ai are constants. Let A2 =
∑d

i=3 a2
i . Then

S ∩ H : x2
1 + x2

2 + A2 = r2 (3)

x2
1 + x2

2 = r2 − A2 (4)

If r2 < A2, the intersection is empty. If r2 = A2, the intersection is the
point (0, 0, a3, . . . , ad). If r2 > A2, the intersection is a circle in H with ra-
dius

√
r2 − A2, and center (0, 0, a3, . . . , ad). 2

4

Lemma 2 The intersection of a (1D) line, ray, or segment with a (d−1)-sphere
S in R

d is at most two points, i.e., it either contains one or two points or is the
empty set.
Proof: Let s = ab be a segment, and let the sphere center be c. Let H be
the 2D plane determined by the three points a, b, c, i.e., H is the affine span of
{a, b, c}. Because s ⊂ H , we must have s = s ∩ H . So

s ∩ S = (s ∩ H) ∩ S (5)

= s ∩ (H ∩ S) (6)

By Lemma 1, H ∩ S is a circle, and the claim for segments follows because a
segment intersects a circle in at most two points. Rays and lines yield the same
result by selecting a and b sufficiently large. 2

Let a, b, and c be three distinct points in R
d, such that c does not lie on

the segment ab. Call the set of points that lie on rays that start at c and pass
through a point of ab a triangle cone △c(a, b). If (a, b, c) are collinear, the
triangle cone degenerates to a ray.

Lemma 3 The intersection of a triangle cone △c(a, b) with a (d−1)-sphere S
in R

d consists of at most two connected components—and, if c is the center of
S, of at most one component—each of which is a circular arc or a point.
Proof: Let △ = △c(a, b), and let H be the 2D plane containing △. Because
△ ⊂ H , △ = △∩ H . So △∩ S = △∩ (H ∩ S). By Lemma 1, H ∩ S is a circle
C in the plane containing △. So the problem reduces to the intersection of a
triangle cone with a circle. As illustrated in Fig. 2a, this intersection is at most
one arc if the cone’s apex c is at the center of the C (△1 in the figure), and at
most two arcs otherwise (△2 in the figure). Any of the arcs illustrated could
degenerate to points if the cone is a ray. (When c is not the center of S, the arc
could be the whole circle C.) 2

We will need a slight extension of this lemma. Define a quadrilateral cone
Qc(a, b) to be the closure of △c(a, b) \ t, where t is the triangle determined
by (a, b, c). Thus Qc(a, b) is all the points on the rays from c at or beyond
ab. The next lemma says that the conclusion of the previous lemma holds for
quadrilateral cones as well.

Lemma 4 The intersection of a quadrilateral cone Qc(a, b) with a (d−1)-sphere
S in R

d consists of at most two connected components—and, if c is the center
of S, of at most one component—each of which is a circular arc or a point.
Proof: As Fig. 2b makes clear, Qc(a, b) is just △c(a, b) intersected with a closed
halfplane in H containing ab. Intersecting the components from Lemma 3 with
a halfplane cannot increase their number, and so the claim follows. 2

Obstruction Diagram Ob(v0). Let C0 be the configuration space for vertex
v0 when v1 is fixed: the set of all possible positions for v0 that preserve the
length of v1v0. C0 is a 3-sphere S in R

4 centered at v1 with radius ℓ0. Let F0

5

C

c1

a1

b1

c2

a2

b2

∆2

∆1

C

c1

a1

b1

c2

a2

b2

Q2

Q1

(a) (b)

Figure 2: (a) Intersections of triangle cones △1 = △c1
(a1, b1) and △2 =

△c2
(a2, b2) with a circle C centered at c1; (b) Intersections of quadrilateral

cones Q1 and Q2 with C.

be the free space for vertex v0 with all other vertices vi of the chain fixed: the
subset of C0 for which the chain is simple, i.e., for which s0 does not intersect
si, i > 1, and s0 intersects s1 only at v1. We define the obstruction diagram
Ob(v0) for v0 as the set such that F0 = C0 \ Ob(v0). Our goal is to describe,
and ultimately construct, Ob(v0).

To ease notation, let j△i = △vj
(vi, vi+1) be the triangle cone with apex

vj determined by segment i, and define jQi ⊆ j△i as the similar quadrilateral
cone.

Lemma 5 The set of points Ob(v0) ⊂ C0 in the 3-sphere S consists of at most
n − 1 components, each of which is a circular arc of a circle or a point.
Proof: Ob(v0) is the union of the obstructions contributed by each segment
si, i > 1, plus the single point disallowing overlap with s1. If s0 intersects si,
then v0 lies in the set 1Qi in R

4, for then v0 lies on a ray from v1 along s0,
beyond the crossing with si. (For example, in Fig. 2b, we have c1 = v1, a1 = vi,
and b1 = vi+1.) Thus 1Qi ∩ S is precisely the locus of positions of v0 for which
s0 intersects si. By Lemma 4, this intersection is a circular arc or a point.
Unioning over all i > 1 establishes the claim. 2

This lemma is now immediate:

Lemma 6 If v0’s goal position vg is free, then v1 may be straightened.
Proof: Because vg is free, vg 6∈ Ob(v0). Because the given chain is assumed
simple, the initial position v0 6∈ Ob(v0). The locus of possible v0 positions forms
the 3-sphere S. The obstacles Ob(v0) are a finite set of circular arcs and points.
The removal of Ob(v0) from S3 cannot disconnect v0 from vg. This follows from
the fact that R

d cannot be separated by a subset of dimension of less than or
equal to d−2 [HY61, Thm. 3-61, p. 148]. Neither then can S

d be so disconnected.

6

For suppose set X disconnects two points p and q of S
d. Then stereographically

project S
d to R

d, from a center not in X or at the two points. This produces a
set X ′ that disconnects p′ from q′ in R

d, contradicting the quoted theorem.
Therefore there is a path in F0 = S \Ob(v0) from v0 to vg, which represents

a continuous motion of s0 that straightens v1. 2

It is this lemma which justifies the claim made in Section 1.2 that there
can be no cages in 4D. We will defer to Section 2.1.3 construction of the path
guaranteed by this lemma.

2.1.2 Step 2: sg is intersected

If sg is intersected, then rotating s0 to the goal position necessarily violates
simplicity at the goal position. In this case, we slightly move v1, the joint
between s0 and s1, so that the new goal position s′g is no longer intersected.
That we can “break” the degeneracy of an intersected goal is established by this
lemma:

Lemma 7 v1 may be moved to v′1 while keeping all other vertices fixed, so that
the chain remains simple, and the new goal s′g is not intersected.
Proof: Fix the positions of v0, v2, v3, . . . , vn. The 2-sphere

S = {z ∈ R
4 : |z − v0| = ℓ0, |z − v2| = ℓ1}

represents all the possible positions for v1 that preserve the lengths of its incident
links. Note that S consists of the intersection of two 3-spheres. Because we may
assume that the angle at v1 is not already straightened, S does not degenerate
to a single point. Thus S is a 2-sphere.

