
Smith ScholarWorks Smith ScholarWorks 

Physics: Faculty Publications Physics 

1-22-2021 

Complex Langevin and Other Approaches to the Sign Problem in Complex Langevin and Other Approaches to the Sign Problem in 

Quantum Many-Body Physics Quantum Many-Body Physics 

Casey E. Berger 
College of Arts & Sciences, cberger@smith.edu 

L. Rammelmüller 
Technische Universität Darmstadt 

A. C. Loheac 
College of Arts & Sciences 

F. Ehmann 
Technische Universität Darmstadt 

J. Braun 
Technische Universität Darmstadt 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.smith.edu/phy_facpubs 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Berger, Casey E.; Rammelmüller, L.; Loheac, A. C.; Ehmann, F.; Braun, J.; and Drut, J. E., "Complex Langevin 
and Other Approaches to the Sign Problem in Quantum Many-Body Physics" (2021). Physics: Faculty 
Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/phy_facpubs/99 

This Article has been accepted for inclusion in Physics: Faculty Publications by an authorized administrator of 
Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/phy_facpubs
https://scholarworks.smith.edu/phy
https://scholarworks.smith.edu/phy_facpubs?utm_source=scholarworks.smith.edu%2Fphy_facpubs%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.smith.edu%2Fphy_facpubs%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/phy_facpubs/99?utm_source=scholarworks.smith.edu%2Fphy_facpubs%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Authors Authors 
Casey E. Berger, L. Rammelmüller, A. C. Loheac, F. Ehmann, J. Braun, and J. E. Drut 

This article is available at Smith ScholarWorks: https://scholarworks.smith.edu/phy_facpubs/99 

https://scholarworks.smith.edu/phy_facpubs/99


Complex Langevin and other approaches to
the sign problem in quantum many-body physics

C. E. Bergera,∗, L. Rammelmüllerb,c,∗, A. C. Loheaca, F. Ehmannb, J. Braunb,e,d, J. E. Druta

aDepartment of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
bInstitut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, D-64289 Darmstadt, Germany

cGSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
dFAIR, Facility for Antiproton and Ion Research in Europe GmbH, Planckstraße 1, D-64291 Darmstadt, Germany

eExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt, Germany

Abstract

We review the theory and applications of complex stochastic quantization to the quantum many-body
problem. Along the way, we present a brief overview of a number of ideas that either ameliorate or in some
cases altogether solve the sign problem, including the classic reweighting method, alternative Hubbard-
Stratonovich transformations, dual variables (for bosons and fermions), Majorana fermions, density-of-
states methods, imaginary asymmetry approaches, and Lefschetz thimbles. We discuss some aspects of the
mathematical underpinnings of conventional stochastic quantization, provide a few pedagogical examples,
and summarize open challenges and practical solutions for the complex case. Finally, we review the recent
applications of complex Langevin to quantum field theory in relativistic and nonrelativistic quantum matter,
with an emphasis on the nonrelativistic case.
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1. Introduction

1.1. The challenge of many-body quantum mechanics: memory and statistics

In the early days of quantum mechanics it was quickly discovered that the Schrödinger equation could
be solved analytically for hydrogen and hydrogen-like atoms in a straightforward manner [1]. However,
each new particle added to the problem came at a dauntingly steep price, leaving the vast majority of the
periodic table of the elements unattainable due to the complexity of the equations and the accompanying
high cost of computation. Indeed, the presence of more than two interacting particles yields equations that
are analytically intractable. The quantum few-body problem thus appeared to be very difficult, and the
chances of solving the quantum many-body problem seemed dire. At the heart of the problem is the fact
that, while the influence of the massive atomic nucleus on the much lighter electrons can be approximated
(as a static external field à la Born-Oppenheimer), addressing the Coulomb interaction among the electrons
is far more challenging. Dirac famously remarked in 1929 that, while the underlying physical laws were
then completely known, “the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble”[2]. This difficulty could hardly be overemphasized then, and remains
a challenge to this day. In facing that challenge, a wide variety of algorithms was – and continues to be –
developed by specialists around the world to fit the paradigms of their specific area of physics or chemistry.

The most common first-principles approaches to the quantum many-body problem can be roughly di-
vided into two sets: memory intensive and statistics intensive. The former include methods such as exact
diagonalization (see e.g. [3, 4]) and coupled cluster (see e.g. [5, 6]), while the latter include a set of stochastic
techniques generally known as quantum Monte Carlo (QMC) methods. Within that QMC set, this review
focuses on a large class of approaches for which the many-body problem is expressed in the language of
second-quantization or quantum field theory, such that expectation values of operators are written as a path
integral over continuous fields living on a spacetime lattice. That formulation is in fact very general – it is
natural in relativistic quantum field theory as well as nuclear and condensed matter physics, either in the
form of low-energy effective field theories (see e.g. [7, 8, 9]), or as a reformulation of traditional Hamilto-
nians like the Hubbard model (see e.g. [10, 11]). Regardless of the application, the computational cost of
path-integral QMC methods scales at face value (see below) polynomially with particle number and basis
size (i.e. the size of the spacetime lattice), which makes them exceptionally well-suited for the many-body
problem.

An essential component of QMC techniques is that they rely on a stochastic process governed by the
Metropolis accept-reject algorithm [12], which itself requires a well-defined probability measure to guarantee
convergence to the correct result. Simply put, the algorithm requires that the partition function Z be
written as a sum of positive weights W (C) (which play the role of the probability mentioned above) over
some set of configurations C:

Z =
∑
C

W (C). (1)

The Metropolis algorithm, by construction, provides samples of the configurations C distributed according
to W (C). Under many circumstances, however, a serious issue arises for this kind of algorithm, which has
hindered computation in a wide range of situations: the infamous sign problem. In those cases, W (C) does
not have a well-defined sign or even becomes complex (as explained in further detail below). Unfortunately,
by far most systems of interest suffer from such a problem: high-Tc superconductors (due to strong repulsive
interaction away from half filling, see e.g. [13]), nuclear structure (strong repulsive core, finite spin-isospin
polarization, see e.g. [14, 15]), and quantum chromodynamics (finite quark density see e.g. [16, 17, 18]), to
name only a few.

Over the last few decades, many ideas have been proposed to overcome the sign problem in quantum
many-body physics and field theory. This review covers some of them briefly and focuses on the so-called
complex Langevin (CL) approach, as applied to the calculation of equilibrium properties of quantum many-
body systems in relativistic and nonrelativistic physics, with an emphasis on the latter. The next section
sketches out the basic path-integral formalism involved in Metropolis-based and stochastic quantization
approaches, with the goal of showing where and how the sign problem arises.
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1.2. Path integrals and the sign problem

The central quantity of the field theoretical approach to the quantum many-body problem is the partition
function, which in the grand canonical ensemble is given by

Z = Tr
[
e−β(Ĥ−µN̂)

]
, (2)

where Ĥ is the Hamiltonian of the system, N̂ the particle number operator, β the inverse temperature,
µ the chemical potential, and the trace is over all multiparticle states (i.e. Fock space). Note that Z is
shown here for a single particle species, but is straightforwardly generalized to multiple chemical potentials,
etc. As written, Z contains the thermodynamic information of the system: by differentiating with respect
to β and µ one obtains expectation values of the Hamiltonian and the particle number operators. More
detailed information, such as momentum distributions and other correlation functions, can be obtained by
adding sources to the Hamiltonian as is common in quantum field theory. The direct evaluation of Eq. (2)
is impossible for interacting systems, as it requires a priori knowledge of the full energy spectrum.

The path-integral approach to the many-body problem provides an alternative route. Either using an
operator-based approach or coherent states, one arrives at an expression for Z which is written generically
as

Z =

∫
Dφ e−S[φ], (3)

where φ is a field living in (d+1)-dimensional spacetime and represents any degrees of freedom in the system.
One thus replaces the problem of evaluating Eq. (2) with that of calculating the above path integral. In
practice, boundary conditions in the spatial directions can be chosen in a variety of ways, but those in the
time direction, which is compact and runs in the range τ ∈ [0, β), are set by the quantum statistics of the
problem: bosonic fields will obey periodic boundary conditions and fermionic fields anti-periodic.

From this point on, our discussions will focus on nonrelativistic systems unless otherwise specified. In
purely bosonic theories the action S[φ] will typically take a simple local form such as

S[φ] =

∫
dτddx {φ∗ (∂τ +H)φ+ V [φ]} , (4)

where H represents the noninteracting Hamiltonian (including external trapping potentials) and V [φ] rep-
resents the interactions (i.e. terms cubic and beyond in φ).

For real bosonic variables φ, the action S[φ] is also real and therefore e−S[φ] can be used as a probability
measure in a stochastic process. For complex φ, however, the fact that ∂τ is an antisymmetric operator
results in a complex S[φ], which is the source of a sign problem in this formulation (see below) and has
a counterpart in relativistic bosons at finite chemical potential (see Secs. 2.4 and 4). The problem of the
antisymmetry of ∂τ can be circumvented for an even number of species with attractive interactions, which
however render bosons unstable (but not fermions, see below).

To make contact with the fermionic case discussed below (see also Fig. 1), it is instructive to rewrite
the interaction using a Hubbard-Stratonovich (HS) transformation, although it is not strictly needed in the
bosonic case. Consider for instance the case of a complex field φ. Schematically, one introduces an auxiliary
field σ such that

e−Sint[φ] =

∫
Dσ e−Saux[φ,σ]−S0[σ], (5)

where

Sint[φ] =

∫
dτddx V [φ] , (6)

Saux[φ, σ] is a quadratic functional of both φ and σ, and S0[σ] is a pure-σ term; both Saux and S0 depend
on the specific choice of HS transformation. Since the action is now quadratic in φ, the corresponding path
integral can be carried out, which results in a σ-dependent determinant, i.e. the full partition function can
now be expressed as

Z =

∫
Dσ e−SHS[σ], (7)

4



HS transformation Sign problem

Required to represent the
interaction and obtain boson-
like path integrals

Determinants appear upon
integrating out fermions,
auxiliary bosons remain

Optional

If used, determinants appear
upon integrating out the
bosons, auxiliary bosons
remain

Repulsive interactions and
asymmetries make
determinants complex 
(or sign indefinite)

Euclidean boson action
becomes complex due to
asymmetry in the time
derivative

Fermions

Starting point: 
Grassmann path integral or
operator formalism

Bosons

Starting point: 
Complex-field path integral or
operator formalism

Figure 1: Pathways of the appearance of the sign problem in path-integral approaches to non-relativistic many-body systems.

where

e−SHS[σ] =
e−S0[σ]

detM [σ]
. (8)

Usually it is possible to factor the determinant into a determinant for each particle species (flavors), such
that if Nf flavors are present then

detM [σ] = detM1[σ] detM2[σ] · · · detMNf [σ]. (9)

Naturally, calculations with bosons are not carried out using the action of Eq. (8). The formulation based
on S[φ] of Eq. (4) is considerably easier to work with as there are no determinants involved. However, the
appearance of the boson determinant in Eq. (8) shows that, if detM is real and an even number of species is
present, then the sign problem can be avoided if S0[σ] is real. Unfortunately, that situation is not relevant
for bosons as it corresponds to attractive interactions, which make a many-boson system unstable. On the
other hand, the determinant-based representation of Eq. (8) has a direct counterpart in the fermion case,
which we discuss next.

