
Smith ScholarWorks Smith ScholarWorks 

Mathematics and Statistics: Faculty 
Publications Mathematics and Statistics 

5-1-2021 

Representation Stability of the Cohomology of Springer Varieties Representation Stability of the Cohomology of Springer Varieties 

and Some Combinatorial Consequences and Some Combinatorial Consequences 

Aba Mbirika 
University of Wisconsin-Eau Claire 

Julianna Tymoczko 
Smith College, jtymoczko@smith.edu 

Follow this and additional works at: https://scholarworks.smith.edu/mth_facpubs 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Mbirika, Aba and Tymoczko, Julianna, "Representation Stability of the Cohomology of Springer Varieties 
and Some Combinatorial Consequences" (2021). Mathematics and Statistics: Faculty Publications, Smith 
College, Northampton, MA. 
https://scholarworks.smith.edu/mth_facpubs/97 

This Article has been accepted for inclusion in Mathematics and Statistics: Faculty Publications by an authorized 
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/mth_facpubs
https://scholarworks.smith.edu/mth_facpubs
https://scholarworks.smith.edu/mth
https://scholarworks.smith.edu/mth_facpubs?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/mth_facpubs/97?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


ar
X

iv
:1

80
8.

01
04

6v
2 

 [
m

at
h.

R
T

] 
 2

7 
Ja

n 
20

20

REPRESENTATION STABILITY OF THE COHOMOLOGY OF

SPRINGER VARIETIES AND SOME COMBINATORIAL

CONSEQUENCES

ABA MBIRIKA AND JULIANNA TYMOCZKO

Abstract. A sequence of Sn-representations {Vn} is said to be uniformly representation
stable if the decomposition of Vn =

⊕
µ cµ,nV (µ)n into irreducible representations is inde-

pendent of n for each µ—that is, the multiplicities cµ,n are eventually independent of n for
each µ. Church-Ellenberg-Farb proved that the cohomology of flag varieties (the so-called
diagonal coinvariant algebra) is uniformly representation stable. We generalize their result
from flag varieties to all Springer fibers. More precisely, we show that for any increasing sub-
sequence of Young diagrams, the corresponding sequence of Springer representations form a
graded co-FI-module of finite type (in the sense of Church-Ellenberg-Farb). We also explore
some combinatorial consequences of this stability.

1. Introduction

Homological stability is a topological property of certain sequences of topological spaces:
given a sequence {Xn}

∞
n=1 of topological spaces with maps φn : Xn → Xn+1 for each n,

then {Xn}
∞
n=1 is homologically stable if there exists a positive integer N so that the maps

(φn)∗ : Hi(Xn) → Hi(Xn+1) is an isomorphism whenever n ≥ N . In other words the
homology groups stabilize after a certain point in this sequence; however the topological
spaces change later in the sequence, the changes do not affect the ith homology group.

Church and Farb [9], and later Church, Ellenberg, and Farb [6] defined representation

stability to mimic the topological definition. Informally, the sequence of Sn-representations

V1
f1
→ V2

f2
→ V3

f3
→ · · · is representation-stable if there are Sn-equivariant linear injections

fn : Vn → Vn+1 and if there exists an N so that the multiplicities cµ,n in the decomposition
into irreducibles

Vn =
⊕

µ

cµ,nV (µ)n

are independent of n for all n ≥ N . (Section 6 defines representation stability precisely.)
One important problem is to find families of representations that are representation sta-

ble; these families often arise from geometric considerations. In their original work, Church,
Ellenberg, and Farb identify a number of representation stable families arising from geom-
etry/topology and classical representation theory [6]. Indeed their example of the diago-
nal coinvariant algebra [6, Section 5] is the sequence of cohomology rings of flag varieties
{H∗(GLn/Bn)}

∞
n=1 which in some sense is the springboard of this paper. Since then, others

have demonstrated that representation stability arises naturally in many contexts, including
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arrangements associated to root systems [2], linear subspace arrangements [16], configura-
tion spaces in Rd [18], filtrations of Torelli groups [25], moduli spaces of Riemann surfaces
of genus g with n labeled marked points [27], and others [12, 28].

The central goal of this paper is to prove that an important family of Sn-representations
called Springer representations is representation stable. The Springer representation is the
archetypal geometric representation: in its most basic form, it arises when the symmetric
group Sn acts on the cohomology of a family of subvarieties of the flag variety called Springer

fibers. The flag variety can be described as the set of nested vector subspaces

V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Cn

where each Vi is i-dimensional. Given a nilpotent matrix X , the Springer fiber consists of
the flags that are fixed by X in the sense that XVi ⊆ Vi for all i. Every nilpotent matrix is
conjugate to one in Jordan form, which is determined by a partition of n into Jordan blocks.
Since Springer fibers associated to conjugate matrices X and gXg−1 are homeomorphic, the
Springer fibers are parametrized by partitions of n.

Springer first constructed a representation of the symmetric group Sn on the cohomology
of Springer fibers [29]. Since then, the representation has been recreated in many different
ways [10, 30, 4, 23]. The geometry of Springer fibers encodes key data about representations
of the symmetric group. For instance the top-dimensional cohomology is an irreducible Sn-
representation [29]; and the ungraded representation on H∗(Sprλ) is Young’s representation
associated to the partition λ [17, Introduction].

Our analysis of Springer representations uses the co-FI category, which Church, Ellenberg,
and Farb defined to concisely describe the compatibility conditions needed for representa-
tion stability. Theorem 3 proves that for any increasing sequence of Young diagrams, the
corresponding Springer representations form a graded co-FI-module of finite type. The main
consequence from our point of view is that sequences of Springer representations are repre-
sentation stable (see Corollary 3 for a precise statement).

From this many other properties follow: (1) for each fixed degree and n large enough,
the character is given by a polynomial that is independent of n, and in particular (2) the
dimension of the Springer representation is eventually polynomial in n. It is this second
consequence that we explore in Section 7.

Remark 1. Curiously, the literature does not make a clear distinction between the Springer
representation and its dual. Hotta first observed this and classified existing constructions of
the Springer representation up to that point [19]. However, the ambiguity persisted with sub-
sequent constructions of the Springer representation. In this paper, we treat “the” Springer
representation interchangeably with its dual. We prove that the Garsia-Procesi construc-
tion of the Springer representation is a co-FI-module (graded, of finite type) and its dual

is representation stable. Properties like dimension and decomposition into irreducibles are
well-behaved with respect to duality and apply to the original Garsia-Procesi construction,
too.

Kim proves a different kind of stability of Springer representations, giving conditions under
which the lower-graded parts of the Springer representation for λ coincide with those of λ′

for partitions λ, λ′ of the same n [21]. Kim recovers Theorem 6 using his notion of stability
[21, Corollary 4.3].
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This paper is organized as follows. In Section 2, we define the conditions that guarantee the
stability of a sequence of Sn-representations. In Section 3, we describe Garsia-Procesi’s com-
binatorial description of the Springer representation, and in particular the so-called Tanisaki

ideal. In Section 4, we prove there is no FI-module structure on sequences of Springer rep-
resentations, except for the trivial representation. On the other hand, in Section 5 we prove
that the sequence of Tanisaki ideals forms a co-FI-ideal and deduce that a co-FI-module
structure exists on all sequences of Springer representations. In Section 6, we conclude with
our main result on the stability of the Springer representations. We give some concrete
combinatorial consequences of this stability in Section 7, and a collection of open questions
in Section 8 that probe the new combinatorial ideas raised by representation stability.