Now we construct an obstruction diagram Ob(v1) on S that is a superset
of all those positions of v1 for which (1) the goal position sg (of s0) is inter-
sected, or for which (2) the chain (v0, v1, v2) intersects the remaining, fixed
chain (v2, . . . , vn). We construct a superset rather than the precise obstruction
set because the former is easier but equally effective computationally.

1. Intersected goal positions sg. A goal segment sg lies on the ray from v2

through v1, for it is exactly those sg that are straight at v1. For sg to
intersect si, v1 must lie in 2△i, the triangle cone with apex at v2 and
delimited by si. See Fig. 3. Not every v1 ∈ 2△i leads to intersection of sg

with si: sg must reach si. The relevant subset of 2△i could be detailed,
but because it has one curved edge, we content ourselves with a supset of
the obstructions by forbidding v1 anywhere in 2△i.

Applying Lemma 3 shows that S ∩ 2△i contributes at most two arcs or
points to Ob(v1), for each i 6∈ {0, 1}.

2. Intersections between s0 and s1 and the remainder of the chain. Ob(v1)
also contains all the positions of v1 that cause the two adjacent links to
intersect any of the other segments. The link v2v1 is clearly covered by

2△i. The link v0v1 can be handled by the analogous triangle cone 0△i

7

v2

v0
si

2∆i

S

sg

vg

v1

Figure 3: The triangle cone 2△i intersects the sphere S in at most two circular
arcs.

with apex at v0 and through si. Again these sets provide a superset of
the obstructions, and Lemma 3 again applies.

Summing over all i yields the obstruction superset Ob(v1) composed of at
most 2 · 3(n− 2) = O(n) arcs or points on S. Thus Ob(v1) is an arrangement of
O(n) arcs on a 2-sphere, with the initial position of v1 lying on at least one arc
(because by hypothesis, sg is intersected). Choosing any point v′1 ∈ S \ Ob(v1)
interior to an arrangement cell on whose boundary v1 lies suffices to establish
the claim. 2

Note that it is quite possible for v1 to be confined within a cell of the ar-
rangement Ob(v1), but that this “cage” is no impediment. We do not need a
path from v1 to an arbitrary point of S; rather we only need a path to any
unobstructed point v′1. Although we could construct the arrangement Ob(v1)
in O(n2α(n)) time and O(n2) space [EGP+92, Hal97], for our limited goal of
constructing just one point, we can do better:

Lemma 8 A move of v1 to the position guaranteed by Lemma 7 may be com-
puted in O(n) time and O(n) space.
Proof: Let Z = {a1, . . . , am} be the collection of arcs of V that contain v1. Z
may be found by a brute force check of each of the O(n) arcs. Pick two arcs a1

and aj angularly consecutive about v1. This can be accomplished in O(n) time
by fixing a1, and letting aj be the arc that makes the smallest angle with a1.
Let a be a circular arc ray (i.e., a directed great circle starting and ending at
v1) that bisects this angle; or if Z only contains one arc, let a be orthogonal to
it; or if Z only contains one point, let a be any ray from v1.

8

Intersect a with every arc and point of Ob(v1), again in O(n) time. Let δ
be the distance from v1 along a to the closest intersection. Finally, choose v′1 as
the point δ/2 along a. This point is guaranteed to be off Ob(v1), and therefore
unobstructed.

Moving (in one move) v1 to v′1 establishes a new goal s′g that is not inter-
sected. 2

2.1.3 Motion Planning

Now that we know we can perform Step 2 of Algorithm 1a in O(n) time per
iteration, we return to finding a path through S3 for v0, as guaranteed by
Lemma 6. Motion planning between two points of the 3-sphere F may be
achieved by any general motion planning algorithm [Sha97, Sec. 40.1.1]. For
example, Canny’s Roadmap algorithm achieves a time and space complexity of
O(nk log n), where n is the number of obstacles, and k the number of degrees of
freedom in the robot’s placements. In our case, k = 3. His algorithm produces
a piecewise algebraic path through F , of O(nk) pieces. Each piece constitutes
a constant number of moves, with the constant depending on the algebraic
degree of the curves, which is bounded as a function of k. Therefore each joint
straightening can be accomplished in O(n3) moves. Repeating the planning
and straightening n times leads to O(n4) moves in O(n4 log n) time. In the next
section we reduce the O(n3) moves per joint straightening to just 3 moves per
straightening.

2.2 Algorithm 1b

We have now established Theorem 1, but with weaker complexity bounds than
claimed. It is not surprising that applying a general motion planning algorithm
is wasteful in our relatively simple situation. In fact a significant improvement
over Algorithm 1a can be achieved by switching attention from the absolute
position of v0, to the direction in which s0 rotates. Let the vector along s0 be
w0 = v0 − v1, and similarly let wg = vg − v1. Let w be the goal direction: a
unit vector orthogonal to wg that represents the direction in which w0 should
be rotated to move it to its goal position. See Fig. 4. Thus w is the unique unit
vector pointing in the direction of the component of wg −w0 orthogonal to wg:

a1wg + b1w = wg − w0 (7)

for some reals a1 > 0 and b1 > 0. The space of possible directions w forms
a 2-sphere rather than the 3-sphere we faced in Step 1 of Algorithm 1a. This
permits replacing the O(n3 log n) moves per step from motion planning, with at
most two moves. We now proceed to describe this. Because this represents a
computational improvement only, the proofs are only sketched. More detailed
proofs are contained in [Coc99].

Algorithm 1b distinguishes three possibilities:

9

w

v1

v0

vg

w0

wg

v2

Figure 4: The goal direction vector w defines the direction that w0 should be
rotated to reach wg. The shaded triangle cone 1△(v0, vg) is not crossed by any
links of the chain if w is unobstructed.

1. The goal position is intersected by some other link of the chain (just as in
Algorithm 1a).

2. The goal direction is obstructed in that rotation of s0 in the direction
w might hit some link of the chain along its direct rotation to the goal
position. We again define a direction to be obstructed conservatively,
working with a superset of the true obstructions: w is obstructed if the
triangular cone △v1

(v0, vg) = 1△(v0, vg) is intersected by any si, i > 1.

3. The goal direction is free: it is not obstructed (and so the goal position is
not intersected).

A high-level view of our second algorithm is as follows:

Algorithm 1b: Open Chains
repeat until chain straightened do

1: if w is free then

Rotate s0 directly to sg.
2: else if w is obstructed then

Rotate s0 to new position whose goal direction is free.
3: else if sg is intersected then

Move v1 so that the goal position is not intersected.

