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A FORMULA FOR THE COHOMOLOGY AND K-CLASS OF A

REGULAR HESSENBERG VARIETY

ERIK INSKO, JULIANNA TYMOCZKO, AND ALEXANDER WOO

Abstract. Hessenberg varieties are subvarieties of the flag variety parametrized by a linear
operator X and a nondecreasing function h. The family of Hessenberg varieties for regular
X is particularly important: they are used in quantum cohomology, in combinatorial and
geometric representation theory, in Schubert calculus and affine Schubert calculus. We show
that the classes of a regular Hessenberg variety in the cohomology and K-theory of the flag
variety are given by making certain substitutions in the Schubert polynomial (respectively
Grothendieck polynomial) for a permutation that depends only on h. Our formula and our
methods are different from a recent result of Abe, Fujita, and Zeng that gives the class of a
regular Hessenberg variety with more restrictions on h than here.

Fix an algebraically closed field K, let G = GLn(K), and let B be the subgroup of upper
triangular matrices. The flag variety G/B can be thought of as the moduli space of complete
flags, which are chains {0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = K

n of subspaces of a fixed
vector space Kn so that dimFi = i for each i. The Hessenberg variety YX,h ⊆ G/B is defined
as follows. Fix a linear operator X and a function h : {1, . . . , n} → {1, . . . , n} such that
h(i) ≥ i and h(i) ≤ h(i+ 1) for all i. Then

YX,h = {F• | XFi ⊆ Fh(i) ∀i}.

Note that YX,h and YX′,h are isomorphic if X and X ′ are similar operators.

The Hessenberg varieties defined by regular operators form an important class of Hessen-
berg varieties. A regular operator is an operator X such that the generalized eigenspaces of
X have distinct eigenvalues. De Mari, Procesi, and Shayman first defined and studied Hes-
senberg varieties in the case when X is regular and semisimple [DMS88, DMPS92]. Regular
semisimple Hessenberg varieties govern an important geometric representation connected to
the Stanley-Stembridge conjecture through a conjecture of Shareshian and Wachs [SW16]
that was recently proven by Brosnan and Chow [BC18] and almost simultaneously by
Guay-Paquet [GP15]. Regular nilpotent Hessenberg varieties are also extremely impor-
tant: Kostant proved that with one particular h, they can be used to construct the quan-
tum cohomology of the flag variety [Kos96] (see also Rietsch’s work [Rie03]). More gen-
eral regular nilpotent Hessenberg varieties have since been studied prolifically, for example
in [AHHM17, ADGH18, Dre15, MT13, ST06].

In this paper, for any h and regular operator X , we give formulas for the class of YX,h in
the cohomology H∗(G/B) and K-theory K0(G/B) (or Grothendieck ring) of the flag variety.
Anderson and the second author gave a different formula for the cohomology class using
degeneracy loci and degeneration arguments [AT10]. The first two authors computed some
of the coefficients in the Schubert expansions of these cohomology classes using intersection
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theory [IT16]. Recently, Abe, Fujita, and Zeng gave a formula in K-theory [AFZ18, Cor.
4.2]. We use a different approach from all of the previous authors, following ideas of Knutson
and Miller that use commutative algebra and the pullback of G/B to G [KM05]; this gives
us a different formula than that of Abe, Fujita, and Zeng.

Given h, we define a permutation wh ∈ S2n as follows. We let wh(i + h(i)) = n + i and
put 1, . . . , n in the other entries in order. Let xj denote the class of the j-th tautological line
bundle (in K0(G/B)) or the Chern class of its dual (in H∗(G/B)). Then our main result is:

Theorem 1. Suppose X is a regular operator. The class of the the Hessenberg variety YX,h

in K∗(G/B) is represented by

[YX,h] = Gwh
(x1, . . . , xh(1), x1, xh(1)+1, . . . , xh(2), x2, xh(2)+1, . . . , xh(n), xn)

where G is the Grothendieck polynomial. Similarly, the class in H∗(G/B) is represented by

[YX,h] = Swh
(x1, . . . , xh(1), x1, xh(1)+1, . . . , xh(2), x2, xh(2)+1, . . . , xh(n), xn)

where S is the Schubert polynomial.

We also give an alternate proof that YX,h is Cohen-Macaulay and hence equidimensional
as a scheme. This is also implied by recent work of Abe, Fujita, and Zeng [AFZ18, Cor. 3.8],
as we elaborate in Remark 13.

We rely on a recent result of Precup stating that, for any regular operatorX , the dimension
of YX,h is dim(YX,h) =

∑n

i=1(h(i) − i) [Pre16]. We note that the results of Theorem 1 also
hold for nonregular operators provided the dimension criterion dim(YX,h) =

∑n

i=1(h(i)− i)
is satisfied.

One feature of our formulas is that the resulting polynomials are manifestly positive sums
of monomials. (For K-theory classes, positivity is in the usual sense that the sign of the
monomial depends on the parity of the difference between the degree of the monomial and
the codimension of the variety.)

