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Abstract

Estimating multiple sequence alignments (MSAs) and inferring phylogenies are essential for many aspects of comparative
biology. Yet, many bioinformatics tools for such analyses have focused on specific clades, with greatest attention paid to
plants, animals, and fungi. The rapid increase in high-throughput sequencing (HTS) data from diverse lineages now
provides opportunities to estimate evolutionary relationships and gene family evolution across the eukaryotic tree of life.
At the same time, these types of data are known to be error-prone (e.g., substitutions, contamination). To address these
opportunities and challenges, we have refined a phylogenomic pipeline, now named PhyloToL, to allow easy incorpo-
ration of data from HTS studies, to automate production of both MSAs and gene trees, and to identify and remove
contaminants. PhyloToL is designed for phylogenomic analyses of diverse lineages across the tree of life (i.e., at scales of
>100 My). We demonstrate the power of PhyloToL by assessing stop codon usage in Ciliophora, identifying contami-
nation in a taxon- and gene-rich database and exploring the evolutionary history of chromosomes in the kinetoplastid
parasite Trypanosoma brucei, the causative agent of African sleeping sickness. Benchmarking PhyloToL’s homology
assessment against that of OrthoMCL and a published paper on superfamilies of bacterial and eukaryotic organellar
outer membrane pore-forming proteins demonstrates the power of our approach for determining gene family mem-
bership and inferring gene trees. PhyloToL is highly flexible and allows users to easily explore HTS data, test hypotheses
about phylogeny and gene family evolution and combine outputs with third-party tools (e.g., PhyloChromoMap, iGTP).

Key words: phylogenomic pipeline, high-throughput sequencing data, contamination removal, genome evolution,
chromosome mapping.

Introduction
An important way to study biodiversity is through phyloge-
nomics, which uses the generation of multiple sequence align-
ments (MSAs), gene trees, and species trees (e.g., Katz and
Grant 2015; Hug et al. 2016). During the last two decades,
advances in DNA sequencing technology (e.g., 454, Illumina,
Nanopore, and PacBio) have led to the rapid accumulation of
data (transcriptomes and genomes) from diverse lineages
across the tree of life, greatly expanding the opportunities
for phylogenomic studies (e.g., Katz and Grant 2015; Burki
et al. 2016; Brown et al. 2018; Heiss et al. 2018). Such
approaches are powerful by using increasingly large molecular
data sets to reduce the discordance between gene and species
trees. Indeed, studies relying on a small number of genes are
often impacted by lateral gene transfer, gene duplication and
loss, and incomplete lineage sorting (e.g., Maddison 1997;
Tremblay-Savard and Swenson 2012; Mallo and Posada
2016). Large-scale phylogenomic analyses allow for the explo-
ration of deep evolutionary relationships (e.g., dos Reis et al.

2012; Wickett et al. 2014; Katz and Grant 2015; Hug et al.
2016), but such analyses require data-intensive computing
methods. As a result, numerous laboratories have developed
custom phylogenomic pipelines proposing different methods
to efficiently process and analyze massive gene and taxon
databases (Sanderson et al. 2008; Wu and Eisen 2008; Smith
et al. 2009; Kumar et al. 2015).

In general, phylogenomic pipelines are composed of three
steps: 1) collection of homologous gene data sets from vari-
ous input sources (e.g., whole genome sequencing, transcrip-
tome analyses, PCR-based studies), 2) production of MSAs,
and 3) generation of gene trees and sometimes a species tree.
Phylogenomic pipelines typically put more effort in the first
two steps (collecting homologous genes and MSA curation)
to ensure a more accurate tree inference. For instance, pipe-
lines such as PhyLoTA (e.g., Sanderson et al. 2008) and BIR
(Kumar et al. 2015) focus on the identification and collection
of homologous genes from public databases such as GenBank
(Benson et al. 2017). However, pipelines such as AMPHORA
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(Wu and Eisen 2008) and Mega-phylogeny (Smith et al. 2009)
focus on the construction and refinement of robust align-
ments rather than the collection of homologs. A recently
published tool, SUPERSMART (Antonelli et al. 2017), incor-
porates more efficient methods for data mining than
PhyLoTA (Sanderson et al. 2008). SUPERSMART includes
methods for tree inference using a multilocus coalescent
model, which benefits biogeographical analyses. Although
these pipelines incorporate sophisticated methods for data
mining, alignment, and tree inference, a major issue is that
they are optimized for either a relatively narrow taxonomic
sampling (e.g., plants) or relatively narrow sets of conserved
genes/gene markers.