Step 3 is identical to Step 2 of Algorithm 1a, so we only discuss the first two
steps.

10

2.2.1 Step 1: w is free

By our definitions, s0 may be rotated directly to sg without hitting any other
segment of the chain. Because the goal position sg is not intersected, the chain
remains simple even after the rotation has been completed. Therefore, the link
s0 can be straightened in one move.

Note that this is the generic situation, in that for a “random” chain, e.g.,
one whose vertex coordinates are chosen randomly from a 4D box, each link can
be straightened with Step 1 of the algorithm with probability 1. Steps 2 and 3
handle “degenerate” cases. We exploit this in our implementation (Section 2.3).

2.2.2 Step 2: w is obstructed (but sg is not intersected)

Detecting obstructions. When w is obstructed, we again rely on construc-
tion of an obstruction diagram. First we describe the space in which the ob-
struction diagram is embedded.

Consider the space of possible directions from which s0 might approach sg.
In 3D, this set of unit vectors forms a 1-sphere, a circle, which can be viewed
as orthogonal to sg and centered at vg; see Fig. 5a. Similarly, in 4D, the set of
possible approach directions toward sg forms a unit 2-sphere S, which again we
center on vg. Every point on this sphere represents a direction of approach to
sg; see Fig. 5b.

v1

vg

wg
vg

(a) (b)

w

s'i

si

Π S

1∆i

Figure 5: (a) Directions approaching the goal position in 3D; (b) S is a 2-sphere
in R

4.

The obstruction diagram Ob(sg) is the set of vectors w representing ob-
structed goal directions for sg.

Lemma 9 If the goal sg is not intersected, the obstruction diagram Ob(sg)
consists of at most n arcs on S.
Proof: Take an arbitrary segment si of the chain, and “project” it to s′i in
the 3-flat Π ⊃ S orthogonal to sg; i.e., s′i = 1△i ∩ Π. See Fig. 5a for the 3D

11

analog. We first claim that the set of directions w obstructed by s′i is identical
to those obstructed by si. Next we determine this set of directions. Every
vector w determined by a point on S and its center vg, is orthogonal to sg by
our choice of Π. So the set of w obstructed by s′i is just those w determined by
the intersection of g△(s′i) with S. By Lemma 3, this is at most one arc on the
sphere. See Fig. 6. 2

s'i

w

vg

S

Figure 6: In 4D, si projects to s′i in the 3-flat containing S, and produces an arc
of the obstruction diagram determined by the intersection of the triangle cone

g△(s′i) with S.

Detection of obstruction therefore reduces to deciding if w lies on one or
more arcs of an arrangement of circular arcs on a 2-sphere S, which can be
accomplished in O(n) time and space as in Lemma 8.

Skirting obstructions. Our next task is to move s0 when w is obstructed
so that its new goal direction is free. This task is similar to that handled in
Lemma 8—stepping off the arcs meeting at w—with one additional constraint:
the move must maintain the simplicity of the chain. Note that Ob(sg) does
not record chain simplicity, but rather records free goal directions. So we need
to find a ∆w that will move w to be free, while simultaneously maintaining
simplicity during the motion of s0.

Lemma 10 If w is obstructed, s0 can be moved, maintaining simplicity through-
out, so that its new goal direction w′ = w + ∆w is unobstructed. ∆w may be
computed in O(n) time and space.
Proof: Because the chain is initially simple, there must exist a β > 0 such
that rotation of s0 about v1 by an angle less than β leaves the chain simple.
This β can be computed by finding the smallest distance d from s0 to any other

12

segment, and using the angle of a cone centered at s0 of radius d/2. Now ∆w
is selected just as in Lemma 8, but subject to this angle constraint. 2

Note that because we have based our analysis on a fixed sg, moving s0

does not alter the obstruction diagram, which records obstructed directions of
approach to sg.

2.2.3 Algorithm 1b Complexity

The algorithm straightens one joint in at most three moves: one to move v1

so the goal is not intersected (Step 3), one to move v0 so that the goal is not
obstructed (Step 2), and one to rotate directly to the goal (Step 1). The total
number of moves used by the algorithm is then at most 3n = O(n). For each
of the n iterations, Lemma 10 shows that the computations can be performed
in linear time and space. This then establishes the total time complexity of
O(n2) claimed in Theorem 1. Because each move is performed independently,
the obstruction diagram arcs may be discarded after each iteration. Thus the
space requirements remain at O(n).

2.3 Implementation

We have implemented Algorithm 1b for chains in “general position” in C++.
The program accepts a chain as input, and first checks if it is simple. If it is,
the straightening process starts; otherwise the program exits. The program then
straightens the chain link-by-link using Step 1, one move per link. It also detects
whether the goal is obstructed (Step 2) or intersected (Step 3) by solving sets
of linear equations, but in those cases it simply halts; we have not implemented
the obstruction diagrams, or avoiding obstructions. For a chain whose vertex
coordinates are chosen randomly, the program straightens it with probability 1,
for then the degenerate cases handled by Steps 2 and 3 (when a point, w or v1,
hits an arc on a 2-sphere, e.g., Fig. 6) are unlikely to occur. The output of the
program is a set of Geomview or Postscript files that animate the straightening
process. Fig. 7 shows output for a chain whose n = 100 vertices were chosen
randomly and uniformly in [0, 1]4.

3 Straightening Trees in 4D

It will come as no surprise that essentially the same algorithm as just described
can straighten trees in 4D. The reason is that each segment was considered
a fixed obstruction in the chain straightening algorithm, and whether those
segments form a chain or a tree is largely irrelevant, as long as there is a free
end. There is one spot at which the difference between a chain and a tree does
matter, however: freeing up an intersected goal position. We concentrate on
this difference in the description below.

13

(b)

(a)

0 25 50 75 99

Figure 7: Snapshots of the algorithm straightening a chain of n = 100 vertices,
initially (0), and after 25, 50, 75, and all 99 joints have been straightened (left
to right). (a) Scale approx. 50:1; the entire chain is visible in each frame.
(b) Scale approx. 1:1; the straightened tail is “off-screen.” (The apparent link
length changes are an artifact of the orthographic projection of the 4D chain
down to 2D.)

Algorithm 2: Trees
repeat until straightened do

1: Identify a node x with chain descendants C.
2: Straighten each chain in C, forming C′.
3: if rg is intersected then

Construct obstruction diagram Ob(x) on 2-sphere.
Move x so that rg not intersected.

4: Rotate each segment in C′ to rg and coalesce.