The polynomials resulting from our formula generally differ from those obtained from the
formulas of Anderson and the second author [AT10] and Abe, Fujita, and Zeng [AFZ18]. This
is because our formulas hold only in H∗(G/B) or K∗(G/B). In other words, our formulas
agree with previous results only modulo the ideal In = 〈ed(x)〉 for formulas in cohomology
or Jn = 〈ed(x)−

(
n

d

)
〉 in K-theory.

Example 2. Let n = 4, and let h be the function given by h(1) = 2, h(2) = 3, and
h(3) = h(4) = 4. Then wh = 12536478 ∈ S8. The theorem states that

[Y2344] = G12536478(x1, x2, x1, x3, x2, x4, x3, x4)

=− x4
1x

3
2x3 + x4

1x
3
2 + 3x4

1x
2
2x3 + 4x3

1x
3
2x3 − 3x4

1x
2
2 − 4x3

1x
3
2 − 3x4

1x2x3 − 12x3
1x

2
2x3

− 6x2
1x

3
2x3 + 3x4

1x2 + 12x3
1x

2
2 + 6x2

1x
3
2 + x4

1x3 + 12x3
1x2x3 + 14x2

1x
2
2x3 + 4x1x

3
2x3

− x4
1 − 10x3

1x2 − 13x2
1x

2
2 − 4x1x

3
2 − 4x3

1x3 − 11x2
1x2x3 − 6x1x

2
2x3 − x3

2x3

+ 2x3
1 + 7x2

1x2 + 4x1x
2
2 + x3

2 + 3x2
1x3 + 2x1x2x3 + x2

2x3

in K∗(G/B), and

[Y2344] = S12536478(x1, x2, x1, x3, x2, x4, x3, x4)

= 2x3
1 + 7x2

1x2 + 4x1x
2
2 + x3

2 + 3x2
1x3 + 2x1x2x3 + x2

2x3
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in H∗(G/B).

1. Comparing the group to the flag variety

The central principle in matrix Schubert calculus is that the global algebraic geometry
of G/B (for G = GLn(K)) and its subvarieties can be studied by looking at B-invariant
subvarieties of G or, better yet, at B-invariant subvarieties of the closure of G (see, e.g.,
Fulton [Ful92] or Knutson and Miller [KM05]). The closure of G is the space Mn of all n×n

matrices and is isomorphic to K
n2
, so the algebraic geometry of G/B can be studied using

commutative algebra in its simplest setting, that of a polynomial ring in n2 variables.

One way to find representatives for classes of subschemes of G/B is to use commutative
algebra in Mn. We follow Knutson and Miller’s description, starting with standard defini-
tions [KM05, Section 1.2], [MS05, Chapter 8]. Given a Z

d-grading of S = K[z1, . . . , zm] and
a graded S-module M , write xα =

∏
1≤i≤d x

αi

i , and let Mα denote the α-graded piece of M .
The Hilbert series of M is

H(M ;x) =
∑

α∈Zd

dim(Mα)x
α,

and the K-polynomial of M is

K(M ;x) = H(M ;x)
m∏

i=1

(1− xdeg(zi)).

Write K(M ; 1 − x) for the K-polynomial after substituting xi 7→ (1 − xi) for all i. The
multidegree of M (in the x-variables) is the polynomial C(M ;x) formed by adding all terms
in K(M ; 1 − x) of minimal x-degree. (If the module M has dimension m − r over S then
this minimal degree equals the “codimension” r of M [KM05, Theorem D].)

In our context, we use Mn = Spec K[z11, z12, . . . , z1n, z21, . . . , znn] with the grading coming
from setting deg(zij) = ej where ej is the j-th coordinate vector in Z

n. We let π : G → G/B
denote the natural projection.

Let Y ⊆ G/B be a closed subscheme, and Y ⊆ Mn a subscheme such that Y ∩ G =
π−1(Y ). Knutson and Miller proved that the multidegree (respectively K-polynomial) of the
coordinate ring of Y represents the class of Y in the cohomology (respectively K-theory) of
the flag variety of Y . The following is essentially their proof [KM05, Cor. 2.3.1]. We added
the last paragraph explicitly identifying each variable xj in the K-polynomial with the class
of the jth tautological line bundle Lj on G/B or in the multidegree with the (first) Chern
class c1 of its dual.

Proposition 3. Let Y ⊆ G/B be a closed subscheme, and let Y be a closed subscheme of
Mn such that Y ∩G = π−1(Y ). Let K(Y ) be the K-polynomial and C(Y ) the multidegree of
Y both with the grading coming from setting deg(zij) = xj. Then the classes [Y ] in the K-
theory (respectively cohomology) of G/B are represented by K(Y ) (respectively C(Y )), where
xj stands for [Lj] (respectively c1([−Lj ])).

Proof. The statement about cohomology follows from the statement about K-theory by
taking the Chern character. (The sign change comes from xj 7→ 1 − xj in the definition of
multidegree.)
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The inclusion G → Mn induces a surjection K0
T (Mn) → K0

T (G). Pulling back vector
bundles gives the isomorphismK0(G/B) ∼= K0

B(G) and restricting the B-action to a T -action
gives the isomorphism K0

B(G) ∼= K0
T (G). Call the composition φ : K0

T (Mn) → K0(G/B).