A major problem for phylogenomic analyses using public
sequence data, including GenBank and EMBL (Baker et al.
2000), is the inherent difficulty in identifying and removing
annotation errors and contamination (e.g., data from food
sources, symbionts, or organelles). Additional errors are intro-
duced when nonprotein coding regions (e.g., pseudogenes,
promoters, and repeats) are inferred as open reading frames
(ORFs) by gene-prediction tools such as GENESCAN (Burge
and Karlin 1997), SNAP (Korf 2004), AUGUSTUS (Stanke and
Morgenstern 2005), and MAKER (Cantarel et al. 2008).
Similarly, some public databases are more prone to annota-
tion errors than others depending on how much effort they
invest in manual curation of public submissions. For instance,
data from GenBank NR, TrEMBL (Bairoch and Apweiler
2000), and KEGG (Kanehisa and Goto 2000) may have very
high rates of these kind of errors, whereas curated resources
like Gene Ontology (Ashburner et al. 2000) and SwissProt
(Bairoch and Apweiler 2000) are more likely to have low to
moderate rates of such errors (Schnoes et al. 2009). The mis-
identification errors in these databases often stem from prob-
lems surrounding accurate taxonomic identification of
sequences from high-throughput sequencing (HTS) data
sets, as contamination by other taxa can be frequent, partic-
ularly of organisms that cannot be cultured axenically
(Shrestha et al. 2013; Lusk 2014; Parks et al. 2015). Hence, a
crucial element of any phylogenomic pipeline that relies on
public databases is the ability to identify and exclude anno-
tation errors and contaminants from its analyses.

At the same time, the availability of curated databases and
third-party tools provide considerable power and efficiency
for phylogenomic analyses. We rely on OrthoMCL, a database
generated initially to support analyses of the genome of
Plasmodium falciparum and other apicomplexan parasites
(Li et al. 2003; Chen et al. 2006), for the initial identification
of homologous gene families (GFs). We also incorporate
GUIDANCE V2.02 (Penn et al. 2010; Sela et al. 2015) for
assigning statistical confidence MSA scores using guide-trees
and a bootstrap approach. GUIDANCE allows an efficient
identification and removal of potentially nonhomologous
sequences (i.e., sequences having very low scoring values)
and unreliably aligned columns and residues under various
parameters (Privman et al. 2012; Hall 2013; Vasilakis et al.
2013). This flexibility is critical—whereas concepts such as
homology and paralogy have clear definitions in textbooks,
when it comes to deploying phylogenomic tools on

inferences at the scale of >100 My, they become working
definitions that depend on parameters and sampling of both
genes and taxa. Finally, we have chosen RAxML V8
(Stamatakis et al. 2005; Stamatakis 2014) for tree inference
as its efficient algorithms allow for robust estimation of max-
imum likelihood trees [though users can aexport the MSAs
from our pipeline for analyses with other software].

Our original phylogenomic pipeline aimed to explore the
eukaryotic tree of life using multigene sequences available in
GenBank from diverse taxa (Grant and Katz 2014a; Katz and
Grant 2015). This first version generated a collection of
�13,000 GFs from �800 species distributed among
Eukaryota, Bacteria, and Archaea, and included a suite of
methods to process gene alignments and trees. The 800 spe-
cies were a subset of available taxa, picked to represent, more
or less evenly, the main eukaryotic lineages with no more than
two species per genus. Moreover, although the focus was on
eukaryotes, bacteria and archaea were also included to allow
detection of contamination, lateral gene transfer events, and/
or for exploring phylogenetic relationships that include all
cellular life. GFs originally defined by OrthoMCL were used
as seeds to search more homologous sequences from addi-
tional taxa. Then, the enriched GFs pass through an additional
quality-check step that re-evaluates homology. This step
includes applying a combination of methods that can remove
alleles, non-homologous genes, and highly divergent sequen-
ces based on pairwise comparisons with Needle (Rice et al.
2000), with robust alignments produced with MAFFT (Katoh
and Standley 2013) that were then filtered with GUIDANCE.
These refined high-quality MSAs were used to produce gene
trees with RAxML. An additional option was to identify
orthologs based on their position in gene trees, which can
be used to generate concatenated alignments for species tree
inference (see Grant and Katz 2014a).

This new version, which we name PhyloToL
(Phylogenomic Tree of Life), incorporates significant improve-
ments over Grant and Katz (2014a), including a more efficient
method to capture HTS data, a more robust homology de-
tection approach, a novel tree-based method for contamina-
tion removal, and substantially more efficient scripts and
improved databases. PhyloToL contains a database of
13, 103 GFs that include up to 627 eukaryotes (58 generated
in our lab), 312 bacteria and 128 archaea. Here, we describe
our updated approaches, providing examples of stop codon
usage assessment in Ciliophora and detection of contamina-
tion produced by many HTS studies (including our own). We
also illustrate the potential of PhyloToL by depicting the evo-
lutionary history of the genes on the chromosomes of the
human parasite Trypanosoma brucei, the causative agent of
African sleeping sickness, and we also benchmark against
published studies.

New Approaches
PhyloToL (https://github.com/Katzlab/PhyloTOL; last
accessed May 2, 2019) is divided into four major components:
1) gene family assessment per taxon, 2) refinement of homo-
logs and gene tree reconstruction, 3) tree-based
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contamination removal, and 4) generation of a supermatrix
for species tree inference (i.e., concatenation). The first com-
ponent starts with data from either public databases or those
generated by the users’ ’omics projects, and categorizes
sequences into a collection of candidate GFs. This part of
PhyloToL includes steps for removing bacterial contamina-
tion (given our focus on eukaryotes) and translating sequen-
ces using the most appropriate inferred genetic code (fig. 1A).
The second component includes a series of steps to assess
homology in the candidate GFs based on sequence similarity,
sequence overlap, and refinement of MSAs prior to recon-
structing phylogenies (fig. 1B). The third component includes
a novel method that iterates the second component (refine-
ment of homologs and gene tree reconstruction) to remove
contamination inferred from phylogenetic trees (fig. 1C),
which is critical given the high frequency of contamination
in many HTS data sets. Although the combination of meth-
ods in the first three components identifies homologs within
GFs (see Materials and Methods section), the distinction be-
tween paralogous and orthologous sequences occurs only in
the optional fourth component. This component detects
orthologous sequences based on their position in phyloge-
netic trees and concatenates them into a supermatrix for

