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Abstract

Genome structure and nuclear organization have been intensely studied in model ciliates such as 

Tetrahymena and Paramecium, yet few studies have focused on nuclear features of other ciliate 

clades including the class Karyorelictea. In most ciliates, both the somatic macronuclei and 

germline micronuclei divide during cell division and macronuclear development only occurs after 

conjugation. However, the macronuclei of Karyorelictea are non-dividing, i.e. division minus (Div

−) and develop anew from micronuclei during each asexual division. As macronuclei age within 

Karyorelictea, they undergo changes in morphology and DNA content until they are eventually 

degraded and replaced by newly developed macronuclei. No less than two macronuclei and one 

micronucleus are present in karyorelictid species, which suggests that a mature macronucleus 1) 

might be needed to sustain the cell while a new macronucleus is developing and 2) likely plays a 

role in guiding the development of the new macronucleus. Here we use a phylogenetic framework 

to compile information on the morphology and development of nuclei in Karyorelictea, largely 

relying on the work of Dr. Igor Raikov (1932–1998). We synthesize data to speculate on the 

functional implications of key features of Karyorelictea including the presence of at least two 

macronuclei in each cell and the inability for macronuclei to divide.
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Introduction

Ciliates are a clade of single-celled eukaryotes defined by the presence of cilia and 

dimorphic nuclei (Kovaleva and Raikov, 1992; Prescott, 1994; Raikov, 1982; Raikov, 1985). 

Numerous key discoveries have been made through studies of ciliates, including the 

discovery of self-splicing RNA (Cech, 1986; Kruger et al., 1982) and telomeres/telomerases 
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(Greider and Blackburn, 1985). Yet the bulk of the work on ciliates has predominately 

focused on only a few lineages, such as Paramecium and Tetrahymena (Class 

Oligohymenophorea; Aury et al., 2006; Chalker, 2008; Eisen et al., 2006; Mochizuki and 

Gorovsky, 2004; Yao, 2008) and Oxytricha and Stylonychia (Class Spirotrichea; Chen et al., 

2014; Nowacki et al., 2008).

As described in detail below, the monophyletic class Karyorelictea, the focus of this 

manuscript, appears unique among ciliates in that their somatic macronuclei cannot divide 

(Table 1; Raikov, 1982). Instead, Karyorelictea differentiate new macronuclei from 

micronuclei with each cell division and an individual macronucleus only persists for a few 

generations before degrading (Table 1; Raikov, 1985). In all other ciliates, the macronuclei 

divide by amitosis (i.e. dividing without centromeres and metaphase plates) during 

vegetative growth and only differentiate from zygotic nuclei following conjugation (e.g. Gao 

et al., 2016; Raikov, 1982). Throughout the remainder of this manuscript, we use the 

abbreviation Div− to describe the absence of macronuclear division in Karyorelictea; all 

remaining classes of ciliates are Div+ as they contain macronuclei that divide through 

amitosis (Table 1).

The class Karyorelictea is composed of ~170 ciliate morphospecies divided into six families 

(Loxodidae, Trachelocercidae, Kentrophoridae, Geleiidae, Cryptopharyngidae and 

Wilbertomorphidae; Fig. 1; Lynn, 2008). However, extremely limited molecular data are 

available in karyorelictids; for example, as we write this manuscript, only eight protein-

coding genes have been released on GenBank for the class Karyorelictea. The current 

phylogeny of Karyorelictea has largely relied on small subunit rDNA sequences (e.g. 

Andreoli et al., 2009; Campello-Nunes et al., 2015; Gao et al., 2016; Xu et al., 2015; Yan et 

al., 2016), with the exception of the family Cryptopharyngidae for which there are currently 

no molecular data. Phylogenetic analyses indicate that both the class Karyorelictea and its 

five families with molecular data are monophyletic and fall sister to the class Heterotrichea, 

the other member of the subphylum Postciliodesmatophora (Campello-Nunes et al., 2015; 

Gao and Katz, 2014; Gao et al., 2016; Xu et al., 2015; Yan et al., 2016). Most karyorelictids 

are specialized to interstitial marine environments such as sand, and recently they were also 

found to be epibionts of benthic harpacticoid copepods in the deep sea (Sedlacek et al., 

2013); the one exception is the genus Loxodes, which is found in low oxygen freshwater 

environments (Fenchel, 1967, 1968; Finlay and Fenchel, 1986). Additionally, while none of 

the rest of Karyorelictea are reported as cultivable, the genus Loxodes has been cultivated 

successfully in a few labs. (e.g. Bobyleva, 1981; Buonanno et al., 2005; Finlay et al., 1986), 

likely accounting for the limited data on this clade.