2. FI and co-FI

In this section we describe FI-modules and co-FI-modules, defined by Church, Ellenberg,
and Farb [6] to streamline and extend the essential features of Church and Farb’s earlier
notion of representation stability [9]. We begin with the categories FI and co-FI, which carry
actions of the permutation groups Sn and are constructed to be compatible with inclusions.
The key example of FI- and co-FI-modules for this manuscript is the sequence of polynomial
rings {k[x1, . . . , xn]}. We then list the properties about FI- and co-FI-modules that we will
need to establish that sequences of Springer representations are graded co-FI-modules.

This section provides only what is needed in this paper. The interested reader is referred
to Church, Ellenberg, and Farb’s work for many other interesting results [6].

Remark 2. We assume k is a field of characteristic zero. Parts of Church-Ellenberg-Farb’s
theory extends to other fields as well [6].

Definition 1 (FI-module, FI-algebra graded FI-algebra). Let n denote the set {1, . . . , n}.
FI is the category whose objects are finite sets and whose morphisms are injections. This is
equivalent to the category whose objects are sets n = {1, 2, . . . , n} and whose morphisms are
injections m → n. An FI-module (FI-algebra, graded FI-algebra) over a commutative ring
k is a functor V from FI to the category of modules over k (k-algebras, graded k-algebras).
We usually denote the k-module (respectively algebra) V (n) by Vn.

Modules that carry permutation actions compatible with the permutation action on in-
tegers provide a rich source of examples of FI-modules. The next example is the most
important for our purposes.

Example 1 ([6, Example 4.1.2 and Remark 4.1.3]). Define a functor R by:

• R sends the object n to the polynomial ring k[x1, . . . , xn] and
• R sends the morphism f : m → n to the homomorphism

f∗ : k[x1, . . . , xm] → k[x1, . . . , xn]

induced by the condition that f∗(xi) = xf(i) for all i ∈ m.

Then R is a graded FI-algebra. In particular, we have that Rn is the polynomial ring
k[x1, . . . , xn].

The category co-FI is opposite to FI. The polynomial algebras also form a graded co-FI-
algebra, as described below.
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Definition 2 (co-FI-module, co-FI-algebra, graded co-FI-algebra). Denote the opposite cat-
egory of FI by co-FI. In particular the objects in co-FI are finite sets, without loss of gen-
erality the sets n, and the morphisms in co-FI from n to m are the morphisms in FI from
m to n. A co-FI-module (co-FI-algebra, graded co-FI-algebra) over a commutative ring k is
a functor from co-FI to the category of k-modules (k-algebras, graded k-algebras).

For instance if V is an FI-module over k then the dual V ∨ forms a co-FI-module, and vice
versa.

Example 2 ([6, Example 4.1.2 and Remark 4.1.3]). Define a functor R as follows:

• R sends the object n to the polynomial ring k[x1, . . . , xn] and
• R sends the FI-morphism f : m → n to the homomorphism

f ∗ : k[x1, . . . , xn] → k[x1, . . . , xm]

induced by the condition that

f ∗(xi) =

{
xf−1(i) if i ∈ Im(f) and
0 otherwise.

Then R is a graded co-FI-algebra.

The module categories FI and co-FI are abelian and so admit many of the algebraic
constructions that modules and algebras do. In particular we can consider co-FI-quotients
of a co-FI-module and FI-submodules of an FI-module.

Example 3 ([6, Classical coinvariant algebra in Section 5]). For each n let In denote the
ideal of symmetric polynomials with no constant term. The sequence of ideals I is not an
FI-submodule of the FI-module R because the image of an Sm-symmetric polynomial under
the inclusion map ι : {1, . . . , m} → {1, . . . , n} is not symmetric under the larger group Sn.
However the ideals I do form a co-FI-submodule of the co-FI-module R.

The next lemma proves that the image of a set of Sm-invariant polynomials under an
arbitrary injection is the same as the image under the inclusion ι that is the identity on the
integers {1, . . . , m}. We use it to simplify later calculations.

Lemma 1. Suppose that m ≤ n and that f : {1, . . . , m} → {1, . . . , n} is an injection. Let ι
be the inclusion ι : {1, . . . , m} → {1, . . . , n} that sends ι(i) = i for each 1 ≤ i ≤ m.

Consider the action of Sn on Rn under which for each w ∈ Sn and xi ∈ Rn we have

w(xi) = xw(i). Let J ⊆ Rn be any set of polynomials that are preserved under the Sn-action,

in the sense that wJ ⊆ J for all permutations w ∈ Sn. Then

f ∗(J) = ι∗(J).

Proof. Our hypothesis means that the polynomial p ∈ J if and only if the image w(p) ∈ J

for each w ∈ Sn. The map f : {1, . . . , m} →֒ {1, . . . , n} is an injection so we can define a
permutation wf ∈ Sn by

wf =





f(i) 7→ i for all i with 1 ≤ i ≤ m
ji 7→ m+ i for ji such that both j1 < j2 < · · · < jn−m and

{j1, j2, · · · , jn−m} ∪ Im(f) = {1, 2, . . . , n}.

We know that for each i
ι∗(wfxi) = ι∗(xwf (i))
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by definition of the Sn-action on permutations. By construction of ι∗ we have

ι∗(xwf (i)) =

{
0 if i ∈ {j1, j2, · · · , jn−m}
xf−1(i) otherwise.

This is exactly f ∗(xi). Thus f
∗(p) = ι∗(wfp) for all polynomials p ∈ J and hence as desired

f ∗(J) = ι∗(J). �

It follows that if I is a sequence of symmetric homogeneous ideals in the graded co-FI-
algebra R then we can prove I is a co-FI-submodule simply by considering inclusions—or
even just a subset of inclusions.

Corollary 1. Let R be a graded co-FI-algebra and I be a sequence of ideals {I1, I2, . . .} with

each In an Sn-invariant homogeneous ideal in Rn. The following are equivalent:

(1) I is a co-FI-submodule of R.

(2) For each m < n and inclusion ι : {1, . . . , m} → {1, . . . , n} defined by ι(i) = i for all

i, the induced map satisfies ι∗(In) ⊆ Im.
(3) For each n and inclusion ιn : {1, . . . , n− 1} → {1, . . . , n}, the induced map satisfies

ι∗n(In) ⊆ In−1.

Proof. Part (1) is equivalent to Part (2) by Lemma 1. Part (2) implies Part (3) by definition.
The composition of inclusions ιn◦ιn−1◦· · ·◦ιm+1 is the inclusion ι : {1, . . . , m} →֒ {1, . . . , n}.
By functoriality if ι∗i (Ii) ⊆ Ii−1 for each i ≥ 2 then ι∗(In) ⊆ Im for each pair n ≥ m ≥ 1. So
Part (3) implies Part (2). �

The definition of finitely-generated FI-modules is crucial to representation stability. It
differs importantly from the corresponding definition for modules or rings because it incor-
porates the underlying Sn-action. As we see in Example 4, this implies that FI-modules
often have fewer generators than we might expect.

In fact, though this does not appear explicitly in the literature, the category of finitely
generated FI modules over Noetherian rings is also abelian (by the Noetherian property,
proven over C in [6] and over other Noetherian rings in [8]) [5]. This is the thrust of the
arguments that we cite in this paper.