species tree inference (fig. 1D); this last component has not
been modified since the last published version of the pipeline
(Grant and Katz 2014a, 2014b; Katz and Grant 2015), and
users can explore other tools for concatenation (e.g., Leigh
et al. 2008; Narechania et al. 2012; Drori et al. 2018; Vinuesa
et al. 2018) using the single gene MSAs generated by
PhyloToL, or alternative methods to concatenation (e.g.,
iGTP, Chaudhary et al. 2010; Guenomu, De Oliveira Martins
et al. 2016) using outputs from the third component.

Additional to the primary goal of PhyloToL, which was
reconstructing the evolutionary history of eukaryotes, this
new version emphasizes the flexibility to allow studies of
GFs evolution as well as phylogenomics with varying param-
eters and taxon/gene inclusion. Though there are many other
tools out there for phylogenomic analyses (e.g., OneTwoTree
[Drori et al. 2018], SUPERSMART [Antonelli et al. 2017], and
PhyLoTA [Sanderson et al. 2008]), we believe PhyloToL is
distinctive because of its combination of: 1) inclusion of
both database and user-inputted data; 2) focus on broad
taxon inclusion for “deep” events (e.g., �100 My); and 3)
flexibility for exploration of multiple hypotheses and param-
eters (supplementary table S1, Supplementary Material
online).

FIG. 1. The four components of PhyloToL: A) gene family assessment per taxon, B) refinement of homologs and gene tree reconstruction, C) tree-
based contamination removal, and D) generation of a supermatrix for species tree inference. GF ¼ Gene Family, QC ¼ Quality Control, CR ¼
Contamination Removal. (A) The first component processes and classifies raw data from different sources (e.g., transcriptomes, genomes, and
protein data) into a collection of GFs. In the initial step, transcriptomes produced in-lab are processed to identify and remove sample bleeding
(Mitra et al. 2015) in an Illumina lane (cross-contamination). Then, prokaryotic sequences and rRNA sequences are removed from transcriptomes.
Finally, transcriptomic and genomic sequences are translated using informed genetic codes. (B) The second component compiles all GFs by taxon
in the gene family database, refines an MSA, and produces a phylogenetic tree for each gene family. (C) The third component (optional) detects
contaminant sequences using gene trees and predefined contamination rules, and also detects nonhomologous sequences after the MSA
refinement process. Contaminants and nonhomologs are identified and removed from the gene family database iteratively. (D) The fourth
component (optional) identifies orthologous sequences using a tree-based approach for removing paralogs. Alignments of orthologs can be
concatenated to produce a species tree.
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Results and Discussion
The overall structure of PhyloToL was improved over Grant
and Katz (2014a) by dividing the pipeline into four major
components (fig. 1) allowing different modes to execute these
components depending on the type of study. PhyloToL also
includes new methods to incorporate data from more sour-
ces (in component 1, fig. 1A), refine MSAs from GFs (in com-
ponent 2, fig. 1B), and to remove contaminant sequences (in
component 3, fig. 1C). Here, we explain the improvements on
the overall structure of PhyloToL and benchmark the perfor-
mance of new methods by analyses of ancient GFs.

Pipeline Structure
Although PhyloToL is designed for phylogenomic analyses of
diverse lineages across the tree of life, it can also be deployed
in different ways for a variety of purposes such as phyloge-
nomic chromosome mapping (Cer�on-Romero et al. 2018),
gene discovery, or metatranscriptome analyses. For instance,
the GF assessment per taxon, refinement of GFs and gene tree
reconstruction (i.e., first and second components of
PhyloToL) can be run independently, and the tree-based con-
tamination removal and generation of a supermatrix (third
and fourth components) are optional. Moreover, the user can
also run the second component in two alternative modes: 1)
only quality control (QC) for GFs and 2) without generating a
gene tree. Running the second component of PhyloToL only
for QC for GFs is helpful when the primary aim is to collect
sequences for candidate GFs (QC involves filtering sequences
by length, overlap and similarity, see Materials and Methods
section) or for exploring taxonomic diversity within each gene
family. Likewise, running the second component of PhyloToL
without generating gene trees is useful for inspecting regions
of homology (motif searching), trying alternative methodol-
ogies (i.e., those other than RAxML V8, which is incorporated
into PhyloToL) for phylogenetic tree inference and to simply
create a curated database of aligned homologous proteins
(i.e., having sequences with divergence levels above the de-
fined threshold removed by GUIDANCE). Our approach for
determining homology is through generation of MSAs using
GUIDANCE V2.02 (Penn et al. 2010; Sela et al. 2015) with
sequence and column cutoff 0.3 and 0.4, respectively, to de-
termine which sequences meet criteria for retention. These
GUIDANCE parameters were chosen based on inspection of
early runs of our data because the default parameters in
GUIDANCE are geared for shallower levels of diversity and
tend to exclude many of our focal taxa. Indeed, GUIDANCE
scores are alignment dependent and so cutoffs are empirically
defined. As described in our manual (Supplementary Material
online) users can change these parameters for their own data
sets to explore homology more deeply.