Algorithm 2 chooses a leaf z of the given tree T as root, and then identifies
some node x all of whose descendant subtrees are chains (Step 1). Call this
set C; see Fig. 8a. Each chain in C can be straightened one at a time via
Algorithm 1, leaving a set of straightened chains, or segments, C′ (Step 2).
Define the goal ray to be the extension of the parent segment yx incident to x;
see Fig. 8b. If rg is not intersected by any segment of T \C′, then each segment
in C′ can be rotated to rg, each lying on top of one another (Step 4). We can
view them as coalesced into a single link, reducing the degree of x to 2. The
process then repeats.

If, however, rg is intersected (Step 3), we need to move x so that the goal
ray becomes free. There are several ways to achieve this; we choose to parallel
Step 2 of Algorithm 1a. Let (v0, v1, . . . , vm) be one of the chains of C′, with
vm adjacent to x. We distinguish this chain from the others in C′; call the
set of others C′

1. Let the 2-link chain (v0, x, y) play the role of (v0, v1, v2) in
Algorithm 1a. In that algorithm we argued that Ob(v1) is a set of arcs and
points on a 2-sphere (Fig. 3). Here will will reach the same conclusion for

14

v0

v1

v2

z

x

v0

v1v2

z

v3

x

rg

(a)

(b)

v3

y

y

C'1

Figure 8: (a) Tree T rooted at z; (b) After straightening chains C incident
to x; C′

1 is the set of straightened chains excluding one distinguished chain
(v0, v1, . . .).

15

Ob(x) on the 2-sphere S of positions for x.
The only difference is that in the current situation, the star of segments C′

1 is
attached to x, and we need to augment Ob(x) to reflect its obstructions. We opt
to translate C′

1 as x moves; this gives rise to two sets of constraints: (1) those
caused by a segment in C′

1 intersecting a segment of T ′ = T \ {C′

1 ∪ xy ∪ xv0};
(2) those caused by xy or xv0 intersecting a segment in C′

1. For the first, the
locus of positions of x that cause some s ∈ C′

1 to intersect some si ∈ T ′ is a
parallelogram, congruent to the Minkowski sum s⊕ si. Analogous to Lemma 3,
it is easy to see that this holds:

Lemma 11 The intersection of a parallelogram with a (d−1)-sphere S in R
d

consists of at most four connected components, each of which is an arc or a
point.

2

Thus the constraints (1) add O(n) arcs or points to Ob(x). Constraints (2)
can be seen to consist of O(n) points on S: translating the star C′

1 to y de-
termines the rays that xy might align with to cause xy to intersect C′

1; and
similarly translating C′

1 to v0 determines rays for intersection with xv0. The
two placements of C′

1 therefore generate O(n) additional point obstructions.
With Ob(x) again a set of O(n) arcs and points on a 2-sphere, Lemmas 7

and 8 hold, leading to the same time complexities clamed for Algorithm 1, and
establishing Theorem 2.

4 Convexifying Closed Chains in 4D

Our algorithm for convexifying closed chains employs the line tracking motions
introduced in [LW95]. Indeed our algorithm mimics theirs in that we repeatedly
apply line tracking motions, each of which straightens at least one joint, until
a triangle is obtained (which is a planar convex polygon, as desired). Although
the overall design of our algorithm is identical, the details are quite different,
for there is a major difference with [LW95]: They permitted self-intersections
of the chain, whereas we do not. This greatly complicates our task.4

Let (v0, v1, v2, v3, v4) be five consecutive vertices of a closed polygonal chain.
We allow v0 = v4. A line tracking motion of v2 moves v2 along some line L in
space, while keeping both v0 and v4 fixed. As long as the angle at joints v1 and
v3 (the elbows) are neither π (straight) nor 0 (folded), such a motion is possible.
Neither angle can be 0 because that would violate the simplicity of the chain.
Straightening one joint is precisely our goal, so we assume that neither joint is
straight; and therefore a line tracking motion is possible.

We will choose L and a direction along it so that the movement increases
the distance from v2 to both v0 and v4 simultaneously. This necessarily opens
both elbow angles. The motion stops when one elbow straightens. The only

4 An alternative convexifying algorithm, again permitting self-intersections, is described
in [Sal73]. Sallee accomplishes the same result by a different basic motion, involving four
consecutive vertices rather than the five used in [LW95].

16

issue is whether this can be done while maintaining simplicity. Our aim is to
prove this theorem:

Theorem 6 For a simple 4D chain (v0, . . . , v4), there exists a line tracking mo-
tion of v2 that straightens either v1 or v3 (or both) while maintaining simplicity
of the chain throughout the motion.

A high-level view of the algorithm is as follows:

Algorithm 3: Closed Chains
repeat until chain is a triangle do

Compute a line L along which to move v2.
Compute free paths π1 and π3 for v1 and v3.
Move v2 along L, v1 along π1, and v2 along π2.
Freeze the straightened joint v1 or v3.

4.1 Choosing L

To fix L, the ray along which v2 moves, we choose a point q ∈ R
4 different from

v2, and let L be the ray from v2 that contains v2q. We will choose q so that it
is itself the point where one of the two joints v1 or v3 becomes straight while
moving v2 along L.

Lemma 12 A point q determining an appropriate L may always be found, and
in time and space O(n4).
Proof: We choose q so that it satisfies these conditions:

1. Moving v2 along L increases the distance from v2 to v0 and to v4.

2. Either v1 or v3 becomes straight, i.e., |qv0| = |v0v1| + |v1v2| = r0, or
|qv4| = |v2v3| + |v3v4| = r4

3. (a) If |qv0| = r0, then qv0 does not intersect any other segment of the
chain than those to which it is incident.

(b) If |qv4| = r4, then qv4 does not intersect any other segment of the
chain than those to which it is incident.

4. v2q does not intersect a segment si, i > 4.

Condition 3 ensures that our “goal” is not itself intersected, in the sense used
in Section 2.

Let Ri be the set of points (the “region”) of R
4 that satisfy Condition i

above. R1 is the intersection of two closed half-spaces containing v2, orthogonal
to v0v2 and v2v4 respectively. Note that v2 ∈ R1. If v0v2 and v2v4 lie on the
same line, R1 degenerates to a 3-flat orthogonal to that line; otherwise it is a
4-dimensional set.5 See Fig. 9 for a lower dimensional analog of the situation.

5 Although we could remove this possible degeneracy by moving v2 in a neighborhood
(while preserving simplicity) to break the collinearity, this is not necessary, as the proof goes
through regardless.

17

v1

v3
v0

v2v2

v4

q

S0

S4

L

R1

Figure 9: Choosing q ∈ L. R1 ∩ R2 = R1 ∩ (S0 ∪ S4).