In theories with fermions, the action will require the much more complicated (non-linear, non-local)
form based on determinants because the fermionic analogue of Eq. (4) is written in terms of anticommuting
objects, i.e. Grassmann numbers, which are not amenable to numerical computation. We therefore assume
that fermionic degrees of freedom (i.e. said Grassmann variables) have been integrated out. Taking such
a step requires a HS transformation of some kind to decouple the interaction, i.e. one introduces auxiliary
fields to obtain a quadratic action in the fermion fields, which are then integrated and result in a fermion
determinant. Assuming such steps have already been taken, we have the schematic form,

e−S[φ] = detM [φ]e−Sg [φ], (10)
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where M encodes the dynamics of the fermions (quarks, electrons, atoms) in the external field φ, and Sg[φ]
is the “pure HS” part of the action (often called “pure gauge” part in QED and QCD); for the latter,
the form of Sg will depend on the kind of HS transformation utilized (see Sec. 2.2). Parameters like the
fermion mass and chemical potential appear in M . In particular, in many cases it is possible to choose a
HS transformation that decouples Nf species (i.e. flavors) of fermions such that, as in the bosonic case
described above,

detM [φ] = detM1[φ] detM2[φ] · · · detMNf [φ]. (11)

The above path integral formulation, being a rewriting of Z, inherits the usual mechanisms to access
expectation values of operators, namely differentiating Z with respect to a chosen parameter. For instance,
the average particle number is given by

〈N̂〉 =
∂ lnZ
∂(βµ)

=
1

ZTr
[
N̂e−β(Ĥ−µN̂)

]
, (12)

such that in the bosonic case of Eq. (4),

〈N̂〉 =

∫
Dφ P [φ]

[
− ∂S[φ]

∂(βµ)

]
, (13)

while in the fermionic case of Eq. (10),

〈N̂〉 =

∫
Dφ P [φ] Tr

[
M−1 ∂M

∂(βµ)

]
, (14)

where in either case

P [φ] =
e−S[φ]

Z . (15)

In evaluating Eqs. (13) or (14), the natural course of action is to sample field configurations φ according
to the probability P [φ] and evaluate the quantities of interest that appear between square brackets. It is
for that reason that the identification of P [φ] as a probability measure is a central aspect of conventional,
Metropolis-based approaches to the evaluation of expectation values in quantum systems with many degrees
of freedom. More specifically, in those cases where the sign (or phase) of P [φ] does not depend on φ,
one samples φ according to P [φ] using the Metropolis algorithm (combined with a suitable field updating
procedure, e.g. Wolff, worm, or hybrid Monte Carlo algorithms) to obtain a set of Nφ decorrelated samples
{φ}, which in turn are used to estimate expectation values as

〈O〉 =

∫
Dφ P [φ]O[φ] ' 1

Nφ
∑
{φ}

O[φ], (16)

for a given operator O.
As mentioned above, by far for most systems of interest in physics face a sign problem, as the sign

(or more generally complex phase) of P [φ] varies with φ. Then, P [φ] simply cannot be interpreted as a
probability and the Metropolis algorithm is not applicable.

For nonrelativistic fermionic systems, the sign problem typically happens at finite polarization (i.e.
chemical potential asymmetry) or when interactions contain a repulsive component. The problem therefore
affects essentially all of condensed matter, nuclear physics, and quantum chemistry. There are notable
exceptions, such as a large class of systems in one spatial dimension and the Hubbard model at half filling,
for which the sign problem can be eliminated completely. For relativistic fermions, such as quarks at finite
chemical potential, the sign problem has obstructed the investigation of the phase diagram of QCD.

The case of bosons is markedly different from that of fermions. Here, the nonrelativistic case presents
a sign problem even in the absence of interactions or chemical potentials: it is the asymmetry of the single
time derivative, see Eq. (4), that creates the problem, as we will explain in further detail in Sec. 3. This
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is to be contrasted with the relativistic case, which develops a sign problem when a chemical potential is
turned on (see however Sec. 2.4).

The remainder of this review is organized as follows. Sec. 2 reviews a broad (but by no means complete)
set of approaches to the sign problem. Sec. 3 introduces the formal aspects of stochastic quantization and
the complex Langevin method in more detail, including pedagogical examples as well as a brief discussion
of the challenges and shortcomings in the mathematical underpinnings. Secs. 4 and 5 review the recent
and emerging applications of CL in relativistic and nonrelativistic physics, with an emphasis on the latter.
Finally, Sec. 6 concludes the review with a summary and outlook.

2. Approaches to the sign problem: from reweighting to complex Langevin

There have been multiple approaches suggested to solve or ameliorate the sign problem. Some of these
methods aim at solving the problem directly, typically by rewriting the partition function in new and clever
ways that remove the sign problem entirely. Other approaches involve rewriting the original problem so
it can be solved stochastically but with controlled sign fluctuations. Below we present a selection of those
methods in a logical sequence that starts with the simplest idea, namely reweighting, and concludes with
complex plane methods. Along the way, we present an elementary discussion of each method and comment
on their advantages and shortcomings, which often result in valuable insights on the nature of the sign
problem.

In Fig. 2 we propose a visual organization of the various approaches to the sign problem. Although we
do not follow the proposed taxonomy in this review in a linear fashion, we do find it helpful to organize the
information in this manner. On the left column of that figure we list “new variables” methods as those that
attempt to tackle the sign problem by switching from the conventional path-integral formulation to a new
set of variables. We begin by reviewing a classic work that looks for sign problem free HS transformations
in Sec. 2.2. That work shows that a choice of HS transformation may not solve the problem but may help
in addressing it (and certainly choosing the wrong one can be a recipe for trouble). Dual-variable and
Majorana-fermion representations succeed in completely solving the sign problem in many cases, as shown
in Secs. 2.4 and 2.6.

The middle column of Fig. 2 lists the set of what we call “statistical” approaches, which attempt to
tackle the sign problem in a head-on manner. The simplest of those methods is by far the oldest and most
commonly applied one across all areas of physics: reweighting, which we describe in Sec. 2.1. More recent
statistical approaches, commonly referred to as “density-of-states” methods, proceed by probing the shape
of the probability distribution at fixed action phase, and then integrating over that phase at the end; we
describe those ideas in Sec. 2.3

Finally, the right column lists “complex plane” methods, which also come in different flavors. Sec. 2.7
reviews the use of imaginary asymmetries in the parameters of a given theory (e.g. chemical potential, mass
imbalance) to carry out calculations without a sign problem, necessarily followed by some kind of analytic
continuation to return to the real physical values. Complex Langevin methods, the focus of this review,
start in Sec. 3.1, while in Sec. 2.8 and Sec. 2.9 we mention ideas based on contour deformations (Lefschetz
thimbles and the path optimization method, respectively). All of those methods rely on complexifying the
integration variables; based on that idea, there exist constructive approaches (mentioned in Sec. 3.1) that
aim to define a real action in such a complex space.

2.1. Reweighting

The simplest (and likely oldest [19]) idea to overcome the sign problem is that of reweighting, which
amounts to sampling φ using the magnitude of P [φ] as a probability measure. In such an approach, one
rewrites the expectation value of O as

〈O〉 =
1

Z

∫
Dφ |P [φ]|eiθ[φ]O[φ] =

∫
Dφ |P [φ]|eiθ[φ]O[φ]∫

Dφ |P [φ]|

∫
Dφ |P [φ]|∫

Dφ |P [φ]|eiθ[φ]
=
〈〈O[φ]eiθ[φ]〉〉
〈〈eiθ[φ]〉〉 , (17)
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Reweighting (Sec. 2.1)

54

Figure 2: A proposed map of the many approaches to the sign problem.

where eiθ[φ] is the phase of P [φ], and the double angle bracket denotes an expectation value taken with
respect to |P [φ]|.

Reweighting thus provides a way forward for systems that have a sign problem: simply compute the
numerator and denominator of Eq. (17)) and then take their ratio. In practice, however, both the numerator
and the denominator of Eq. (17)) vanish exponentially as the physical extent of the spacetime lattice is
increased. The phase average is

〈〈eiθ[φ]〉〉 =

∫
Dφ |P [φ]|eiθ[φ]∫
Dφ |P [φ]| =

Z
Zpq

= e−β(Ω−Ωpq), (18)

where Zpq is the partition function of the “phase-quenched” theory1, and Ωpq and Ω are the corresponding
grand thermodynamic potentials of the phase-quenched and original theory. Both Z and Zpq are real
quantities, but since Zpq is a sum over nonnegative real numbers, while Z accounts for the phase, we
necessarily have Z ≤ Zpq. More importantly, thermodynamic potentials are extensive quantities in the
spatial volume V of the system, such that we may write the above in terms of intensive potentials ω and
ωpq as

〈〈eiθ[φ]〉〉 = e−βV (ω−ωpq), (19)

which exposes the exponential nature of the sign problem in the thermodynamic (V →∞) and ground-state
(β →∞) limits. This can be seen more clearly by examining the statistical uncertainty ∆, which in a Monte

Carlo calculation with Ns samples decreases as N−1/2
s .In the case of re-weighting, the relative statistical

uncertainty on the average phase is overpowered by the exponential behavior coming from Eq. (19):

∆

〈〈eiθ[φ]〉〉 ∼
eβV (ω−ωpq)
√Ns

. (20)

This last equation shows the difficulty in approaching the sign problem with a simple technique such as
re-weighting: an exponentially large number of samples is needed in order to determine the average phase
with any reasonable accuracy as the volume of spacetime is increased. Viewed through the lens of this simple
idea, the sign problem may be regarded as the reappearance of an exponential type of computational wall,
which affects non-stochastic methods (see Introduction) in the guise of memory requirements and statistical
methods in the form of a signal-to-noise problem.

2.2. Alternative Hubbard-Stratonovich transformations

The partition function Z of Eq. (2) is naturally a sum of positive quantities e−β(E−µN). The path-
integral representation of Z, while exact, introduces a large number of degrees of freedom to represent

1In the phase-quenched theory, the probability distribution is replaced by its absolute value, such that it is a positive-definite
measure.
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the same quantity. It therefore seems natural to expect that such a formulation would require massive
cancellations (i.e. the sign problem) to yield correct physical answers. On the other hand, there are many
ways to choose a HS representation, which may in turn yield different kinds of cancellations (i.e. more or
less dramatic, by some measure). Even in the absence of a sign problem, different kinds of continuous or
discrete HS transformations display varying behavior (see e.g. [20, 21]). It therefore makes sense to ask
whether efficient representations exist, i.e. HS transformations which can substantially reduce the difference
ω − ωpq in Eq. (19) or even eliminate it completely.

As an example, consider the fermionic Hubbard model given by

Ĥ = −t
∑
s=↑,↓

∑
〈ij〉

ĉ†s,iĉs,j + U
∑
i

(n̂↑,i − 1/2)(n̂↓,i − 1/2) , (21)

where t is the nearest-neighbor hopping, U > 0 is the repulsive coupling, ĉ
(†)
s,i is the annihilation (creation)

operator for particles of spin s =↑, ↓ at location i, and n̂s,i is the corresponding density operator.
The work of Ref. [22] showed that a general HS transformation for the above model resulting in positive

weights (i.e. a real action S[φ]) does not exist. While attractive interactions – such as in the negative-U
Hubbard model – feature no sign problem, repulsive interactions and in general any finite polarization (i.e.
non-zero chemical potential asymmetry) do yield sign oscillations. More specifically, the problem arises
because the determinant in Eq. (10) becomes a product of two determinants which are real or can be made
real by choosing a proper HS transformation, but which will generally have different signs. Reference [22]
showed that it is possible to isolate the origin of the signs in such a way that the determinants are real
and identical, i.e. one ends up with a square of a determinant, and the signs are not eliminated but can be
predicted. This remarkable property is illustrated below.

We begin by implementing a Trotter-Suzuki factorization of the Boltzmann weight with imaginary time
step τ , such as

e−τĤ ' e−τT̂ e−τV̂ , (22)

where T̂ contains the hopping terms and V̂ the on-site interaction, as they appear in Eq. (21). It is to
address the latter that an HS transformation is used. The two most common HS representations, used in
calculations of the repulsive Hubbard model, proceed by writing (omitting the spatial indices)

e−τU(n̂↑−1/2)(n̂↓−1/2) =
e−τU/4

2

∑
φ=±1

e−λdφ(n̂↑−n̂↓), (23)

e−τU(n̂↑−1/2)(n̂↓−1/2) =
e−τU/4√

2π

∫ ∞
−∞

dφ e−φ
2/2−λcφ(n̂↑−n̂↓), (24)

where φ is the auxiliary field, λd is set by cosh(λd) = eτU/2, and λc =
√
τU . Both of these “density-channel”

transformations successfully decouple the two spin species ↑ and ↓, and the resulting determinants are real,
but they are generally different from each other, such that

P [φ] = detM↑[φ] detM↓[φ], (25)

will generally vary in sign with φ. Here we omit the pure-φ part for the continuous case, which is real
and positive anyway. It should be pointed out that there are more general ways than the above factorized
form that result in a sign problem free situation; for an exploration of more general conditions based on
time-reversal invariance, see Refs. [23, 24] and further discussion in Sec. 2.6.