Performance of PhyloToL in GF Estimation per Taxon
To exemplify outputs of the first component of PhyloToL, GF
assessment per taxon, we provide data from RNA-seq studies
of the ciliates Blepharisma japonicum (MMETSP1395) and
Strombidium rassoulzadegani (MMETSP0449_2). Each of
these two data sets starts with>20,000 assembled transcripts,

from which �1% are contamination from rRNAs, bacterial
and archaeal sequences that are removed (table 1). The final
data sets after running through PhyloToL (only the GF assess-
ment per taxon component) contain between 5,000 and
10,000 transcripts assigned to eukaryotic GFs and represent-
ing �20% of the initial set of sequences (table 1). PhyloToL
also allows us to assess that B. japonicum potentially uses the
“Blepharisma” genetic code (i.e., UAR as stop codon, UGA is
translated into tryptophan; Lozupone et al. 2001; Sugiura et al.
2012) and S. rassoulzadegani uses the “ciliate” genetic code
(i.e., only use UGA as stop codon, and UAR is reassigned to
glutamine; Caron and Meyer 1985).

We evaluated the importance of PhyloToL’s inspection of
putative stop codons for these two taxa by also processing
the transcriptomic data forcing translation with the universal
and the “ciliate” genetic codes (fig. 2A). Here we found that
when using PhyloToL’s inferred alternative genetic code, tran-
scripts were substantially longer than when forced to be
processed with universal or ciliate genetic codes (fig. 2A),
which suggests that using the carefully assessed genetic
code allows the user to retrieve a larger proportion of each
transcript.

Performance of PhyloToL in Tree-Based
Contamination Removal
We then tested the third component of PhyloToL (i.e., tree-
based contamination removal) using a data set of 152 GFs
that includes up to 167 taxa distributed among eukaryotes,
bacteria, and archaea (Supplementary Material online). To
give the user a sense of the time involved, using a computer
with 128 GB of RAM and 10 cores, the analyses took 86 h and
5 iterations of contamination removal. However, 79% of the
contaminant sequences were removed in the first iteration,
which took ~50% of the total time (fig. 2B).

Contaminant sequences detected often originated from
food sources or endosymbionts (at least �50% and �40%
of the total contaminants, respectively; Supplementary
Material online). For instance, sequences from the
amoeba Neoparamoeba are often nested within
Euglenozoa (in 14 GFs; fig. 3A) likely because some of
its data are actually from a (past or present) kinetoplastid
endosymbiont as previously reported by Tanifuji et al.
(2011). Likewise, sequences from the foraminifera
Sorites, which hosts a dinoflagellate endosymbiont
(Langer and Lipps 1995), are sometimes nested within
dinoflagellate sequences (37 GFs; fig. 3B). However,
sequences from the Katablepharid Roombia truncata

Table 1. Summary of representative Gene Family Assessment per
Taxon.

Sequences (contigs) Blepharisma
japonicum

Strombidium
rassoulzadegani

Original assembly 45,231 24,810
Removed rRNA 114 33
Removed prokaryotic 453 290
Assigned to PhyloToL GF 10,060 4,764

Contigs not assinged to PhyloToL GFs are likely taxon-specific.
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are sometimes nested among the SAR clade as sister to
Stramenopila (in 3 GFs; fig. 3C); these sequences are po-
tentially from diatoms that are used for feeding R. trun-
cata (Okamoto et al. 2009). Finally, sequences from the
Rhizaria Leptophrys vorax, which feeds on green algae, are
often nested among green algal clades (38 GFs; fig. 3D).

Using the methods developed here, users can identify
sources of contamination in individual taxa and then remove
contaminating sequences in PhyloToL’s contamination loop.
This step is critical because sequence contamination is a com-
mon problem in HTS data of public databases (Merchant
et al. 2014; Kryukov and Imanishi 2016). Indeed, previous

FIG. 2. Evaluation of performance of the first and second component of PhyloToL (fig. 1A and B). (A) Gene family assessment per taxon
performance using the informed genetic code (indicated with a star) and the ciliate and universal genetic codes for the ciliates Blepharisma
japonicum (B. jap) and Strombidium rassoulzadegani (S. ras). The length of the inferred sequences is higher when using the informed genetic code
because it will not terminate the sequences at potentially reassigned in-frame stop codons. (B) Example of contamination removal using our test
data set, containing 152 GFs with up to 167 taxa. Overall five iterations were required to remove all contaminant and nonhomologous sequences.
with most of the sequence removal occurring during the first iteration.