Here we describe some unusual features within the class Karyorelictea, focusing on their 

somatic macronuclei. We divide the manuscript into three parts: 1) a description of the 

contributions from Dr. Igor Raikov, who generated the bulk of data on members of the class 

Karyorelictea; 2) insights into the cell biology of the Karyorelictea based on microscopic 

analyses; and 3) knowledge of life cycles, and particularly macronuclear development, in 

diverse lineages within the class Karyorelictea. Finally, we end with hypotheses on the 

evolutionary significance of Div− macronuclei.
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Raikov and Karyorelictea

Dr. Igor B. Raikov (1932–1998) was the leading researcher in the study of Karyorelictea, 

and most information about these ciliates stems from his work and the work of his 

collaborators. Raikov characterized in detail the fine structure of nuclei for more than 20 

karyorelictid species, including representatives from four of the six families in Karyorelictea 

(e.g. Kovaleva and Raikov, 1992; Raikov, 1982; Raikov, 1985; Raikov and Karadzhan, 1985; 

Raikov and Kovaleva, 1990). Using an impulse cytofluorimeter, Raikov isolated individual 

nuclei and measured their DNA content. From these data on the morphology and DNA 

content of karyorelictid nuclei, Raikov and his collaborator, Dr. Valentine G. Kovaleva, 

described the Div− macronuclei as “paradiploid”, implying that mature macronuclear are 

nearly diploid and similar to micronuclei in DNA content (Kovaleva and Raikov, 1978; 

Ovchinnikova et al., 1965), which is unusual as the macronuclei in other ciliate species can 

be highly polyploid (for example 45 in Tetrahymena, 800 in Paramecium and ~13150 in 

Spirostomum; Duret et al., 2008; Ovchinnikova et al., 1965; Woodard et al., 1972). Raikov’s 

many other contributions are highlighted in some of the work we review below.

Part I: Nuclear structure

Insights from Light Microscopy

As in all other ciliates, karyorelictids have both somatic macronuclei and germline 

micronuclei in every individual cell. The majority of macronuclei and micronuclei in 

Karyorelictea are spherical or elliptical and are usually 5–10 µm (macronuclei) and 2– 4 µm 

(micronuclei) in diameter or length (Raikov, 1985). Karyorelictean ciliates with only one 

macronucleus have not yet been found, while this arrangement of nuclei is common in all 

other ciliate classes (Lynn, 2008; Raikov, 1982). This suggests that each karyorelictean cell 

requires a minimum of two macronuclei and one micronucleus to survive (Andreoli et al., 

2009; Lynn, 2008; Raikov, 1982).

Nuclei in karyorelictids can be distributed throughout the cell body or clustered together as 

“nuclear groups” or “nuclear complexes” (Fig. 1). Nuclear groups can either be nuclei 

enclosed by a fused membrane or nuclei that are closely associated with one another. A unit 

of two macronuclei and one micronucleus is the smallest and most frequent grouping, 

though groups of four macronuclei and two micronuclei are also commonly described in 

karyorelictid species (Raikov 1994). Many karyorelictids possess multiple groups of either 

2+1 or 4+2 units (e.g. Tracheloraphis oligostriata and T. colubis; Fig. 1; Al-Rasheid, 2001; 

Xu et al., 2011b). Free nuclei, which are common in other multinucleate ciliates, are also 

often found in multinucleate karyorelictids (e.g. Kentrophoros flavus and K. gracilis; Fig. 1), 

and in many cases, these free nuclei form a longitudinal line along the cell meridian (Fig. 1; 

Xu et al., 2011a).

In karyorelictids, nuclear grouping and number of nuclei may relate to body shape and size 

in some, but not all lineages (Table 2). In Loxodes and Remanella (Loxodidae), larger cells 

tend to have more macronuclei and micronuclei, but the same pattern is not found in 

Trachelocercidae (Table 2). For example, both Trachelocerca sagitta and Trachelocerca 
stephani have single nuclear groups with 4 macronuclei and 2 micronuclei; however, the size 
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of T. sagitta is ~5 fold that of T. stephani (Table 2). There is also considerable variation 

within species. For example, the length of Prototrachelocerca fasciolata varies between 1000 

and 3000 µm with 10 to 24 macronuclei and 3 to 7 micronuclei, and Loxodes magnus can 

have 8 to 31 macronuclei and 5 to 32 micronuclei (Bobyleva et al., 1980).