A more general transformation that aims to preserve the up-down symmetry of the Hubbard Hamiltonian,
and therefore provide the square of a real determinant in P [φ], can be written as

e−τU(n̂↑n̂↓−n̂↑/2−n̂↓/2) =

∫ ∞
−∞

dφ p[φ] eφ(n̂↑+n̂↓), (26)
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where we want p[φ] to be real and positive and, evaluating both sides at the eigenvalues of the density
operators (i.e. setting n̂s → 0, 1), we see that∫ ∞

−∞
dφ p[φ] = 1, (27)∫ ∞

−∞
dφ p[φ]eφ = eτU/2, (28)∫ ∞

−∞
dφ p[φ](eφ)2 = 1. (29)

Unfortunately, the last two equations can only be satisfied simultaneously if eτU/2 ≤ 1, i.e. if U ≤ 0, which
is not the case we are interested in here as there is then no sign problem.

The above shows that, at least within the rather general form proposed, it is not possible to generate the
square of a determinant and avoid the sign problem at the same time for the repulsive Hubbard model. On
the other hand, if p[φ] is allowed to vary in sign, then there is no constraint on U and we obtain the square
of a real determinant. In that case, the sign problem comes not from the fermion determinant but from p[φ],
which means that it is completely predictable as soon as φ is known, without computing determinants. Such
predictability of the sign or phase of the determinant has not been exploited in the literature beyond the
work of Ref. [22], but it could be of interest in the context of the density-of-states methods discussed in the
next section. In those methods, the knowledge of the precise form of the imaginary part of the action as a
functional of the field is essential and has been used with some success to characterize a class of relativistic
field theories.

Generally speaking, the fact that there exists a family of HS transformations representing the same
partition function, especially if they are non-trivially related to each other, provides in effect a variety of
calculations that can be used as checks against each other. As explored in Ref. [25], the density-channel
decompositions mentioned above can be replaced by their “pairing channel” counterparts (of which a new
family exists, with discrete and continuous members, as above), which display different sign properties.
Other kinds of useful HS transformations have been discussed in Refs. [26, 27]

Crucially, the availability of different HS transformations with different sign behavior shows that the
sign problem is not an intrinsic property of a given Hamiltonian, but rather depends on the decoupling
scheme. Therefore, the search for a link between the physics of a given system and the sign problem should
be taken with caution, as such a link may be entirely an artifact of the formulation of the problem. An
interesting example in that regard is the elimination of the sign problem by way of a fermionic reformulation
of a bosonic problem in the case of a frustrated Kondo model coupled to fermions [28], followed by a HS
transformation on the resulting fermionic interaction (see also [29, 30]).

It is worth pointing out, however, that there is a link between the sign problem and phase transitions.
Indeed, with the path integral formulation at hand, one can reasonably argue that the sign problem can
be expected to be severe close to a critical point. One way to visualize that concept is in terms of the
Lee-Yang zeros of the partition function Z, written as a path integral (i.e. Eq. (7). When sampled over
the relevant configurations of φ, the integrand e−S[φ] must reflect the existence of an accumulation point
of roots of Z when approaching the phase transition. By itself, that property would not pose a problem.
However, the natural scale of the integrand is the exponential of an extensive quantity; therefore, e−S[φ]

must oscillate dramatically in order to generate the large collection of zeros (in the thermodynamic limit),
and the corresponding high sensitivity to the parameter values, around the transition point. For cases that
do not have a sign problem, the integrand must necessarily tend to zero when approaching a phase transition
(again, in the thermodynamic limit), which is often reflected in the appearance of zero modes in fermion
matrices.

2.3. Density-of-states methods

The density-of-states (DoS) approaches are a class of methods that attempt to tackle the sign problem in
a head-on manner, as opposed to rewriting the partition function in terms of new variables or straightforward
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reweighting (although it may be argued that DoS methods are actually a kind of reweighting). The original
idea of sampling the density of states as an alternative to Metropolis-based methods is due to Wang and
Landau [31] and has been applied to a wide variety of systems including gauge theories [32, 33], but its
generalization to systems with a sign problem was explored later on in Refs. [34, 35, 36, 37] (see also
Refs. [38, 39]). The result of those explorations is now known in the literature as the logarithmic linear
regression (LLR) algorithm or the functional fit approach (FFA), both of which are very closely related
but differ on specific details. We will restrict ourselves here to those approaches (which have also been
reviewed recently in Ref. [16]) but it is worth pointing out that DoS methods have also been applied to
finite density QCD in different forms which involve histograms of the phase of the fermion determinant (see
e.g. [40, 41, 42]).

The idea common to all DoS approaches is that, in the presence of a sign problem where the action can
be decomposed into real and imaginary parts S = SR + iSI , the partition function can be written as

Z =

∫
Dφ e−S[φ] =

∫
ds ρ(s) e−is = 2

∫
ds ρ(s) cos(s), (30)

where we used the fact that the partition function is real and took the real part in the last step, and

ρ(s) =

∫
Dφ δ(SI [φ]− s)e−SR[φ]. (31)

The determination of ρ(s) is then carried out by combining two ingredients: first, propose a functional form
that can account for its variation over vast orders of magnitudes; second, carry out restricted calculations
at constant or approximately constant imaginary action SI [φ] in order to determine the coefficients in the
proposed functional form for ρ(s). A key aspect of the method is that, using these elements, it can deliver
exponential accuracy in the calculation of ρ(s).

In the approach of Refs. [35, 43], the parametrization of ρ(s) is done in a piecewise-linear fashion:

ρ(s) = Ane−kns, (32)

for s ∈ In, In = [sn, sn+1], where the partitioning and sizes of the intervals In, i.e. the set of numbers {sj},
can be chosen at will to reflect the desired precision in describing ρ(s). By requiring continuity of ρ(s) and
a normalization condition ρ(0) = 1, the constants An can be determined as a function of kn:

An = exp

− n−1∑
j=0

∆j(kj − kn)

 , (33)

where ∆j = sj+1 − sj is the size of the j-th interval. In order to determine the constants kn, the FFA uses
restricted expectation values defined by

〈〈X〉〉n(λ) =
∂ lnZn(λ)

∂λ
, (34)

where the restricted partition function is

Zn(λ) =

∫
Dφ e−SR[φ]+λSI [φ]θn(SI [φ]), (35)

with θn(x) = 1 for x ∈ In and 0 otherwise.
With the above piecewise-linear parametrization of ρ(s), the restricted partition function and expectation

values can be computed in closed form. It turns out that

Yn(λ) ≡ 〈〈X〉〉n(λ)−Dn−1

∆n
− 1

2
= h((λ− kn)∆n), (36)
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Figure 3: (Left) Yn(λ) as a function of λ for several discretizations n. (Right) Density of states for several values of the
nearest-neighbor coupling τ . Both plots correspond to the SU(3) spin model of Ref. [44].

where Dn−1 =
∑n−1
j=0 ∆j and

h(x) =
1

1− e−x
− 1

x
− 1

2
. (37)

These equations encode a crucial aspect of the method: once the intervals In are chosen (such that the ∆n

are fixed constants), each of the functions Yn(λ) is entirely determined by the single parameter kn and must
follow the shape dictated by h(x). Thus, the function Yn(λ) is a kind of response function in which the
source parameter λ is coupled to the imaginary part of the action SI to constrain the value of kn for each
n. If the one-parameter fit to h(x) is unsatisfactory, that signals a poor choice of the discretization {sj},
such that a more refined mesh is likely needed. An example of the typical shape of Yn(λ) is shown in the
left panel of Fig. 3 for several values of n for the SU(3) spin model of Ref. [44].

Once the kn are known, one may reconstruct ρ(s) and calculate the full partition function as a Fourier
transformation via Eq. (30)). This last step will be sensitive to the large oscillations due to the cos(s) factor.
As an example, the density of states obtained in Ref. [44] for the SU(3) spin model is shown in the right
panel of Fig. 3, for several values of the nearest-neighbor coupling τ . The variations of ρ(s) over many orders
of magnitude are evident from that figure.

While we have focused here on the FFA, the LLR method [33] accomplishes exponential error suppression
by calculating the slopes kn of the distribution using a fixed-point iteration method. The latter is based on
the work of Robbins and Monro [45], which guarantees that the values obtained in subsequent iterations are
Gaussian-distributed around the exact answer. The above-mentioned exponential error suppression amounts
to a constant relative error in the determination of the density of states over the full domain of the phase,
which is crucial in order to carry out the Fourier integral in Eq. (30)).

The FFA and the LLR methods have been used to analyze several models on the lattice at finite density
such as the Z3 spin model [43], the SU(3) gauge theory with static color sources [44, 46], and two-color
QCD with heavy quarks [37]. One of the most interesting advantages of DoS methods is that they are
extremely parallelizable on modern computers. These methods require a large set of calculations, e.g. several
independent calculations as a function of λ and n to determine kn, but each of those is an independent run
and can therefore be done in a perfectly scalable fashion. As long as the number of λ and n points does not
grow exponentially with the spacetime volume (there is not indication thus far in the literature that that is
the case, due largely to the smoothness and lack of sharp features in ln ρ(s)), the computational cost will
scale better than that of reweighting methods.

On the other hand, DoS approaches present a paradigm that is quite different from conventional MC
methods when it comes to calculating different observables. For observables O that do not depend explicitly
(and only) on the action S[φ], it will not be enough to know ρ(s). In such a case, a source term jO would
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have to be included in the action and a family of densities ρ(s, j) would need to be calculated at least for
small j. Once ρ(s, j) is thus obtained, numerical differentiation of lnZ[j] yields the desired 〈O〉 in the limit
j → 0. Such an approach may seem slightly cumbersome or costly, but it amounts to multiple applications
of the same idea which moreover retains the full parallelizability property mentioned above.

2.4. Dual variables for bosons

Dualization is another approach involving rewriting the partition function Z so as to eliminate or ame-
liorate the sign problem. The dual variables are a new set of variables, typically discrete, that may yield
a representation of Z entirely in terms of positive quantities. While the concept of duality is in itself an
old one, the use of dual variables in quantum Monte Carlo calculations first appeared in the 1980’s: for
instance, Ref. [47] showed that that the strong-coupling limit of QCD could be represented as a system
of dimers. Later on, Ref. [48] used dual variables to analyze the bosonic Hubbard model. The concept
was later applied to fermions as well, which we review in the next section. For pure bosonic theories at
finite density, it was shown in Ref. [49] that dual variables are not just an alternative representation: they
successfully solve the sign problem for both relativistic as well as non-relativistic systems. Moreover, the
dual variables can be efficiently sampled using the worm algorithm [50, 51]. Since the early 2010’s, a few
groups have pursued the study of several quantum field theories (from simple models to effective theories of
QCD) at finite temperature and density (see e.g. [52, 53, 54, 55, 56, 57, 58, 59]).