FIG. 3. Examples of contamination within gene trees that are used to define rules for the contamination removal loop of component 3 of PhyloToL
(see fig. 1C). All sequences are named by major clade (Am ¼ Amoebozoa, EE ¼ everything else, Ex ¼ Excavata, Pl ¼ Archaeplastida, Sr ¼ SAR),
“minor” clade (di ¼ Dinophyceae, he ¼ Heterolobosea, eu ¼ Euglenozoa, st ¼ Stramenopile, ci ¼ Ciliophora, ka ¼ Katablepharidophyta, gr ¼
green algae, rh ¼ Rhizaria), and a four-digit code unique to each species (e.g., Ngru ¼ Naegleria gruberi). (A) Possible case of contamination in
Neoparamoeba aestuarina by an endosymbiotic excavate. (B) Possible case of contamination in Sorites by an endosymbiotic dinoflagellate. (C)
Possible case of contamination from Roombia truncata’s diatom food source. (D) Possible case of contamination in Leptophrys vorax from its green
algal food source. Each image is a small part of a much larger tree.
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studies have demonstrated that sequence contamination is
one of the most important obstacles for evolutionary studies
(Laurin-Lemay et al. 2012; Struck 2013; Philippe et al. 2017).

Implementation for Phylogenomic Chromosome
Mapping
To exemplify an implementation of PhyloToL, we combined
outputs with our tool PhyloChromoMap (Cer�on-Romero
et al. 2018) to explore the evolutionary history of chromo-
somes in the kinetoplastid parasite that causes African sleep-
ing sickness, Trypanosoma brucei gambiense DAL972
(assembly ASM21029v1). Combining these tools, with
PhyloChromoMap for mapping genes along each strand sep-
arately, we generated a map that displays the evolutionary
history of 9,755 genes across both strands of the T. brucei
gambiense chromosomes (fig. 4 and supplementary fig. S1,
Supplementary Material online).

Previous studies have shown that karyotypes of kinetoplas-
tid parasites have large syntenic polycistronic gene clusters
(PGC), where genes are sequentially arranged on the same
strand of DNA and expressed as multigene transcripts
(Berriman et al. 2005; El-Sayed et al. 2005; Daniels et al.
2010; Martinez-Calvillo et al. 2010). We observed that almost
all genes matching our GFs fall in PGCs and have a wide
distribution throughout all 11 chromosomes, with variable
gene density among chromosomes (fig. 4 and supplementary
fig. S1, Supplementary Material online). Besides the presence
of PGCs in T. brucei, previous studies proposed that large
subtelomeric arrays of species-specific genes might serve as
breakpoints for ectopic recombination in the nuclear mem-
brane (Berriman et al. 2005; El-Sayed et al. 2005), a phenom-
enon that is also described in the apicomplexan parasite P.
falciparum (Freitas-Junior et al. 2000; Scherf et al. 2001;
Hernandez-Rivas et al. 2013; Cer�on-Romero et al. 2018).
However, whereas young and highly recombinant subtelo-
meric regions of at least 58 Mbp (up to 218 Mbp) are present
in all P. falciparum chromosomes (Cer�on-Romero et al. 2018),
in T. brucei gambiense this pattern is only evident in chromo-
somes 3 and 9 (supplementary fig. S1, Supplementary

Material online). This indicates that although ectopic recom-
bination of subtelomeric regions can play a role in the karyo-
type evolution of T. brucei, it may not be as crucial to the
success of this parasite as compared with P. falciparum.

We also explored the level of evolutionary conservation of
genes in T. brucei gambiense based on their phylogenetic
distribution as estimated by PhyloToL. Here, we detected
that genes tend to be either very conserved or very divergent,
with few genes of intermediate conservation (v2, P < 0.05;
supplementary fig. S2, Supplementary Material online). About
73% of the published genes in the T. brucei gambiense
DAL972 (assembly ASM21029v1) genome lacked homologs
to any of our ancient GFs and thus may be Trypanosoma-

FIG. 4. Example of phylogenomic map of the polycistronic regions of chromosome III of Trypanosoma brucei generated by combining PhyloToL
and PhyloChromoMap (Cer�on-Romero et al. 2018). Horizontal line represent chromosome III of T. brucei and bars above/below reflect levels of
conservation along each strand. First row from the bottom (NIP, “not in pipeline”) indicates ORFs that do not match our criteria for tree inference
(i.e., likely Trypanosoma-specific, highly divergent, and/or misannotated ORFs). The remaining rows (bottom to top) reflect the presence or
absence of the gene in the major clades Excavata (Ex), orphans (EE, “everything else”), Archaeplastida (Pl), SAR (Sr), Amoebozoa (Am),
Opisthokonta (Op), Archaea (Ar), and Bacteria (Ba). Genes are organized in polycistronic gene clusters (PGC) with variable gene density as
described in Results and Discussion section.

Table 2. Summary of Conservation of Genes in Trypanosoma brucei.

