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Abstract

We used an experimental approach of analyzing marine microcosms to evaluate the impact

of both predation (top-down) and food resources (bottom-up) on spirotrich ciliate communi-

ties. To assess the diversity, we used two molecular methods–denaturing gradient gel elec-

trophoresis (DGGE) and high-throughput sequencing (HTS). We carried out two types of

experiments to measure top-down (adult copepods as predators) and bottom-up effects

(phytoplankton as food resources) on the spirotrich ciliates. We observed both strong incu-

bation effects (untreated controls departed from initial assessment of diversity) and high var-

iability across replicates within treatments, particularly for the bottom-up experiments. This

suggests a rapid community turn-over during incubation and differential susceptibility to the

effects of experimental manipulation. Despite the variability, our analyses reveal some

broad patterns such as (1) increasing adult copepod predator abundance had a greater

impact on spirotrich ciliates than on other microbial eukaryotes; (2) there was no evidence

for strong food selection by the dominant spirotrich ciliates.

Introduction

The planktonic food web is the base of aquatic ecosystems, and hence strongly impacts the

productivity and health of approximately two thirds of our planet. Diversity within the plank-

tonic food web is great: prokaryotes recycling dissolved organic matter and small phytoplank-

ton are eaten by heterotrophic microeukaryotes such as nanoflagellates and ciliates [1–3].

These predators and larger phytoplankton serve in their turn as prey for larger organisms,

such as larger ciliates, dinoflagellates, and small metazoans including copepods, which are

themselves consumed by larger invertebrates and fish [1, 2, 4]. Given these complex interac-

tions, disentangling dynamics in planktonic food webs is difficult but essential for understand-

ing both ecosystem function and health [5–7].
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To date, investigations have focused on functional compartments that represent phyto-

plankton, mesozooplankton, and microzooplankton [8–15]; studies looking at species-level

relationships, particularly within the microzooplankton, are sparse [16–19]. These interactions

are difficult to observe in a quantitative way because of the inherent limitations of microscopy

in terms of the number of samples that can be examined and the depth of sampling possible.

Here, we use molecular methods to analyze the impact of manipulations of copepod and phy-

toplankton abundance on the diversity of micrograzers in the SAR (Stramenopila, Alveolata,

Rhizaria) eukaryote clade, with a particular focus on spirotrich ciliates.

The bulk of eukaryotic diversity is microbial, with larger organisms (plants, animals and

fungi) representing just three of about 75 lineages (e.g., [20, 21, 22]). Among the major clades

of eukaryotes, SAR represents up to half of eukaryotic diversity [23, 24]. SAR includes diverse

parasites (e.g. the oomycetes), algae (e.g. diatoms, dinoflagellates, kelp), heterotrophic preda-

tors (e.g., ciliates, cercozoa) and many less well known lineages [24]. While SAR members are

both widespread and abundant, there is still much to investigate about this eukaryotic clade

including a large “dark area”, which includes sequences from the environment that are not

linked to documented morphology and morphospecies that have not yet been sequenced [24].

One focus of this study is the ciliates of the class Spirotrichea (SAR, Alveolata), which

includes the most quantitatively important clades of planktonic grazers [16, 18, 25]. They can

consume up to 100% of the standing stock of nanoplankton every day [3, 4, 16, 17, 26], but spe-

cies-by-species interactions within these predator/prey assemblages remain largely unknown.

Our study used copepods as a model predator for assessing top-down (TD) effects in the

planktonic food web, in particular how this interaction affects diversity and composition of

spirotrich ciliate assemblages. Previous studies have shown that copepod diets are composed

up to 50% of ciliates [27–30], with bias towards energy-rich heterotrophic lineages [31].

Phytoplankton blooms, defined as a high abundance of one or a few phytoplankton species,

have major impacts on the oceans and have been increasing globally in recent years (reviewed

in [32–36]). Mechanisms behind the occurrence of blooms are varied, and may include decou-

pling of predator/prey dynamics [37], cascading interactions among grazers (e.g. ciliates

grazed by copepods cannot regulate phytoplankton growth), parasitism [38, 39] or physical

factors [40]. Here we used monospecific additions of nanophytoplankton as models for assess-

ing bottom-up (BU) effects on ciliate grazers during simulated bloom events.

To assess the impact of copepod and phytoplankton abundance on all-eukaryote, SAR and

ciliate assemblages, we carried out microcosm experiments and analyzed the community com-

position using both a fingerprinting technique (denaturing gradient gel electrophoresis;

DGGE) for all eukaryotes and for ciliates in the class Spirotrichea, and high throughput

sequencing (HTS) with primers designed for the whole SAR eukaryotic clade, which includes

ciliates. We examined potential biases of our methods and then tested the hypotheses that (1)

increased copepod predation changes the ciliate community composition by selective preda-

tion on specific lineages, and (2) phytoplankton abundance and composition have a predict-

able impact on the whole SAR assemblage, and on ciliates in particular.

Material and methods

Collection and setup

We conducted two types of microcosm experiments using natural plankton assemblages: one

focusing on predation effects during the summer 2013 (three “top-down” experiments), and

one on the impact of simulated phytoplankton blooms in the fall of 2014 (three “bottom-up”

experiments; Table 1). Our sampling site was the dock at the University of Connecticut Avery

Point, Groton CT (Long Island Sound; 41˚18’59"N, 72˚03’39"W). For each experiment, we

Incubation effects on spirotrich ciliate diversity
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sampled ~20L of seawater from the surface and prescreened through a 200μm mesh in order

to remove the mesozooplankton, in particular adult copepods. At sampling, we measured sea-

water temperature and salinity (Table 1).

To estimate the ciliate diversity in situ (hereafter referred to as the starting community or

T0), we filtered and preserved 500mL of prescreened seawater (<200µm). Samples were either

collected directly on a 3µm pore size nitrocellulose filter (top-down experiment) or filtered in

series through 80μm mesh (to avoid metazoan DNA), 10 and 2μm polycarbonate filters (bot-

tom-up experiment). All of the filters were immediately placed into DNA prep buffer (100mM

NaCl, Tris-EDTA at pH 8, and 0.5% of SDS) and stored at 4ºC.

We used dialysis tubing (cellulose membrane that is pervious to molecules <12,000 molec-

ular weight; product D9402, Sigma) closed with plastic clips at both ends to contain c. 500 mL,

as our microcosms. The glycerol used as humectant of the dialysis tubing was removed by

soaking in multiple rinses of tap water overnight before the experiments. The microcosms

were incubated in a sea table with continuous in situ seawater circulation for temperature con-

trol [41]. The use of dialysis tubing allows the exchange of oxygen, nutrients, and other metab-

olites between the inside of the bag and the in situ seawater of the sea table, but the organisms

are not able to escape.

Top-down experiment (TD). Three treatments were used during the top-down experi-

ment to assess the impact of adult copepod grazing on spirotrich ciliates: no adult copepods,

five adult copepods, and ten adult copepods (labelled thereafter as C for control, N for ‘natural’

predation pressure and H for High predation pressure, respectively) were added i.e. copepods

abundance of 0, 10 and 20 ind.L-1, which is in the range of the natural abundance of copepods

in this temperate system. The high copepod abundance of 20 ind.L-1 is at the high end of cope-

pod abundance in Long Island Sound and the North Atlantic [16, 42–44]. For each treatment,

dialysis tubes were filled with 500 mL of the starting community (in situ seawater<200µm).

Each treatment was made in triplicate, and the experiment was performed three times. The

copepods used for the experiment (Acartia hudsonica [winter-spring species], or Acartia tonsa
[summer-fall species] [44, 45] were picked from cultures maintained at the University of Con-

necticut Department of Marine Sciences, except for 10 July 2013, which used wild-caught A.

tonsa from a plankton tow (Table 1).

Bottom-up experiment (BU). For the bottom-up experiment, we simulated separate

blooms using three phytoplankton cultures: the diatom Phaeodactylum tricornutum, the hap-

tophyte Isochrysis galbana, and the chlorophyte Tetraselmis chui. These three algae were from

the culture collection of the National Marine Fisheries Service Laboratory in Milford CT

(USA). We chose these three phytoplankton species because spirotrich cultures can be grown

on them. In order to assess the effect of high-levels of phytoplankton on spirotrich ciliate com-

munity composition, we incubated the starting community (in situ seawater< 200µm) with-

out phytoplankton added (control; just the natural<200 µm phytoplankton assemblage), or

Table 1. Summary of microcosm experiments conditions and molecular methods used.