The K-polynomial K(Y ) of the coordinate ring of Y represents [Y ] in K0
T (Mn). We now

prove φ([Y ]) = [Y ]. The surjection K0
T (Mn) → K0

T (G) sends [Y ] to [Y ∩ G]. The group
B acts on Y ∩ G. Restricting from the B-action to the T -action allows us to identify the
class of [Y ∩G] in K0

T (G) with that in K0
B(G). The flag variety G/B is smooth so there is a

resolution Ỹ• of Y using vector bundles over G/B. The projection π : G → G/B is flat, so

π−1(Ỹ•) is a resolution of π−1(Y ) by B-equivariant vector bundles. Since Y ∩G = π−1(Y ) by
hypothesis, this argument identifies the class [Y ∩ G] ∈ K0

B(G) with [Y ] ∈ K0(G/B) under
the given isomorphism.

Finally we show φ(xj) = [Lj ]. In K0
T (Mn) the variable xj stands for the degree of the

variable zij or equivalently the class of the principal ideal [〈zij〉] for any choice of i. The
graded module 〈zij〉 corresponds to the sheaf of T -equivariant sections of the T -equivariant
line bundle Mn × K on which T acts on the right by (z, y) · t = (z · t, ytj), where tj is the
j-th diagonal entry in T . On the other hand Lj is defined as the quotient of G × K by
the equivalence relation (g, y) ∼ (gb, ej(b)y) where ej : B → K

∗ picks out the j-th diagonal
entry. This description coincides with the definition of xj and proves the claim. �

2. Matrix Schubert varieties and Grothendieck and Schubert polynomials

This section contains definitions and basic properties of matrix Schubert varieties, includ-
ing that their Grothendieck and Schubert polynomials are their K-polynomials and multi-
degrees, respectively. The results in this section come from Knutson and Miller [KM05];
details and more context can be found there, with notational conventions transposed from
ours.

Let S = K[z11, . . . , znn] and Mn = Spec S. We think of Mn as the space of all n × n
matrices and zij as the coordinate function on the (i, j)-th entry. Let vj denote the j-th
column of a generic element of Mn, and write vj =

∑n

i=1 zijei where ei is the i-th standard
basis vector. (Intuitively vj can be thought of as the vector-valued function on Mn that picks
out the jth column of a matrix.)

Fulton defined the Schubert determinantal ideal Iw ⊆ S and the matrix Schubert variety
Zw = Spec S/Iw ⊆ Mn of a permutation w ∈ Sn as follows [Ful92]. For each pair i, j with
1 ≤ i, j ≤ n, let

rij(w) = #({w(1), . . . , w(j)} ∩ {1, . . . , i})

be the rank of the northwest i × j submatrix of the permutation matrix for w (by which
we mean the matrix containing 1 in entry (w(i), i) and 0’s elsewhere). Given a positive
integer m ≤ n, an ordered set R = (R1, . . . , Rm) of indices in {1, . . . , n}, and an ordered set
C = (C1, . . . , Cm) of vectors in K

n, define

dR,C = det (m×m matrix whose(i, j)-th entry is the Ri-th entry of Cj) .

Then let

Iw,i,j = 〈dA,B | A ⊆ {1, . . . , i}, B ⊆ {v1, . . . , vj},#A = #B = ri,j(w) + 1〉
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and

Iw =
n∑

i,j=1

Iw,i,j.

In words, Iw is generated by the size rij(w) + 1 minors of the northwest i× j submatrix of
a generic element of Mn for all i and j.

For each w the matrix Schubert variety Zw is the subvariety of all n × n matrices whose
northwest i× j submatrices all have rank at most rij(w). Given a permutation w, recall that
the length ℓ(w) is the minimum number of simple transpositions in a reduced word for w,
or equivalently ℓ(w) is the number of pairs 1 ≤ i < j ≤ n with w(i) > w(j). Fulton showed
the following [Ful92].

Proposition 4. Fix a permutation w and its matrix Schubert variety Zw.

(1) The matrix Schubert variety is defined (as a reduced scheme) as Zw = Spec S/Iw
(2) We have Zw ∩G = π−1(w0Yw0w) where w0Yw0w := B−wB/B
(3) The matrix Schubert variety Zw is Zw ∩G and hence is irreducible.
(4) The dimension of Zw is given by dim(Zw) = n2 − ℓ(w).

Not all i× j submatrices are needed to define the ideal Iw. More precisely, for each w the
essential set E(w) is

E(w) = {(i, j) | w(j) > i ≥ w(j + 1), w−1(i) > j ≥ w−1(i+ 1)}.

Fulton also proved the following [Ful92].

Lemma 5. The ideal Iw can be written as Iw =
∑

(i,j)∈E(w) Iw,i,j.