Definition 3 (Finite generation, finite type). An FI-module V is finitely generated if there
is a finite set S of elements in

∐
i Vi so that no proper sub-FI-module of V contains S. A

graded FI-module V has finite type if the ith graded part V i is finitely generated for each
i. A graded co-FI-module W is of finite type if its dual W∨ is a graded FI-module of finite
type [6, Co-FI-algebras in Section 4.2]

Example 4 ([6, Graded FI-modules of finite type in Section 4.2], [13, Example 4.2],
[31, Example 1.4]). The sequence R = {k[x1, . . . , xn]} of polynomial rings are not finitely
generated as an FI-module; indeed no ring k[x1, . . . , xn] is a finite dimensional k-vector space.
However when graded by polynomial degree, each graded part of the sequence R is finitely
generated as an FI-module. For instance the graded part of degree 3 is generated by x3

1,
x2
1x2, and x1x2x3 since every monomial of degree three is obtained by permuting indices of

one of these three. More generally the graded part of degree d is generated by all monomials
of the form xd1

1 xd2
2 · · ·xdn

n over partitions d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 of d.

For completeness, we define the quotient of an FI-algebra or co-FI-algebra.
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Definition 4 ([7, Definition 2.76]). Let R be a graded FI-algebra. If I is a graded FI-
submodule (respectively co-FI-submodule) for which each object In is a homogeneous ideal
in Rn then I is called an FI-ideal (respectively co-FI-ideal). The quotient FI-module R/I is
defined so that (R/I)n = Rn/In for each n (respectively co-FI).

The following proposition is our main tool, and sketches the main points of [8, Theorem
F]. This result implies that we only need to prove each sequence of Tanisaki ideals forms
a co-FI-submodule; after that, a straightforward algebraic argument allows us allow us to
conclude that sequences of Springer representations are representation-stable.

Proposition 1. Let R be a graded co-FI-module over a Noetherian ring and let I be a co-

FI-ideal. Then the dual (R/I)∨ is a graded FI-module. If R∨ has finite type then so does

(R/I)∨.

Proof. The dual of a graded co-FI-module is a graded FI-module by purely formal properties.
Suppose further that R∨ has finite type and consider the jth graded parts (Rn)

∨
j and (Rn/In)j

for each n. The dual (Rn/In)
∨
j is the FI-submodule of (Rn)

∨
j consisting of those functionals

that vanish on the jth graded parts (In)j = In∩(Rn)j by definition of graded quotients. Each

FI-submodule of an FI-module of finite type over a Noetherian ring is also of finite type [8,
Theorem A], thus proving the claim. �

In Section 7 and 8 of this manuscript we analyze properties of FI-modules in the case of
Springer representations.

3. Springer theory

This section summarizes two key combinatorial tools: Biagioli-Faridi-Rosas’s description of
generators for each Tanisaki ideal and Garsia-Procesi’s description of a basis for the Springer
representation.

3.1. The Tanisaki ideal and its generators. We use Garsia-Procesi’s presentation of
the cohomology of the Springer fiber, which describes the cohomology as a quotient of a
polynomial ring analogous to the Borel construction of the cohomology of the flag variety [3].
Let Rn be the polynomial ring C[x1, . . . , xn]. For each partition λ of n Tanisaki defined an
ideal Iλ ⊆ Rn that is now called the Tanisaki ideal. To describe the Tanisaki ideal, we define
certain sets of elementary symmetric functions.

Definition 5. Given a subset S ⊆ {x1, . . . , xn} the elementary symmetric function ei(S) is
the polynomial

ei(S) =
∑

T such that

T ⊆ S and |T | = i

∏

xj∈T

xj .

The set En
i,j is the set of elementary symmetric functions ei(S) over all possible subsets

S ⊆ {x1, . . . , xn} of cardinality j.

Example 5. Let S = {x1, x3, x4} ⊆ {x1, x2, . . . , x5}. Then e2(S) = x1x3 + x1x4 + x3x4.
Letting S run over all

(
5
3

)
= 10 size three subsets of {x1, x2, . . . , x5} gives the 10 elementary

symmetric polynomials e2(S) comprising the set E5
2,3.

We follow Biagioli, Faridi and Rosas’s construction of the Tanisaki ideal [1, Definition 3.4].
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Definition 6. Let λ = (λ1, . . . , λk) be a partition of n. The BFR-filling of λ is constructed
as follows. From the leftmost column of λ to the rightmost column, place the numbers
1, 2, . . . , n − λ1 bottom to top skipping the top row. Finally fill the top row from right to
left with the remaining numbers n− λ1 + 1, . . . , n. The BFR-generators are polynomials in
the set G(λ) defined as the following union: If the box filled with i has j in the top row of
its column, then include the elements of En

i,j in the set G(λ).

Example 6. Consider the partition λ = (4, 2, 2, 1). Then the BFR-filling of λ is

9 8 7 6

3 5

2 4

1

and hence the set G(λ) is

G(λ) =
⋃

i∈{1,2,3,9}

E9
i,9 ∪

⋃

i∈{4,5,8}

E9
i,8 ∪ E9

7,7 ∪ E9
6,6.

The first union of sets arises from the first column, the second from the second, and so on.
Each set of the form E9

i,9 contains the single elementary symmetric function ei(x1, x2, . . . , x9).

Theorem 1 (Biagioli-Faridi-Rosas [1, Corollary 3.11]). Given a partition λ of n the Tanisaki

ideal Iλ is generated by the set G(λ).

3.2. Combinatorial presentation for the Springer representation and the Garsia-

Procesi basis. It turns out that the natural Sn-action on Rn given by

w · p(x1, . . . , xn) = p(xw(1), . . . , xw(n))

restricts to the Tanisaki ideal Iλ. Thus the Sn-action on Rn induces an Sn-action on Rn/Iλ.
The key result of Garsia-Procesi’s work (with others [22, 10, 30]) is that this quotient is the
cohomology of the Springer variety.

Proposition 2 (Garsia-Procesi [17]). Let Rn = C[x1, . . . , xn] and let Iλ be the Tanisaki ideal

corresponding to the partition λ. The quotient Rn/Iλ is isomorphic to the cohomology of the

Springer variety H∗(Sprλ) as a graded Sn-representation.

Moreover Garsia-Procesi describe an algorithm to compute a nice basis B(λ) of monomials
for Rn/Iλ. Our exposition owes much to the presentation in the first author’s work [24,
Definition 2.3.2].

Definition 7 (Garsia-Procesi [17, Section 1]). If λ = (1) is the unique partition of 1 then
B(λ) = {1}. If n > 1 and λ is a partition of n with k parts then:

• Number the rightmost box in the ith row of λ with i for each i ∈ {1, . . . , k}.
• For each i ∈ {1, . . . , k} construct the partition λi of n− 1 by erasing the box labeled
i and rearranging rows if needed to obtain a Young diagram once again.

• Recursively define B(λ) as

B(λ) =

k⋃

i=1

xi−1
n B(λi).



8 ABA MBIRIKA AND JULIANNA TYMOCZKO

From the GP-algorithm above we construct the GP-tree as follows. Let λ sit alone at Level
n in a rooted tree directed down. Since λ has k parts, create k edges labeled x0

n, x
1
n, . . . , x

k−1
n

left-to-right to the k subdiagrams λi for each i ∈ {1, . . . , k} in Level n − 1. For each of
these subdiagrams and their descendants, recursively repeat this process. The process ends
at Level 1, whose diagrams all contain one single box. Multiplying the edge labels on any
downward path gives a unique GP-monomial in the GP-basis.