Following the notation and steps of Ref. [16], we show how to introduce dual variables first in relativistic
bosons and then in the non-relativistic case. The lattice action for a relativistic complex-valuedued field φx
is

S[φ] =
∑
x

(
η|φx|2 + λ|φx|4 −

4∑
ν=1

[
eµδν,4φ∗xφx+ν̂ + e−µδν,4φ∗xφx−ν̂

])
, (38)

where x is a spacetime lattice point and ν̂ denotes a unit vector in the ν-th direction (ν = 4 being the
imaginary-time direction). At finite µ, the quantity in square brackets ceases to be real, which exposes the
sign problem. Exponentiating the action, as one would normally do to compute the partition function, we
note that

e−S =
∏
x

e−η|φx|
2−λ|φx|

4 ∏
x,ν

exp(eµδν,4φ∗xφx+ν̂) exp(e−µδν,4φxφ
∗
x+ν̂). (39)

At each spacetime-Lorentz point x, ν, the offending term becomes a factor that can be rewritten by expanding
each of the exponentials in a Taylor series as∏
x,ν

exp(eµδν,4φ∗xφx+ν̂) exp(e−µδν,4φxφ
∗
x+ν̂) =

∑
{n,n̄}

Nn,n̄
∏
x

eµ(nx,4−n̄x,4)φ
∗
∑
ν(nx,ν+n̄x−ν̂,ν)

x φ
∑
ν(n̄x,ν+nx−ν̂,ν)

x ,

(40)
where Nn,n̄ =

∏
x,ν 1/(nx,ν !n̄x,ν !) and the sum

∑
{n,n̄} denotes a sum over all configurations of the Taylor

indices nx,ν ≥ 0 and n̄x,ν ≥ 0. Using the above and the polar form φx = rxeiθx , we obtain for the partition
function

Z =
∑
{n,n̄}

Nn,n̄
∏
x

eµ(nx,4−n̄x,4)R[n, n̄, x]T [n, n̄, x], (41)

where

R[n, n̄, x] =

∫ ∞
0

drxr
1+

∑
ν(nx,ν+nx−ν̂,ν+n̄x,ν+n̄x−ν̂,ν)

x e−ηr
2
x−λr

4
x , (42)

which is a non-negative, local function of the index configuration {n, n̄} (note also that the exponent of rx
is strictly positive), and

T [n, n̄, x] =

∫ π

−π

dθx
2π

e−iθx
∑
ν(nx,ν−n̄x,ν−nx−ν̂,ν+n̄x−ν̂,ν), (43)

which results in Kronecker delta functions for each x imposing constraints on the configurations. In principle,
the job is done at this point: we have shown that there is a discrete-field representation of the partition
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function as a sum over positive quantities. It is useful, however, to take a few more steps towards simplifying
the calculation, specifically towards implementing the constraints imposed by the function T [n, n̄, x]. To
that end, one parameterizes the sum and difference of n and n̄ via two new ‘dual’ variables k, ` defined via

nx,ν − n̄x,ν ≡ kx,ν and nx,ν + n̄x,ν ≡ |kx,ν |+ 2`x,ν , (44)

which take values over all integers and all non-negative integers, respectively. We finally obtain

Z =
∑
k,`

N|k|+`,`
∏
x

W (sx)eµ
∑
x kx,4

∏
x

δ(∇vkx,ν), (45)

where

W (n) =

∫ ∞
0

drrn+1e−ηr
2−λr4 , (46)

sx =
∑
ν

[|kx,ν |+ |kx−ν̄,ν |+ 2(`x,ν + `x−ν,ν)] , and ∇vkx,ν ≡
∑
ν

[kx,ν − kx−ν̂,ν ] . (47)

The constraint ∇vkx,ν = 0 enforces that the field kx,ν be solenoidal, such that the flux of kx,ν is conserved.
Pure gauge theories can also be written in terms of dual variables and, as above, results in a new

representation for the partition function in terms of purely positive terms. This approach yielded the first
real and positive dualization of abelian gauge theories with a so-called θ term [60], which is a term in the
action coupled to a topological charge (see Refs. [61, 62] for updates on that work). Because that term is
necessarily complex, it results in a sign problem in conventional path integral representations. The current
challenge for this approach is the extension to non-abelian gauge theories and the inclusion of fermions (see
however next section).

The case of non-relativistic bosons can also be addressed with dual variables with some modifications
with respect to the relativistic case. We show some of steps of that derivation here as a pedagogical example;
they closely follow the relativistic case. As we will show in more detail in Sec. 5, the problem appears in
non-relativistic bosons not because of the chemical potential but because of the asymmetry in the time
derivative: there are only particles and no antiparticles. (The physical source of the problem is thus the
same as in the relativistic case: the breaking of time-reversal invariance.) Starting with the lattice action
for the complex-valued field φx in 3 + 1 dimensions (although this example can be easily generalized to d+ 1
dimensions), we have

S =
∑
x

(
λ|φx|4 + φ∗xφx − eτµφ∗xφx+4̂

− 1

2

3∑
k=1

[
φ∗xφx+k̂

+ φ∗xφx−k̂ − 2φ∗xφx

])
, (48)

Then,

e−S =
∏
x

e−4|φx|
2−λ|φx|

4 ∏
x

exp(eτµφ∗xφx+4̂
)
∏
x,k

exp(φ∗xφx+k̂
/2) exp(φ∗xφx−k̂/2), (49)

where we now expand the exponentials of the derivative terms in a power series, such that∏
x

exp(eτµφ∗xφx+4̂
)
∏
x,k

exp(φ∗xφx+k̂
/2) exp(φ∗xφx−k̂/2)

=
∑

{n,m,m̄}

Nn,m,m̄eτµnxφ∗x
nx+

∑
k(mx,k+m̄x,k)φx

nx−4̂+
∑
k(mx−k̂,k+m̄x+k̂,k), (50)

where Nn,m,m̄ =
∏
x 1/nx!

∏
x,k 1/(2mx,k+m̄x,kmx,k!m̄x,k!), and nx is a site variable, whereas mx,k and m̄x,k

are link variables in the spatial directions. As in the previous example, one may now write the fields in terms
of their polar representation φx = rxeiθx to obtain constraints for the integer fields n,m, m̄ and eventually
arrive at a sum of positive definite terms for Z. Explicitly,

Z =
∑
n,m,m̄

Nn,m,m̄
∏
x

eτµnxR[n,m, m̄, x]T [n,m, m̄, x], (51)
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where

R[n,m, m̄, x] =

∫ ∞
0

drxr
1+nx+nx−4̂+

∑
k(mx,k+m̄x,k+mx−k̂,k+m̄x+k̂,k)

x e−4r2x−λr
4
x , (52)

which is a non-negative, local function of the index configuration {n,m, m̄} (also, as before, the exponent
of rx is strictly positive), and

T [n,m, m̄, x] =

∫ π

−π

dθx
2π

e−iθx[nx−nx−4̂−
∑
k(mx,k+m̄x,k−mx−k̂,k−m̄x+k̂,k)], (53)

which results in Kronecker delta functions that impose constraints on the configurations.
It is then clear that the dual-variable formulation avoids the sign problem for non-relativistic bosons, as

first noted in Ref. [49]. It is worth noting, however, that other cases such as coupling to angular momentum,
are not obviously solvable with this technique.

While this method completely solves the sign problem in the cases shown above (and some others, e.g.
bosons with non-abelian spin-orbit coupling), the calculation of specific observables acquires a new degree
of complexity due to the dramatic change of variables. This is merely an algebraic inconvenience but,
in practice, the change from the original fields φ to the discrete fields n,m, m̄ implies that any operator
expression in the φ language needs to be re-derived (e.g. by inserting sources in the original action or using
the parameters of the theory).

In this section we have focused on exact alternative representations of scalar bosons. However, such
representations have also been found for gauge fields [63, 64] which are valid also away from the strong
coupling limit.

2.5. Dual variables for fermions and fermion bags

One of the first uses of dual variables for fermions in Monte Carlo calculations was unrelated to the sign
problem: it was found in Ref. [47] that QCD in the strong-coupling limit could be represented as a system
of dimers, which inspired multiple studies [65, 66, 67, 68, 69, 70]. However, dual variables by themselves
do not necessarily avoid the fermion sign problem. As first described in Ref. [71], in what is now known as
the ‘meron cluster’ approach, one must sum analytically over configurations in a given cluster (where the
type of configuration cluster must be cleverly identified) and then stochastically over clusters. When the
clusters are properly chosen, they contain configurations that may vary in sign but such that the overall
contribution of a cluster is of constant sign across clusters.

The fermion bag approach of Refs. [72, 73] (extended to continuous time in Ref. [74]; see also Refs. [75,
76, 77, 78]) extends the meron cluster approach to a larger class of theories. Rather than following those
derivations (based on Grassmann numbers), here we connect with them from a different perspective. We
begin by re-writing the partition function as

Z = Tr
[
e−β(Ĥ−µN̂)

]
= Tr

[(
e−τ(Ĥ−µN̂)

)Nτ]
, (54)

where β = τNτ . Using a Suzuki-Trotter decomposition, we may approximate

e−τ(Ĥ−µN̂) ' e−τ(T̂−µN̂)e−τV̂ , (55)

where T̂ is the kinetic energy and V̂ the interaction. As an example, we specialize to the case where
V̂ = −U∑x n̂↑(x)n̂↓(x), and then we have

e−τV̂ =
∏
x

eτUn̂↑(x)n̂↓(x) =
∏
x

(1 +Bn̂↑(x)n̂↓(x)) =
∑

mx=0,1

B
∑
xmx

∏
x

(n̂↑(x)n̂↓(x))
mx , (56)

where B = eτU − 1. We may use the above at each point in imaginary time by inserting this expression into
Eq. (55)) to obtain

e−β(Ĥ−µN̂) =

Nτ∏
t=1

T̂t
∏
x

(1 +Bn̂↑(x)n̂↓(x))t =
∑

mx,t=0,1

B
∑
x,tmx,t

Nτ∏
t=1

[
T̂t
∏
x

(n̂↑(x)n̂↓(x))
mx,t
t

]
, (57)
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where T̂t ≡ e−τ(T̂−µN̂) and we note that the product over the time slices actually factorizes across flavors as

Nτ∏
t=1

[
T̂ ↑t
∏
x

n̂↑(x)
mx,t
t

]
Nτ∏
t=1

[
T̂ ↓t
∏
x

n̂↓(x)
mx,t
t

]
. (58)

Below we will show the following trace-determinant identity

Tr

Nτ∏
t=1

[
T̂ ↑t
∏
x

n̂↑(x)
mx,t
t

]
= detW↑[{m}], (59)

where Ws[{m}] is the free fermion matrix for spin s in which the rows and columns x0, t0 for which mx0,t0 = 1
are dropped (see below for details on the form of Ws[{m}]). Using the above in the definition of Z yields

Z =
∑

mx,t=0,1

B
∑
x,tmx,t detW↑[{m}] detW↓[{m}], (60)

where we finally have completely re-written the full partition function as a sum over configurations of the
monomer field mx,t.

For unpolarized non-relativistic systems, Ws[{m}] is real and takes on the same value for s =↑, ↓,
such that there is no sign problem, as long as B ≥ 0, i.e. for attractive interactions. Thus far, the
same conditions apply for the auxiliary field formulation of the problem: repulsive interactions (B < 0) or
polarization (W↑[{m}] 6= W↓[{m}]) would lead to a sign problem. This formulation, however, lends itself
to an interpretation of the sum in terms of clusters known as fermion bags, which are disjoint regions Bi
of the discrete field mx,t within which mx,t = 0 (see Fig. 4). As the corresponding interaction vertices (i.e.
insertions of U) are thus absent in Ws[{m}], fermions are free to move about inside the bag. Using that
property, Ref. [72] argued that, while the contributions to a given fermion bag configuration may vary in
sign, the overall contribution of each bag to the full partition function is actually positive. Thus, if one is
able to add up the terms within each bag, then it is possible to use Metropolis-based importance sampling
to sum over all possible fermion bag configurations.

The right-hand side of Eq. (59)) can also be calculated using Wick’s theorem, if interpreted as the expec-
tation value of a time-dependent operator in a noninteracting system. In that weak-coupling interpretation,
it is possible to show that

Tr

Nτ∏
t=1

[
T̂ ↑t
∏
x

n̂↑(x)
mx,t
t

]
= detM↑ detG↑[{m}], (61)

where M↑ is the noninteracting spacetime fermion matrix and G↑[{m}] is a propagator matrix whose size
depends on the monomer configuration mx,t and which contains noninteracting propagators connecting the
monomer sites where mx,t = 1. As explained in Ref. [73], the equality between Eqs. (59) and (61) represents a
duality relation between strong coupling and weak coupling; in the former case, a large number of monomers
appear and Eq. (59)) is easier to calculate than Eq. (61)), which becomes easier at weak coupling.