The multidegrees (or equivalently equivariant cohomology classes) of the matrix Schubert
varieties are given by Schubert polynomials as follows. Denote both the permutation that
switches i and i + 1 and the operator on Z[x1, . . . , xn] that switches xi and xi+1 by si. Let
δi be the operator on Z[x1, . . . , xn] with

δi(f) =
f − sif

xi − xi+1
,

and let w0 ∈ Sn be the longest permutation, given explicitly by w0(i) = n+1−i for all i. The
Schubert polynomial Sw is defined recursively by Swsi = δi(Sw) whenever wsi < w, starting

from the highest-degree Schubert polynomial Sw0 =
∏n−1

i=1 xn−i
i . The modified Grothendieck

polynomial Ĝw is the K-polynomial (or equivalently K-class) of the matrix Schubert variety.
It is defined similarly using the Demazure operator δi(f) = −δi(xi+1f) and the recursion

Ĝwsi = δi(Ĝw) whenever wsi < w, starting from Ĝw0 =
∏n−1

i=1 (1− xi)
n−i.1

Recall that the grading on S in the group Z
n with generators x1, . . . , xn is defined by

deg(zij) = xj . We give one of Knutson and Miller’s main results [KM05] (though Feher and
Rimanyi proved similar results [FehRim]).

1Knutson and Miller defined the modified Grothendieck polynomials in this way to agree with K-
polynomials [KM05]. The usual Grothendieck polynomial Gw can be recovered from the modified

Grothendieck polynomial Ĝw by substituting Gw(x1, . . . , xn) = Ĝw(1 − x1, . . . , 1 − xn). This substitu-
tion commutes with the substitution in our main theorem, so our statements are true for either version of
the Grothendieck polynomials (as long as one is consistent).
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Theorem 6. Fix a permutation w ∈ Sn and its matrix Schubert variety Zw.

(1) The K-polynomial of Zw is Ĝw.
(2) The multidegree of Zw is Sw.

By Propositions 3 and 4, it follows that the K0 and cohomology classes of the Schubert
variety Yw0w are represented by Gw and Sw respectively, recovering seminal results of Bern-
stein, Gelfand, and Gelfand, Demazure, and Lascoux and Schützenberger [BGG73, Dem74,
LS82a, LS82b]. This new understanding of these classical results was one of the principal
motivations of the work of Knutson and Miller.

3. Regular intersections with Cohen-Macaulay schemes

The proof of our main theorem is based on the following fact from commutative algebra.
It is clear to experts and seems broadly applicable to many situations, but we could not find
it in the literature and so provide a detailed proof.

Theorem 7. Let S = K[z1, . . . , zn] be a positively Z
d-graded ring, ℓ1, . . . , ℓa linear forms

that are homogeneous with respect to the grading, and R = S/〈ℓ1, . . . , ℓa〉. Given a graded
S-module M , let HS(M) denote the Hilbert series of M with respect to the grading and

KS(M) =

n∏

i=1

(1− xdeg(zi))HS(M)

the K-polynomial. Similarly if N is a graded R-module then let HR(N) and KR(N) denote
its Hilbert series and K-polynomial with respect to R.

Let M be a finitely generated Cohen-Macaulay S-module. Suppose there is a (possibly
empty) proper closed subscheme A ⊆ Spec R such that dim(M ⊗S R)p = dim(M)− a for all
p ∈ Supp (M ⊗S R) \ A. Then

KS(M) = KR(M ⊗S R) + f

where f is an element supported on A.

Proof. Let

0 → Fc → Fc−1 → · · · → F0 → M → 0

be a free resolution of M . Then the K-polynomial of M is given by

KS(M) =
n∏

i=1

(1− xdeg(zi))HS(M) =
n∏

i=1

(1− xdeg(zi))
c∑

j=0

(−1)jHS(Fj) =
c∑

j=0

(−1)jKS(Fj).

On the other hand, tensoring the above free resolution by R gives
c∑

j=0

(−1)jHS(Tor
S
j (R,M)) =

c∑

j=0

(−1)jHS(R⊗ Fj),

so
c∑

j=0

(−1)jKR(Tor
S
j (R,M)) =

c∑

j=0

(−1)jKR(R⊗ Fj),
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since for any R-module N (which can also be considered as an S-module),

KR(N) =

∏n

i=1(1− xdeg(zi))∏a

j=1(1− xdeg(ℓa))
HS(N).

As Fj is a finitely generated free S-module for all j,

KR(R⊗ Fj) = KS(Fj).

Hence,
c∑

j=0

(−1)jKR(Tor
S
j (R,M)) = KS(M).

Suppose 〈ℓ1, . . . , ℓa〉 ⊆ p and p ∈ Supp (M ⊗R) \ A. Then since

dim(M/(ℓ1, . . . , ℓa)M)p = dim(M)p − a,

the linear forms ℓ1, . . . , ℓa are part of a system of parameters on Mp. Moreover ℓ1, . . . , ℓa
form a regular sequence on Mp since M is Cohen–Macaulay [BH93, Theorem 2.1.2].

Furthermore, since ℓ1, . . . , ℓa is a regular sequence on every module of the augmented free
resolution of Mp, tensoring by R is exact on this augmented free resolution [BH93, Theorem
1.1.5]. Thus Tor S

j (R,M)p = 0 for all j > 0, and so Supp Tor S
j (R,M) ⊆ A for j > 0.