Example 7. We illustrate the first two steps of the GP-algorithm on the partition of 5 given
by λ = (2, 2, 1). Number the far-right boxes and branch down from Level 5 to Level 4 of the
recursion as follows:

Level 5
1
2

3

1

��☎☎
☎☎
☎☎
☎☎

x5

��

x2
5

��
✿✿

✿✿
✿✿

✿✿
✿

Level 4

.

After rearranging rows to obtain a Young diagram, we begin the recursion again on each of
the three partitions to produce Level 3 of the tree.

Level 4

1♦
♦♦♦

♦♦♦
♦♦♦

♦

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

x4
✉✉
✉✉
✉✉
✉

zz✉✉
✉✉
✉✉
✉ x2

4

✟✟

��✟✟
✟

1
✟✟
✟

��✟✟
✟✟

x4

��

x2
4

✻✻

��
✻✻

✻ 1
✻✻
✻✻

��
✻✻
✻✻

x4

■■
■■

■■
■

$$
■■

■■
■■

■

Level 3

By Level 1, there will be 30 diagrams, each equal to the partition (1). Recovering the Garsia-
Procesi basis from this tree is equivalent to multiplying the edge labels of the 30 paths. The
reader can verify that we obtain the following basis B(λ):

degree # monomials in B(λ)

0 1 1
1 4 xi for 2 ≤ i ≤ 5
2 9 x2

i for 3 ≤ i ≤ 5 and xixj for 2 ≤ i < j ≤ 5
3 11 xixjx5 for 2 ≤ i < j ≤ 4,

xix
2
j for 2 ≤ i < j ≤ 5, and

x2
ix5 for 3 ≤ i ≤ 4

4 5 xix
2
jx5 for 2 ≤ i < j ≤ 4 and xix4x

2
5 for 2 ≤ i ≤ 3

Garsia-Procesi bases have several nice containment properties that we use when analyzing
the FI- and co-FI-structure of Springer representations. The first describes the relationship
between dominance order and the Garsia-Procesi bases.

Proposition 3 (Garsia-Procesi [17, Proposition 4.1]). Let λ and λ′ be partitions of n and

suppose that λ✂λ′ in dominance order, namely that we have λ1+λ2+· · ·+λi ≤ λ′
1+λ′

2+· · ·+λ′
i

for all i ≥ 1. Then B(λ′) ⊆ B(λ).

The second describes the relationship between containment of Young diagrams and the
Garsia-Procesi bases.
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Lemma 2. If λ ⊆ λ′ then B(λ) ⊆ B(λ′).

Proof. We prove the claim assuming that λ′ has exactly one more box than λ. Repeating
the argument gives the desired result.

Consider the subdiagrams λ1, λ2, . . . , λk obtained from λ′ in the recursive definition of the
Garsia-Procesi algorithm. The Garsia-Procesi algorithm says

B(λ′) =
k⋃

i=1

xi−1
n B(λi) = B(λ1) ∪

k⋃

i=2

xi−1
n B(λi)

so B(λ′) ⊇ B(λ1). By construction λi is obtained from λ′ by removing a box that is above
and possibly to the right of the box removed for λi+1 for each i ∈ {1, . . . , k−1}. In particular
λi ✂ λi+1 in dominance order. Proposition 3 implies that B(λi+1) ⊆ B(λi) for each i and so
B(λ′) ⊇ B(λi) for each i. Since λ is obtained from λ′ by removing a single box, we know
λ = λi for some i. The claim follows. �

4. The Springer representations with FI-module structure

Recall that the sequence of polynomial rings carries an FI-module structure and that both
the Tanisaki ideal and the quotients Rn/Iλ carry an Sn-action. The question in this section
is: do these fit together to give an FI-module structure on Springer representations? Lemma
2 suggests that the answer could be yes, since it proved that if λ ⊆ λ′ then the Garsia-Procesi
basis for Rn/Iλ is contained in the Garsia-Procesi basis for Rn′/Iλ′.

We prove that this is misleading: the inclusion Rn/Iλ →֒ Rn′/Iλ′ in no way preserves the Sn

action (and is not what Church and Farb call a consistent sequence [9, pg.6]). In particular we
prove that there is no FI-module structure on sequences of Springer representations, except
for the trivial representation. Church, Ellenberg, and Farb observed that the sequence of
ideals of symmetric functions with no constant term is not an FI-ideal (see Example 3); in
our language, they study the special case of the sequence of Tanisaki ideals {Iλ1

, Iλ2
, . . .}

where each λi is a column with i boxes.

Theorem 2. For each positive integer n, let λn denote a Young diagram with n boxes. The

only sequence of Young diagrams λ1 ⊆ λ2 ⊆ λ3 ⊆ · · · for which the sequence of Tanisaki

ideals {Iλ1
, Iλ2

, Iλ3
, . . .} forms an FI-ideal is → → → · · · .

Proof. Suppose that λ is a partition of n − 1 and λ′ is a partition of n with λ ⊆ λ′. We
prove that if f : {1, . . . , n − 1} → {1, . . . , n} is an injection for which f∗(Iλ) ⊆ Iλ′ then
Iλ′ = 〈x1, x2, . . . , xn〉. By definition of FI-modules this suffices to prove our claim.

We first show that Iλ′ contains one of the variables x1, . . . , xn. Construct the BFR-fillings
of both λ and λ′ and compare the boxes labeled 1. A Young diagram with at least two rows
has label 1 in the bottom box of the first column. A Young diagram with only one row has
label 1 in the rightmost box of its row. If either λ or λ′ has just one row then the generating
set for its Tanisaki ideal contains e1(x1). Hence Iλ′ ⊇ Iλ contains the variable x1. Otherwise
the top-left boxes of the BFR-fillings for λ and λ′ have the labels n− 1 and n respectively,
so G(λ) contains e1(x1, . . . , xn−1) and G(λ′) contains e1(x1, . . . , xn). In this case

e1(x1, . . . , xn)− f∗(e1(x1, . . . , xn−1)) = xj

lies in Iλ′ for the unique j ∈ {1, 2, . . . , n} − Im(f).
Thus Iλ′ contains at least one of the variables x1, . . . , xn. The Tanisaki ideal is invariant

under the action of Sn that permutes the variables x1, . . . , xn so in fact Iλ′ = 〈x1, . . . , xn〉.
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We conclude that
Rn/Iλ′ = Rn/ 〈x1, . . . , xn〉 ∼= C

is trivial. Since λ′ gives the trivial representation, it consists of a single row, as desired. �

5. The Springer representation with the co-FI-module structure

In this section we prove that Springer representations admit a co-FI-module structure.
Recall from Section 2 that the sequence of polynomial rings forms a co-FI-module. This
section shows that the natural restriction maps from k[x1, . . . , xn] to k[x1, . . . , xn−1] are
defined on Tanisaki ideals, too. Our proof mimics a similar proof for the cohomology of flag
varieties in the arXiv version of a paper by Church, Ellenberg, and Farb [7, Theorem 3.4].
A surprising feature of our result is that this co-FI-module structure exists for Springer
representations corresponding to every possible sequence λ1 ⊆ λ2 ⊆ λ3 ⊆ · · · of Young
diagrams.

The main features of the proof were outlined in previous sections, especially Section 2,
which collected steps that reduce the proof that a sequence of Springer representations form
a co-FI-module to proving that particular inclusions ι∗n : Rn → Rn−1 preserve Tanisaki ideals.
We prove the main theorem first and then prove the key lemma.