Insights from Electron Microscopy

Fine structure analyses of karyorelictid nuclei reveal variability in compositions of 

macronuclei while micronuclei have more canonical eukaryotic features (Raikov, 1985, 

1994). In contrast to other ciliates, the somatic macronuclei of Karyorelictea are relatively 

small, ranging from 5–10 µm in diameter (Raikov, 1982; Raikov, 1985). Karyorelictean 

macronuclei are also described as the “vesicular type” due to their shape, and they often 

include nucleoli, chromocenters (i.e. areas of condensed chromatin), and “nuclear bodies” 

(Raikov, 1985, 1989). Nucleoli in karyorelictids have a similar ultrastructure to other 

eukaryotes and are described as having a classical fibrillar core and granular cortex (Raikov, 

1985). Nucleoli serve as the location for the generation of rRNAs (Raikov, 1982). The 

number of nucleoli varies among karyorelictid species from one to over 100 (Fig. 2A–D; 

Raikov, 1985).

Chromocenters and chromatin bodies are two types of densely staining regions of chromatin 

varying by size and number (Fig. 2A). Chromatin bodies are usually smaller and more 

numerous than chromocenters, and chromocenters may be formed by the fusion of 

chromatin bodies (Fig. 2A; Raikov, 1979, 1990; Raikov, 1994). Chromatin bodies may 

represent lowly expressed heterochromatin regions, but the functional implications of 

chromocenters are as yet unknown.

Another unusual aspect of the fine structure of some karyorelictean macronuclei is the 

presence of nuclear bodies, which are either classified as spheres or crystalloids (Fig. 2A, B; 

Table 3; Raikov, 1979, 1984, 1985, 1990). These nuclear bodies are of unknown function 

and are not present in all Karyorelictea: for example, they have not been described in the 

genus Loxodes (Table 3; Raikov, 1979, 1990). Crystalloids are typically composed of some 

type of proteinaceous filaments, packed tightly together and parallel, and are usually less 

electron dense than the fibrillar core of nucleoli (Raikov, 1979, 1985, 1990, 1994). In 

spheres, filaments are tangled and are also typically less electron dense than the fibrillar core 

of nucleoli (Raikov, 1990). No consistent association between nuclear bodies (spheres or 

crystalloids) and other nuclear structures has been found in karyorelictean macronuclei 

(Table 3; Raikov, 1985, 1990).

Like in other ciliates, no nucleoli nor evidence of RNA synthesis has been found in 

karyorelictean micronuclei during vegetative stages (Raikov, 1982). Compared to 

macronuclei, micronuclei stain intensely and homogeneously with Feulgen indicating that 

they are packed with condensed chromatin (Raikov, 1985). In Remanella multinucleata and 

Geleia orbis, small nuclear bodies that appear to be crystalloids are sometimes found in the 

micronuclear periphery (i.e. the space between the chromatin mass and the nuclear envelope; 

Kovaleva and Raikov, 1978; Raikov, 1979, 1984).
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Part II: Development of Macronuclei

Nuclear reorganization

The common ancestor of Karyorelictea evolved a mechanism to segregate nuclei between 

generations by differentiating at least one new macronucleus from a micronucleus with each 

division (Orias, 1991a). This contrasts with all other ciliates in which macronuclei divide 

through amitosis either with microtubules placed inside or outside the macronuclear 

envelope (subphylum Intramacronucleata and the class Heterotrichea, respectively; Lynn, 

2008).

Division patterns of Loxodes and lineages with two other of the most common nuclear group 

types in karyorelictids exemplify the diversity of processes within this class. In the simplest 

case of two macronuclei and one micronucleus in each cell (e.g. Loxodes rostrum; Fig. 3A–

D), the two parental macronuclei are separated into the daughter cells while the 

micronucleus undergoes mitosis twice (Fig. 3A–C) and two micronuclei from the second 

mitosis differentiate into new macronuclei (Fig. 3C–D; Raikov, 1957a). In species with two 

nuclear groups, each with one macronucleus and one micronucleus (e.g. Loxodes striatus), 

each micronucleus divides once (Fig. 3E–F), with one of the daughter micronuclei 

developing into the new macronucleus while the other divides again to reset micronuclear 

number of the daughter cells (Fig. 3G–H; Raikov, 1957a). In species with four macronuclei 

and two micronuclei in a nuclear group (e.g. Tracheloraphis coluber), each nuclear group is 

divided in half and then each half (two macronuclei and one micronucleus) undergoes 

similar developmental processes to form a complete nuclear group (four macronuclei and 

two micronuclei) after micronuclei divide twice (Fig. 3I–L; Raikov, 1969). Instead of 

generating a completely new nuclear group in one of the daughter cells, karyorelictean 

species that divide by the third method effectively decrease the age difference of nuclei 

between daughter cells, i.e. if a completely new nuclear group is generated and passed on to 

one of the daughter cells while the other one receives the parental nuclear group, there is a 

one-generation age difference between the offspring and this age difference would increase 

each division.