Therefore,

KS(M) = KR(R⊗M) +

c∑

j=1

(−1)jKR(Tor
S
j (R,M)) = KR(M ⊗ R) + f,

where f is a signed sum of K-polynomials for R-modules supported on A. �

4. Hessenberg varieties and their equations

This section defines Hessenberg varieties and gives several results about their equations.
We focus on type An but start in a more general setting. Unfortunately, there are two
main definitions in the literature: the first is Lie-theoretic and uses the adjoint action,
while the second is more geometric and uses the interpretation of flags as nested subspaces.
Proposition 8 confirms that these two coincide as sets, which was already known. The main
goal of this section is to extend Proposition 8 to a scheme-theoretic result. This leads us
naturally to define the ideals that are the key tools in the proof of our main result (given in
the last section of the paper).

Let G be a semisimple reductive algebraic group over K with a fixed Borel subgroup B,
let g be the Lie algebra of G, and let b ⊂ g be the Lie subalgebra corresponding to B. A
Hessenberg space H is a subspace of g containing b that is preserved under the adjoint action
of b. In other words H is a subspace with b ⊆ H ⊆ g and [b, h] ∈ H for each b ∈ b and
h ∈ H . Given a Hessenberg space H and an element X ∈ g, the Hessenberg variety is the
subscheme YX,H ⊆ G/B defined by

YX,H = {gB ∈ G/B | Ad(g−1) ·X ∈ H}.

There is some confusion in the literature over whether the Hessenberg variety is the sub-
scheme defined by the equations stating that Ad(g−1) · X ∈ H or the reduced variety sup-
porting this subscheme. The two definitions do not always coincide [AT10, Theorem 7.6],
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[BC04, Remark 15], though Abe, Fujita, and Zeng prove that they are the same when X
is regular and H contains all the negative simple roots (because YX,H is reduced in this
case) [AFZ18, Prop. 3.6]. We use the first definition, which may be more widely accepted,
and in any case is the definition that makes our theorems true.

We now return to G = GLn(K), where there is a slightly different definition. We will
show these two definitions define the same object, even scheme-theoretically. In this case we
can take an element g ∈ G to be an n × n invertible matrix. Let v1, . . . , vn ∈ K

n denote
the columns of g from left to right. An element g ∈ GLn(K) defines a flag F•(g) by letting
Fj(g) = 〈v1, . . . , vj〉. A Hessenberg function h : {1, . . . , n} → {1, . . . , n} is one that satisfies
j ≤ h(j) for all j with 1 ≤ j ≤ n and h(j) ≤ h(j + 1) for all j with 1 ≤ j ≤ n − 1.
Furthermore, we can consider X ∈ g as a (not necessarily invertible) n× n matrix. One can
now define

Y ′
X,h = {gB ∈ G/B | XFj(g) ⊆ Fh(j)(g) ∀j}.

Again, one can either define the Hessenberg variety as the subscheme given by the de-
terminantal equations stating these inclusions (or equivalently as a degeneracy locus of a
particular map of line bundles) or as the reduced variety supporting this subscheme.

Given a Hessenberg function h, the associated Hessenberg space is

Hh = b⊕
⊕

j<i≤h(j)

gei−ej .

Considering g as the space of all n× n matrices, the Hessenberg space becomes

Hh = {x ∈ g | xij = 0 for all i > h(j)}.

The following proposition is well known, but we could not find an explicit proof in the
literature.

Proposition 8. Let g ∈ GLn(K), X ∈ g, and h a Hessenberg function. Then YX,Hh
= Y ′

X,h

as sets.

Proof. In GLn(K) the adjoint representation is given by conjugation, meaning gB ∈ YX,Hh

if and only if g−1Xg ∈ Hh. The latter is equivalent to the condition that Xg ∈ gHh by left
multiplication. Examining this condition column-by-column gives Xvj ∈ 〈v1, v2, . . . , vh(j)〉
for each j. Since h is nondecreasing this is equivalent to XFj(g) ⊆ Fh(j)(g) as desired. �

The previous statements are in the literature. The main work of this section is to show
that YX,Hh

= Y ′
X,h as subschemes of G/B by showing that the ideals defining π−1(YX,Hh

) and

π−1(Y ′
X,h) coincide. The statement then follows by the correspondence between B-invariant

subschemes of G and subschemes of G/B (which can be shown, for example, by considering
the universal property of quotients). We will first construct the ideal defining π−1(YX,Hh

),
then the ideal defining π−1(Y ′

X,h), and finally show that the ideals coincide in the coordinate
ring of G using a determinantal relation.

Let R = K[zij ] for 1 ≤ i, j ≤ n be the coordinate ring for the space Mn of n× n matrices,
so that the j-th column is vj =

∑n

i=1 zijei where ei is the i-th standard basis vector in K
n.

Then G = Spec (R[d−1]), where d = d(1,...,n),(v1,...,vn) is the determinant of the generic matrix.
We now define an ideal IX,Hh

⊆ R generated by the explicit equations for the condition
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that Ad(g−1) ·X = g−1Xg ∈ Hh. Hence we will have π−1(YX,Hh
) = Spec (R/IX,Hh

) ∩G by
definition.