Theorem 3. Suppose λ1 ⊆ λ2 ⊆ · · · is a sequence of Young diagrams for which λn has n
boxes for each n. Then the sequence {Rn/Iλn

} forms a graded co-FI-module of finite type.

Proof. Definition 3 states that to show {Rn/Iλn
} is a graded co-FI-module of finite type, we

must show 1) it is a graded co-FI-module and 2) its dual is a graded FI-module of finite
type.

Assuming a field k of characteristic zero, Proposition 1 states that if R is a graded co-
FI-module and I is a co-FI-ideal then R/I is a graded co-FI-module. The sequence of
polynomial rings is a graded co-FI-algebra under the co-FI-algebra structure that sends the
map f : {1, . . . , m} → {1, . . . , n} to the map with f ∗(xi) equal to xf−1(i) if i ≤ m and zero
otherwise (see Example 4). Corollary 1 proves that if {λ1 ⊆ λ2 ⊆ · · · } is a sequence of
Young diagrams for which ι∗n(Iλn

) ⊆ Iλn−1
for every n ≥ 2 then the sequence of Tanisaki

ideals {Iλ1
, Iλ2

, . . .} forms a co-FI-ideal. Lemma 5 proves that ι∗n(Iλn
) ⊆ Iλn−1

for every n ≥ 2
and for every sequence of Young diagrams {λ1 ⊆ λ2 ⊆ · · · }. Thus {Rn/Iλn

} is a graded
co-FI module.

It is known that the dual (Rn)
∨ is a graded FI-module of finite type. The proof uses

the facts that 0) the variables x1, . . . , xn ∈ Rn form a basis for the dual to kn, 1) the jth

graded part (Rn)
∨
j is isomorphic to the jth symmetric power of kn, and 2) the k-modules

k, k2, k3, . . . , kn, . . . are the parts of a natural FI-module M(1) whose algebraic properties
are well understood; for details, see [8, proof of Theorem F].

Proposition 1 then implies that {(Rn/Iλn
)∨} is a graded FI-module of finite type, proving

the claim. �

5.1. Sequences of Tanisaki ideals form a co-FI-ideal. We now analyze the BFR-
generators of the Tanisaki ideals to show that ι∗n(Iλ′) ⊆ Iλ when λ ⊆ λ′. In an interesting
twist, this co-FI-module structure exists for any path in the poset of Young diagrams. Our
proof that these sequences of Tanisaki ideals {Iλi

} form a co-FI-ideal occurs over the course
of the following lemmas. Each result actually analyzes a subset of homogeneous polynomials
of the same degree inside Iλ so our proofs preserve grading (though we don’t use this fact).

We note the following well-known relation (e.g., [26, pg. 21], [14, Equation (3.1)]).
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Proposition 4. Let S ⊆ {x1, . . . , xn}. If xn ∈ S then ei(S) decomposes as

ei(S) = xn · ei−1(S − {xn}) + ei(S − {xn}).

This immediately implies the following. (Recall that i is the degree of each function in
the set En

i,j while j is the cardinality |S| of the variable subset S ⊆ {x1, x2, . . . , xn}.)

Lemma 3.

ι∗n
(
En

i,j+1

)
= En−1

i,j+1 ∪ En−1
i,j

where En−1
i,k is empty if k > n− 1 or if i > k or if n− 1 < 1.

The next lemma is our main tool: if an ideal contains En
i,j then it contains En

i,j+1 as well.

Lemma 4. The Q-linear span of En
i,j contains En

i,j+1.

Proof. Let S ′ ⊆ {x1, . . . , xn} be an arbitrary subset of cardinality j+1. We construct ei(S
′)

explicitly in the Q-linear span of En
i,j. Consider the polynomial

p =
∑

S such that

S ⊆ S′
and |S| = j

ei(S)

which is in 〈En
i,j〉Q by definition. Let T be a subset of S ′ of cardinality i and consider the

coefficient of the monomial
∏

xk∈T
xk in p. Whenever S ⊆ S ′ contains T the monomial∏

xk∈T
xk appears with coefficient 1 in ei(S). There are j + 1 subsets of S ′ with cardinality

j and all but i of them contain T . Hence the coefficient of
∏

xk∈T
xk in p is exactly j+1− i.

Thus the polynomial 1
j+1−i

p = ei(S
′) as desired. �

Example 8. Consider the sets E5
2,3 and E5

2,4 and let S ′ = {x1, x2, x4, x5}. The polynomial p
from Lemma 4 is

p = (x1x2 + x1x4 + x2x4) + (x1x2 + x1x5 + x2x5)

+ (x1x4 + x1x5 + x4x5) + (x2x4 + x2x5 + x4x5)

which simplifies as desired to

p = 2(x1x2 + x1x4 + x1x5 + x2x4 + x2x5 + x4x5) = (4− 2)e2(S
′).

Applying Lemma 4 repeatedly gives the following.

Corollary 2. If an ideal I ⊆ Q[x1, . . . , xn] contains the subset En
i,j then it contains En

i,j+k

for all k ∈ {1, 2, . . . , n− j}.

We now use these combinatorial properties of symmetric functions together with the BFR-
generators of the Tanisaki ideal to prove the main lemma of this section

Lemma 5. Suppose that λ is a Young diagram with n− 1 boxes. If λ′ is obtained from λ by

adding one box then ι∗n(Iλ′) ⊆ Iλ.
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Proof. Below we give schematics for the relative configurations of λ, λ′, and the deleted box
(shown in light grey).

A

B
A

B

We will compare the BFR-generators for Iλ′ and Iλ for region A, region B, and the two
different cases of grey boxes.

Each box in region A corresponds to BFR-generators En−1
i,j in Iλ and En

i,j+1 in Iλ′. In each
of these cases the image

ι∗n(E
n
i,j+1) = En−1

i,j+1 ∪ En−1
i,j

by Lemma 3. By construction Iλ contains En−1
i,j so by Corollary 2 we know Iλ contains En−1

i,j+1

as well. It follows that Iλ contains ι∗n(E
n
i,j+1) for every box in region A.

If the box in λ′−λ is not on the first row, then it is labeled En
i,j+1 in Iλ′ and the box above

it is labeled En−1
i,j in Iλ. This is the case of the previous paragraph.

If the box in λ′ − λ is on the first row, then Iλ′ contains En
i,i while Iλ contains En−1

i,i .

Lemma 3 shows that ι∗n(E
n
i,i) = En−1

i,i ∪ En−1
i,i−1. However En−1

i,i−1 is empty by definition. So Iλ
contains ι∗(En

i,i) in this case too.

Finally, each box in region B corresponds to BFR-generators En−1
i,j in Iλ and En

i+1,j+1 in
Iλ′ . As above we know

ι∗n(E
n
i+1,j+1) = En−1

i+1,j+1 ∪ En−1
i+1,j

by Lemma 3. The box labeled i + 1 in λ is either above but in the same column as in λ′

or in a column to the right of i + 1 in λ′. In either case En−1
i+1,j−k is a BFR-generator for λ

for some nonnegative integer k. Corollary 2 implies that both En−1
i+1,j+1 and En−1

i+1,j are in Iλ.
Hence ι∗n(E

n
i+1,j+1) is in Iλ for every box in region B, proving the claim. �

6. Representation stability of Springer representations

We want to say that a sequence of representations {Vn} is representation stable if, when
decomposed into irreducible representations, the sequence of multiplicities of each irreducible
representation eventually becomes constant. This doesn’t quite make sense because the ir-
reducible representations of the symmetric group Sn depend on n, and in fact correspond to
the partitions of n. The next definition describes a particular family of irreducible represen-
tations whose multiplicities we use to define representation stability.