The set of points R2 = S0∪S4 in 4D that satisfy Condition 2 is the union of
two 3-spheres, S0 and S4, centered at v0 and v4 and of radius r0 and r4, respec-
tively. Because |v0v2| < r0, v2 is inside the 4-ball bounded by S0. Therefore,
R1 ∩ S0 6= ∅. Similarly, R1R

4 \ ∩S4 6= ∅. So R1 ∩ R2 6= ∅. The dimensionality
of this set depends on whether or not {v0, v2, v4} are collinear: if they are, the
3-spheres are intersected by a 3-flat producing 2-spheres; if they are not, the
3-spheres are intersected by a 4-dimensional wedge, producing 3-dimensional
regions of the 3-spheres.

Consider Condition 3a; clearly 3b is analogous. We want all those points q
such that qv0 does not intersect any other link of the chain. Clearly the points
forbidden by segment si lie in the triangle cone 0△i = △v0

(vi, vi+1), just as
in the proof of Lemma 7. Intersecting 0△i for all i with R1 ∩ R2 marks the
set of points that must be avoided in our choice of q: R3 ⊃ R

4 \ ⋃

i 0△i. It
is easiest to concentrate on the intersection of 0△i with the spheres in R2. By
Lemma 3, we know this intersection is at most two arcs or points, independent
of the dimension of the spheres. So whether or not {v0, v2, v4} are collinear,
the intersection produces O(n) arcs or points. Similarly, Condition 4 leads to
R4 ⊃ R

4 \ ⋃

i>4 2△i, for v2q can intersect si only if q lies in 2△i. Again, O(n)
arcs or points need be avoided in R1 ∩ R2. No union of arcs and points can
cover the set R1 ∩R2, which is either 2- or 3-dimensional. Thus

⋂

i Ri 6= ∅. We
need only choose a q in this set.

There are a variety of ways to choose such a q algorithmically. A naive
method is to first construct an arrangement of 2-flats in R

4 each containing a
triangle 0△i or 2△i. This computation could be performed in O(n4) time and
space [ESS93]. Intersecting this arrangement with the halfspaces delimiting R1

and the 3-spheres S0 and S4 leave us cells bound by algebraic surfaces inside
⋂

i Ri. The centroid of any such cell can be selected as q. 2

18

4.2 Line Tracking in 3D

We start by thinking about the analogous situation in 3D. This will both set
notation, and ground intuition by showing why Theorem 6 does not hold in 3D.

4.2.1 Topology of Configuration Space in 3D

Let R[0,1) be the interval [0, 1) on the real line, open at 1. We will parametrize
the location of v2 along L by t ∈ [0, 1), with t = 0 the start, and t = 1 when
v2 reaches the q of Lemma 12, the first time at which a joint, straightens. Let
this joint be v1 without loss of generality. Let C′ be the configuration space of
the four-link system in isolation, permitting intersections between the links, the
prime to remind us that t = 1 has been excluded. We claim that

C′ = S
1 × S

1 × R[0,1). (8)

This can be seen as follows. Fix some t so that v2 is fixed. Then each of v1 and
v3 is free to rotate (independently) on a circle in R

3 centered on the axis v0v2

and v2v4 respectively. As t varies from 0 to 1, these circles move in space, and
grow and shrink in radius; see Fig. 10. At t = 1 the v1 circle shrinks to a point.

v1

v0

v2
L

Figure 10: In 3D, the circle on which v1 may lie moves in space as v2 slides up
L.

But for t ∈ [0, 1), both circles retain a positive radius. Thus the configuration
space C has the topology of S

1 × S
1 for each t, and the claim follows.

4.2.2 Obstruction Diagram in 3D

As in Section 2, we incorporate the obstacles representing the other links via
an “obstruction diagram.” We start by ignoring the four moving links as ob-
structions, and only consider the remaining, fixed links of the polygonal chain
as obstacles. We develop the obstruction diagram first for fixed t, so that the
relevant configuration space is S

1 × S
1. Because we are ignoring the moving

links as obstructions, movement on the two circles is independent, so it suffices

19

to determine the obstruction diagram Ob(v1) on one 1-sphere/circle S1, that
for v1. The following lemma will be key in 4D:

Lemma 13 In 3D, if (v2 − v0) · (v1 − v0) 6= 0 and (v2 − v0) · (v1 − v2) 6= 0, then
a single segment contributes at most four points to Ob(v1). Otherwise, if either
dot product is zero, a segment could obstruct a finite-length arc of the S1 circle
for v1.
Proof: We only sketch a proof, leaving details for the 4D case considered below.
Spinning v1 along its circle of freedom while maintaining v0 and v2 fixed traces
out a “spindle” shape, which can be viewed as the union of two cones. A segment
s that does not lie along a line through either v0 or v2 can intersect each cone
in at most two points, and so intersect the spindle in at most four points. See
Fig. 11. These four segment-cone intersection points correspond one-to-one with

v2

sv1

v0

s

Figure 11: One segment s can con-
tribute four points to Ob(v1).

v1

v2

v0

s

Figure 12: (v2−v0)·(v1−v2) = 0 and
segment s (which lies in the plane of
the circle) contributes an arc to the
obstruction diagram Ob(v1).

four v1 positions on S1 at which there is an intersection between the 2-link chain
(v0, v1, v2) and s.

If the segment s lies in the surface of the cone, then it contributes just one
point to the diagram, corresponding to the angle of spin that aligns one of the
two links with the obstacle segment.

Finally, if either of the two links v0v1 or v1v2 is orthogonal to the axis
of the spindle, i.e., either dot product is zero, then a segment obstacle could
obstruct the entire circle, for one of the cones is then degenerately flat. As
Fig. 12 illustrates, here a segment might obstruct a range of rotations of v1−v2,
producing an arc in Ob(v1). 2

4.2.3 Disconnected Free Space in 3D

Let v1(t) represent the position of v1 on its circle S1 at a particular time t.
The goal is for the links (v0, v1, v2) to avoid all obstacles, which means that
v1(t) should avoid points of the obstruction diagram. If we ignore for now the
orthogonality case, then we have the situation that a finite set of links produce an
obstruction diagram consisting of a finite set of points on S1. As t moves, these
points wander around the circle, disappear, enter, join, or split. The moving

20

links, previously ignored, just add a few more points to the obstruction diagram,
moving in a different manner. The diagram for the configuration space for v1

then looks like arcs on the tube-like S × R[0,1). It is clear that it is possible for
the point v1(t) to be “captured” between two points of the obstruction diagram
which move together and squeeze v1(t) into a collision. See Fig. 13. In this case,
the free space for the point v1 is not connected from p1(0) to p1(1). And indeed

v1(t)

R[0,1)

S1

0

1

Figure 13: Point v1(t) is “captured” by two obstacle points in configuration
space, the tube-like surface.

it is easy to “cage in” the moving links by the fixed links so that no straightening
is possible. Our next task is to show that such caging-in is impossible in 4D.