By Cramer’s Rule, the (i, k)-th entry of g−1 is

(−1)i+kd(1,...,k−1,k+1,...,n),(v1,...,vi−1,vi+1,...,vn)/d.

To obtain the (i, j)-th entry of g−1Xg, we insert Xvj into this determinant by Laplace
expansion, resulting in d(1,...,n),(v1,...,vi−1,Xvj ,vi+1,...,vn)/d. If we define

IX,Hh
= 〈d(1,...,n),(v1,...,vi−1,Xvj ,vi+1,...,vn) | i > h(j)〉,

then π−1(YX,h) = Spec (R/IX,Hh
) ∩G.

To define an ideal cutting out π−1(Y ′
X,h), note that the condition XFj(g) ⊆ Fh(j)(g) is

equivalent to requiring that the rank of {Xv1, . . . , Xvj , v1, . . . , vh(j)} be exactly h(j), which
in turn can be expressed in equations by insisting that the size h(j)+1 minors of the matrix
with {Xv1, . . . , Xvj, v1, . . . , vh(j)} as the columns all vanish. Hence, for any j and r, let

JX,j,r = 〈dR,C | R ⊆ {1, . . . , n}, C ⊆ {Xv1, . . . , Xvj, v1, . . . , vr},#R = #C = r + 1〉,

and define

JX,h =
n∑

j=1

JX,j,h(j).

Then we have π−1(Y ′
X,h) = Spec (R/JX,h) ∩G, again by definition.

We are almost ready to show that IX,Hh
and JX,h agree when considered as ideals in the

coordinate ring of G. The last tool we need is the following, known as the Plücker relation.
We provide a proof since we need it in a slightly more general form than usual; our proof is
essentially that of [Ful97, Lemma 8.1.2].

Lemma 9. Let u1, . . . , um, v1, . . . , vn ∈ K
n and let φ : Kn → K

m be a linear map. Let M be
the m×m matrix with column vectors φ(u1), . . . , φ(um) and N the n×n matrix with column
vectors v1, . . . , vn. Fix k with 1 ≤ k ≤ m, and let Mi be the matrix obtained from M by
replacing φ(uk) with φ(vi), while Ni is the matrix obtained from N by replacing vi with uk.
Then

det(M) det(N) =
n∑

i=1

det(Mi) det(Ni).

Proof. Consider the (n + 1)× (n + 1) matrix N formed by taking N , adding uk as the first
column, and adding a top row whose entries are det(M), det(M1), . . . , det(Mn). By Laplace
expansion along the top row

det(N ) = det(M) det(N)−
n∑

i=1

det(Mi) det(Ni).

(There are no signs in the sum since the sign in the Laplace expansion cancels with the sign
needed to rearrange the columns of a minor of N into their order in Ni.)

On the other hand, we can show that N is singular. Laplace expansion along the k-th
column gives

det(Mi) =

m∑

j=1

(−1)jφj(vi) det(M
j)
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and

det(M) =

m∑

j=1

(−1)jφj(uk) det(M
j),

where φj is φ composed with projection to the j-th entry and M j is the submatrix of M
formed by deleting the j-th row and the k-th column. Hence the first row of N is a linear
combination of the other rows since each φj is linear. Therefore

det(N ) = det(M) det(N)−
n∑

i=1

det(Mi) det(Ni) = 0,

and

det(M) det(N) =

n∑

i=1

det(Mi) det(Ni).

�

We prove the next theorem by determinantal calculations.

Theorem 10. For any Hessenberg function h

IX,Hh
= JX,h

as ideals in K[zij , d
−1], namely the coordinate ring of GLn(K).

Proof. We first show that IX,Hh
⊆ JX,h by proving

d(1,...,n),(v1,...,vi−1,Xvj ,vi+1,...,vn) ∈ JX,h

for all i > h(j). We use the generalized Laplace expansion d(1,...,n),(v1,...,vi−1,Xvj ,vi+1,...,vn)

simultaneously along the columns v1, . . . , vh(j), Xvj, which gives

d(1,...,n),(v1,...,vi−1,Xvj ,vi+1,...,vn) =
∑

R

(−1)
∑

k∈R k−(h(j)+2
2 )dR,(v1,...,vh(j),Xvj)d(1,...,n)\R,(vh(j)+1,...,vi−1,vi+1,...,vn),

where the sum is over all subsets R ⊆ {1, . . . , n} of size h(j)+1. An expansion like this only
requires i 6= h(j) but the form we wrote assumes additionally that i > h(j). By the definition
of JX,j,h(j) we know dR,(v1,...,vh(j),Xvj) ∈ JX,j,h(j) for all R. By definition JX,j,h(j) ⊆ JX,h so

d(1,...,n),(v1,...,vi−1,Xvj ,vi+1,...,vn) ∈ JX,h.

(This part of our proof works over K[zij ], the coordinate ring of the space of n×n matrices.)