Definition 8 (Irreducible Sn-representation V (µ)n [9, Section 2.1]). Let µ = (µ1, . . . , µl) be
a partition of k. For any n ≥ k + µ1 define the padded partition to be

µ[n] := (n− k, µ1, . . . , µl).

Define V (µ)n to be the irreducible Sn-representation

V (µ)n := Vµ[n].
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Note that every partition of n can be written as µ[n] for a unique partition µ and hence
every irreducible Sn-representation is of the form V (µ)n for a unique partition µ.

We can now define representation stability precisely.

Definition 9. A sequence of Sn-representations V1
f1
→ V2

f2
→ V3

f3
→ · · · is representation

stable if

(1) the linear maps fn : Vn → Vn+1 are Sn-equivariant, in the sense that for each w ∈ Sn

we have fn ◦w = w(n+1) ◦ fn where w(n+ 1) ∈ Sn+1 is the permutation that sends
n+ 1 7→ n+ 1 while otherwise acting as w;

(2) the maps fn : Vn → Vn+1 are injective;
(3) the span of the Sn+1-orbit of the image fn(Vn) is all of Vn+1; and
(4) if Vn decomposes into irreducible representations as

Vn =
⊕

µ

cµ,nV (µ)n

then there exists N so that the multiplicities cµ,n are independent of n for all n ≥ N .

If N is independent of µ then V1
f1
→ V2

f2
→ V3

f3
→ · · · is uniformly representation stable.

FI-module structure corresponds to a sequence of representations being uniformly repre-
sentation stable. Moreover the stability of the multiplicities cµ,n corresponds to a kind of
stabilization of the characters of the representations, and thus the dimensions of the repre-
sentations.

Since {Rn/Iλn
} forms a co-FI-module, we will actually show that the dual {(Rn/Iλn

)∨} is
representation stable. The term Springer representation is applied interchangeably to these
two dual representations (as described in the Introduction–see Remark 1). Moreover, the
key implications of representation stability (including dimensions and characters) apply to
{Rn/Iλn

} by virtue of applying to its dual.
More precisely we have the following.

Corollary 3. Suppose λ1 ⊆ λ2 ⊆ λ3 ⊆ · · · is a sequence of Young diagrams for which λn

has n boxes for each n. Then the following are all true:

(1) Each graded part of the sequence {(Rn/Iλn
)∨} is uniformly representation stable.

(2) For each k and each n let χk,n be the character in the kth graded part of Rn/Iλn
. The

sequence (χk,1, χk,2, χk,3, ...) is eventually polynomial in the sense of [6].
(3) For each k and n let dk,n be the dimension of the kth graded piece of Rn/Iλn

as a

complex vector space. Then the sequence (dk,1, dk,2, dk,3, . . .) is eventually polynomial,

in the sense that there is an integer sk and polynomial pk(n) in n so that for all

n ≥ sk the dimensions dk,n = pk(n).

Proof. This follows immediately from corresponding results of Church, Ellenberg, and Farb.
Part (1) follows from Theorem 3 together with the definition of representation stability (or,
e.g., [6, Theorem 1.13]). Part (2) follows for (Rn/Iλn

)∨ from [6, Theorem 1.5] and for the dual
representation Rn/Iλn

because the characters of complex representations of Sn respect the
operation of taking duals. Part (3) is an easy corollary of Part (2) for Rn/Iλn

by [6, Theorem
1.5] and for its dual because they have the same dimension as complex representations. �
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7. Combinatorial consequences

The results of Corollary 3 open up new combinatorial questions about Springer fibers.
Representation stability guarantees that for any sequence of Young diagrams {λn}, the kth

degree of the cohomology of the corresponding Springer fibers stabilizes as a polynomial
pk(n). But what is this polynomial? For instance, given the sequence λ1 ⊆ λ2 ⊆ λ3 ⊆ · · · of
Young diagrams:

• Is there an explicit formula for the dimensions pk(n) of the k
th graded part of Rn/Iλn

?
What if the sequence contains a particular family of Young diagrams (e.g. hooks,
two-row, two-column, etc.)?

• What is the minimal integer sk at which the dimension of Rn/Iλn
becomes polyno-

mial? Given k and a sequence of Young diagrams, can we find some sk (not necessarily
minimal) after which the dimension of Rn/Iλn

is polynomial?
• Can we show the Springer representations have polynomial dimension via the mono-
mial bases B(λn) from Section 3?

To the best of our knowledge, these are entirely new questions about Springer representa-
tions; they arise only because of the consequences of representation stability. Moreover, our
preliminary answers to these questions suggest additional combinatorial structures that may
undergird Springer representations. We give details and some concrete results in this section,
followed in the next by (more) open questions.

7.1. Minimal monomials. Our first results suggest that the exponents that appear in the
monomials within each B(λ) are more rigid than previously thought.

Definition 10 (Monomial type). Let xα be a monomial with exponent vector (α1, . . . , αn).
In other words, the exponent of the variable xi in xα is αi. Let (αi1, . . . , αir) be the nonzero
exponents in the order in which they appear in xα. This r-tuple is called the monomial type

of xα.

For instance both x2x
2
3x4 and x3x

2
9x11 have monomial type (1, 2, 1).

The following result says that if xα
I is a monomial of a fixed monomial type in the GP-

basis B(λ) then increasing the indices of the variables lexicographically while preserving the
monomial type produces another monomial in the GP-basis B(λ).

Theorem 4. Fix a composition α = (α1, . . . , αk). For each ordered sequence I = (i1, . . . , ik)

let xα
I denote the monomial

∏k

j=1 x
αj

ij
. If xα

I ∈ B(λ) and I ′ satisfies

I ≤ I ′ ≤ (n− k + 1, . . . , n− 1, n)

in lexicographic order then xα
I′ ∈ B(λ).

Proof. First note that we may simply consider the case when I and I ′ differ by exactly
one in exactly one entry. Indeed, for each j with 1 ≤ j ≤ k + 1, define the sequences
Ij = (i1, i2, . . . , ij−1, i

′
j, i

′
j+1, . . . , i

′
k). Note that I = Ik+1 and I ′ = I1. Thus it suffices to

prove that if xα
Ij+1

∈ B(λ) then xα
Ij

∈ B(λ). Furthermore we may assume that i′j = ij + 1
since repeating the argument would successively increment the index and imply the result
for more general i′j . Thus we prove the claim for Ij and Ij+1 assuming that i′j = ij + 1.

The GP-algorithm proceeds the same for both monomials xα
Ij

and xα
Ij+1

in the variables

xn, xn−1, . . . , xij+2. Let λ
(j+2) be the Young diagram left after those steps. Implementing the

GP-algorithm for xα
Ij+1

removes a box from the first row and then from the αj + 1th row of
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λ(j+2), whereas for xα
Ij

it removes a box from the αj + 1th row and then from the first row.

Call the resulting Young diagrams λ(j+1) and λ(j) respectively.
We now show that λ(j+1) ☎ λ(j) in dominance order. If the first row of λ(j+2) is strictly

larger than the αj + 1th row of λ(j+2) then the result is clear, since then λ(j+1) = λ(j). If
not, then removing a box from the first row of λ(j+2) leaves a Young diagram whose shape
is constrained: at least the first αj rows have the same length and there is at least one row
immediately after of length one less. Thus λ(j+1)☎λ(j) with equality in the case that exactly
the first αj + 1 rows of λ(j+2) are the same length, and any subsequent rows are smaller.