Microcosm Start Starting salinity Starting

T (ºC)

Duration

(days)

Final salinity Final

T (ºC)

Copepods Molecular methods

TD 1 10 Jul 13 26 23 2 26 23 Acartia tonsa DGGE spiro & alleuk
TD 2 15 Jul 13 30 20 3 30 20 Acartia tonsa DGGE spiro & alleuk
TD 3 3 Jul 13 23 23 6 32 19 Acartia hudsonica DGGE spiro & alleuk
BU 1 10 Nov 14 33 12 3 32 14 adults removed DGGE spiro
BU 2 11 Nov 14 32 13 3 32 13 adults removed DGGE spiro
BU 3 14 Nov 14 32 12 3 32 12 adults removed DGGE spiro & HTS

https://doi.org/10.1371/journal.pone.0215872.t001
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with 104 cells mL-1 of one of the three phytoplankton cultures added (i.e. the diatom, the hap-

tophyte or the chlorophyte culture), for a total of four treatments. Each treatment was done in

duplicate or triplicate, and the experiment was carried out three times during the fall of 2013.

The microcosms were incubated under two layers of neutral density screen (216 µmol photons

m-2s-1, or 0.27 of surface irradiance) in the sea table.

Incubation duration. We were not sure of the time scales for grazing interactions, espe-

cially if multiple trophic transfers (cascades) were involved, so the different top-down experi-

ments were incubated for two, three, or six days while the bottom-up experiments were all

incubated for three days (see Table 1). We estimated that the latter (three days) would be suffi-

cient time (2–3 generations for spirotrich ciliates) to observe changes in microbial eukaryote

assemblages. Regarding the top-down incubation, the generation time for Acartia spp. is 13-

15d at 20˚C [46], so we expected that the longest incubation (six days) would not induce a

strong increase of the number of adult copepods (developing from larval stages present in

our < 200µm in situ seawater). After incubation, copepods were removed from the top-down

experiments with 200 µm mesh and enumerated. For DNA, 300-400mL of each bag was fil-

tered through 3μm nitrocellulose filter (top-down experiments) or 10 and 2μm polycarbonate

membranes in series (bottom-up experiments; Table 1). The bottom-up experiments thus had

additional information about diversity in different size-fractions.

Molecular assessment of planktonic diversity

DNA extraction and amplification. The DNA extraction and amplification methods are

detailed in Grattepanche et al [47] and Sisson et al [48]. In summary, DNA was extracted using

a phenol chloroform protocol adapted for filters [49] for top-down experiments or using ZR

Soil Microbe DNA MiniPrep kit following the instructions given by the manufacturer (Zymo

Research, CA) for bottom-up experiments. Two sets of primers were used for each experiment

to amplify (S1 Table): a 350bp SSU-rDNA fragment specific to spirotrich ciliates (528- with

GC clamp and 152+; [50]) for both experiments as the main focus of this study. To observe if

the overall microbial eukaryote community was impacted during our top-down experiments,

a 300bp SSU-rDNA fragment of ‘all’ eukaryotes [51] was also used. For the same reason and to

observe more rare species compared to DGGE, a 150bp SSU-rDNA fragment specific to the

SAR clade was amplified and sequenced by HTS [48] for one of the bottom-up experiments

(Table 1). The amplifications were performed with the Q5 enzyme and either a 1:10 or 1:100

dilution of total DNA. Up to 5 PCR products were pooled to avoid PCR biases (over or under-

amplification of some sequences, chimeras, etc.; see [52] for discussion of these issues).

DGGE as a tool for assessment of abundant community members. Denaturing Gradi-

ent Gel Electrophoresis (DGGE) is a DNA fingerprinting method that detects variation in

DNA sequence composition from PCR products separated on an acrylamide gel containing a

denaturing gradient of 35 to 55% urea-deionized formamide [47]. We used DGGE to assess

the composition of abundant species, as in past studies. DGGE gives good resolution for

changes in spirotrich ciliate community composition [47, 53], and has shown similar patterns

to those found by HTS [54]. We conducted DGGE using two sets of primers: Spirotrichea cili-

ate- specific primers ([50]; referred to as DGGE spiro) for all experiments, and eukaryote-spe-

cific primers ([51]; referred to as DGGE alleuk) only for the top-down experiments (Table 1).

Gels were incubated for at least 15 hours under 45 volts (DCode Universal Mutation Detection

System user guide; Bio-Rad). After incubation, they were stained using SYBR Gold and docu-

mented using a Kodak imager.

To assess the taxonomic community composition of the spirotrich ciliates, bright bands

within the gels were excised, and DNA was eluted in 10μL of TE buffer overnight at 4˚C. The

Incubation effects on spirotrich ciliate diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0215872 May 6, 2019 4 / 22

https://doi.org/10.1371/journal.pone.0215872


resulting DNA was amplified for 10 cycles using the same set of primers without the GC clamp

(S1 Table). PCR products were cleaned with ExoSap It (Thermo Fisher Scientific) and

sequenced using the Big Dye Terminator v3.1 Cycle Sequencing Kit (Life technologies). Sanger

sequencing was performed at the Smith College Center for Molecular Biology or at the Univer-

sity of Rhode Island Genomics and Sequencing Center. A total of 84 DGGE bands were

sequenced for this study. The PCR and DGGE were carried out multiple times to ensure that

our results were robust in estimating abundant community members. DGGEs with the pooled

PCR products generated the same band pattern for each sample replicated, consistent with our

previous DGGE studies [47, 53, 55].

High throughput sequencing and bioinformatics. Prior to the high-throughput

sequencing (bottom-up experiment 3 only), PCR amplicons from the SAR primers were

pooled and cleaned using Agencourt AMPure XP beads (Beckman Coulter Life Sciences).

Sequencing was performed at the University of Rhode Island Genomics and Sequencing Cen-

ter for Amplicon Sequencing. The amplicons were multiplexed and sequenced for 2x150 cycles

using Illumina MiSeq.

HTS data analysis used the same four-step bioinformatic pipeline implemented and

described in Sisson et al [48]. In summary, the first step assembled forward and reverse reads

using Paired-End reAd mergeR (PEAR, [56]). During the paired-end assembling, ambiguous

bases were removed, and reads were trimmed with an Illumina quality score of 33 (maximal

score 40) and an overlapping cutoff of 120 bases (i.e. the overlap between the forward and

reverse reads had to be at least 120 bp). During the second step, OTUs were built with the clus-

tering algorithm SWARM (v 2.1.9, [57]) using the standard distance (d = 1, the default value).

In order to remove sequencing errors, only OTUs with more than 5 reads were included in

subsequent analyses. Chimeras were identified and discarded using UCHIME with default

parameters [58]

Taxonomy was assigned to each of the remaining OTUs using a BLAST approach via cus-

tom script with cutoff at 95% identity similarity, 80% of coverage, and 2e-50 E-value. OTUs

were aligned with our curated SAR alignment in MAFFT using the ’—add fragment’ algorithm

[59]. Columns with more than 75% missing data (e.g. insertion present in only one of four spe-

cies) were removed to save computing time during tree building, then a RAxML tree was built

using GTR-GAMMA-I parameters on CIPRES [60] to enable outgroup removal (non-SAR

OTUs). The outgroups were checked by eye and discarded. After this round of cleaning, the

remaining reads were subsampled at 60,000 reads to enable us to compare samples. A second

taxonomic assignment was performed using a phylogenetic approach and OTUs were assigned

to the sister closest on the tree (step 4). We performed a dual taxonomic assignment to avoid

mis-assignment, and more importantly to be able to add a taxonomy to each OTU even if

there is no close relative by BLAST.

Statistical analyses

DGGE gels were analyzed by eye and only presence/absence data are considered. Species rich-

ness (number of abundant species) was compared using Pearson’s correlation coefficient and

t-tests. Similarity of biological replicates and relationship between Spirotrichea richness and

environment (number of eukaryotes, number of copepods, number of SAR species) were ana-

lyzed with regression analysis (ANOVA). Band patterns (abundant members of the commu-

nity) and replicability were compared by non-metric multidimensional scaling (NMDS) on

the Jaccard binary index (presence/absence diversity index) using the phyloseq and vegan

packages [61, 62] implemented in R [63]. Patterns within the HTS data were analyzed using

the Unifrac dissimilarity index, which considers the phylogenetic distance between taxa [64],

Incubation effects on spirotrich ciliate diversity
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or the Bray-Curtis dissimilarity index. Principal coordinate analysis (PCoA), Permutational

multivariate analysis of variance (PERMANOVA), and pairwise comparison with Bonferroni

correction were performed in R [63] using the phyloseq and vegan packages.