4.3 Line Tracking in 4D

4.3.1 Topology of Configuration Space in 4D

Turning now to 4D, exactly analogous to the situation in 3D, an elbow at the
join of two links has a space of possible motions in 4D that is topologically S

2,
for it is the intersection of two 3-spheres. Thus the configuration space C′ of our
four-link chain for t ∈ [0, 1), ignoring self-intersections, is

C′ = S
2 × S

2 × R[0,1) . (9)

At t = 1 at least one of the 2-spheres shrinks to a point.

4.3.2 Obstruction Diagram in 4D

As in 3D, we analyze the obstruction diagram on one 2-sphere S1, that for v1,
at a fixed value of t: Ob(v1). Let v1(t) represent the position of v1 on its sphere
S1 at time t. We seek the set of points Ob(v1) for which the links (v0, v1, v2)
intersect some other segment of the chain, s4, s5, . . . , sn. Just as in 3D, Ob(v1)

21

is (in nondegenerate situations) a finite set of points. This claim relies on how
a line may intersect a cone.

Define a (d−1)-cone C(a, b, θ), for apex point a, axis point b, and cone angle
θ ∈ [0, π/2], to be the set of points p ∈ R

d that form an angle θ with respect to
the axis, i.e., which satisfy:

(p − a) · (b − a) = |p − a||b − a| cos θ . (10)

For the extreme values of θ, C(a, b, 0) is a ray from a through b, and C(a, b, π/2)
is a (d−1)-flat containing a and orthogonal to ab. Note that a 1-cone is not the
triangle cone from Section 2.1.1; rather a 1-cone is the union of two rays from
a. In 3D, C(a, b, θ) is the surface of a right circular cone whose axis is the ray
from a through b, and which form the angle θ with the axis at a (cf. Fig. 11). Its
intersection with a plane orthogonal to ab is a circle. In 4D, C(a, b, θ) is a “right
spherical cone,” whose intersection with a 3-flat orthogonal to ab is a 2-sphere.
Note that it is no restriction to insist that θ ∈ [0, π/2], for we can ensure this
for θ > π/2 by selecting an axis point b′ for the cone to be on the other side of
the apex a, on the line containing ab, thereby “reflecting” θ to π − θ.

Lemma 14 The intersection of the (d−1)-cone C(a, b, θ), θ 6= π/2, with a line,
ray, or segment whose containing line does not include the apex a, is at most
two points: two points, one point, or empty.

This claim can be seen intuitively as follows. Let C be the cone and s a segment
in R

d. If s is contained in a (d−1)-flat Π orthogonal to ab, then because Π ∩ C
is a sphere, the result follows from Lemma 2. Otherwise s is contained in a
flat whose intersection with C is an ellipsoid, and the result follows because an
ellipsoid is affinely equivalent to a sphere [Sam88, p. 95].

Proof: Let |ab| = 1 without loss of generality. Translate and rotate C so
that a = (0, 0, . . . , 0) and b = (1, 0, 0, 0, . . . , 0). For a point p = (x1, . . . , xd),
Eq. (10) reduces to

p · b = |p| cos θ (11)

(x1, . . . , xd) · (1, 0, 0, 0, . . . , 0) =
√

x2
1 + · · · + x2

d cos θ (12)

x2
1 = (x2

1 + · · · + x2
d) cos2 θ (13)

Represent the point p via the parameter t:

p = (α1 + β1t, . . . , αd + βdt) . (14)

Substitution of this into Eq. (13) yields a quadratic equation in t, which has at
most two roots.

We now examine the degenerate solutions. Because we assumed that θ 6=
π/2, cos θ 6= 0. Thus the righthand side of Eq. (13) can only be zero when
x2

1 + · · ·+ x2
d = 0, i.e., when p = (0, 0, . . . , 0) is the apex a. This corresponds to

a line through a, excluded by our assumptions. 2

22

Lemma 15 In 4D, if (v2 − v0) · (v1 − v0) 6= 0 and (v2 − v0) · (v1 − v2) 6= 0, then
a single segment s contributes at most four points to Ob(v1).
Proof: Moving v1 sweeps out two finite cones, which are truncations of the
infinite cones C(v0, v2, θ0) and C(v2, v0, θ2), with

(v2 − v0) · (v1 − v0) = |v2 − v0||v1 − v0| cos θ0 (15)

(v2 − v0) · (v1 − v2) = |v2 − v0||v1 − v2| cos θ2 (16)

By the preconditions of the lemma, we have θj 6= π/2, j = 0, 2, so we may
assume θj ∈ [0, π/2) by the reflection maneuver suggested previously. Consider
two cases:

1. The line containing s does not pass through either cone apex, v0 or v2.
The conditions of Lemma 14 are satisfied, establishing that s intersects
the two cones in at most four points. Each of these points fixes a position
of v1 corresponding to an obstruction, and so contributes this point to
Ob(v1).

2. The line H containing s passes through v0 (the case through v2 is exactly
analogous and will not be treated separately). Then it may be that s ∩
C(v0, v2, θ0) is a subsegment of s. This is because the vector p− v0 makes
the same angle with v2 − v0 for all p ∈ s (cf. Eq. (10)). In this case, s
obstructs the unique position of v1 that places it on H , and so contributes
just one point to Ob(v1). Together with the at most two points from the
other cone, s generates at most three points of Ob(v1).

2

The case excluded by the precondition of Lemma 15 refers to the situation
in which one cone is degenerately flat, as previously illustrated in Fig. 12. We
now analyze this situation in detail.

Lemma 16 If (v2 − v0) · (v1 − v0) = 0, then Ob(v1) is a finite set of points and
arcs on S1 (the 2-sphere of v1 positions).
Proof: In this case θ0 = π/2 from Eq. (15), and the infinite cone C(v0, v2, π/2)
degenerates to the 3-flat orthogonal to the axis v0v2 and including the apex v0.
The finite cone swept out by the link s0 = v0v1 is a ball B0 of radius ℓ0 centered
at v0. In the 3D situation, B0 is a disk (cf. Fig. 12); in 4D, it is a solid sphere
whose boundary is a 2-sphere S1 representing the possible positions for v1.

The obstructed positions on S1 are those for which s0 intersects some seg-
ment si. Consider two possibilities:

1. si does not lie in the same 3-flat of R
4 as S1. Then si intersects B0 in at

most one point p (because it can intersect the flat in at most one point),
and then only when s0 passes through p do we have an obstruction. Thus
si contributes one point to Ob(v1).

2. si is in the same 3-flat as S1. Now we have a situation exactly analogous
to that shown in Fig. 6: the obstruction is the intersection of the triangle
cone 0△i with S1. Lemma 3 then establishes that s adds at most two arcs
or points to Ob(v1).