In combination with the hopping expansion (which amounts to expanding the exponential of the kinetic
energy rather than the potential energy), one arrives at other useful sign problem-free representations of
fermionic partition functions. One such example is well-known and is the case of non-relativistic fermions
in 1D with two-body interactions [79]. Another more recently discovered case is that of non-relativistic
fermions in 1D with four-body interactions, shown and used in Refs. [80, 81, 82], where also a fermion-bag
type idea is used to sum over configuration clusters. Interestingly, baryons at strong coupling can also be
described by bags where three quarks propagate coherently as a single free fermion (i.e. a baryon) inside
bags, while the complementary domain displays quark- and di-quark-type excitations [83]. Other relevant
examples can be found in Refs. [66, 84, 85].
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Figure 4: Fermion bag interpretation of the dual-
variable approach to many-fermion systems. The
blue dots represent the points on the spacetime
lattice for which the discrete field acquires values
mx,t = 1. The regions enclosed by continuous
black lines represent the fermion bags, within which
mx,t = 0 and where fermions move freely. This
picture is not general but meant only as an illus-
tration. The true shape of the allowed bag con-
figurations will depend on the specific form of the
Hamiltonian; in particular, the form of the kinetic
energy operator is crucial in determining whether
such a bag decomposition is possible.

Proof of trace-determinant identity. For completeness, we outline the proof of the trace-determinant identity
Eq. (59)) used above. We have not seen this way to approach the proof anywhere else, and since we find it
particularly clear, we include it here. First we quote the auxiliary identity

Tr

[
N∏
k=1

eB̂keÂk

]
= det



1 0 0 0 · · · eBN

−eA1 1 0 0 · · · 0

0 −eB1 1
. . . 0 0

... . . .
. . .

. . .
...

0 0 −eAN−1 1 0
0 0 0 −eBN−1 1 0
0 0 0 · · · −eAN 1


, (62)

which is a reformulation of a well-known identity in the operator formulation of quantum Monte Carlo (see
e.g. [86]). Here, the left-hand side trace is over Fock space, the entries of the Fermi matrix on the right-

hand side are themselves matrices (i.e. the above is shown in block form), and Âk =
∑
i,j [Ak]ij ĉ

†
i ĉj and

B̂k =
∑
i,j [Bk]ij ĉ

†
i ĉj are (generally non-commuting) one-body operators. For our purposes, k represents a

particular time slice, B̂k = jx,kn̂x,k, such that [eBk ]x,x′ = δx,x′e
jx,k , and Âk encodes the kinetic energy, i.e.

it is actually a k-independent operator. Our focus is on the Bk factors.
The crucial step in proving Eq. (59)) is in differentiating both sides of Eq. (62)) with respect to jx,k

in as many points {x, k} as needed (namely the points where mx,k = 1; recall each point appears only
once in the matrix) to match the desired insertions of n̂(x) at the desired time slices k. To carry out the
differentiations on the right-hand side, we first use the Laplace cofactor expansion of the determinant and
set the corresponding jx,k to zero once the derivative is taken. Once all the desired derivatives are applied,
what remains is the corresponding cofactor determinant. The latter is the determinant of the matrix on the
right-hand side of Eq. (62)) where the rows and columns of a given eBk containing the differentiated points
{x, k} are simply dropped, and the sources j in any remaining terms are set to zero; that prescription defines
the square matrix Ws[{m}], whose number of rows (and columns) is reduced from the original matrix by
the number of non-zero monomers. Note that there will, typically, be more than one spatial point x affected
within a given temporal block eBk ; similarly, any temporal block not affected by the derivatives will turn
into an identity matrix once the sources are set to zero. Note also that any overall signs are unimportant
because they cancel against the corresponding expression for the other fermion species.
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2.6. Majorana fermions

In Ref. [87] a fermion representation was introduced that does not display a sign problem for a broad class
of systems. Those developments were precipitated in part by the work of Huffman and Chadrasekharan of
Ref. [78] and were further investigated by several authors in different ways (see in particular Refs. [88, 89]).
The main result of that line of research, which we will explain in this section, is that there is a new class
of systems that do not have a sign problem, and that that class goes beyond the well-known time-reversal-
symmetric situation.

To understand the main principle behind this new class of systems, note that for a typical non-relativistic,
single-species Fermi system, the discretization of the time direction into Nτ slices followed by a Hubbard-
Stratonovich transformation yield a partition function of the form

Z =

∫
Dσ detM [σ], (63)

where

M [σ] =



1 0 · · · 0 eANτ

−eA1 1 0 . . . 0

0 −eA2 1
... 0

... . . .
...

. . .
...

0 0 0 −eANτ−1 1

 , (64)

which satisfies detM [σ] = det (1 + U [σ]), where

U [σ] = eA1eA2 . . . eANτ , (65)

and the Ak factors encode the kinetic or potential energy contributions (the latter in the form given by
the choice of Hubbard-Stratonovich transformation). It is then clear that the question of which systems
display a sign problem amounts to asking under what conditions expressions of the form det (1 + U [σ]) have
a constant sign. That question was “crowd sourced” by L. Wang on the MathOverflow website and then
analyzed in detail by multiple authors, leading to the work of Ref. [88] (see also Ref. [24]), whose discussion
we parallel next.

Under specific conditions on the Ak matrices, reviewed below, the product U [σ] lies in the split-orthogonal
group O(n, n), which is defined as the set of real matrices R such that RT ηR = η, where the metric is

η = diag(1, 1, . . . , 1,−1,−1, . . . ,−1), (66)

where 1’s and −1’s appear n times each. It is easy to see that |detR| = 1 and it is also possible to show
that, writing R in terms of n× n blocks

R =

(
R11 R12

R21 R22

)
, (67)

that |detR11| ≥ 1 and |detR22| ≥ 1, which defines four different sectors in O(n, n) labeled by the signs of
these two determinants, typically denoted O±±(n, n). Of those, only O++(n, n) contains the identity and
forms a subgroup. Crucially, it can be shown that, if U [σ] ∈ O++(n, n) then det (1 + U [σ]) ≥ 0, and if
U [σ] ∈ O−−(n, n) then det (1 + U [σ]) ≤ 0. If U [σ] is in not in those sectors, then the determinant vanishes.

Finally, we see that, if the generating matrices Ak are in the algebra of O(n, n), i.e. if ηAkη = −ATk ,
then their exponentials will be group elements and the product of such exponentials will be in O(n, n), in
particular it will be in O++(n, n). Furthermore, parametrizing one such algebra generator as

A =

(
C B
X D

)
, (68)
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the condition of it being in the algebra of O(n, n) implies X = BT , CT = −C, and DT = −D, such that
the diagonal of A must be entirely zero. Below we will consider bipartite systems and C and D will contain
matrix elements corresponding to same-lattice indices, whereas B and BT will connect different sublattices.

As an example of a model whose auxiliary-field representation satisfies the above constraints, Ref. [88]
considers the spinless t-V model on a bipartite lattice:

Ĥ =
∑
i,j

ĉ†iKijĉj +
∑
〈i,j〉

[
V

(
n̂in̂j −

n̂i + n̂j
2

)
− Γ

]
, (69)

where ĉ†i and ĉi are the creation and annihilation operators and n̂i is the number density operator at site
i. The angle brackets denote a sum over nearest neighbors, which are assumed to belong to different
sublattices. The two key properties of this model are: a) the kinetic matrix K only connects terms across
the two sublattices and is zero on the diagonal; b) the interaction term can be decoupled using a Hubbard-
Stratonovich transformation which again only connect different sublattices (and to that end the constant Γ
plays a crucial role). Specifically, Ref. [88] proposed the following auxiliary-field representation:[

V

(
n̂in̂j −

n̂i + n̂j
2

)
− Γ

]
= −Γ

2

∑
σ=±1

exp
[
σλ(ĉ†i ĉj + ĉ†j ĉi)

]
, (70)

where λ = acosh(1 + V/(2Γ)), which is a real number for V,Γ ≥ 0, i.e. repulsive interactions. This is easily

checked by using the fact that, when i 6= j, all positive even powers of the combination (ĉ†i ĉj + ĉ†j ĉi) take the
same operator value, namely

(ĉ†i ĉj + ĉ†j ĉi)
2 = n̂i + n̂j − 2n̂in̂j, (71)

and all odd powers of (ĉ†i ĉj + ĉ†j ĉi) also take on one operator value, which then vanishes upon summing over
σ = ±1.

As usual, there are two different kinds of matrices Ak: one for the kinetic energy operator A(K), and one
for the potential energy A(V ) (which includes the Hubbard-Stratonovich field). Since K is a real symmetric
matrix and only connects different sublattices, A(K) features C = D = 0 and B = BT [c.f. Eq. (68)]. On the
other hand, the potential energy factor resulting from Eq. (70) is also real and symmetric and is designed to
connect different sublattices only, such that also in this case C = D = 0 and B = BT . Thus, with the above
choice one is within the purview of the theorem of Ref. [88] and there is no sign problem for the spinless
t-V model on a bipartite lattice. As anticipated in a previous section, the choice of Hubbard-Stratonovich
transformation (of which there exist an infinite number for any given system) can determine the appearance
or not of a sign problem, and that is the case here.

It is possible and useful to recast the above discussion in terms of Majorana variables. Reference [87]
showed that, by writing the fermion operators in the original Hamiltonian as

ĉj =
1

2
(γ̂1,j + iγ̂2,j), (72)

where γ̂i,j are Majorana fermions, it is possible to avoid the sign problem in certain classes of spinless
fermion models on bipartite lattices. Moreover, using this type representation, it is possible to generalize
the conclusions obtained using the split-orthogonal group regarding the types of systems that do not display
a sign problem. That generalization was carried out in Ref. [89]. There, it was shown that a system displays
no sign problem if it admits a Majorana decomposition in which the usual kinetic and potential energy
factors (after the Hubbard-Stratonovich transformation) take the bilinear form

Ĥbl = γ̂TV γ̂, (73)

where the vector γ̂ contains the operators γ̂i,j above (in some order), and

V =

(
C iB
−iBT C∗

)
, (74)
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Figure 5: (Left) Approaches based on imaginary chemical potential asymmetry, as parametrized by iδµR, where δµR is real,
avoid the sign problem (see text) but the results must then be analytically continued to the physical axis where the asymmetry
is real. (Right) Approaches based on deformed contour or Lefschetz thimbles aim to minimize the phase oscillations by
numerically modifying the domain of integration of the path integral, allowing the field to acquire an imaginary part.

where C = −CT is complex antisymmetric and B is Hermitian positive (or negative) semidefinite. Based on
the above result, Ref. [89] showed that not only models like the above t− V case can be made sign problem
free, but also cases in which coupling to a pairing channel is present can be shown to have no sign problem
using Majorana fermions. A precursor to that result appeared early on in Ref. [90].

In a second theorem, Ref. [89] also showed that there is another class of systems which, though partially
overlapping with the above, represents a new class of sign problem-free systems as a result of Majorana-
Kramers positivity. For the latter to hold, operators S and P must exist such that V satisfies

STV S = V ∗ (75)

PV P−1 = V (76)

where S is a real antisymmetric matrix satisfying S2 = −I and ST = −S, P is a symmetric or antisymmetric
Hermitian matrix satisfying P 2 = I and PS = −SP . The first of the above equations ensures that V is
time-reversal symmetric, which by itself is not a sufficient condition to avoid the sign problem. The second
equation enforces a Kramers degeneracy that ensures that there is no sign problem.

A characterization of the classes of sign problems that can be addressed with this technique can be found
in Refs. [89, 91] (see also [24] for a recent review). Notably, exponentiating the generator A of Eq. (74)
yields elements of O(n, n), which is a real group, while the exponentials of V yield elements of O(m,C).
Reference [92] presented a more general approach to such a group-theoretic characterization (so far the most
general, to the best of our knowledge), based on Lie semigroups. Various applications were explored in
Refs. [93, 94, 95, 96, 97].