Results

Replicability within our microcosm experiments

In the DGGE gels, which only capture abundant community members, replicates using both

the spirotrich ciliate and all-eukaryote primers showed some variability but overall a similar

response to the incubation (Fig 1 and S2 and S3 Tables and S1–S5 Figs). The number of bands

using the spirotrich or all-eukaryotes primers ranged from 0 to 25 (average 8±4 and 11±5

bands per DGGE lane for spirotrich and all-eukaryotic primers, respectively). The number of

bands (i.e. species) varied strongly within the biological replicates for each treatment and for

both experiments (up to 8 times higher between two replicates, S2 and S3 Tables). The average

number of species per treatment and the number of shared species show a significant

Fig 1. Non-metric multidimensional scaling of the DGGE band patterns using binary Jaccard index shows the good biological replicability of spirotrich and

eukaryote communities when incubated for two days and more variability when incubated longer. a, b, and c represent the replicates, and T0 the starting

community (before incubation). Control represent the community incubated without copepods added, ‘natural’ the natural predation pressure (10 copepods. L-1

added), and ‘high’ the high predation pressure (20 copepods. L-1 added). From left to right, the two, three, and six days incubations. The top panels are the abundant

spirotrich ciliate communities and the bottom are all abundant microbial eukaryotes.

https://doi.org/10.1371/journal.pone.0215872.g001

Incubation effects on spirotrich ciliate diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0215872 May 6, 2019 6 / 22

https://doi.org/10.1371/journal.pone.0215872.g001
https://doi.org/10.1371/journal.pone.0215872


correlation (Pearson correlation coefficient r = 0.85, P<<0.0001). This suggests that, while

there is some variability within our biological replicates, the main pattern of response to a

treatment is shared among replicates.

Abundant community members responded in the same way to the incubation in the two-

day TD experiment, but biological replicates diverged when incubated longer (3 or 6 days).

The brightest bands for the same treatment (i.e., C, N or H) are shared across replicates for

both spirotrich and all-eukaryote primers in the two-day experiment (Figs 1 and S1). The lon-

ger (three and six days) TD experiments showed some variability (Fig 1), with the number of

bands being up to 3 times higher (S2 Table), and the most abundant spirotrich species (bright-

est bands) were not shared among replicates (S1–S3 Figs).

Spirotrich communities in the BU experiments were more variable among replicates both

in the number of bands and the identities of the brightest ones (S3 Table and S4–S6 Figs). In

those experiments, even the replicates of the starting community contained some different

abundant ciliate taxa (S4–S6 Figs). The number of shared taxa in the replicates ranged from 1

to 8. The starting communities contained from 10 to 20 ciliate bands in the top-down experi-

ments, and from 5 to 17 abundant nanosized ciliates (2–10 µm) and 2 to 10 abundant micro-

sized ciliates (10–80µm) for the BU experiments (top-down experiments were not size

fractionated; S1–S6 Figs). Often, bright bands were common across 2 or 3 replicates (generally

1 or 2 highly abundant ciliates) but the less abundant taxa (fainter bands) showed less consis-

tency (S1–S6 Figs).

Spirotrichea ciliate community composition

We analyzed the diversity of Spirotrichea by sequencing 84 bands isolated from DGGE spiro
(S1–S6 Figs and S4 Table). Six of these 84 bands BLASTed as non-ciliates (4 dinoflagellates

and 2 stramenopiles), indicating that the great majority of our bands represented our target

taxa. The remaining 78 sequences were 90% or greater in similarity to 30 spirotrich ciliate

morphospecies deposited by name in GenBank (i.e. not “uncultured”). Given the low level of

sequence similarity (90%), this is a conservative estimate of the total number of lineages in our

experiments; i.e. these 30 taxa include genera as well as species and likely include intraspecific

variability. We found some species present in almost all of our microcosm experiments. Specif-

ically, we repeatedly found haplotypes related to Pelagostrobilidium paraepacrum FJ876963

(bands 6D-3, 3D-1 and 4D-2 in the top-down experiment, and Phyto26 and Phyto30 for the

bottom-up experiment), Eutintinnus tubulosus JX101855 (e.g., 3D-2), Rimostrombidium veni-
liae FJ876964 (e.g., 2D-5 and Phyto43), and Leegardiella sp KY290313 (e.g., 3D-7 and Phyto14;

S1–S7 Figs and S4 Table).

Incubation effects

Incubation itself impacted the abundant members of the ciliate community as the numbers of

bands tended to decrease during the course of the TD incubation (between the T0 and the con-

trols at the end of the experiment; S1–S6 Figs). Between 3 and 8 bands disappeared during the

TD incubation and for all but the shortest (2 days) experiment; only a few spirotrich haplo-

types stayed dominant during the incubations (only 1–2 bright bands on final DGGE gels). In

contrast, the most abundant (brightest bands) members of the eukaryotic assemblage did not

show a strong change following incubation (S1–S3 Figs), indicating that dominant eukaryotes

did not change during the TD incubation while spirotrich ciliates did.

Given that even the starting community was variable for the BU experiments, we focused

on bands shared across at least two replicates and changes in the composition of the whole

community (number of bands) across all replicates. For two of the three BU experiments, we
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observed a decrease in diversity over time, with 1–9 abundant ciliate bands of the nanosize

fraction lost in our controls (BU2 and BU3, S3 Table). On the other hand, diversity of abun-

dant spirotrich ciliates increased in the first experiments (BU1). In the microsize fraction, the

pattern was more complex, with higher variability among the replicates (S3 Table), but the

average number of bands was similar before and after incubation.

Some spirotrich haplotypes abundant in the starting community, specifically those related

to Pelagostrobilidium paraepacrum (e.g., 3D-1), Strombidinopsis sinicum (e.g., 6D-1, 6D-2),

Strombidium paracapitatum (e.g., 2D-6 and phyto35), Rimostrombidium veniliae (e.g., 6D-6),

almost never remained abundant in our incubations (S1–S6 Figs). We also observed that some

‘rarer’ taxa in the starting community became more abundant in our controls (2D-7, 3D-2;

S1–S6 Figs). Interestingly, all bands with BLAST hits closest to one or more Eutintinnus species

(a loricate genus) in the top-down experiments (3D-2, 6D-5, 2D-10, 2D-8, 2D-9, and 2D-13)

increased in controls relative to T0, but usually suffered more from grazing (decreased band

brightness) in the treatments with the highest copepod abundance.

Top-down experiments (DGGE Spiro vs DGGE alleuk)

Our DNA fingerprinting approach reveals that copepods impacted the diversity of abundant

spirotrich ciliates while other abundant eukaryotes were not affected. Comparing the number

of abundant spirotrich ciliates in the control and in our ‘natural’ predation pressure treatment

(10 copepods), we observed a decrease in the number of bands when incubated for two days

and a slight increase when incubated for three days (S2 Table). Intriguingly, for the high preda-

tion pressure treatment (20 copepods L-1), the number of bands was slightly greater than at the

lower predation level for the two day incubation (experiment TD1) but distinctly lower for the

three-day incubation (TD2; S2 Table). In sum, the number of abundant ciliates decreases with

increasing predation pressure (i.e. number of copepods added) when incubated for three days

(ANOVA, p<0.002), but not for two days (P>0.05). For the longest incubation (six days,

TD3), the number of abundant species stayed nearly constant regardless of the number of

copepods added (S2 Table), but the identity of the dominant spirotrich ciliates changed (Fig 1

and S2 Table and S4 Fig). No more than one band was common to all replicates, even in con-

trols, underscoring the effects of the experimental manipulation itself on the assemblages dur-

ing long incubations, and making it difficult to interpret this experiment.

In contrast to the ciliates, other dominant microbial eukaryotes did not change much in

response to the addition of copepod grazers or the incubation itself. The abundant eukaryotes

ranged from 10 to 25 species (i.e. DGGE bands) at the beginning of the experiments and did

not change much across the treatments (S2 Table). The brightest bands (most abundant spe-

cies) also did not change much with treatment or duration of the incubation (S1–S3 Figs). The

number of species shared among all replicates stayed constant in number and composition

whatever the number of copepods, and was relatively constant across experiments (S2 Table).

In the three-day experiment (TD2), average number of bands decreases from 11.7 to 5.3 with

increasing copepods (p<0.02; S2 Table), but this is skewed by the complete absence of bright

bands in one replicate. We also observed that the number of abundant eukaryotes was not sig-

nificantly related to the number of abundant spirotrich ciliates (regression analyses, P>0.05).