Description Number of Genesb

Total in T. brucei 9,755
Recent (NIP): not in PhyloToLa 7,125
Older (IP): in PhyloToLa 2,630
Distribution

Only in eukaryotes
One major clade 39
Two major clades 85
Three major clades 113
Four major clades 190
Five major clades 385
All major clades (including EE) 1,150

In eukaryotes and prokaryotes
Eukarya, Archaea, and Bacteriac 205
Eukarya and Archaeac 207
Eukarya and Bacteriac 185
Excavata and either Bacteria or Archaea 2

aNIP¼ did not meet the requirement of�4 sequences (from the 167 taxa that were
chosen for this study) to produce a tree, and are therefore likely either very diver-
gent or misannotated.
bA gene is considered to be present in a major clade only if it is present in at least
25% of the clades from the next taxonomic rank (e.g., Euglenozoa in Excavata,
Apicomplexa in SAR, Animals, or Fungi in Opisthokonta); sequences in only a
few lineages may be contaminants or the result of gene transfers.
cIn at least five eukaryotic major clades: Excavata (Ex), Archaeplastida (Pl), SAR (Sr),
Amoebozoa (Am), and Opisthokonta (Op). For every tree the root was placed in
between Bacteria and Archaea þ Eukaryotes when there were Bacteria; between
Archaea and Eukaryotes when there were not Bacteria; or in Opisthokonta when
there were not prokaryotes (Katz and Grant 2015).
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specific genes and/or mis-annotations (table 2). Of the
remaining 27% of genes that match conserved eukaryotic
GFs, �44% are conserved among all the major eukaryotic
clades, �8% are shared between all major eukaryotic clades
and Archaea and �8% are conserved among all major eu-
karyotic clades, Archaea and Bacteria (table 2).

Test of Homology Assessment
To benchmark the homology assessment in PhyloToL, we
compared reconstructions of ancient (i.e., present in bacteria,
archaea, and eukaryotes) GFs originally estimated in
OrthoMCL. Members of ancient GFs tend to be categorized
in different orthologous groups in OrthoMCL (e.g., a-tubulin
is group OG5_126605 and b-tubulin is group OG5_126611).
We analyzed eight ancient GFs that were likely present in the
last eukaryotic common ancestor (LECA) or the last universal
common ancestor (LUCA): ATPases, family B DNA

polymerase, elongation factors Tu/1a, elongation factors G/
2, glutamyl- and glutaminyl-tRNA synthetases, RNA polymer-
ase subunit A, RNA polymerase subunit B, and tubulins
(Brown and Doolittle 1997; Mulkidjanian et al. 2007; Nureki
et al. 2010; Findeisen et al. 2014). Overall, our recovery of the
homology of these ancient GFs was robust to our taxon-rich
analyses (fig. 5 and supplementary fig. S3, Supplementary
Material online). For four of the eight GFs (i.e., glutaminyl-
tRNA synthetases, RNA polymerase subunit A, RNA polymer-
ase subunit B, and tubulins) there were a few cases (<0.05%)
where sequences were misclassified in the earlier steps of
PhyloToL, likely due to the limited taxon sampling in the
OrthoMCL-based “seeds” for BLAST analyses (supplementary
fig. S3, Supplementary Material online).

We also benchmarked PhyloToL against the reconstruc-
tion of GFs of bacterial and eukaryotic organelle outer mem-
brane pore-forming proteins as proposed by Reddy and Saier

FIG. 5. PhyloToL homology assessment for well-known GFs that duplicated prior to the last eukaryotic common ancestor (LECA) or the last
universal common ancestor (LUCA). Subfamilies of these ancient GFs are often categorized in different orthologous groups by OrthoMCL. The
cartoon trees show the reconstruction of the phylogeny of 5 of the 8 analyzed ancient GF by PhyloToL. (A) glutamyl- and glutaminyl-tRNA
synthetases, (B) elongation factors Tu/1a, (C) elongation factors G/2, (D) family B DNA polymerase, (E) Tubulins. Ar¼Archaea, Ba¼ Bacteria, Op
¼Opisthokonta, Am¼Amoebozoa, Ex¼ Excavata, Pl¼Archaeplastida, Sr¼ SAR. The number in every tip represents the number of species per
major clade. Full trees for the eight analyzed ancient GFs are found as Newick strings in supplementary fig. S3, Supplementary Material online.

Explore Genome Evolution of Diverse Eukaryotes . doi:10.1093/molbev/msz103 MBE

1837

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/36/8/1831/5486329 by guest on 09 April 2021

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz103#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz103#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz103#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz103#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz103#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz103#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz103#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz103#supplementary-data


(2016). Reddy and Saier (2016) combined 76 GFs among 5
superfamilies of varying size. To compare their homology
statements to inferences from PhyloToL, we focused on the
12 GFs already included in the PhyloToL databases that fall
into two superfamilies, the prokaryotic superfamily I (SFI) and
eukaryotic superfamily IV (SFIV). Under PhyloToL’s default
parameters (i.e., GUIDANCE V2.02 sequence cutoff ¼ 0.3,
column cutoff ¼ 0.4, number of iterations ¼ 5), many SFI
members (i.e., different GFs) determined by Reddy and Saier
(2016) do not meet our criteria for homology: when running
the full set of sequences of SFI in PhyloToL, only sequences of
the largest GF survive, indicating that the other GFs are too
dissimilar to be included in a MSA under our parameters
(supplementary table S2, Supplementary Material online).
We then re-ran PhyloToL to test homology in every cluster
and sub-cluster of GFs that form SFI, but in the end only
cluster III meets our conservative criteria for homology
(fig. 5 and supplementary table S1, Supplementary Material
online). In contrast to SFI, both members of the eukaryotic
SFIV are retained under default parameters in PhyloToL (fig. 6
and supplementary table S2, Supplementary Material online).
We then forced the GFs determined by Reddy and Saier
(2016) to align, and found limited evidence of homology
(e.g., conserved columns in MSAs). In sum, our estimation
of homology is more stringent than in Reddy and Saier (2016),
and our exploration of this question took �3 h on a com-
puter with four threads, highlighting the flexibility of
PhyloToL for users.