Now we show that JX,h ⊆ IX,Hh
. It suffices to prove dR,C ∈ IX,Hh

whenever R ⊆ {1, . . . , n},
C ⊆ {Xv1, . . . , Xvj, v1, . . . , vh(j)}, and #R = #C = h(j) + 1. Let d = d(1,...,n),(v1,...,vn), and
let ℓ be the maximum index such that Xvℓ ∈ C. For each i let Ci be the multiset defined
by Ci = (C \ {Xvℓ}) ∪ {vi}. Then

dR,Cd =

n∑

i=1

dR,Ci
d(1,...,n),(v1,...,vi−1,Xvℓ,vi+1,...,xn)

by the Plücker relation in Lemma 9. (In Lemma 9, the matrix dR,C is the m × m matrix
constructed from certain rows of the subset C of columns, while the matrix d is given by
the n columns v1, v2, . . . , vn and the map φ selects the entries in the rows identified by R.
In other words, each vi in this theorem coincides with vi from Lemma 9 while the vectors
u1, . . . , um are the elements of C.)
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We now induct on k where k = #({Xv1, . . . , Xvj} ∩ C). In the base case when k = 1,
either i > h(ℓ) or i ≤ h(ℓ). In the first case d(1,...,n),(v1,...,vi−1,Xvℓ,vi+1,...,xn) ∈ IX,Hh

by definition,
and in the second dR,Ci

= 0 since Ci contains vi twice. Hence every term on the right hand
side is in IX,Hh

, so dR,Cd ∈ IX,Hh
. Thus dR,C ∈ IX,Hh

because d is a unit.

The inductive hypothesis states that dR′,C′ ∈ IX,Hh
whenever # ({Xv1, . . . , Xvj} ∩ C ′) =

k − 1. Now consider dR,C . If i ≤ h(ℓ) then Ci contains k − 1 vectors of the form Xvm for
m ≤ j. (It also contains h(j)−k+2 vectors of the form vm for m ≤ h(j).) Thus by induction
dR,Ci

∈ IX,Hh
in this case. If i > h(ℓ) then again d(1,...,n),(v1,...,vi−1,Xvℓ,vi+1,...,xn) ∈ IX,Hh

by
definition. Hence every term in the right hand side is in IX,Hh

, and so dR,C ∈ IX,Hh
. �

5. Matrix Hessenberg varieties and the main theorem

We now prove Theorem 1 by realizing JX,h as the tensor product of a Schubert determi-
nantal ideal with a quotient by a linearly generated ideal and applying Theorem 7.

Let M2n be the space of 2n× 2n matrices, and denote the coordinate ring S = K[yij ] for
1 ≤ i, j ≤ 2n. Let R = K[zij ] for 1 ≤ i, j ≤ n be the coordinate ring of Mn. Given a linear
operator X and a Hessenberg function h : {1, . . . , n} → {1, . . . , n} we now define a ring
homomorphism φX,h : S → R. Intuitively, φX,h will be induced from the map Mn → M2n

given by starting with the ordered columns v1, v2, . . . , vn, and then for each j inserting Xvj
immediately after the column with vh(j) (and after all Xv1, . . . , Xvj−1 if there are any other
j′ for which h(j′) = h(j)). The bottom half of the matrix in M2n is then filled with zeroes,
and the rank conditions imposed on this matrix are equivalent to the geometric definition of
the Hessenberg variety.

More precisely, we do as follows. If i > n then φX,h(yij) = 0. Otherwise:

• If j = m + h(m) for some m, then φX,h(yij) is the i-th entry of Xvj where vj =∑n

i=1 zijei is the j-th column of a generic element of Mn.
• If there is no m for which j = m + h(m), then j = m + h′(m) for some m, where
h′(m) = #{p | h(p) < m}. In this case φX,h(yij) = zim.

Note that for any X and h, the map φX,h is surjective, and ker φX,h is generated by 3n2

independent linear forms.

Recall from the introduction that we define a permutation wh ∈ S2n from a Hessenberg
function h by letting wh(m + h(m)) = n +m for each m and putting 1, . . . , n in the other
entries in order.

We need the following lemma about wh.

Lemma 11. The length of wh is

ℓ(wh) =

n∑

i=1

(n− h(i)).

Proof. Since w−1
h (n+1) < · · · < w−1

h (2n) and w−1
h (1) < · · · < w−1

h (n) by definition, the only
possible inversions in wh are at indices i < j where wh(i) > n and wh(j) ≤ n. If i = m+h(m)
then there are 2n−m−h(m) indices with j > i, of which n−m have wh(i) < wh(j). Hence
n− h(m) of them are inversions, and wh has

∑n

i=1(n− h(i)) inversions. �
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Finally we show that the JX,h can be written as follows.

Proposition 12. For any linear operator X and Hessenberg function h

JX,h = φX,h(Iwh
).

Proof. Recall that the essential set of a permutation w is given by

E(w) = {(i, j) | w(j) > i ≥ w(j + 1), w−1(i) > j ≥ w−1(i+ 1)}.