Bottom-up experiment—impact on Spirotrichea (DGGE vs HTS)

The bottom-up experiments (BU) show variable responses of abundant ciliates to simulated

blooms of various kind of phytoplankton. For experiment BU1, the abundant nanosized spiro-

trich richness increases after three days incubation for all treatments and the control (S3

Table). We observe the inverse trend for BU2 and BU3 i.e. decrease of nanosized species
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richness (S3 Table). In contrast, the abundant microsized spirotrich richness did not change

across replicates, treatments and experiments (i.e. in BU1, 2 and 3; S3 Table). Abundant nano-

sized and microsized spirotrich ciliates thus did not respond clearly to our bloom treatment.

The NMDS shows some grouping for the nanosized community (e.g., chlorophyte treatment)

and for the abundant microsized spirotrich (e.g. diatom treatment), but the groupings are not

significant (Fig 2).

Fig 2. Non-metric multidimensional scaling using Jaccard binary index of the spirotrich community shows the considerable variability among

biological replicates when communities are incubated with three different kinds of phytoplankton. A, B, and C represent the replicates. ‘Starting

community’ is the community before incubation. ‘Control’ represents the community incubated without perturbation. ‘Diatoms’, ‘Haptophyte’ and

‘Chlorophyte’ represent the incubation with addition of phytoplankton. Left is the nanosize and right the microsize fraction. The top panels are the

abundant spirotrich ciliates assessed by DGGE and the bottom are the spirotrich ciliates assessed by HTS.

https://doi.org/10.1371/journal.pone.0215872.g002
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To have a better understanding of the impact of blooms on the spirotrich community we

used SAR primers for HTS amplicon sequencing. Analyses of HTS data found that OTU rich-

ness varies from 92 to 148 spirotrich species per treatment, with a slightly higher richness for

the community incubated with the chlorophyte (148) and slightly lower with the diatom (92).

The distribution of species richness by DGGE and HTS did not match, likely due to the differ-

ent methods and primers used. However, as for the DGGE, the community composition did

not seem to be related to the phytoplankton (Fig 2). Indeed, communities incubated with the

same phytoplankton species are close but are still overlapping with those in the other treat-

ments (Fig 2).

Bottom-up experiment—impact on the SAR clade (HTS)

In contrast to the variability in response of spirotrich ciliates to the phytoplankton treatments,

analyses of HTS data indicate a consistent SAR community among replicates for each treat-

ment, except for the haptophyte addition (Fig 3B–3D). Perhaps surprisingly, the initial strame-

nopile assemblage was dominated by oomycetes, with that group representing about 1/3 of all

OTUs in the 2–10 µm size fraction (Figs 3A and S8). OTU4, closely-related to the marine

oomycete Haliphthoros (pairwise distance of 0.09), was the most abundant. Overall, the two

size fractions were dominated by different SAR clades: Phaeophyceae (brown algae) and Bacil-

lariophyceae (diatoms) in the microsize fraction (10–80µm), and oomycetes (mainly due to

Haliphthoros a parasite of marine arthropods [65]) and Cercozoa in the nanosize fraction (2–

10µm; Fig 3).

Using principal coordinate analysis and the Unifrac dissimilarity index, the SAR assem-

blages cluster by size fraction (PERMANOVA R2 = 0.35 P<0.001) such as the spirotrich cili-

ates (R2 = 0.26 P<0.001; Fig 4 and S6 Table). Overall, the SAR and Spirotrichea communities,

nanosize, microsize or both fractions, are significantly impacted by the experiment (Treat-

ments in S6 Table). Among treatments, the diatom addition experiments cluster tightly, per-

haps driven in part by the fact that the added diatom is itself a member of SAR. The

chlorophyte addition treatments cluster only in the 10–80 µm fraction, while the haptophyte

additions and the controls do not cluster at all (Fig 4). None of the phytoplankton treatments

(‘Diatoms’, ‘Haptophyte’ and ‘Chlorophyte’) show a significant difference compared to each

other (pairwise comparison with Bonferroni correction P>0.05), suggesting (1) a minimal

effect of species used to simulate the phytoplankton bloom on SAR and Spirotrichea commu-

nities, or (2) the dominant species are not impacted by the phytoplankton we added. Because

the initial assemblages in both size fractions cluster significantly, we conclude that the SAR

assemblages in both the nano- and micro-sized fractions diverged over time (Fig 4 and S6

Table).

Discussion

Biological variability of spirotrich ciliates in microcosm experiments

Our spirotrich ciliate communities showed strong variability when incubated longer than two

days, with variation between replicates being higher than variation between treatments. While

our biological replicates showed variability, the technical replicates in our DGGE analyses

showed the same community composition, suggesting that incubation itself caused the com-

munities to diverge. The PCR and DGGE have been carried out multiple times to make sure

that the variability observed is not related to a technical issue. These procedures are highly

repeatable. The variability within the Spirotrichea in the long incubation may be resource

related (i.e. the microcosms diverged due to stochastic effects as food resources became more

limited; Fig 1) and in the three day incubation due to low starting diversity (TD2, maximum of
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Fig 3. Distribution of dominant taxa in our phytoplankton microcosm experiment analyzed using high throughput

sequencing (HTS) with SAR-specific primers: (A) dominant SAR lineages (B) ciliates classes, (C) spirotrich orders and (D)

species. For each panel, the left part of the bar graph shows replicates for each size fraction and for each incubation condition,

while the right part represents only treatments (i.e. replicates and size fractions have been pooled). The � denotes samples with

fewer than 60,000 reads (see methods).

https://doi.org/10.1371/journal.pone.0215872.g003
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8 abundant species; S2 Table). Indeed, ciliates of mid-latitudes generally show highest abun-

dance in late spring—summer and lower abundances late fall—winter [16, 66, 67]. The low

abundances in these November experiments may have led to the strong variability in our

DGGE results, particularly if rarer taxa that were distributed unequally between replicates

increased during the incubations.

Another factor impacting our biological replicates is the variability in the starting commu-

nity of the bottom-up experiment, which is intriguing. The species richness (number of bands)

and the community composition (band pattern) of the in situ community replicates were

inconsistent (species richness varying by up a factor 8, and few bands in common; S3 Table;

S4–S6 Figs). The possibility of community variation at small and fine scales is not new and has

been reported elsewhere [68]. For example, Dolan and Stoeck [69] show dissimilarity between

true replicates ranging from 4 to 12% looking at ciliates by morphology. Using molecular

tools, Lie et al [68] showed only 71% similarity among true replicates by T-RFLP in samples

from the coastal North Pacific Ocean.

The presence of abundant taxa in our experiments that have also been found in other North

Atlantic studies suggests that our microcosm experiments are representative of the in situ com-

munity in the New England. The diversity observed in our experiments is similar to previous

observations: 8–26 common OTUs in Long Island Sound [47, 70], between 2 and 22 on the

nearby shelf by DGGE [53,54] and between 1 and 67 using HTS [54,71]. While the number of

species obtained by HTS is higher in the present study compared to this earlier work, we should

note the difference in primers (here we considered all spirotrich and not only oligotrich and

choreotrich) and that the HTS methods were different (454 vs MiSeq, which leads up to 100

times more sequences, so potentially rarer OTUs). However, the identity of spirotrich ciliates

Fig 4. Principal Coordinate analyses of HTS data show (1) clustering of distinct SAR and Spirotrichea communities that are related to size fractions (circle and

triangle) and (2) a tendency to group by phytoplankton treatments for the SAR community (3) but not for the ciliate community. The Unifrac dissimilarity index has

been computed for these analyses. The same analyses were carried out with the Bray-Curtis index and gave the same pattern.

https://doi.org/10.1371/journal.pone.0215872.g004
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observed in our microcosms is similar to the ciliates observed in situ in the same area (S7 Fig,

[47,54,70]). Some ciliates observed in all DGGE gels (e.g., Pelagostrobilidium paraepacrum,

Eutintinnus tubulosus, Rimostrombidium veniliae, and Leegardiella sp) were also observed dur-

ing a tide pool survey in the same area during the summer 2015 [72], in Long Island Sound [47,

49, 50, 73], in the nearshore area during the summer 2014 [55], and as members of an assem-

blage present from the nearshore to beyond the shelf break of New England across multiple

depths during summer 2012 [53, 71]. The consistent abundance of these OTUs suggests they

play key ecological roles in North Atlantic waters or are opportunistic species. Also, Capriulo

et al [74], in a three-year study of Long Island Sound, documented by microscopy a total of 67

spirotrich ciliate morphospecies, so we conclude that a substantial amount of the abundant spir-

otrich ciliate diversity was included in our microcosms (78 spirotrich haplotypes).