Materials and Methods
There are four components in PhyloToL’s algorithm: 1) GF
assessment per taxon, 2) refinement of GFs and gene tree
reconstruction, 3) tree-based contamination removal, and 4)
generation of a supermatrix for species tree inference. The GF
assessment per taxon includes features such as translation
using informed genetic codes. The refinement of GFs and
gene tree reconstruction filters and asserts homology in the
GFs comparing sequences by length, overlap, similarity, and
MSA. The component tree-based contamination removal
detects and removes contaminant sequences based on pre-
defined contamination rules and the position of the sequen-
ces in gene trees. Finally, the component generating a
supermatrix for species tree inference chooses orthologs
and discards paralogs based on tree topology to concatenate
MSAs for species tree inference.

Naming Sequences
PhyloToL uses standardized names that are compatible with
the third-party tools incorporated into the pipeline (e.g.,
GUIDANCE, RAxML). Although the users are free to assign
different codes to the taxa at their convenience, PhyloToL
requires that every taxon is named using a ten-digit code that
can broadly reflect taxonomy (see Supplementary Material
online for our suggested codes); this code is divided into three
components, a major clade (e.g., Op ¼ Opisthokonta), a
“minor” clade (e.g., Op_me ¼ Metazoa), and a species

FIG. 6. PhyloToL homology assessment for candidate superfamilies (S) of outer membrane pore-forming proteins as proposed by Reddy and Saier
(2016). The left hand “Reference” columns show the proposed superfamilies SI and SIV whereas the right hand “PhyloToL” column shows the
surviving homologs (i.e., those connected by lines). Only cluster III of SI and the two GFs of SIV are homologous based on PhyloToL’s default
parameters (i.e., GUIDANCE V2.02: sequences cutoff ¼ 0, 3, column cutoff ¼ 0.4, 5 iterations).
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name (e.g., Op_me_hsap for Homo sapiens). For each se-
quence, the ten-digit code is followed by the sequence iden-
tifier such as the GenBank accession or Ensembl ID (e.g.,
Op_me_hsap_ENSP00000380524). This naming system
allows an easy control of names when handling alignments
and trees.

GF Assessment per Taxon
The first component of PhyloToL (i.e., GF assessment per
taxon; fig. 1A) allows the inclusion of a large number of
data sources from online repositories (e.g., GenBank) or
from the user’s lab, and of different types (e.g., transcriptomes,
proteins or annotated proteins from genomic sequences [e.g.,
454, Illumina, ESTs]). The first steps aim to accurately assign
sequences to homologous GFs, with improvements to the
efficiency of these processes as compared with our original
pipeline (Grant and Katz 2014a, 2014b; Katz and Grant 2015).
To exemplify methods, we focus on the inclusion of
Illumina transcriptome data, though the structure can easily
be adapted for other sources. PhyloToL uses a
pipeline (https://github.com/Katzlab/PhyloTOL/tree/master/
AddTaxa; last accessed May 2, 2019) for passing assembled
transcripts through a variety of steps for: segregation of short
contigs (at a user-defined length), segregation of putative
contaminants [from ribosomal RNAs (rRNA), bacteria and
archaea], and assess GFs. To segregate rRNA sequences, we
rely on BLAST, comparing each sequence against a database
of diverse rRNA sequences sampled from across the tree of
life (75 bacteria, 26 archaea, and 77 eukaryotes;
Supplementary Material online). This is followed by the iden-
tification and removal of bacterial/archaeal transcripts
through USEARCH V10 (Edgar 2010), which compares data
against both a database of diverse bacterial þ archaeal pro-
teins and another database of diverse eukaryotic proteins,
retaining all nonbacterial/archaeal transcripts (i.e., those
with strong matches to eukaryotes, and those remaining
unassigned). With this pruned data set, USEARCH is again
used to bin these eukaryotic-enriched sequences into
OrthoMCL GFs whereas rRNA and bacterial/archaeal tran-
scripts are saved in a different location for easy retrieval if
desired.

With growing evidence for the diversity of stop codon
reassignments across the eukaryotic tree of life (e.g., Keeling
and Doolittle 1997; Lozupone et al. 2001; Keeling and Leander
2003; Heaphy et al. 2016; Swart et al. 2016; P�anek et al. 2017),
we include an optional step to evaluate potential alternatives
to conventional stop codon usage (frequent in frame uncon-
ventional stop codons). This step is essential for some clades
such as Ciliophora, where there are at least eight unconven-
tional genetic codes (i.e., not all three traditional stop codons
terminate translation). Using the most appropriate genetic
code, each nucleotide sequence is then translated into the
corresponding amino acid ORF.