Rather than a new method or an algorithm, one may regard the Majorana representation as a way to
discover systems that do not have a sign problem (and for which it is not otherwise obvious that this is the
case in conventional fermion formulations). Once that property is established, conventional algorithms can
be used to carry out the calculation.

2.7. Imaginary asymmetry

In non-relativistic physics, fermions at finite polarization or mass imbalance present a sign problem
because although the determinant in Eq. (11) factorizes and the factors are real, they will not typically be
equal for all values of the HS field. A trick to overcome that problem can be borrowed from condensed
matter theory [98] which is to make the asymmetry imaginary. For instance, if there are two spin flavors
with corresponding chemical potentials µ↑,↓ = µ ± δµ, then taking δµ → iδµR, where δµR is real, such
that δµ is purely imaginary, makes the fermion determinants complex conjugates of one another and their
product is real and positive, i.e.,

detM↑ detM↓ → |detM↑|2. (77)
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This trick allows efficient sampling of the modified path integral via conventional Monte Carlo approaches.
Below, we shall refer to imaginary asymmetry methods in general by the abbreviation “iHMC”.

Naturally, a caveat of this approach is that one must return to the real asymmetry axis (see left panel
of Fig. 5). This usually involves a fit of an ansatz to the numerical data which then needs to be analytically
continued. At this point, some degree of uncontrolled approximation enters the analysis as the ansatz for
the fit is not unique. Nevertheless, the fact that investigations on the imaginary asymmetry axis are done
in an entirely nonperturbative and controlled way is certainly an attractive feature.

In relativistic physics, the equivalent of the above is the introduction of a finite chemical potential that
breaks the particle-antiparticle symmetry, thus inducing a finite difference between the densities of particles
and antiparticles. The associated breaking of the charge-conjugation symmetry creates a sign problem which
can be cured by rendering the chemical potential entirely imaginary, not only the difference of the chemical
potentials as in non-relativistic field theories. This idea was originally put forward in Ref. [99] in the late
1990s and was very successfully employed in lattice QCD shortly thereafter [100, 101, 102]. Since then, this
approach has proven to be very valuable for studies of thermodynamics as well as the phase structure of
QCD, see, e.g., Refs. [103, 104, 105, 106, 107, 108, 109] for more recent results. For a discussion of the
analytic continuation and suitable functional parametrizations of the data in the case of QCD, we refer the
reader to Refs. [110, 111, 108] and to Ref. [112] for a detailed analysis of this issue with the aid of an exactly
solvable field-theoretical model.

In Fig. 6 (left panel), for illustration purposes, we show results for the dimensionless baryon den-
sity (1/T 3)(dp/dµB), rescaled by a factor of T/µB, for (2+1)-flavor QCD, see Ref. [108]. Here, µB is
the baryon chemical potential. To obtain the results for (µB/T )2 > 0 (physical case) in Fig. 6 (left panel),
various functional forms have first been fitted to the points on the negative side of the horizontal axis and
then analytically continued to the positive side. The invariance of QCD under a sign flip of the baryon
chemical potential has been used in constructing the fit functions. Whereas the predictions for (µB/T )2 > 0
are impressively independent of the used functional form at small chemical potential, the uncertainty grows
large when the chemical potential is increased, illustrating the limitations of this approach. In any case, we
note that it is not possible to study the zero-temperature limit of QCD at finite baryon chemical potential
with this approach. Indeed, because of the Roberge-Weiss symmetry [113], only the regime |µB|/T < π is
accessible.

Inspired by these studies, the same principle has been followed in non-relativistic physics in recent years.
More specifically, it has been applied to chemical potential and mass asymmetries [114, 115, 116, 117, 118].
An example is shown in the center and right panel of Fig. 6 where the magnetization m (in units of
the noninteracting density n0) of one-dimensional non-relativistic spin-1/2 fermions at several values of
the chemical potential µ (given in units of the inverse temperature β = 1/T ) is depicted. In this case,
calculations avoiding the sign problem are possible at imaginary chemical potential asymmetry hI (center
panel). To obtain the results for real asymmetry h (right panel), an ansatz for the magnetization in terms of
a function is first fitted to the data for imaginary asymmetry (center panel) and then analytically continued
to real asymmetry h.

Here, h = µ↑ − µ↓ is the difference in the chemical potentials of the spin-up and spin-down component.
Similarly to the case of finite baryon chemical potential in QCD, it is not possible to compute the mag-
netization as a function of chemical potential asymmetry at zero temperature with this approach. In fact,
it is only possible to reach values in the regime |h|/T < π because of the 2π-periodicity of non-relativistic
fermions at finite temperature [115]. As already stated above, the basic idea of “taking a detour in the
complex plane of the parameter space” is not limited to chemical potentials. In fact, the energy equation
of state of 1D non-relativistic two-component fermions coming with different masses has been successfully
studied in Ref. [118] using an imaginary mass difference. Other interesting applications, such as imaginary
angular velocity coupled to angular momentum, remain unexplored to date but could in principle also be
studied in this way.

It should be pointed out that, for small asymmetries, one can avoid the problem of analytic continuation
completely by performing a Taylor expansion of the path integral around vanishing asymmetry, where
calculations can be carried out without a sign problem. This approach has been successfully employed in
many finite-temperature lattice QCD studies at finite baryon chemical potential to compute the equation
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Figure 6: (Left) Dimensionless baryon density (1/T 3)(dp/dµB) rescaled by a factor T/µB for (2+1)-flavor QCD, see Ref. [108].
The figure shows the analytical continuation of the lattice data for imaginary chemical potential (negative horizontal axis) to
real chemical potential corresponding to (µB/T )2 > 0 based on the use of different functional forms to fit the data. (Middle and
Right) Magnetization of a non-relativistic 1D gas of two-component fermions interacting via contact interaction before (middle
panel) and after (right panel) analytic continuation from imaginary chemical potential difference hI = ih with h = µ↑ − µ↓,
see Ref. [116] for details. Note that the magnetization is the difference in the densities of the two fermion components.

of state and extract the phase structure, at least at small baryon chemical potential. See Refs. [119, 120,
121, 122] for ground-breaking studies of 2- and (2+1)-flavor QCD with this approach and Refs. [123, 124]
for recent state-of-the-art results. For example, we can exploit the relation between the baryon density nB

and the QCD partition function Z:
nB

T 3
=

1

V T 2

∂ lnZ
∂µB

, (78)

where V is the spatial volume and the temperature is introduced to render the expression dimensionless.
At finite baryon chemical potential µB, the partition function is invariant under µB → −µB and therefore
the density can be written as a series in odd powers of (µB/T )2. The coefficients of this series can then
be computed rigorously with stochastic methods by realizing that they are directly related to derivatives
of lnZ with respect to µB evaluated at µB = 0. Moreover, the pressure equation of state can eventually be
obtained by integrating the density with respect to µB since p = (T/V ) lnZ.

Essentially, this amounts to the computation of static response functions. This approach can indeed be
very efficient provided that these functions can be calculated in a statistically controlled manner, see also
Refs. [121, 125] for a discussion of the reliability of this approach. Presently, the effort has been pushed
to sixth order in the baryon chemical potential [123]. Of course, a similar approach can also been applied
to non-relativistic theories to study equations of state as well as the phase structure and appears to be a
worthwhile endeavor, also to cross-check results obtained by using imaginary asymmetries.

2.8. Lefschetz thimbles

In the presence of a phase problem, i.e. when the action S[φ] has real and imaginary parts: S[φ] =
SR[φ] + iSI [φ], it may be possible to deform the integration contour away from the real line φ ∈ (−∞,∞)
and into the complex φ plane (see right panel of Fig. 5) such that SI [φ] is constant, or approximately so. If
our problem concerns a simple one-site model, such that the partition function is a one-dimensional integral

Z =

∫ ∞
−∞

dφ e−S[φ] (79)

then observables take the form

〈O〉 =
1

Z

∫ ∞
−∞

dφ e−S[φ]O[φ]. (80)
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The goal of the Lefschetz thimbles method is to achieve a deformation of the integration region into a new
region C such that we may alculate the above as

Z0 =

∫
C

dφ e−SR[φ] (81)

〈O〉 =
1

Z0

∫
C

dφ e−SR[φ]O[φ], (82)

where φ is now regarded as a complex variable and we have used the fact that SI[φ] is constant along C, i.e.
we have cancelled it in both Eqs. (81) and (82).

Such a contour deformation changes neither the theory nor the observables, as the integrand in the path
integral of any theory of interest will be an analytic function of φ. If such a contour can be determined either
a priori or dynamically during a calculation, the sign problem could potentially be solved or at least tamed.
As a Monte Carlo method, the idea can be traced back to the work of Ref. [126] where the so-called shifted
contour auxiliary-field Monte Carlo method was put forward for electronic systems (see also Ref. [127, 128]).

To extend the case of the simple one-dimensional integral discussed above to general QFTs, one complex-
ifies the field variable in accordance with complex Langevin (which will be explored in the remainder of this
review). In such a complexified configuration space, the Lefschetz thimbles approach aims to find the sta-
tionary points for which δSI[φ]/δφ = 0, as those points feature reduced phase oscillations for exp (−iSI[φ]).
Such an approach is of course the generalization of the saddle-point (or critical point) method of evalu-
ating complex integrals and the higher-dimensional version is often referred to as Picard-Lefschetz theory.
The corresponding deformed, high-dimensional integration contours of steepest descent are called Lefschetz
thimbles.

In practice, the locations of such (stable) points of steepest descent are found by evolving the field
along a fictitious time t, which is similar in spirit to the fictitious Langevin time (although unrelated to the
imaginary time τ). This propagation proceeds according to the holomorphic gradient flow equation

dφ

dt
= −

(
δS[φ]

δφ

)∗
(83)

or, more explicitly,

dφR

dt
= −Re

[
δS[φ]

δφ

]
, (84)

dφI

dt
= +Im

[
δS[φ]

δφ

]
, (85)

which, as we shall see below, is remarkably similar to the CL equations. In fact, the above expression
corresponds, up to a sign in the imaginary part, to the drift term in the Langevin equations Eq. (123),
given by dφ/dt = −δS[φ]/δφ. Ref. [129] presents a particularly lucid side-by-side discussion of CL versus
Lefschetz thimbles approaches for a simple quartic integral. There, it is shown that there are similarities in
that the location of the distributions in the complex plane obtained from CL and thimbles follow each other
closely. However, there are also important differences with regard to the weight distribution and the role of
the residual phase across the thimble (see below), suggesting that, despite the structural similarity of the
above equations, the methods behave quite differently in practice.

The crucial advantages of deforming the path integral to capture, effectively, a set of mean-field con-
figurations and the corresponding fluctuations, are that SI [φ] is locally constant and that the real part,
which determines the weight exp (−SR[φ]), is maximally localized around the saddle point. In other words:
Lefschetz thimbles are the best locations to carry out stochastic evaluations of path integrals. While the
constant-SI [φ] property is crucial, the method does not rely on finding the precise location of the critical
points. Rather, it is based on finding a useful deformation which may or may not be close to the stationary
phase contours attached to the critical points (wherever those may be), but where the variations in ImS[φ]
are small [130]. Those ideas were crucial for the application of Refs. [131, 132] where they were used to
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calculate the properties of a low-dimensional field theory in real time. Furthermore, Ref. [133] found that,
even if the holomorphic gradient flow of Eq. (84)) is used to push the deformation very close to the thim-
bles (which is naively the ideal situation), then the high barriers separating the thimbles would make the
sampling very challenging in practice.