Looking at the SAR community, only one study has been published with this primer set in

freshwater environments, and reported between 205 and 757 OTUs [48]. Rhizaria are under-

represented in the present study as in the freshwater study [48] compared to recent studies in

marine environments [38]. This discrepancy is likely related to (1) our size fractionation and

(2) to a primer bias. While Rhizaria has been regarded as one of the most abundant clades in

ocean, the organisms are generally larger than 100µm [75] and so may have been eliminated

by our 80µm prescreening step. Also, one of the major contributors to the Rhizaria are the

Foraminifera, which have a complex SSU rRNA gene that would not be amplified by our

primer set.

Incubation impacted abundant species

Experimental incubation is a fundamental tool in biology to assess physiological rates in

microbial communities (e.g. primary and bacterial production, microbial growth and feeding

experiments), but few studies have looked at the impact of incubation on microbial eukaryotes.

In a study using Clone libraries and T-RFLP, a microbial community that was incubated for

three days showed a similar impact on diversity over time, compared to our experiments, with

only 18% of the species shared by the three time points and 65% of the species observed only at

one time point [76]. In our case, the diversity of abundant species (DGGE bands) decreased

during the incubation. Indeed, the number of ciliates bands in our starting community was

almost always greater than the number of bands observed after incubation (S2 and S3 Tables).

While each treatment are statistically different, HTS did not indicated differences between the

starting community and controls (S6 Table). Four decades ago, a microcosm study based on

morphospecies found that the ciliates were the group of microzooplankton most negatively

impacted during 8- and 24-hour incubations [77].

The variability in our replicates makes it difficult to identify species that responded to the

treatments, but there were some species that responded consistently across replicates. For

example, a DGGE band related to the common Strombidium paraepacrum never remained

abundant in the mesocosms whatever the time of the year or the duration of the incubation.

Another band related to Eutintinnus usually increased during the incubations, suggesting ame-

nability to confinement in the mesocosms. Alteration of the community composition incu-

bated under similar conditions has been reported elsewhere [76, 78]. This suggests that the

incubation itself can select for one or a few taxa well-adapted to experimental manipulation,

consistent with the fact that only a small fraction of ocean microbes are cultivable [79]; some

opportunistic species (e.g. Eutintinnus) may benefit from reduction in predation and turbu-

lence or other features of the dialysis bag environment.

Changes in community composition under incubation complicate evaluation of the repre-

sentativeness of our measurements. Other studies have also reported incubation-induced
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changes in microbial communities [80], which can also impact grazers and other parts of the

community [81]. Many hypotheses have been proposed to explain this often-observed phe-

nomenon. For example, this “bottle effect” may be due to the impact of surfaces in contact

with the microbial community under confinement. Another explanation is derived from the

famous “paradox of the plankton”–existence of high diversity in a relatively homogeneous

environment [82]. One resolution to this paradox is that natural plankton populations are not

in equilibrium because continual disturbances prevent competitive exclusion. Given high

diversity and a limited number of niches [82], functionally redundant species in the plankton

can replace each other randomly under constant disturbance from mixing, advection, etc.,

across small spatial distances. In our experiments, the communities come from the same meta-

population and were incubated under the same conditions (niches), so we expected to observe

the same resulting community (given that the same competitive interactions occurred); this is

not what we found. For the same niches and from the same metapopulation, minus the contin-

ual disturbances, different communities emerged after confinement. We speculate that each

mesocosm replicate may represent a small sub-community where small initial differences put

them on different trajectories of assembly from a highly diverse metacommunity. In the

absence of disturbance, the mesocosms will continue on their different trajectories and diverge

from their initial composition, irrespective of treatment.

Top-down experiments—Copepods prefer ciliates

In the shorter copepod experiments (two and three days, TD 1 and 2), the number of abundant

ciliates (DGGE bands) decreased with the presence of copepods, while the number of abun-

dant total eukaryotes (DGGE alleuk) did not decrease (S2 Table and S1 and S2 Figs). Calbet

and Saiz [27] have shown that ciliates are an important component of copepod diets and can

represent up to 50% of their carbon consumption. This leads us to conclude that results of our

copepod experiments support the preference of copepods for ciliates, compared to many of the

other eukaryote prey items available.

For the six days incubation experiment (TD 3), we observed stable ciliate diversity with

increase in the number of adult copepods added (S2 Table). This may be related to cannibalism

by copepods as adult copepods can consume up to 35% of available nauplii per day [83], sug-

gesting that added copepods may have been consuming primarily nauplii instead of grazing

on the ciliates in the 6d incubation. Depending on the relative abundance of different foods,

many copepod species switch feeding modes from picking small particles out of a feeding cur-

rent to raptorial ingestion of nauplii [84, 85]. Thus, the ciliate diversity remaining similar in

the copepod treatments may be related to lower predation pressure as copepods ate the preda-

tors of the ciliates (nauplii).

One confounding issue in our top-down experiments is that the conditions in our micro-

cosms allowed copepods to develop from nauplii to adults. We endeavored to enumerate the

copepods in two of the three top-down incubations by screening bag contents at the end of the

experiments (TD2 and TD3; S5 Table). As with the micro- eukaryotes, we observed variability

in copepod abundance within biological replicates. Indeed, copepods grew in some of the

bags, and we observed between 12 and 27 adult copepods in our control bags at the end of the

six day incubation, and from 2 to 11 in the two days incubation. Our prescreening with a

200µm mesh at T0 removed adult copepods but not copepod nauplii (c. 60–80 µm), which

have the time to grow up, particularly in the samples incubated for six days. For example, the

copepod abundance was greater in the control than in the copepod treatment by the end of the

six days incubations (S3 Table) and was higher in our ‘natural’ predation than in our high
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predation pressure treatment. This suggests that adult copepods have a negative effect on juve-

nile copepod growth.

The fact that some of the copepod nauplii in the control microcosms had the time to

develop to copepodites illustrates the difficulty in interpreting results of experiments on com-

plex food webs in which life stage transitions may result in changes in trophic links during

incubation. At present, the impact of copepod juveniles (nauplii and copepodites) on ciliates is

not well known [86]. In our experiments, the main impacts appeared to be due to the added

adult copepods, but further experimental approaches to this issue are warranted.

Bottom-up experiment—a stochastic effect on Spirotrichea

The three bottom-up experiments showed variable responses of abundant ciliates to increasing

phytoplankton. The non-replicability may be due to the variability in starting community mem-

bers from the fall sampling, as discussed above. Besides the lower abundance of ciliates in the

fall, the lack of response to the phytoplankton treatments may have also resulted from the cili-

ates already being food-saturated or feeding on particles other than phytoplankton [17, 87–89].

To explore further the variability in the third bottom-up experiment (BU3), we used ampli-

con high-throughput sequencing (HTS) with primers designed to capture the diversity of the

whole SAR (Stramenopila, Alveolata, and Rhizaria) clade. Unlike DGGE, HTS samples the

community comprehensively, revealing even very rare members. We first focused on the

diversity of ciliates revealed by our HTS analyses of experiment 3 and found that the ciliate

assemblage was dominated by the class Spirotrichea (and subclasses Choreotrichia and Oligo-

trichia) as previously documented (S6B and S6C Fig; [90–93]). Looking at the whole SAR com-

munity, we observe an increase of litostome ciliates and oomycetes in all phytoplankton

treatments relative to the initials and controls, particularly in the diatom treatment. This likely

represents the increase in opportunistic “weed” species that prosper under reduced grazing,

eutrophication, and confinement. While we observed a significative impact of the phytoplank-

ton bloom on SAR and Spirotrichea communities, none of the three phytoplankton species

results in a different response of the in situ community. This suggests that only prey size mat-

ters in the selection of food by microheterotrophs, as the three phytoplankton species used

have the same size range [87–89].

Synthesis

Although there was variability in the responses to the treatments in our various microcosms,

some broad conclusions can be made. Overall, we found that ciliates were preferentially grazed

by copepods, compared to other eukaryotes. The lack of clear reproducibility within our bio-

logical replicates suggest that the community was heterogeneous at very small scales (the size

of our bag was around 500mL) or that the community responded ‘randomly’ to confinement.

While surprising, this is in agreement with previous in situ observations failing to clearly relate

spirotrich [54, 55, 71] and microbial eukaryote diversity [94, 95] to environmental parameters.

Dialysis bag microcosms allow fully replicated, multi-variable experiments to be performed

with microbial communities under simulated in situ conditions. To improve reliability, we rec-

ommend a higher density of organisms and an increase in the number of replicates. Despite

inter-replicate variability, these kinds of experiments can help elucidate factors controlling

microbial eukaryote diversity, growth and ecological roles in the plankton.