23

2

Lemma 17 The condition (v2 − v0) · (v1 − v0) = 0 can hold at most one value
of t ∈ [0, 1] during the movement of v2 along L.
Proof: This follows immediately from our choice of L, which guarantees that
the distance |v0v2| increases, and so the angle at v1 opens. This angle can
therefore pass through π/2 at most once. See Fig. 14. 2

v1

v2

v0

L

Figure 14: The special condition (v2 − v0) · (v1 − v0) = 0 holds at most once.

4.3.3 Connected Free Space in 4D

Again let v1(t) represent the position of v1 on its 2-sphere S1 of possible po-
sitions. We first describe the free space for the motion of the 2-link chain
(v0, v1, v2), avoiding the fixed links s4, s5, . . . , sn. It is a subset of S

2 × R[0,1).
For each t ∈ [0, 1), we know from Lemma 15 that Ob(v1) is a set of points or
arcs; and from Lemma 17 we know Ob(v1) is a finite set of points, except for
at most one t, at which it is a set of points and arcs. Thus if v1(t) avoids these
obstructions, it avoids intersection with the remainder of the chain.

But now it should be clear that it is easy for v1(t) to “run away” from
the obstructions. Think of its sphere of possible positions growing and shrink-
ing with time t. v1(t) must avoid a set of points at any one time, and once
(cf. Lemma 17), a set of arcs. This is easily done: there is no way to “cage”
in v1(t) with these obstacles. Another view of this situation is that the config-
uration space S

2 × R[0,1) is 3-dimensional, and the obstructions Ob(v1(t)) for
t ∈ [0, 1) are 1- or 0-dimensional, and the removal of a 1D set cannot disconnect
a 3D set (cf. proof of Lemma 6).

The remainder of this subsection establishes this claim more formally. A
path in a topological space X is a continuous function γ : [0, 1] → X . A space
is path-connected if any two of its points can be joined by a path [Arm79]. We

24

first work with the space C′

1: the positions for v1, for t ∈ [0, 1). Later we will
add in t = 1, and positions for v3.

Lemma 18 The free space F ′

1 ⊂ C′

1 for v1 in the configuration space C′

1 =
S

2 × R[0,1) is path-connected.
Proof: It will help to view our configuration space as follows. The 2-sphere
S1 is represented by a flat two-dimensional sheet, and R[0,1) is represented as a
vertical axis. The result is a three-dimensional space, analogous to Fig. 13, that
could look as depicted in Fig. 15. The point obstacles Ob(v1) become paths
monotone with respect to the vertical t-axis. At one t = t1 we may have arc
obstacles as well. We need to show that v1(0) is connected by a path to v1(t

′),
for any t′ < 1. We proceed in two cases.

p1(0)

R[0,1)

p1

p1(1)

t0

t2

t1p2

p0

S1

Figure 15: The free space F1 for v1 is path-connected. π1 (dark) connects p1(0)
to p1(1). Ob(v1) includes points at a fixed t, forming curves (shaded) over time.
The shaded subspace at time t = t1 includes arcs in Ob(v1).

1. Ob(v1) contains only points for all t ∈ [0, 1). Let N be the maximum
number of points in Ob(v1) over all t; we know N ≤ 2n. A 2-sphere with
a finite number N points removed is path-connected. For each t, remove
N points from the corresponding S1(t): those in Ob(v1) at that t, and
extra distinct points to “pad out” to N . Any two spheres with the same
number of points removed are homeomorphic. Therefore F ′

1 is homeo-
morphic to S1(0)×R[0,1). Because each of those spaces is path-connected,
and the product of two path-connected spaces is path-connected, we have
established the claim.

25

2. Ob(v1) contains arcs at t = t1. The main idea here is to choose a point
p1 = v1(t1) that is unobstructed at time t = t1, and then connect from
v1(0) to p1, and from p1 to v1(t

′). It is clear, as we have shown in Case 1,
that the spaces F− = C/t∈[0,t1) and F+ = F/t∈(t1,1) are path connected.
We will prove that there exist points p0 ∈ F−, and p2 ∈ F+ such that p0

and p2 are connected by a path.

We will call a point p free if it does not belong to any obstruction diagram.
Let p1 ∈ S1(t1) be a free point on S1 at t. It is clear that such a point
exists, since the obstruction diagram is a finite set of arcs and points. It is
also clear that there exists a neighborhood U ⊂ F ′

1 of p1 all of whose points
are free. Choose p0 ∈ U , p0 ∈ S1(t0), t0 < t1 and p2 ∈ U , p2 ∈ S1(t2),
t1 < t2. See Fig. 15. Both points are free and can be connected by a path
in U to p1. But p0 ∈ F− and p2 ∈ F+, both path connected spaces. Thus
we may connect v1(0) to p0 to p1 to p2 to v1(t

′).
2

We now address the endpoint t = 1, extending C′

1 to C1 for t ∈ [0, 1]. As v2

approaches q on L, one of the spheres, that for v1 by our assumptions, shrinks
to zero radius. Thus Fig. 15 is not an accurate depiction near t = 1, for the
configuration space narrows to a point here.

Lemma 19 The free space F1 for v1 in the full configuration space C1 is path-
connected.
Proof: We have chosen q and L in Lemma 12 so that the t = 1 endpoint is
free in the sense that the straightened chain v0v1v2 does not intersect the fixed
portion of the chain. Thus there is a neighborhood U of t = 1 such that C1 is
devoid of all obstructions within that neighborhood. Choose t′ ∈ U and apply
Lemma 18 to yield a path from v1(0) to v1(t

′). Connect within U from v1(t
′)

to the endpoint v1(1). 2

Now we include v3 in the analysis.

Lemma 20 The free space F ⊂ C for both v1 and v3 in the configuration space
C for t ∈ [0, 1] is path-connected.
Proof: The key here is the independence of the motions of v1 and v3. Let π1

be a path for v1(t) through F1, whose existence is guaranteed by Lemmas 18
and 19. Now construct F3 as the possible positions v3(t) for v3, avoiding at
each time Ob(v3(t)), where this time the obstructions include not only the fixed
links s4, s5, . . . , sn, but also the two moving links s0 and s1, determined by π1.
If v3(t) avoids Ob(v3(t)) for each t, then all intersections are avoided: we do not
need to include the moving links in F1, because intersection is symmetric—if
the links s2 and s3 do not intersect s0 and s1, then s0 and s1 do not intersect
s2 and s3.

For a fixed t, the obstacles are fixed segments, and Ob(v3) is again a finite set
of points, or, for at most one t, a set of arcs: Lemmas 15 and 17 apply unchanged.
The independence of the motion of v3 from v1 permits us to treat the moving
segments s0 and s1 on par with the fixed segments: the only difference is that

26

their obstacle points move through C3 differently. Therefore a path π3 for v3(t)
may be found in F3 ⊂ C3. The two paths π1 and π3, together with the ray L
for v2, constitute a path for moving the 4-link chain (v0, v1, v2, v3, v4) through
C while maintaining simplicity. 2

This finally completes the proof of Theorem 6.