By Proposition 3, we have B(λ(j+1)) ⊆ B(λ(j)). Since xα1

i1
xα2

i2
· · ·x

αj−1

ij−1
is a GP-monomial

in B(λ(j+1)) it is also a GP-monomial in B(λ(j)) so the monomial xα
Ij

can be obtained from

the GP-algorithm starting with the shape λ(j+2). Thus xα
Ij

is in the GP-basis for B(λ) as
desired, and the claim follows. �

In fact we conjecture that there is a unique minimal monomial of each monomial type, in
the following lexicographic sense.

Definition 11 (Minimal monomials). Fix a monomial type α and a partition λ of n. The
monomial xα

I ∈ B(λ) is a minimal monomial of type α if for any other xα
I′ ∈ B(λ) of the

same monomial type, the index sets satisfy I ≤ I ′ in lexicographic order.

The next result proves that when λ has exactly two rows then there is a unique minimal
monomial of each monomial type in B(λ). The previous result then says that this minimal
monomial produces all other monomials of that fixed monomial type within B(λ).

Theorem 5. Fix a two-row Young diagram λ = (n − k, k). Then the basis B(λ) of Rn/Iλ

has the unique minimal monomial set

{
i∏

j=1

x2j

}k

i=1

.

Proof. Since λ has two rows, the maximum exponent that appears in a monomial for λ is 1.
Since λ has k boxes in the second row, the maximum degree in a monomial for λ is k. So
every monomial type that appears in B(λ) is the partition given by j copies of 1, where j is
any integer with 0 ≤ j ≤ k.

We claim that the minimal monomial of degree j is x2x4 · · ·x2j . To see this, let xI ∈ B(λ)
have degree j and index set I = (i1, . . . , ij). It suffices to show that (2, 4, . . . , 2j) ≤ I in
lexicographic order, namely that ir ≥ 2r for each r ∈ {1, . . . , j}. Recall that in the GP-
algorithm, exactly one rightmost box in a row is removed when going down each level of the
GP-tree. Going from Level i to Level i− 1, the box removed is in the first row of the Level
i diagram if i /∈ {i1, . . . , ij} and the second row otherwise. After a box is removed from the
first row, the rows of the resulting Level i− 1 diagram are switched if necessary to maintain
the shape of a Young diagram.

Now suppose r ∈ {1, . . . , j}. The path in the GP-tree from Level ir to Level ir−1 removes
a box from the second row of the Level ir diagram λ(ir). The diagram λ(ir) must have at
least r boxes in the second row since the r − 1 factors xir−1

, xir−2
, . . . , xi1 remaining in xI

correspond to r − 1 more second-row boxes removed in the remaining ir − 2 levels of the
GP-tree below Level ir − 1. Since all Level ir diagrams have ir boxes and λ(ir) has at least
r boxes in its second row, we conclude ir ≥ 2r as desired. �

We conjecture that for each B(λ) and each monomial type that appears in B(λ), there is
a unique minimal monomial of that monomial type (see Section 8.1).
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7.2. Polynomial dimension when the number of rows exceed a certain minimum.

We can explicitly compute the polynomial dimensions described in Corollary 3 in some cases,
including when the Young diagram has “enough” rows. In this case, the dimensions in low
degree coincide with the corresponding dimensions for the diagonal coinvariant algebra, as
described in the next theorem. Kim’s version of stability coincides with ours in this case [21,
Remark in Section 4].

Theorem 6. Let dimi(Rn/Iλn
) denote the dimension of the ith-degree part of Rn/Iλn

. Let

{λn} be a nested sequence of Young diagrams such that |λn| = n for all n. If for some N the

diagram λN contains at least k+ 1 rows, then dimi

(
Rn

/
Iλn

)
agrees with the dimension of

the ith-degree part of the diagonal coinvariant algebra Rn

/
〈ej〉

n

j=1
for all i ≤ k and n ≥ N .

In particular for all i ≤ k and n ≥ N we have dimi

(
Rn

/
Iλn

)
= pi(n) where pi(n) is

the polynomial that gives the number of permutations of the set {1, 2, . . . , n} with exactly i
inversions.

Proof. Let coln = (1, . . . , 1) denote the column partition with exactly n parts. The diagonal
coinvariant algebra is Rn/Icoln. There is a unique monomial x2x

2
3x

3
4 · · ·x

n−1
n ∈ B(coln) of

maximal degree; it is obtained by choosing the far-right edge at each level in the GP-tree.
Garsia-Procesi proved that their basis elements form a lower-order ideal with respect to
division [17, Proposition 4.2]. It follows that the other elements of B(coln) are precisely the
divisors of this maximal monomial, so

B(coln) = {xα2

2 xα3

3 xα4

4 · · ·xαn

n | 0 ≤ αj ≤ j − 1}. (1)

Now suppose that λn has at least k+1 rows. Then λn ⊇ colk+1 and so B(λn) ⊇ B(colk+1)
by Lemma 2. By Theorem 4 we can lexicographically increase the subscripts of each mono-
mial in B(colk+1) to produce monomials xα

I for each k-element subset I ⊆ {x2, . . . , xn} and
exponents α which satisfy 0 ≤ αj ≤ j − 1 for each j = 1, 2, . . . , k + 1. This proves that
B(λn) also contains all of those possible elements of degrees 0, 1, . . . , k in the variable set
{x2, . . . , xn}. Trivially, these are the same as the monomials of degrees 0, 1, . . . , k in the basis
for B(coln) above, so in these degrees the basis elements for Rn/Iλn

and the diagonal coin-
variant algebra Rn/Icoln coincide. The claim about pi(n) follows from the similar statement
for the ith graded part of Rn/Icoln . �

The polynomial function pi(n) can be found explicitly as an alternating sum of certain
combinations. Example 10 gives closed formulas for pi(n) for the first few values of i.

Remark 3. Since the diagonal coinvariant algebra is the cohomology ring of the full flag
variety, this result implies that the Garsia-Procesi bases for the cohomology of the Springer
fibers coincide with the cohomology of the full flag variety in many degrees. More precisely
if Sλn

denotes the Springer fiber corresponding to the nilpotent of Jordan type λn then we
have an isomorphism H i(Sλn

) ∼= H∗(GLn(C)/B) for all i ≤ k and n ≥ N , where k and N
are as given in Theorem 6.

Example 9. Below we give the basis elements for B(col5) in degrees 0 through 3 and the
cardinalities of the kth degree parts for 4 ≤ k ≤ 10, using the unimodality of the sequence
of dimensions for k ≥ 6.
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degree # monomials in B(col5)

0 1 1
1 4 xi for 2 ≤ i ≤ 5
2 9 x2

i for 3 ≤ i ≤ 5
and xixj for 2 ≤ i < j ≤ 5

3 15 xixjxk for 2 ≤ i < j < k ≤ 5,
xix

2
j for 2 ≤ i < j ≤ 5,

x2
ixj for 3 ≤ i < j ≤ 5, and

x3
i for 4 ≤ i ≤ 5

4 20
5 22

6 ≤ k ≤ 10 same cardinality as
(10− k)th degree part

k > 10 0

Compare this to the basis B(λ) for the partition λ = (2, 2, 1) that we computed in Example 7.
The basis elements forB(λ) and B(coln) coincide in degrees 0, 1, and 2, as expected. However
in degree 3 the set B(col5) contains four basis elements that are not in B(λ), namely x2x3x4,
x2
3x4, x

3
4, and x3

5.