Supporting information

S1 Fig. DGGE of two-day top down control experiment (TD 1) top: spirotrich ciliate prim-

ers; Bottom: All-eukaryote primers) reveals similar responses (band patterns) among
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replicates. Std are standard used to compared DGGE gels, T0 the starting community, C the

controls, N the ‘natural’ predation pressure samples, and H the ‘High’ predation pressure sam-

ples. a, b, and c represent the replicates.

(DOCX)

S2 Fig. DGGE of three-day top down experiment (TD 2) reveals similar responses among

replicates using spirotrich ciliate or eukaryote primers (top and bottom pictures, respec-

tively). Other notes as in S1 Fig.

(DOCX)

S3 Fig. DGGE of six-day top down experiment (TD 3) reveals variable responses of the

dominant spirotrich ciliates and similar responses of the dominant eukaryotes among rep-

licates. Other notes as in S1 Fig.

(DOCX)

S4 Fig. DGGE of bottom-up experiment 1 (BU 1) using Spirotrichea primers shows high

variability among replicates. Each lane presents a replicate of T0, control, and three bloom

treatments. T0 has two replicates (A-B) and the other treatments have three replicates (A-C).

Brightness of bands indicates how abundant a taxon was within its community. Red numbers

represent bands that were sequenced.

(DOCX)

S5 Fig. DGGE of bottom up Experiment 2 (BU 2) using Spirotrichea primers shows high

variability among replicates. Other notes as in S4 Fig.

(DOCX)

S6 Fig. DGGE of bottom up experiment 3 (BU 3) using Spirotrichea primers shows high

variability among replicates. Each lane presents a replicate of Time Zero, control, and three

bloom treatments. Other notes as in S4 Fig.

(DOCX)

S7 Fig. Phylogeny of the DGGE haplotypes (orange) reveals diversity of lineages generated

using spirotrich ciliate DGGE primers. The reference morphospecies are in red for Tintin-

nida, in green for Choreotrichida and in blue for Oligotrichia. In grey are previously

sequenced DGGE haplotype [54,55,70,72] and in black are outgroup morphospecies.

Sequences were aligned with Muscle and tree was built using the GRTGAMMAI parameter in

RaxML.

(DOCX)

S8 Fig. Distribution of dominant (A) stramenopiles in our phytoplankton microcosm

experiment analyzed using high throughput sequencing and SAR-specific primers. The left

part of the graph shows each replicate for each size fraction and for each incubation condition,

while the right part represents only the incubations conditions (replicates and size have been

pooled together). The � denote samples with less than 50,000 rarefied reads.

(DOCX)

S1 Table. Primer sets used in this study.

(DOCX)

S2 Table. Number of abundant spirotrich (top) and eukaryotic (bottom) species (bands) in

each replicate during the top down experiments.

(DOCX)
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25. Calbet A, Trepat I, Almeda R, Saló V, Saiz E, Movilla JI, et al. Impact of micro-and nanograzers on phy-

toplankton assessed by standard and size-fractionated dilution grazing experiments. Aquatic Microbial

Ecology. 2008; 50(2):145.

26. Verity P. Grazing experiments and model simulations of the role of zooplankton in Phaeocystis food

webs. Journal of Sea Research. 2000; 43(3–4):317–43.

27. Calbet A, Saiz E. The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology. 2005; 38

(2):157–67. PubMed PMID: ISI:000227276200006.

Incubation effects on spirotrich ciliate diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0215872 May 6, 2019 18 / 22

https://doi.org/10.1111/j.1550-7408.2010.00476.x
https://doi.org/10.1111/j.1550-7408.2010.00476.x
http://www.ncbi.nlm.nih.gov/pubmed/20384906
https://doi.org/10.1111/j.1550-7408.1985.tb04036.x
https://doi.org/10.1086/285499
http://www.ncbi.nlm.nih.gov/pubmed/19426005
https://doi.org/10.1038/nature02593
http://www.ncbi.nlm.nih.gov/pubmed/15215862
https://doi.org/10.1093/Plankt/Fbq097
https://doi.org/10.1016/J.Jembe.2011.04.004
https://doi.org/10.1146/annurev-micro-090110-102808
http://www.ncbi.nlm.nih.gov/pubmed/22803798
https://doi.org/10.1371/currents.tol.c24b6054aebf3602748ac042ccc8f2e9
https://doi.org/10.1371/currents.tol.c24b6054aebf3602748ac042ccc8f2e9
http://www.ncbi.nlm.nih.gov/pubmed/24707447
https://doi.org/10.1111/j.1550-7408.2012.00644.x
https://doi.org/10.1111/j.1550-7408.2012.00644.x
http://www.ncbi.nlm.nih.gov/pubmed/23020233
https://doi.org/10.1371/journal.pone.0215872


28. Berk SG, Brownlee DC, Heinle DR, Kling HJ, Colwell RR. Ciliates as a food source for marine planktonic

copepods. Microbial Ecol. 1977; 4(1):27–40. https://doi.org/10.1007/bf02010427 PMID: 24231883

29. Gifford DJ. The Protozoan-Metazoan Trophic Link in Pelagic Ecosystems. J Protozool. 1991; 38(1):81–

6. PubMed PMID: ISI:A1991EZ66000016.

30. Stoecker DK, Capuzzo JM. Predation on protozoa—its importance to zooplankton. J Plankton Res.

1990; 12(5):891–908. https://doi.org/10.1093/plankt/12.5.891 PubMed PMID: WOS:

A1990DX49500001.

31. Ederington MC, McManus GB, Harvey HR. Trophic transfer of fatty acids, sterols, and a triterpenoid

alcohol between bacteria, a ciliate, and the copepod Acartia tonsa. Limnology and Oceanography.

1995; 40(5):860–7.

32. Hallegraeff GM. A review of harmful algal blooms and their apparent global increase. Phycologia. 1993;

32(2):79–99.

33. Cloern JE. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons

from sustained investigation of San Francisco Bay, California. Reviews of Geophysics. 1996; 34

(2):127–68.

34. Brussaard C, Gast G, Van Duyl F, Riegman R. Impact of phytoplankton bloom magnitude on a pelagic

microbial food web. Mar Ecol Prog Ser. 1996; 144:211–21.

35. Glibert PM, Burford MA. Globally changing nutrient loads and harmful algal blooms: recent advances,

new paradigms, and continuing challenges. Oceanography. 2017; 30(1):58–69.

36. Gobler CJ, Doherty OM, Hattenrath-Lehmann TK, Griffith AW, Kang Y, Litaker RW. Ocean warming

since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans.

Proceedings of the National Academy of Sciences. 2017; 114(19):4975–80.

37. Irigoien X, Flynn K, Harris R. Phytoplankton blooms: a ‘loophole’in microzooplankton grazing impact? J

Plankton Res. 2005; 27(4):313–21.

38. de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Ocean plankton. Eukaryotic plank-

ton diversity in the sunlit ocean. Science. 2015; 348(6237):1261605. https://doi.org/10.1126/science.

1261605 PMID: 25999516.

39. Sime-Ngando T, Christaki U, Gleason FH. Viruses and Parasites in Food Web Interactions. Frontiers in

microbiology. 2017; https://doi.org/10.3389/fmicb.2017

40. Kierstead H, Slobodkin L. The size of water masses containing plankton blooms. J Mar Res. 1953;

12:141–7.

41. Capriulo G. Feeding of field collected tintinnid micro-zooplankton on natural food. Marine Biology. 1982;

71(1):73–86.

42. Breton E, Brunet C, Sautour B, Brylinski JM. Annual variations of phytoplankton biomass in the Eastern

English Channel: comparison by pigment signatures and microscopic counts. J Plankton Res. 2000; 22

(8):1423–40.

43. Capriulo GM, Carpenter EJ. Abundance, species composition and feeding impact of tintinnid micro-zoo-

plankton in central Long Island Sound. Mar Ecol Prog Ser. 1983:277–88.

44. Sullivan BK, Costello JH, Van Keuren D. Seasonality of the copepods Acartia hudsonica and Acartia

tonsa in Narragansett Bay, RI, USA during a period of climate change. Estuarine, Coastal and Shelf Sci-

ence. 2007; 73(1–2):259–67.

45. Rice E, Stewart G. Decadal changes in zooplankton abundance and phenology of Long Island Sound

reflect interacting changes in temperature and community composition. Marine environmental research.