Given the imperfect nature of HTS data, we take a con-
servative approach to avoid inflating the number of paralogs
for each taxon and, therefore, we remove nearly identical
sequences. These nearly identical sequences generated by
HTS can represent an unknown mixture of alleles, recent

paralogs and more importantly sequencing and/or assembly
errors, which can be problematic for the comparative aspects
of PhyloToL. To avoid this issue, for every taxon we remove
nearly identical sequences at the nucleotide level (>98% nu-
cleotide identity across �70% of their length).

An additional step is available to address the well-known
phenomenon of sample bleeding (also known as index
switching; Mitra et al. 2015; Larsson et al. 2018) that occurs
during Illumina sequencing. Based on the observation that
some of our taxa were contaminated by one another during
Illumina sequencing, we developed a method to remove low
read coverage contigs that are identical to higher read cover-
age contigs. To this end, we performed a USEARCH (“BLAST”)
all versus all of the nucleotide ORFs (at a minimum identity of
98% across�70% of their length). Those sequences that form
clusters of hits to other taxa represent potential cross-
contaminants. Next, those sequences with a substantially
high read coverage compared with the mean (e.g., 10�
more than the mean) are retained and low-read coverage
sequences are excluded. In ambiguous cases (i.e., all are low
read number), the entire group of sequences is discarded.
Although this step is highly dependent on transcriptional
state and sequencing depth, this conservative approach
impacts <5% of transcripts for a given taxon using our
own Illumina data.

Refinement of Homologs and Gene Tree
Reconstruction
In the second component of PhyloToL (i.e., refinement of
homologs and gene tree reconstruction; fig. 1B), GFs pass
through a procedure to assess homology and then to produce
gene trees. The procedure starts with a QC step that includes
two filters: an overlap filter and a similarity filter. The overlap
filter aims to remove nonhomologous sequences, which are
sequences substantially longer than putative homologs (e.g.,
those with only shared motifs), or atypically short (i.e., those
with insufficient overlap). Such sequences will confound
paralog assessment and can negatively impact the align-
ments. To proceed, we start by identifying a “master
sequence” as the putative homolog. This sequence has the
lowest E value from the GF assignment and is also�150% the
average length of the members from the reference GF data
set. We then retain all sequences that have a pairwise local
alignment overlap that includes at least 35% of the length of
the master sequence. In contrast, the optional similarity filter
allows the user to remove alleles and recent paralogs (i.e., too
similar sequences) at a user-defined cutoff to improve effi-
ciency. The similarity filter uses an iterative process in which
the next longest sequence acts as the “master sequence” to
remove highly similar sequences, and repeats until there are
no more sequences that can be assigned as a “master
sequence.”

For the next part of the procedure, to assess homology
within each GF, PhyloToL relies on GUIDANCE V2.02 scores,
and using a user-specified number of iterations, identifies, and
removes unreliably aligned and potentially nonhomologous
sequences (fig. 1B). Then, GUIDANCE is used to filter the final
alignment using preset cutoffs for sequences and columns
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(default parameters or empirically defined, in our case 0.3 for
sequences and 0.4 for columns). In contrast to the previous
version of the pipeline that relied on only two iterations of
GUIDANCE, one for removing poorly aligned sequences and
another for removing poorly aligned columns, PhyloToL iter-
ates the sequence-removal step for either a user-defined
number of iterations or until all unreliable sequences have
been removed. Only then the columns are removed based on
the user-specified confidence threshold score (the default
number of bootstrap replicates for each GUIDANCE run is
10). Residues with low confidence scores, based on a settable
residue score cutoff, can be masked in the alignment with an
“X” (turned off in our defaults). Finally, in PhyloToL,
GUIDANCE uses more accurate MAFFT V7 parameters, in-
cluding an iterative refinement method (E-INS-i algorithm,
and up to 1,000 iterations). The E-INS-i algorithm was chosen
because it makes the smallest number of assumptions of the
three iterative refinement methods implemented in MAFFT
and is recommended if the nature of sequences is less clear.

Tree-Based Contamination Removal
The third component of PhyloToL (i.e., tree-based contami-
nation removal; fig. 1C) includes a method to identify and
remove contaminants based on their location within the
phylogenetic trees, though user scrutiny of results is required.
If inspection of gene trees reveals sequences from a given
taxon frequently nested among distantly related lineages,
the user can create a set of “rules for contamination removal”
and then run the tree-based contamination removal that will
detect and remove potential contaminants from the align-
ments and subsequent trees (fig. 1C). To help users to define
their rules for contamination removal, PhyloToL also gener-
ates a report (summary_contamination.csv) containing the
frequency of every sister clade per lineage ignoring those with
significantly longer branches than the average branch length
of the tree, which allows the users to differentiate contami-
nation (e.g., food, symbionts, and other sources) from fast
evolving taxa that were incorrectly placed in trees. This com-
ponent of PhyloToL iterates the refinement of homologs and
gene tree reconstruction (i.e., second component) using the
predefined rules to identify sequences of contamination and
removing them for the next iteration. This continues until no
more “contaminant” sequences are identified. The compo-
nent tree-based contamination removal also produces a full
list of contaminant sequences that can be removed from the
permanent databases. To run the tree-based contamination
removal more efficiently, potentially nonhomologs (i.e.,
sequences discarded by GUIDANCE) are also removed in ev-
ery iteration.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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