Development of macronuclei

Given the inability of karyorelictean macronuclei to divide (i.e they are Div−), nearly half of 

the macronuclei in each cell are newly differentiated from micronuclei following cell 

division. As described below, the general pattern of macronuclear development in 

karyorelictean species appears similar to other ciliates except that no evidence for genomic 

amplification during development has been recorded (Raikov, 1957a, 1959; Raikov, 1982). 

Macronuclear development begins with creation of vacuoles in the developing macronucleus 

(Fig. 4A), which is followed by the formation of chromatin granules (Fig. 4B). In some 

species the size and number of chromatin granules decrease during development (e.g. 

Tracheloraphis margaritatus; Fig. 4C; Raikov, 1957a), suggesting that DNA elimination may 

be occurring (Raikov, 1994). DNA elimination is a common aspect of macronuclear 

development in other ciliates where regions of germline DNA are selectively excised or 

deleted (Prescott, 1994). Later, the emergence of nucleoli indicates the maturation of 

macronuclei (Fig. 4D; Raikov, 1985). The few studies focusing on conjugation in 
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Karyorelictea show differences compared to dividing cells; for instance, macronuclear 

development is blocked during conjugation and resumes only after cells separate (Raikov, 

1990).

Aging of macronuclei

Since karyorelictean macronuclei cannot divide, they age, and the macronuclei within a cell 

are always at different ages (Raikov, 1982). As macronuclei age, changes occur in their size, 

shape, staining properties, and fine structure (Raikov, 1985). The size of young macronuclei 

is often between that of micronuclei and mature macronuclei; for example, in Trachelocerca 
multinucleata, micronuclei are measured at 5–6 µm in diameter, and young macronuclei are 

5–7 µm while mature macronuclei are 8–10 µm in diameter (Raikov, 1989). Young 

macronuclei also stain more poorly with Feulgen than mature or old macronuclei, and 

possess smaller and more scattered chromatin bodies (Bobyleva et al., 1980; Kovaleva and 

Raikov, 1978; Raikov and Kovaleva, 1996). In contrast, mature macronuclei stain darker and 

have larger chromocenters (Bobyleva et al., 1980; Kovaleva and Raikov, 1978; Raikov and 

Kovaleva, 1996). Mature macronuclei tend to be relatively more abundant in multinuclear 

cells (Raikov, 1985). Old macronuclei stain darker still and have more irregular shapes with 

a higher presence of spheres in some species (e.g. Kentrophoros tubiformis and Kovalevaia 
(Trachelonema) sulcata; Bobyleva et al., 1980; Kovaleva and Raikov, 1978; Raikov and 

Kovaleva, 1996).

DNA accumulation in macronuclei accompanies the morphological changes of aging. For 

example, the increasing staining darkness of macronuclei indicates DNA synthesis (i.e. 

likely replication of certain genes; Bobyleva et al., 1980; Kovaleva and Raikov, 1978; 

Raikov, 1994; Raikov et al., 1963). DNA accumulation also generates macronuclei with a 

wide distribution of DNA contents even within the same cell (Raikov, 1994). For example, in 

L. magnus, DNA content of young macronuclei is ~4C while aging macronuclei reach an 

average of 5–6C; in Kovalevaia sulcata, old macronuclei vary in DNA content from 2C to 

12C (Bobyleva et al., 1980; Kovaleva and Raikov, 1978; Raikov et al., 1963). The functional 

implications of changing DNA content are unknown.

The Div− macronuclei in karyorelictids also have a relatively short life span. They persist 

only through 3–7 cell divisions as estimated from the percentage of degenerating 

macronuclei per cell in Loxodes magnus, while macronuclei appear to exist longer in 

Kentrophoros fistulosum (Raikov, 1985, 1994; Raikov and Kovaleva, 1996). In contrast, 

macronuclei in other ciliates divide by amitosis for many generations until conjugation 

occurs. Macronuclear amitosis is estimated to occur for 40–60 cell divisions in Tetrahymena 
thermophila (Class Oligomenophorea), and for more than 100 in Dileptus anser (Class 

Litostomatea; Lynn and Doerder 2012; Yudin and Uspenskaya 2007). The short life span of 

Div− macronuclei in Karyorelictea might function as a mechanism to avoid the 

accumulation of deleterious mutations in Div− nuclei.

