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Computational Geometry Column 35

Joseph O’Rourke∗

Abstract

The subquadratic algorithm of Kapoor for finding shortest paths on a polyhedron is described.

A natural shortest paths problem with many applications is: Given two points s and t on the surface
of a polyhedron of n vertices, find a shortest path on the surface from s to t. This type of within-surface
shortest path is often called a geodesic shortest path, in contrast to a Euclidean shortest path, which may
leave the 2-manifold and fly through 3-space. Whereas finding a Euclidean shortest path is NP-hard [CR87],
the geodesic shortest path may be found in polynomial time. After an early O(n5) algorithm [OSB85],
an O(n2 log n) algorithm was developed that used a technique the authors dubbed the continuous Dijskstra

method [MMP87]. This simulates the continuous propagation of a wavefront of points equidistant from s

across the surface, updating the wavefront at discrete events. It was another decade before this result was
improved, by a clever O(n2) algorithm that does not track the wavefront [CH96]. This latter algorithm is
simple enough to invite implementations, and several have appeared. Fig. 1 shows an example of using one
implementation to find the shortest paths from s to each vertex of a convex polyhedron.

(a) (b)
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Figure 1: Two views of the shortest paths from a source point s to all n = 100 vertices of a convex polyhe-
dron [OX96]; s is obscured in the “backside view” (b).

Although other geometric shortest path problems saw the breaking of the quadratic barrier (see [Mit97]),
paths on polyhedra resisted. One impediment is evident from Fig. 1: even on a convex polyhedron, there can
be Ω(n2) crossings between polyhedron edges and paths to the vertices. So any algorithm that maintains these
paths and treats edge-path crossings as events will be quadratic in the worst case. The continuous Dijskstra
paradigm faces a similar dilemma: Examples exist for which there are Ω(n2) wavefront arc-edge crossings.
These obstacles have recently been surmounted by a new algorithm by Sanjiv Kapoor that achieves O(n log2

n)
time complexity [Kap99].

Kapoor’s algorithm follows the wavefront propagation method, and is surprisingly similar in overall struc-
ture to the original continuous Dijskstra algorithm [MMP87].

The algorithm maintains two primary geometric objects throughout the processing: the wavefront itself,
W , which is a sequence of circular arcs, each centered on either s or a vertex of the polyhedron (where paths
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may turn on nonconvex polyhedra); and a collection B of boundary edges, edges of the polyhedron yet to be
crossed by the wavefront. Both of these have size O(n). Elements of W and elements of B are related and
grouped by a nearest neighbor relation: e ∈ B is associated with arc a ∈ W if a is closer to e than to any other
arc in W . Boundary edges associated with one arc are grouped into a boundary section, and arcs associated
with one boundary edge are grouped into a wavefront section. It is this grouping that permits avoiding the
quadratic number of arc-edge crossing events. The number of wavefront section-edge events is only O(n).

There remains another quadratic quagmire to be skirted: Identifying the next event requires computing
the distance from an edge to a wavefront potentially composed of n arcs. Kapoor handles this by building
a hierarchical convex hull structure for both the wavefront sections and the boundary sections. Subhulls
are connected by tangent bridges; internal nodes store an “alignment angle” that represents the unfolding
relationship between sibling hulls. These structures permit computing the distance between a W -section and
a B-section in (essentially) logarithmic time. Updating the data structures consumes O(log2

n) amortized
time per event, which leads to the final O(n log2

n) time complexity.
The details are formidable, and implementation will be a challenge. But the many applications and the

significant theoretical improvement suggest implementations will follow eventually.
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