2016; 120:154–65. https://doi.org/10.1016/j.marenvres.2016.08.003 PMID: 27552121

46. Peterson W. T. 2001. Patterns in stage duration and development among marine and freshwater cala-

noid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance.

Hydrobiologia 453–454:91–105.

47. Grattepanche J-D, Santoferrara LF, Andrade J, Oliverio AM, McManus GB, Katz LA. Distribution and

diversity of oligotrich and choreotrich ciliates assessed by morphology and DGGE in temperate coastal

waters. Aquatic Microbial Ecology. 2014; 71(3):211–21. https://doi.org/10.3354/ame01675

48. Sisson C, Gulla-Devaney B, Katz LA, Grattepanche J-D. Seed bank and seasonal patterns of the

eukaryotic SAR (Stramenopila, Alveolata and Rhizaria) clade in a New England vernal pool. J Plankton

Res. 2018; 40(4):376–90.

49. Costas BA, McManus G, Doherty M, Katz LA. Use of species-specific primers and PCR to measure the

distributions of planktonic ciliates in coastal waters. Limnology and Oceanography-Methods. 2007;

5:163–73. PubMed PMID: ISI:000248743000002.

Incubation effects on spirotrich ciliate diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0215872 May 6, 2019 19 / 22

https://doi.org/10.1007/bf02010427
http://www.ncbi.nlm.nih.gov/pubmed/24231883
https://doi.org/10.1093/plankt/12.5.891
https://doi.org/10.1126/science.1261605
https://doi.org/10.1126/science.1261605
http://www.ncbi.nlm.nih.gov/pubmed/25999516
https://doi.org/10.3389/fmicb.2017
https://doi.org/10.1016/j.marenvres.2016.08.003
http://www.ncbi.nlm.nih.gov/pubmed/27552121
https://doi.org/10.3354/ame01675
https://doi.org/10.1371/journal.pone.0215872


50. Tamura M, Katz LA, McManus GB. Distribution and diversity of oligotrich and choreotrich ciliates across

an environmental gradient in a large temperate estuary. Aquatic Microbial Ecology. 2011; 64(1):51–67.

https://doi.org/10.3354/ame01509 PubMed PMID: WOS:000292988300005.

51. Gast RJ, Dennett MR, Caron DA. Characterization of protistan assemblages in the Ross Sea, Antarc-

tica, by denaturing gradient gel electrophoresis. Applied and Environmental Microbiology. 2004; 70

(4):2028–37. https://doi.org/10.1128/AEM.70.4.2028-2037.2004 PubMed PMID:

ISI:000220792200017. PMID: 15066793

52. Lahr DJG, Katz LA. Reducing the impact of PCR-mediated recombination in molecular evolution and

environmental studies using a new-generation high-fidelity DNA polymerase. Biotechniques. 2009; 47

(4):857–63. https://doi.org/10.2144/000113219 PubMed PMID: ISI:000277559900009. PMID:

19852769

53. Grattepanche JD, Santoferrara LF, McManus GB, Katz LA. Distinct assemblage of planktonic ciliates

dominates both photic and deep waters on the New England shelf. Mar Ecol Prog Ser. 2015; 526:1–9.

https://doi.org/10.3354/meps11256 PubMed PMID: WOS:000354394900001.

54. Grattepanche JD, McManus GB, Katz LA. Patchiness of ciliate communities sampled at varying spatial

scales along the New England shelf. Plos One. 2016; 11(12):e0167659. doi: ARTN e0167659 https://

doi.org/10.1371/journal.pone.0167659 PubMed PMID: WOS:000389587100142. PMID: 27936137

55. Tucker SJ, McManus GB, Katz LA, Grattepanche JD. Distribution of Abundant and Active Planktonic

Ciliates in Coastal and Slope Waters Off New England. Front Microbiol. 2017; 8:2178. https://doi.org/

10.3389/fmicb.2017.02178 PMID: 29250036; PubMed Central PMCID: PMCPMC5715329.

56. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd

mergeR. Bioinformatics. 2013; 30(5):614–20. https://doi.org/10.1093/bioinformatics/btt593 PMID:

24142950

57. Mahe F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm v2: highly-scalable and high-resolution

amplicon clustering. PeerJ. 2015; 3:e1420. https://doi.org/10.7717/peerj.1420 PMID: 26713226;

PubMed Central PMCID: PMCPMC4690345.

58. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chi-

mera detection. Bioinformatics. 2011; 27(16):2194–200. https://doi.org/10.1093/bioinformatics/btr381

PubMed PMID: ISI:000293620800004. PMID: 21700674

59. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Per-

formance and Usability. Mol Biol Evol. 2013; 30(4):772–80. https://doi.org/10.1093/molbev/mst010

PubMed PMID: WOS:000317002300004. PMID: 23329690

60. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylo-

genetic trees. Gateway Computing Environments Workshop (GCE), 14 Nov 2010; New Orleans, LA:

IEEE; 2010. p. 1–8.

61. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of

microbiome census data. Plos One. 2013; 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

PMID: 23630581

62. Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’hara R. vegan: Community Ecology Pack-

age. R package version 2.3–4. 2016.

63. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria.

2016.

64. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for

microbial community comparison. The ISME journal. 2011; 5(2):169. https://doi.org/10.1038/ismej.

2010.133 PMID: 20827291

65. Tharp T, Bland C. Biology and host range of Haliphthoros milfordensis. Canadian Journal of Botany.

1977; 55(23):2936–44.

66. Monchy S, Grattepanche JD, Breton E, Meloni D, Sanciu G, Chabe M, et al. Microplanktonic Commu-

nity Structure in a Coastal System Relative to a Phaeocystis Bloom Inferred from Morphological and

Tag Pyrosequencing Methods. Plos One. 2012; 7(6):e39924. doi: ARTN e39924 https://doi.org/10.

1371/journal.pone.0039924 PubMed PMID: ISI:000305892100140. PMID: 22792138

67. Paranjape MA. Occurrence and significance of resting cysts in a hyaline tintinnid, Helicostomella subu-

lata (Ehre) Jorgensen. J Exp Mar Biol Ecol. 1980; 48(1):23–33. https://doi.org/10.1016/0022-0981(80)

90004-0

68. Lie AAY, Kim DY, Schnetzer A, Caron DA. Small-scale temporal and spatial variations in protistan com-

munity composition at the San Pedro Ocean Time-series station off the coast of southern California.

Aquatic Microbial Ecology. 2013; 70(2):93–110.

Incubation effects on spirotrich ciliate diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0215872 May 6, 2019 20 / 22

https://doi.org/10.3354/ame01509
https://doi.org/10.1128/AEM.70.4.2028-2037.2004
http://www.ncbi.nlm.nih.gov/pubmed/15066793
https://doi.org/10.2144/000113219
http://www.ncbi.nlm.nih.gov/pubmed/19852769
https://doi.org/10.3354/meps11256
https://doi.org/10.1371/journal.pone.0167659
https://doi.org/10.1371/journal.pone.0167659
http://www.ncbi.nlm.nih.gov/pubmed/27936137
https://doi.org/10.3389/fmicb.2017.02178
https://doi.org/10.3389/fmicb.2017.02178
http://www.ncbi.nlm.nih.gov/pubmed/29250036
https://doi.org/10.1093/bioinformatics/btt593
http://www.ncbi.nlm.nih.gov/pubmed/24142950
https://doi.org/10.7717/peerj.1420
http://www.ncbi.nlm.nih.gov/pubmed/26713226
https://doi.org/10.1093/bioinformatics/btr381
http://www.ncbi.nlm.nih.gov/pubmed/21700674
https://doi.org/10.1093/molbev/mst010
http://www.ncbi.nlm.nih.gov/pubmed/23329690
https://doi.org/10.1371/journal.pone.0061217
http://www.ncbi.nlm.nih.gov/pubmed/23630581
https://doi.org/10.1038/ismej.2010.133
https://doi.org/10.1038/ismej.2010.133
http://www.ncbi.nlm.nih.gov/pubmed/20827291
https://doi.org/10.1371/journal.pone.0039924
https://doi.org/10.1371/journal.pone.0039924
http://www.ncbi.nlm.nih.gov/pubmed/22792138
https://doi.org/10.1016/0022-0981(80)90004-0
https://doi.org/10.1016/0022-0981(80)90004-0
https://doi.org/10.1371/journal.pone.0215872


69. Dolan JR, Stoeck T. Repeated sampling reveals differential variability in measures of species richness

and community composition in planktonic protists. Environmental Microbiology Reports. 2011; 3

(6):661–6. https://doi.org/10.1111/j.1758-2229.2011.00250.x PMID: 23761354

70. Doherty M, Tamura M, Vriezen JA, McManus GB, Katz LA. Diversity of Oligotrichia and Choreotrichia

ciliates in coastal marine sediments and in overlying plankton. Applied Environmental Microbiology.