Implications of unusual nuclear features in Karyorelictea

Since the 1950’s, karyorelictean nuclei have been investigated primarily using cytochemical 

and microscopy methods, including Feulgen staining. Here we speculate on the implications 
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of the patterns described above. We propose two possible explanations for the maintenance 

of a minimum of two macronuclei within each cell. One possibility is that a mature 

macronucleus is necessary to sustain the cell while the new macronucleus is developing, so 

every karyorelictid cell has at least one old and one newly-developed macronucleus. In 

Paramecium tetraurelia (Oligohymenophorea), parental macronuclei generate 80% of the 

total RNA during the first two cell divisions following conjugation and as the new 

macronucleus develops (Berger, 1973; Lepere et al., 2008). Another possible explanation is 

that the old macronucleus plays an important role in the development of the new 

macronucleus through epigenetic processes, perhaps by enabling RNA-mediated 

rearrangements. Such phenomena have been documented in several model ciliates including 

Tetrahymena (e.g. Mochizuki, 2010), Paramecium (e.g. Garnier et al., 2004) and Oxytricha 
(e.g. Yerlici and Landweber, 2014). These two possible scenarios are not mutually exclusive.

The Div− macronuclei are unique to Karyorelictea. Several explanations have been proposed 

for the evolution of this feature. One hypothesis is that Div− macronuclei are the ancestral 

state in ciliates and Div+ macronuclei have evolved twice in the Heterotrichea and 

Intramacronucleata (i.e. all remaining ciliate classes; Katz, 2001; Orias, 1991a, 1991b). 

Alternatively, Karyorelictea may have lost the ability to divide their macronuclei, either 

stochastically or due to selection. In the latter case, macronuclear division may have been 

lost to avoid the cost of high mutational loads in polyploid macronuclei (Katz, 2001). A 

similar argument has been made for the evolution of sex in eukaryotes as a means for 

resetting ploidy and removing deleterious mutations (Katz and Kovner, 2010; Kondrashov, 

1997; Normark et al., 2003). With the emerging tools of single-cell ‘omics’, we will be able 

to further explore both the nature and implication of nuclear architecture within 

Karyorelictea, and gain more insights into the evolution of genome features in ciliates.
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Fig. 1. 
A cartoon tree of Karyorelictea showing main diversity of nuclear clustering within and 

among families based on small subunit rDNA (SSU-rDNA) maximum likelihood tree. Cell 

sizes are drawn roughly to scale. There are currently no molecular data on 

Cryptopharyngidae (*); thus it shows as an orphan family.
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Fig. 2. 
Examples of karyorelictid macronuclei showing different composition of nucleoli (1), 

crystalloid bodies (2), chromocenters (3) and unknown spheres (4): A. macronucleus with a 

single nucleolus and crystalloid plus numerous chromatin bodies (arrowheads) from 

Tracheloraphis caudatus (modified from Raikov 1994). B. macronucleus with a large 

chromocenter, nucleolus and sphere found in Trachelocerca multinucleata (modified from 

Raikov 1989). C. macronucleus with a large number of small nucleoli in Geleia orbis 
(modified from Raikov 1984). D. simple macronucleus with multiple nucleoli Remanella 
granulosa (modified from SEM in Raikov and Kovaleva, 1990).
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Fig. 3. 
Nuclear reorganization during cell division in karyorelictids. A–D. Pattern of nuclear group 

with two macronuclei and one micronucleus (modified from Loxodes rostrum, Raikov 

1957b): two parental macronuclei are segregated into daughter cells and each daughter cell 

receives a newly differentiated macronucleus. E–H. Pattern for a nuclear group with two 

macronuclei and two micronuclei (modified from L. striatus, Raikov 1957b): similar to the 

first pattern with an additional micronuclear division. I–L. Pattern for nuclear group with 

four macronuclei and two micronuclei (modified from Trachelocerca coluber, Raikov 1969): 

the parental nuclear group is separated into two halves, and the full complement of nuclei is 

restored by nuclear division and differentiation.
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Fig. 4. 
Macronuclear development in Tracheloraphis margaritatus (Feulgen staining, modified from 

Raikov 1957). A. vacuolization stage from a macronuclear anlagen. B. macronuclear 

anlagen forming numerous chromatin granules. C. dechromatinization stage. D. appearance 

of nucleoli.
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