4.4 Motion Planning

We now know a path that avoids self-intersection exists, i.e., either the joint v1 or
v3 can be straightened. The next step is to compute such a path algorithmically.
We rely on general motion planning algorithms, as in Section 2.1.3.

Our “robot” consists of the four links (v0, v1, v2, v3, v4) moving in the 5-
dimensional configuration space C, Eq. (9). The subspace C0 that avoids self-
intersection between the four links is some semialgebraic subset of C, semial-
gebraic because the constraints on self-intersection may be written in Tarski
sentences (see, e.g., [Mis97]). The free configuration space F is composed of the
points of C0 that avoid the obstacles, which is again a semialgebraic set. Canny’s
Roadmap algorithm achieves a time and space complexity of O(n5 log n), where
n is the number of obstacles, because in our case, the configuration space has
k = 5 dimensions. The algorithm produces a piecewise algebraic path through
F , of O(n5) pieces. Each piece constitutes a constant number of moves, and so
each joint straightening can be accomplished in O(n5) moves. Repeating the
planning and straightening n times leads to O(n6) moves in O(n6 log n) time.
Because choosing L times requires at most O(n4) time by Lemma 12, the time
complexity is dominated by the path planning, thereby establishing the bounds
claimed in Theorem 3.

In the same way that Algorithm 1b improved on Algorithm 1a by avoid-
ing motion planning, it is likely Algorithm 3 could be improved by an ad hoc
algorithm.

5 Higher Dimensions

We have already shown that every simple open chain or tree in 4D can be
straightened, and every closed chain convexified. Our final task is to prove that
these results hold for higher dimensions, using the results from 4D.

For an open chain, we straighten four links at a time and then repeat the
procedure until the chain is straight. If the chain or tree contains fewer than
four links, then it spans at most a k-flat for k ≤ 3, and it can be included in R

4.
For a closed chain, our algorithm also moves four links at a time. Four links
determine at most a k-flat H for k ≤ 4 which means that it can be included in
a 4-flat in R

d, d ≥ 4.
We have already shown that these four links, for both all types of chains,

can be straightened in 4D; therefore, they can be straightened in this 4-flat
H ⊂ R

d. We only have to worry about the pieces of the remainder of the chain
that intersect H . But since we are dealing with segments, their intersection with

27

H is either a point or a segment. But these are the kind of obstructions we have
proven that can be avoided in R

4. Therefore, the straightening of these four
links can be completed in H , and therefore in R

d, while maintaining rigidity
and simplicity.

The complexity for the algorithms in R
d, d ≥ 4, is the same as for the

algorithms in 4D, for all computations are performed in 4-flats. This proves
Theorem 4.

Acknowledgements. We thank Erik Demaine and Godfried Toussaint for helpful

comments, and Lee Rudolph for help with topology. We are grateful for the perceptive

comments of the referees, which not only led to increased clarity throughout, but also

improved the complexities of Algorithms 1a and 1b.

References

[Ada94] C. C. Adams. The Knot Book. W. H. Freeman, New York, 1994.

[Arm79] M. A. Armstrong. Basic Topology. McGraw-Hill, London, UK, 1979.

[BDD+98] T. Biedl, E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, M. Over-
mars, S. Robbins, I. Streinu, G. T. Toussaint, and S. Whitesides.
On reconfiguring tree linkages: Trees can lock. In Proc. 10th Canad.
Conf. Comput. Geom., pages 4–5, 1998. Full version: LANL arXive
cs.CG/9910024; to appear in Discrete Math.

[BDD+99] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw,
J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, G. T. Toussaint,
and S. Whitesides. Locked and unlocked polygonal chains in 3D. In
Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 866–867,
January 1999. Full version: LANL arXive cs.CG/9910009.

[CDR00] R. Connelly, E. D. Demaine, and G. Rote. Straightening polyg-
onal arcs and convexifying polygonal cycles. In Proc. 41st Annu.
IEEE Sympos. Found. Comput. Sci., pages 432–442. IEEE, Novem-
ber 2000.

[CF65] R. H. Crowell and R. H. Fox. Introduction to Knot Theory. Blaisdell
Publishing Co., New York, NY, 1965.

[CJ98] J. Cantarella and H. Johnston. Nontrivial embeddings of polygonal
intervals and unknots in 3-space. J. Knot Theory Ramifications,
7(8):1027–1039, 1998.

[CO99] R. Cocan and J. O’Rourke. Polygonal chains cannot lock in 4D. In
Proc. 11th Canad. Conf. Comput. Geom., pages 5–8, 1999.

[Coc99] R. Cocan. Polygonal chains cannot lock in 4D. Undergraduate thesis,
Smith College, 1999.

28

[EGP+92] H. Edelsbrunner, Leonidas J. Guibas, J. Pach, R. Pollack, R. Seidel,
and M. Sharir. Arrangements of curves in the plane: Topology,
combinatorics, and algorithms. Theoret. Comput. Sci., 92:319–336,
1992.

[ESS93] H. Edelsbrunner, R. Seidel, and M. Sharir. On the zone theorem for
hyperplane arrangements. SIAM J. Comput., 22(2):418–429, 1993.

[Hal97] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chap-
ter 21, pages 389–412. CRC Press LLC, Boca Raton, FL, 1997.

[HY61] J. G. Hocking and G. S. Young. Topology. Addison-Wesley, Reading,
MA, 1961.

[LW95] W. J. Lenhart and S. H. Whitesides. Reconfiguring closed polygonal
chains in Euclidean d-space. Discrete Comput. Geom., 13:123–140,
1995.

[Mis97] B. Mishra. Computational real algebraic geometry. In J. E. Good-
man and J. O’Rourke, editors, Handbook of Discrete and Computa-
tional Geometry, chapter 29, pages 537–558. CRC Press LLC, Boca
Raton, FL, 1997.

[Sal73] G. T. Sallee. Stretching chords of space curves. Geometriae Dedicata,
2:311–315, 1973.

[Sam88] P. Samuel. Projective Geometry. Springer-Verlag, New York, 1988.

[Sha97] M. Sharir. Algorithmic motion planning. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Ge-
ometry, chapter 40, pages 733–754. CRC Press LLC, Boca Raton,
FL, 1997.

29

	Smith ScholarWorks
	11-2001

	Polygonal Chains Cannot Lock in 4D
	Roxana Cocan
	Joseph O'Rourke
	Recommended Citation

	arXiv:cs/9908005v3 [cs.CG] 20 Feb 2001