One of the difficulties of deforming a contour in a functional integral is the calculation of the associated
Jacobian factor J(t) due to the curvature of the thimble, which shows up explicitly upon parametrizing the
complex-plane integral of Eq. (81) by a parameter t ∈ (−∞,∞), namely

Z0 =

∫ ∞
−∞

dt J(t) e−SR[φ(t)]. (86)

While the above is a computational issue that is difficult but tractable [134], a more serious challenge lies
in accounting for all the possible thimbles, which turns the above into a sum with unknown weights, i.e. in
that case

Z =
∑
k

mk

∫
Ck
dφ e−SR[φ] (87)

and

〈O〉 =
1

Z
∑
k

mk

∫
Ck
dφ e−SR[φ]O[φ], (88)

where, crucially, the phases in the numerator and denominator of Eqs. (87) and (88) do not cancel. This
issue is often referred to as a ‘global’ sign problem, as opposed to the ‘residual’ sign problem coming from
the remaining curvature (i.e, variations in the imaginary part of the Jacobian across the thimble). In that
regard, it is useful to note that (for a fixed set of input parameters), only a subset of thimbles contribute
to the partition function. The global sign problem depends on the subset and the relative weights of each
thimble, both of which are difficult to determine in practice (see e.g. Ref. [135]). However, the holomorphic
flow bypasses that complication. It is then possible to track the global and the residual sign problems on
the deformed surface by measuring the average phase.

Recently, contour deformation and Lefschetz thimbles have re-emerged as a method in quantum field
theory and its applications have extended to condensed matter physics as well. References [136, 137, 138]
were the first ones to propose that the sign problem in finite density QCD could be overcome using Lefschetz
thimbles. Refs. [139, 140] proposed ways to overcome the residual sign problem across a thimble (see below).
Reference [141] studied the structure of thimbles in fermionic theories. Ref. [142] used thimbles to avoid the
sign problem in a mean-field analysis of the QCD partition function. while Ref. [143] interpreted the Silver
Blaze problem of finite-density QCD in a one-site fermion model. Reference [144] used a generalization of
the Lefschetz thimbles method to study the finite-density Thirring model in two spacetime dimensions, and
Ref. [145] generalized that study to QED in two spacetime dimensions.

Other interesting connections have also been drawn. For instance, Ref. [146] showed that the steepest
descent trajectories (i.e. the deformed integration contours mentioned above) can be interpreted as ground-
state wave-functions of a supersymmetric Hamilton dynamics. Connections to the complex Langevin method
and its convergence shortcomings (see also below) were pointed out in Ref. [147] and Ref. [148].

On the condensed matter side, Refs. [149, 150, 151] studied the Lefschetz thimbles representation of the
Hubbard model and studied it in a hexagonal lattice away from half filling. Ref. [152] applied a variant of
the Lefschetz thimbles method (so-called “tempered” Lefschetz thimbles method, developed in Ref. [153])
to the Hubbard model away from half filling.

In light of the excellent recent review article on Lefschetz thimbles and its applications [154], we limit
ourselves to the above discussion.

2.9. Path optimization method

The path optimization method (POM) refers to a relatively novel complex plane approach, whose aim
is to shift the integration away from the real line in order to minimize the sign fluctuations along the new
integration path in the complex plane [155, 156, 157]. Although the sign problem will not be completely
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absent on the new integration contour, the hope is to ameliorate it enough such that the signal-to-noise
ratio is manageable.

Similar to the above discussed method of Lefschetz thimbles, the path integral can be expressed in terms
of a shifted path φ(t) parametrized by the real parameter t and under consideration of the Jacobian J [φ(t)]:

Z =

∫
Dφ e−S[φ] =

∫
C
Dt J [φ(t)]e−S[φ(t)] (89)

Of course, in order for the Cauchy theorem to hold, the integration path should not enclose singular points
of the Boltzmann factor. The method relies on a trial function which parameterizes the integration path in
the complex plane by some parameters, collectively denoted as α. Following Ref. [155], we may for instance
expand the path as a sum over a complete set of polynomials

φα(t) = φR
α(t) + iφI

α(t) = t+
∑
n

(
αR
n + iαI

n

)
Hn(t), (90)

although this is only one particular choice. The important features to consider (besides some technical
aspects, see, e.g., [154]) is that the chosen parameterization allows contours with a more suitable sign-
structure and that the Jacobian may be evaluated efficiently. To find the path with the mildest sign
problem, the parameters αR

n and αI
n will be optimized by minimizing some cost function. In Ref. [155] the

cost function

F [φα(t)] =
1

2

∫
dt |eiθα(t) − eiθ0 |2 |J(φα(t))e−S[φα(t)]| (91)

was applied, but other cost functions can be used. Here θα(t) is the complex phase of our parameterized
integrand J [φα(t)]e−S[φα(t)], as defined in Eq. (89), and θ0 is the complex phase of the original integrand.
The cost function is then used to tune the parameters αRn and αIn, such that F [φα(t)] is minimized. This
results in an enhanced phase factor, thus reducing or ideally eliminating the oscillations discussed in Sec. 2.1,
which are the source of the sign problem.

For the optimization, several algorithms may be used, which mostly rely on the computation of the
gradient in α-space ∇α

〈
eθα(t)

〉
. A convenient (and important for practical implementations) feature is that

it is typically enough to have a rough knowledge of the gradient such that efficient optimization is ensured.
Naturally there is significant overlap with methods in Machine Learning (ML). A simple steepest descent
method can be used, but other methods for minimizing the cost function have been explored in ML and
neural network (NN) applications [158, 159].

While this method is very new, early work using shows it is able to overcome a severe sign problem in a
one-dimensional toy model where CL fails [155], one dimensional Bose gases with chemical potential [160],
as well as in a U(1) gauge theory and complex scalar field theory [161]. Work towards applications to full
3 + 1 dimensional QCD has included 0 + 1 dimensional QCD at finite density [162] and effective models for
QCD [163, 164] and the Thirring model [165, 166].

3. The Langevin method for real and complex variables

Stochastic quantization as a method for treating Euclidean field theories has been around since Parisi
and Wu first proposed the connection between the Euclidean field theories and statistical systems coupled
to a heat bath [167]. It is now well-established as a successful tool for treating quantum many-body systems
with a real Euclidean action [168]. This section examines the method for systems without a sign problem
(referred to from here on as “real Langevin”) and its extension to systems with complex actions as a
possible circumvention of the sign problem (“complex Langevin” or CL, the focus of this review). We
present a pedagogical example to illustrate the real and complex Langevin methods using a simple toy
model, and discuss some of the challenges that arise in using the complex Langevin method along with
proposed solutions to those problems.
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Figure 7: Histogram of the number of preprints on arXiv per year since its introduction in 1993 (the search query was
“complex Langevin”). This overview neglects progress made in the 1980s; however, it highlights the recent surge in inerest in
this promising method.

3.1. Complex Langevin: origins and modern re-emergence

Shortly after the introduction of the concept of real stochastic quantization, it was realized that the
approach could be extended to the case of complex actions. Loosely speaking, using a Langevin equation
rather than an importance sampling approach eliminates the restriction to real and positive semidefinite
measures. This is due to the ability of the probability measure used in a Langevin method to be complexified
– at least formally. In 1983 such a strategy was discussed independently by Klauder [169, 170] and Parisi [171]
as an alternative to existing Monte Carlo methods and marked the first investigations of how the complex
Langevin equation can be used to address the complex phase problem.

The elegant form of the approach as well as the potential to circumvent the sign problem drew consid-
erable interest in the years after the initial proposals. Following the first successful numerical application
for the quantum Hall effect by Klauder [172], the method was employed in many studies, albeit with mixed
success. Unfortunately, the convergence of the method cannot be guaranteed a priori and even if con-
vergence is achieved, spurious solutions with biased expectation values might be found [173, 174]. This
is connected to subtle mathematical issues that arise in the case of complex weight and the structure of
the associated complex Fokker-Planck equation. As a consequence, the initial flurry of interest stalled and
progress on these matters slowed down over the years, despite early attempts to understand these short-
comings [175, 176, 177, 178]. Nevertheless, progress was made in several directions and the applicability of
CL was investigated in a set of simplified models such as the chiral Schwinger model [179, 180] as well as
toy problems for relativistic [181] and non-relativistic fermionic theories [182]. Interestingly, the method has
also spread to the realm of physical chemistry and was used in simulations of polymeric fluids [183, 184, 185]
as well as reaction simulations in the context of physical chemistry [186, 187, 188, 189, 190, 191] as a way
to include beyond mean-field corrections.

As recently as the mid 2000s to early 2010s, the CL approach re-emerged as a method of interest in
relativistic physics, particularly in the study of lattice QCD, when it was realized that some of the initially
encountered problems are treatable with an improved integration strategy. In this new era, early applications
to relativistic physics examined non-equilibrium QFT [192, 193], which can provide insights into high-energy
physics, particularly heavy ion collisions. Moreover, in 2008, Aarts and Stamatescu demonstrated that CL
could be applied to models of finite density QCD that exhibit a sign problem [194]. Shortly after that, Aarts
demonstrated that CL could be used to circumvent the sign problem in the relativistic Bose gas with finite
chemical potential [195, 196, 197]. This began a resurgence of interest in this method in the field of finite
density Lattice QCD (LQCD), in which nonperturbative calculations of strongly interacting matter with
finite baryon chemical potential are inhibited by the sign problem. This renewed interest led to work in the
next few years on optimization of the method to prevent runaways and improve stability, using stochastic
reweighting, gauge fixing, and adaptive step size algorithms [198, 199, 200], see also Fig. 7 for a history of
the “CL activity on the arXiv”.
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The successes of the method, and advances made in treating instabilities and singularities in the fermion
determinant, have generated interest in applying CL to non-relativistic systems, particularly many-fermion
systems, in which sign problems arise frequently. Work with the CL method in the context of non-relativistic
systems is just beginning, but is already showing great promise. Discussion of these recent applications to
relativistic and non-relativistic physical systems can be found in Secs. 4 and 5.

Despite the formal challenges of CL, it should be pointed out that, at least in principle, the existence of a
well-defined probability measure on a complexified field space is guaranteed under certain conditions (often
referred to as Weingarten’s theorem [201]). However, the challenge lies in constructing such a measure,
which has been investigated by Salcedo and others [202, 203, 204, 205, 206, 207, 208, 209]. While this is a
very attractive area of research, we will not pursue it further in this review.

3.2. Stochastic quantization: path integrals and the Langevin process

The main ingredient of the CL method is the concept of stochastic quantization. The idea was introduced
in the seminal 1981 paper of Parisi and Wu [167] and a few years later summarized nicely in the famous
review article by Damgaard and Hüffel [168] 2. Notably, stochastic quantization has played an important
role both theoretically as well as computationally; in particular, it has been used extensively in field theory
(see e.g. Ref. [211]) and condensed matter (see e.g. Ref. [212]), and is the precursor of the hybrid Monte
Carlo algorithm [213, 214], which has been the workhorse of LQCD for decades. In the following we present
a brief introduction to stochastic quantization in order to lay out the foundation for later considerations.

For a quantum field theory of a real field φ governed by a real action S[φ], stochastic quantization
provides an intuitive way to understand path integrals of the form

Z =

∫
Dφ e−S[φ]. (92)

As a first step, we introduce a purely fictitious time variable t, which represents the direction of the stochastic
evolution. This fictitious time evolution is then governed by a stochastic differential equation, namely the
Langevin equation:

dφ

dt
= −δS[φ]

δφ
+ η̃. (93)

The first term on the right hand side is called the drift term, also sometimes referred to as the classical flow
as it constitutes the deterministic part of the time-propagation of the fields. The second term on the left
hand encodes the random nature of the equation and is given by a white-noise with zero autocorrelation,
i.e. η̃ ∼ δ(t− t′).

For practical purposes it is convenient to rewrite this equation in a discrete form which can be done by
integrating both sides over the time interval ∆t. This leads to the discrete Langevin equation

∆φ = K[φ]∆t+ η, (94)

where η is typically chosen to be a Gaussian random variable with 〈η〉 = 0 and 〈η2〉 = 2∆t. The angle
brackets denote an average over η. This random process will produce configurations φ that follow a certain
probability distribution. The key ingredient of stochastic quantization is the realization that the equilibrium
distribution (if it exists) of the d+ 1 dimensional random process in Eq. (94) corresponds to the probability
measure in the d-dimensional path integral Eq. (92). The extra dimension is simply the fictitious time t.