Example 10. We give the following closed formulas for the dimensions pi(n) from Theorem 6
when 0 ≤ i ≤ 6:

• When i = 0 we have p0(n) = 1.
• When i = 1, 2, 3, 4 we have

pi(n) =

(
n− 2 + i

i

)
−

(
n− 3 + i

i− 2

)
. (2)

• When i = 5 we have

p5(n) =

(
n + 3

5

)
−

(
n+ 2

3

)
+ 1.

• When i = 6 we have

p6(n) =

(
n+ 4

6

)
−

(
n + 3

4

)
+ n.

To prove these, let i ∈ {1, 2, 3, 4}. Our convention is that 0 ∈ N. Define the set

Ẽi =

{
(d2, . . . , dn) ∈ Nn−1

∣∣∣∣∣

n∑

k=2

dk = i and dk ≤ i

}

of nonnegative integer solutions to the equation d2+ · · ·+ dn = i. We know |Ẽi| =
(
(n−2)+i

i

)
.

Define Ei ⊆ Ẽi to be the subset satisfying also dk ≤ k − 1 for each k so that pi(n) = |Ei|.

We now compute |Ei| = |Ẽi| − |Ec
i |.

For each m, define the set Fm,i ⊆ Ẽi by the condition that dm > m − 1. Observe that

Ec
i =

n⋃
m=2

Fm,i. Moreover the sets Fm,i are pairwise disjoint. Indeed, suppose there were

m1 < m2 with an element (d2, . . . , dn) ∈ Fm1,i ∩ Fm2,i. Then dm1
> m1 − 1 ≥ 1 and

dm2
> m2 − 1 ≥ 2 and so d2 + · · ·+ dn ≥ 5. This contradicts i ∈ {1, 2, 3, 4}.
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So |Ec
i | =

n∑
m=2

|Fm,i|. We now find |Fm,i|. Since dm > m − 1 we write dm = m + d′m for

some d′m ≥ 0 and then count instead the solutions to d2 + · · ·+ d′m + · · ·+ dn = i−m. Thus

|Ec
i | =

n∑

m=2

|Fm,i| =

n∑

m=2

(
(n− 2) + (i−m)

i−m

)
.

As long as i ≤ n this sum has the form |Ec
i | = · · · +

(
rm+2

2

)
+

(
rm+1

1

)
+

(
rm
0

)
for some rm.

Using a combinatorial identity we write |Ec
i | =

(
(n−2)+(i−2)+1

i−2

)
. This gives the formula for

pi(n) in Equation (2).
When i = 5 and i = 6 we can use essentially the previous argument, since only a few pairs

of Fm,i share elements. When i = 5 the sets F2,5 and F3,5 both contain (2, 3, 0, 0, 0, . . . , 0).
Inclusion-Exclusion gives the desired formula. Similarly if i = 6 then F2,6 ∩ F3,6 con-
tains the two elements (3, 3, 0, 0, . . . , 0) and (2, 4, 0, 0, . . . , 0) as well as the n − 3 elements
(2, 3, d4, . . . , dn) where exactly one of the remaining entries dk is nonzero (and thus is 1).
Additionally F2,6 ∩ F4,6 contains the unique element (2, 0, 4, 0, 0, . . . , 0). Inclusion-Exclusion
gives the desired formula.

This process becomes more complicated when i is larger.

Kim gives equivalent but different versions of the formulas in Example 10 [21, Example 3.3].

8. Open questions

This section describes a set of questions that arise from our analysis of representation
stability, including how to characterize the polynomials into which the dimensions stabilize,
and how to describe the monomials in B(λ).

8.1. Minimal monomials and monomial types. In Subsection 7.1 we discussed mono-
mial types and minimal monomials. We pose several questions here.

Question 1. For each Young diagram λ and monomial type α, is there a unique monomial
xα
I ∈ B(λ) that is minimal with respect to lexicographic ordering, in the sense that if

xα
I′ ∈ B(λ) then I ≤ I ′?

All examples that we have computed do in fact have minimal monomials.
There are several related questions about how the set of monomial types that appear in

B(λ) are related to λ. The first essentially asks how to predict the monomial types that
appear for a given λ, while the second asks which B(λ) contain a given monomial type α.

Question 2. For each Young diagram α, let A(λ) be the set of monomial types in B(λ). Is
there a quick algorithm to construct A(λ) for arbitrary λ?

We know there is an algorithm to construct A(λ), namely use the GP-algorithm to find all
of B(λ) and then identify which monomial types appear. The previous question is asking for
a direct algorithm, or for characterizations of the monomial types that do or do not appear.

Question 3. Fix a monomial type α. For which λ is there a monomial of type α in B(λ)?

For instance B(λ) contains a monomial of type (k) if and only if λ has at least k+1 rows.
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8.2. Polynomial dimension for particular families of Young diagrams. In this sec-
tion, we return to questions from Subsection 7.2 to ask for concrete formulas for dimensions
of the Springer representations, and especially for the polynomials pk(n) to which they sta-
bilize.

Representation stability relies on sequences of diagrams while the literature on Springer
fibers instead uses families of Young diagrams like two-row, two-column, hook, and so on. To
study families of Young diagrams, we choose a sequence {λn} that characterizes particular
shapes, as Example 11 does for two-column Young diagrams.

Question 4. For what families of Young diagrams {λn} can we find an explicit closed
formula for the polynomial dimension pk(n)?

For instance, Kim gave a formula for two-row Young diagrams [20], following ideas due to
Fresse [15, Example 4.5].

When we can identify minimal monomials (unique or not), strictly combinatorial tech-
niques might then give information about the polynomial dimension formula. More precisely:

Question 5. Can we find minimal monomials for other shapes, and use them together with
the index-incrementation tools in Theorem 4 to describe the dimension polynomials, either
partially or completely?

For instance, Theorem 5 gave the minimal monomials for the case of the two-row diagrams
λ = (n−k, k). In that case, the previous question sketches an alternate proof of Kim’s result
for two-row Young diagrams.

8.3. Stable shapes. The central question of this section is to determine the integer sk after
which the polynomial pk(n) counts the degree-k monomials in B(λn). More colloquially,
when does the dimension stabilize?

We conjecture that there is a core shape such that as soon as λn contains the core shape,
the dimension stabilizes. The following describes one possible choice of a core shape, though
we do not believe that it is in general minimal.

Definition 12. Let λ1 ⊆ λ2 ⊆ · · · be a sequence of Young diagrams with |λn| = n for each
n. Denote by τk+1 the staircase partition (k+ 1, k, . . . , 1). The k-stable shape of {λn} is the
partition (∪n λn) ∩ τk+1.

Example 11. Let {λn} be the nested sequence of Young diagrams defined by λ1 = (1),
λ2n = (2, 2, . . . , 2︸ ︷︷ ︸

n times

), and λ2n+1 = (2, 2, . . . , 2︸ ︷︷ ︸
n times

, 1). Then {λn} is the following

→ → → → → → → → · · ·

The 1-, 2- and 3-stable shapes are , and , respectively.

Conjecture 1. Let {λi} be a sequence of Young diagrams such that λ1 ⊆ λ2 ⊆ · · · with

|λi| = i. Let N be the smallest integer for which λN contains the k-stable shape of {λi}.
Then there exists a polynomial pk(n) that gives the dimension of the kth graded part of the

Springer representation Rn/Iλn
for all n ≥ N .
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If true, this conjecture would provide more tools to explicitly compute pk(n).
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