If h(m) = n for all m then E(wh) = ∅ and Iwh
= JX,h = 〈0〉. Otherwise,

• w−1
h (i) > w−1

h (i+ 1) if and only if i = n, and
• wh(j) > wh(j+1) if and only if j = m+h(m) for some m such that h(m) < h(m+1),
in which case wh(j) > n ≥ wh(j + 1) and w−1

h (n) > j ≥ w−1
h (n+ 1).

Hence by Lemma 5

Iwh
=

∑

m s.t. h(m)<h(m+1)

Iwh,n,m+h(m).

Furthermore rn,m+h(m)(wh) = h(m) so

Iwh,n,m+h(m) = 〈dR,C | R ⊆ {1, . . . , n}, C ⊆ {u1, . . . , um+h(m)},#R = #C = h(m) + 1〉,

where uj =
∑n

i=1 yijei is the vector given by the top half of the j-th column of a generic
element of M2n.

The image φX,h(Iwh,n,m+h(m)) can be written explicitly as

φX,h(Iwh,n,m+h(m)) = 〈dR,C | R ⊆ {1, . . . , n}, C ⊆ {v1, . . . , vh(m), Xv1, . . . , Xvm},#R = #C = h(m)+1〉,

which is JX,m,h(m) by definition. When h(m) = h(m+ 1) we have JX,m,h(m) ⊆ JX,m+1,h(m+1)

also by definition, and so

JX,h =
∑

m s.t. h(m)<h(m+1)

JX,m,h(m) = φX,h(Iwh
).

�

We now prove Theorem 1 by assembling the key steps above.

Proof. Give S the grading such that deg(yij) = xm if j = m + h(m) or j = m + h′(m),
and give R the grading such that deg(zij) = xj . This grading makes φX,h a graded ring
homomorphism. By Theorem 6, we have

[S/Iwh
] = Gwh

(x1, . . . , xh(1), x1, xh(1)+1, . . . , xh(2), x2, xh(2)+1, . . . , xh(n), xn)

in K0
T (M2n). By Proposition 12 we know R/JX,h = φX,h(S/Iwh

).

Since X is regular we can use Precup’s dimension result [Pre16, Cor. 2.7] to conclude
dim(YX,h) =

∑n

i=1(h(i) − i). Hence, since, by Theorem 10 JX,h is the defining ideal for
π−1(YX,h), we conclude

dim((R/JX,h)p) = dim(B) + dim(YX,h) =

(
n+ 1

2

)
+

n∑

i=1

(h(i)− i) =

n∑

i=1

h(i)
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for any p ∈ G. On the other hand, by Proposition 4 and Lemma 11,

dim(S/Iwh
) = 4n2 −

n∑

i=1

(n− h(i)) = 3n2 +
n∑

i=1

h(i).

It follows that dim((R/JX,h)p) = dim(S/Iwh
)− 3n2 for any p ∈ G.

Since ker(φX,h) is generated by 3n2 independent linear forms, we can apply Theorem 7
with M = S/Iwh

, a = 3n2, and A = Mn \G to get that

[R/JX,h] = Gwh
(x1, . . . , xh(1), x1, xh(1)+1, . . . , xh(2), x2, xh(2)+1, . . . , xh(n), xn) + f

in K0
T (Mn) for some f ∈ K0

T (Mn \G). By Theorem 10 and Proposition 3 we see that

Gwh
(x1, . . . , xh(1), x1, xh(1)+1, . . . , xh(2), x2, xh(2)+1, . . . , xh(n), xn)

represents the class of the Hessenberg variety YX,h modulo the kernel of K0
T (Mn) → K0

T (G).

The statement for cohomology follows by taking the Chern character map. �

Remark 13. Recent work of Abe, Fujita, and Zeng [AFZ18] implies that regular Hessenberg
varieties, by our definition, are always Cohen-Macaulay. Indeed, the definition of YX,H shows
that the scheme is a local complete intersection, and hence Cohen-Macaulay, whenever it
meets the dimension constraints; Precup’s result shows this dimension constraint holds for
regular operators [Pre16]. Abe, Fujita, and Zeng’s result is that the scheme is reduced in the
case when h(i) > i for all i, and thus the reduced variety is Cohen-Macaulay in this case.

We now sketch an alternate proof of this result using the results in this paper.

Fulton proved that each matrix Schubert variety is Cohen-Macaulay [Ful92]. Thus S/Iwh

is Cohen-Macaulay. Recall that Theorem 7 used the fact that M is Cohen–Macaulay to
find ℓ1, . . . , ℓa that form a regular sequence on Mp [BH93, Theorem 2.1.2]. It follows that
(M ⊗S R)p is Cohen–Macaulay for any p 6∈ A [BH93, Theorem 2.1.3]. Using the same M
and a as in Theorem 1, we conclude R/JX,h is Cohen–Macaulay at p for any p ∈ G. Finally,
since π : G → G/B is a fiber bundle with fibers isomorphic to B, given any closed subscheme
Y ⊆ G/B, the local ring

Oπ−1(Y ),g
∼= OY,gB ⊗OB,e

for any g. Since B is smooth, Y is Cohen-Macaulay if and only if π−1(Y ) is. In particular
YX,h is Cohen-Macaulay.
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