2010; 76(12): 3924–3935. https://doi.org/10.1128/AEM.01604-09 PMID: 20435761

71. Grattepanche J-D, Santoferrara LF, McManus GB, Katz LA. Unexpected biodiversity of ciliates in

marine samples from below the photic zone. Molecular Ecology. 2016; 25(16):3987–4000. https://doi.

org/10.1111/mec.13745 PMID: 27374257

72. Badger M, Tucker SJ, Grattepanche J-D, Katz LA. Rapid turnover of ciliate community members in

New England tide pools. Aquatic Microbial Ecology. 2017; 80(1):43–54.

73. Doherty M, Costas BA, McManus GB, Katz LA. Culture-independent assessment of planktonic ciliate

diversity in coastal northwest Atlantic waters. Aquatic Microbial Ecology. 2007; 48(2):141–54. PubMed

PMID: ISI:000248518700005.

74. Capriulo GM, Smith G, Troy R, Wikfors GH, Pellet J, Yarish C. The planktonic food web structure of a

temperate zone estuary, and its alteration due to eutrophication. Hydrobiologia. 2002; 475(1):263–333.

https://doi.org/10.1023/A:1020387325081 PubMed PMID: WOS:000178252700023.

75. Biard T, Bigeard E, Audic S, Poulain J, Gutierrez-Rodriguez A, Pesant S, Stemmann L, Not F. Biogeog-

raphy and diversity of Collodaria (Radiolaria) in the global ocean. The ISME journal. 2017; 11(6): 1331.

https://doi.org/10.1038/ismej.2017.12 PMID: 28338675

76. Countway PD, Gast RJ, Savai P, Caron DA. Protistan Diversity Estimates Based on 18S rDNA from

Seawater Incubations in the Western North Atlantic 1. J Eukaryot Microbiol. 2005; 52(2):95–106.

https://doi.org/10.1111/j.1550-7408.2005.05202006.x PMID: 15817114

77. Venrick EL, Beers JR, Heinbokel JF. Possible consequences of containing microplankton for physiolog-

ical rate measurements. J Exp Mar Biol Ecol. 1977; 26(1):55–76.

78. Massana R, Jürgens K. Composition and population dynamics of planktonic bacteria and bacterivorous

flagellates in seawater chemostat cultures. Aquatic microbial ecology. 2003; 32(1):11–22.

79. Kaeberlein T, Lewis K, Epstein SS. Isolating" uncultivable" microorganisms in pure culture in a simu-

lated natural environment. Science. 2002; 296(5570):1127–9. https://doi.org/10.1126/science.1070633

PMID: 12004133

80. Gattuso J-P, Peduzzi S, Pizay M- D, Tonolla M. Changes in freshwater bacterial community composi-

tion during measurements of microbial and community respiration. J Plankton Res. 2002; 24(11):1197–

206.

81. Agis M, Granda A, Dolan JR. A cautionary note: examples of possible microbial community dynamics in

dilution grazing experiments. J Exp Mar Biol Ecol. 2007; 341(2):176–83.

82. Hutchinson GE. The Paradox of the Plankton. Am Nat. 1961; 95(882):137–45. https://doi.org/10.1086/

282171 PubMed PMID: ISI:A1961WJ60200002.

83. Daan R, Gonzalez SR, Breteler WCK. Cannibalism in omnivorous calanoid copepods. Mar Ecol Prog

Ser. 1988; 47(1):45–54.

84. Landry M. Switching between herbivory and carnivory by the planktonic marine copepod Calanus pacifi-

cus. Marine Biology. 1981; 65(1):77–82.

85. Kiørboe T, Saiz E, Viitasalo M. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar

Ecol Prog Ser. 1996; 143:65–75.

86. Galbraith LM, Burns CW. Drivers of ciliate and phytoplankton community structure across a range of

water bodies in southern New Zealand. J Plankton Res. 2010; 32(3):327–39.

87. Hansen B, Bjornsen PK, Hansen PJ. The size ratio between planktonic predators and their prey. Lim-

nology and oceanography. 1994; 39(2):395–403.

88. Strom SL, Morello TA, Bright KJ. Protozoan size influences algal pigment degradation during grazing.

Mar Ecol Prog Ser. 1998; 164:189–97. https://doi.org/10.3354/meps164189 PubMed PMID:

WOS:000073460100017.

89. Kamiyama T, Arima S. Feeding characteristics of two tintinnid ciliate species on phytoplankton including

harmful species: effects of prey size on ingestion rates and selectivity. J Exp Mar Biol Ecol. 2001; 257

(2):281–96. PMID: 11245881

90. Lynn DH. The ciliated protozoa: characterization, classification, and guide to the literature. New York:

Springer; 2008. xxxiii, 605 p. p.

91. Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, et al. Marine protist diversity in European

coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015; 17

(10):4035–49. https://doi.org/10.1111/1462-2920.12955 PMID: 26119494.

Incubation effects on spirotrich ciliate diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0215872 May 6, 2019 21 / 22

https://doi.org/10.1111/j.1758-2229.2011.00250.x
http://www.ncbi.nlm.nih.gov/pubmed/23761354
https://doi.org/10.1128/AEM.01604-09
http://www.ncbi.nlm.nih.gov/pubmed/20435761
https://doi.org/10.1111/mec.13745
https://doi.org/10.1111/mec.13745
http://www.ncbi.nlm.nih.gov/pubmed/27374257
https://doi.org/10.1023/A:1020387325081
https://doi.org/10.1038/ismej.2017.12
http://www.ncbi.nlm.nih.gov/pubmed/28338675
https://doi.org/10.1111/j.1550-7408.2005.05202006.x
http://www.ncbi.nlm.nih.gov/pubmed/15817114
https://doi.org/10.1126/science.1070633
http://www.ncbi.nlm.nih.gov/pubmed/12004133
https://doi.org/10.1086/282171
https://doi.org/10.1086/282171
https://doi.org/10.3354/meps164189
http://www.ncbi.nlm.nih.gov/pubmed/11245881
https://doi.org/10.1111/1462-2920.12955
http://www.ncbi.nlm.nih.gov/pubmed/26119494
https://doi.org/10.1371/journal.pone.0215872


92. Agatha S. Global Diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in Marine and

Brackish Sea Water. Plos One. 2011; 6(8). doi: ARTN e22466 https://doi.org/10.1371/journal.pone.

0022466 PubMed PMID: ISI:000295454200011. PMID: 21853034

93. Dolan JR, Claustre H, Carlotti F, Plounevez S, Moutin T. Microzooplankton diversity: relationships of tin-

tinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the East-

ern Mediterranean. Deep-Sea Res Pt I. 2002; 49(7):1217–32. doi: Pii S0967-0637(02)00021-3 https://

doi.org/10.1016/S0967-0637(02)00021-3 PubMed PMID: ISI:000177777900006.

94. Pernice MC, Giner CR, Logares R, Perera-Bel J, Acinas SG, Duarte CM, et al. Large variability of bathy-

pelagic microbial eukaryotic communities across the world’s oceans. The ISME journal. 2016; 10

(4):945–58. https://doi.org/10.1038/ismej.2015.170 PMID: 26451501

95. Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L. Stochastic distribution of small

soil eukaryotes resulting from high dispersal and drift in a local environment. The ISME journal. 2016;

10(4):885. https://doi.org/10.1038/ismej.2015.164 PMID: 26394006

Incubation effects on spirotrich ciliate diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0215872 May 6, 2019 22 / 22

https://doi.org/10.1371/journal.pone.0022466
https://doi.org/10.1371/journal.pone.0022466
http://www.ncbi.nlm.nih.gov/pubmed/21853034
https://doi.org/10.1016/S0967-0637(02)00021-3
https://doi.org/10.1016/S0967-0637(02)00021-3
https://doi.org/10.1038/ismej.2015.170
http://www.ncbi.nlm.nih.gov/pubmed/26451501
https://doi.org/10.1038/ismej.2015.164
http://www.ncbi.nlm.nih.gov/pubmed/26394006
https://doi.org/10.1371/journal.pone.0215872

	Incubation and Grazing Effects on Spirotrich Ciliate Diversity Inferred from Molecular Analyses of Microcosm Experiments
	Recommended Citation

	Incubation and grazing effects on spirotrich ciliate diversity inferred from molecular analyses of microcosm experiments