It is instructive to consider the above stochastic differential equation without the noise term. In that
case, Eq. (93) reduces to an ordinary differential equation and its form is nothing but that of a gradient
descent. Starting out at a random (non-pathological) state, this implies that the solution will converge to
a stationary point of the action, which is the “mean-field” or classical solution. The simple interpretation
of the noise term is that it represents quantum fluctuations around this classical solution. In order to
reproduce the correct physics, we have to “add the correct amount of fluctuations” which is set by the

2See also Ref. [210] for a more formal introduction to stochastic quantization
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Fluctuation-Dissipation theorem. Thus, stochastic quantization can be viewed as a very explicit form of
quantization.

The random process results in a sequence of time-dependent configurations φη(t) distributed according
to a time-dependent probability measure P [φ, t]. The expectation value of a given observable O[φ] is then
given by

〈O[φη(t)]〉 =

∫
Dφ P [φ, t]O[φ]. (95)

To establish the validity of such a Langevin average, we need to investigate the temporal behavior of the
expectation value and show that the time-dependent probability distribution depends on S[φ] in the way
dictated by Eq. (92), at least at large enough t. Such a property will justify the use of temporal averages
along the Langevin evolution to estimate the true expectation values of the theory. An instructive discussion
can be found in [215], which we will follow closely.

As a first step, we take the fictitious-time derivative of the expectation value

d 〈O[φη(t)]〉
dt

=

∫
Dφ dP [φ, t]

dt
O[φ]. (96)

Note, that only the probability distribution carries a fictitious-time dependence. Alternatively, we may
perform the same fictitious-time derivative by expanding the observable to second order in its φ dependence

dO[φ] =
δO[φ]

δφ
dφ+

1

2

δ2O[φ]

δφ2
(dφ)2. (97)

According to Eq. (94) we may write

dφ = −δS[φ]

δφ
dt+ dw , (98)

where dw is the so-called Wiener increment with the property

〈dw2〉 =

∫ t+dt

t

dτ

∫ t+dt

t

dτ ′ 〈η(τ)η(τ ′)〉 = 2 dt , (99)

and vanishing mean 〈dw〉 = 0. Substituting in Eq. (97) and using the properties of dw yields

〈dO[φ]〉 =

〈
−δO[φ]

δφ

δS[φ]

δφ
+
δ2O[φ]

δφ2

〉
dt , (100)

which allows us to write

d〈O[φη(t)]〉
dt

=

〈
−δO[φ]

δφ

δS[φ]

δφ
+
δ2O[φ]

δφ2

〉
≡ 〈LrO〉 , (101)

where we defined the so-called Langevin operator

Lr =

∫
dτddx

(
δ

δφ
+K[φ]

)
δ

δφ
, (102)

with the drift K[φ] = − δS[φ]
δφ , according to Eq. (94). We may again write this as an integral over configura-

tions

d〈O[φη(t)]〉
dt

=

∫
Dφ
(
−δO[φ]

δφ

δS[φ]

δφ
+
δ2O[φ]

δφ2

)
P [φ, t] (103)

=

∫
Dφ O[φ]

(
δ

δφ

δS[φ]

δφ
+

δ2

δφ2

)
P [φ, t]. (104)
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where the second line results from partial integration. Here we made the important assumption that the
probability vanishes at the boundaries (or decays fast enough if the integration region is non-compact).
These assumptions are in fact crucial and will be discussed in more detail below.

Comparing the above equation with Eq. (96) yields the Fokker-Planck (FP) equation:

d

dt
P [φ, t] = LT

r P [φ, t] , (105)

with the formal adjoint of the above Langevin operator

LT
r ≡

∫
dτddx

δ

δφ

(
δ

δφ
−K[φ]

)
, (106)

which is also referred to as the FP operator or FP Hamiltonian. To show that the stationary solution of
this equation is indeed our desired probability distribution we perform similarity transformation

P̃ [φ, t] = eS[φ]/2P [φ, t] , (107)

to rewrite the FP equation
d

dt
P̃ [φ, t] = L̃T

r P̃ [φ, t] , (108)

with

L̃T
r = eS[φ]/2 LT

r e−S[φ]/2 =

∫
dτddx

(
− δ

δφ
+

1

2
K[φ]

)(
δ

δφ
+

1

2
K[φ]

)
. (109)

This last equation reveals that, with a real action S[φ], our modified FP Hamiltonian is a self-adjoint and
positive semidefinite operator, with a unique FP ground state ψ0 = e−S[φ]/2 and vanishing FP energy
E0 = 0. We can therefore project our probability over the complete set of eigenfunctions and non-negative
eigenvalues of L̃T

r , and see that our probability collapses to the ground state in the long time limit:

P̃ [φ, t] =

∞∑
n=0

anψne−Ent
t→∞−−−→ a0e−S[φ]/2. (110)

Upon performing the back-transformation according to Eq. (107) we obtain

lim
t→∞

P [φ, t] ∼ e−S[φ] , (111)

which shows that the Langevin equation produces field configurations distributed according to the Boltzmann
weight e−S[φ] in the limit of large fictitious time 3.

The above justifies the use of temporal averages to estimate equilibrium expectation values. In fact,
expectation values are obtained in practice by integrating over a time T :

〈O〉 ≈ 1

T

∫ tth+T

tth

dt O[φη(t)], (112)

where tth reflects the equilibration time that is needed to approach the stationary probability distribution.

3We have assumed here that the spectrum of L̃T
r is discrete, which may not be true in practice. This assumption can be

relaxed but it is important that the E0 = 0 eigenvalue be non-degenerate.
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3.3. A practical guide to real Langevin

The above procedure is a well-established method for real-valued fields φ on a real manifold M. In the
following, we connect the concept with conventional Monte Carlo approaches based on Markov chains and
highlight the similarities of these approaches in a practical way.

Generally, we are interested in expectation values of a given (Euclidean) field theory of the form of
Eq. (95):

〈O〉 =
1

Z

∫
Dφ O[φ]e−S[φ] ≡

∫
Dφ O[φ]P [φ]. (113)

Typically, the evaluation of such high-dimensional path integrals is achieved by stochastic sampling, i.e.
by producing a sequence of random states φ (interchangeably called samples or configurations). However,
rather than producing a random state from scratch at every step (which might be expensive), new states
are obtained by changing or updating an existing one. This can be written in the generic form

φn+1 = F [φn] , (114)

where the sample φ may be any representation of a physical state4. If the next state is only dependent on the
current one and not on any previous states the process is called “memoryless” and the sequence of random
samples represents a so-called “Markov chain”. This is the basis of the vast majority of most conventional
Monte Carlo methods (often dubbed Markov-Chain Monte Carlo (MCMC) methods).

The Langevin method can be understood as such an approach, as we can see by recasting Eq. (94) into
the form of Eq. (114):

φn+1 = φn −
δS[φ]

δφ

∣∣∣∣
φ=φn

∆t+
√

2∆t η . (115)

By virtue of the discussion in the previous section, we know that in the long-time limit the samples {φn}
follow the desired probability distribution P [φ] from Eq. (113). Therefore, the strategy to evaluate the
random sequence is identical to the one in regular Monte Carlo approaches: after starting out from a
randomly produced configuration, we let the sampling process equilibrate for a certain thermalization time
(typically a few multiples of the autocorrelation time – see below) before we start to collect samples. An
unbiased estimator of the expectation value with a total number of samples N is then given by

〈O〉 ≈ 1

N

N∑
i=1

O[φi] , (116)

and the statistical uncertainty (i.e., the variance of the mean) is estimated by

σL = σ

√
1 + 2τa
N

. (117)

Here, σ denotes the standard deviation of the set of values {O[φi]} and τa is the integrated autocorrelation
time, which reflects the (statistical) dependence of samples over the their Langevin-time history5. From this
expression we can also deduce that the number of samples is proportional to the elapsed Langevin time and
the same conclusion holds: a longer Langevin evolution will result in better statistics and hence a smaller
error bar.

It is important to note that the statistical uncertainty is not the only source of error, as we have introduced
a systematic bias through the discretization of the Langevin equation in Eq. (94). Results must then be

4In fact, finding suitable and efficient updates is a crucial part in devising any useful Monte Carlo method.
5For any Markov chain method, estimation of τa might be a challenging task depending on the number of accessible

samples. Techniques such as bootstrap and jackknife can be used to obtain a reliable error estimate that considers the
statistical dependence of the samples. An educational summary can be found in Ref. [216].
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extrapolated to the limit of ∆t→ 0 6. The discretization of the Langevin equation presented above, which
corresponds to Euler integration, leads to a linear dependence on the integration step ∆t. Higher-order
integrators can be designed if the noise term is appropriately accounted for, as investigated within RL in
Refs. [217, 218, 219] and later extended to the complex case in Ref. [220]. Within the studied model, these
extensions showed great success in reducing computational cost at equal systematic bias as well as to bring
finite-step dependence below the statistical uncertainty. It is noted, however, that the majority of stochastic
quantization studies still rely on the linear discretization as it is often sufficient to obtain useful results at
modest computational effort.

3.3.1. Toy problem I: a pedagogical example of real Langevin

In order to illustrate the RL method in a concrete numerical setting, we consider a simple integral as a
toy problem for a 0 + 0-dimensional field theory (i.e., the field φ depends neither on space nor time). Note
that here we are not interested in a detailed study of the specific model at hand but rather aim to investigate
the behavior of the RL method in a straightforward case. Of course it is highly inefficient to use RL for
the solution of this simple problem, however, the section serves as a basic example of an application of the
method. Furthermore, conclusions that generalize to more involved problems can be drawn by these simple
considerations.

In this case, we consider the action

S(φ) =
µ

2
φ2 +

λ

4!
φ4, (118)

with real couplings µ and λ. In the spirit of a real field theory, we will keep λ positive and thus end up with
two distinct scenarios: one in which µ > 0 (the single well anharmonic potential) and one in which µ < 0
(the double well potential).

We readily derive the discrete Langevin equation for our toy problem, according to Eq. (115):

φn+1 = φn −
(
µφn +

λ

6
φ3
n

)
∆t +

√
2∆t η, (119)

where η denotes a standard Gaussian white noise. In principle, this is everything needed to calculate
expectation values of the form Eq. (116).

In Fig. 8, a detailed analysis of two simulations at fixed λ = 0.4 and µ = ±1 is presented (left and right
columns, respectively). The second row from the top shows the histograms of the sampled field values, which
should follow the distribution e−S[φ] (exact solution shown with dashed lines) in the limit of large Langevin
time t → ∞. While in the single-well system (left column) this is the case to a good approximation, it
is apparent that the double-well scenario still suffers from a slight asymmetry. This can occur when the
random process gets “stuck” in an area of configuration space and does not easily move to another high
probability area of configuration space (i.e. the other well).

This behavior can be further elucidated by the measured field values as a function of t [row (c)]: on
the left we see white noise centered around the expected value of 0 while on the right we observe several
correlated plateaus, corresponding to either the negative or the positive well. Ultimately, this behavior
leads to a signal-to-noise issue in the calculation of the expectation value 〈φ〉, reflected by large statistical
uncertainties for the double well case [right column of row (d)]. Due to the symmetry of the problem,
however, the running average for 〈φ2〉 converges to the exact value relatively smoothly in both cases. Thus,
by investigating one observable no profound statements can be made about a different one. While the
autocorrelation of observable A may be small and its statistical errors under control, observable B could
display erratic behavior and suffer from extremely slow convergence.

6Notably, the hybrid Monte Carlo algorithm, mentioned above as a close cousin of RL, avoids this extrapolation in fictitious
time by using Metropolis accept/reject steps. This property, however, does not imply that hybrid Monte Carlo can operate at
arbitrarily large step sizes.
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Figure 8: (a) Action as a function of the real variable φ. (b) Probability distribution e−S[φ] (dashed lines) along with the
sampled histogram (bins). (c) Measured values of φ as a function of Langevin time. (d) Running average of 〈φ〉 compared to
the exact solution (orange dashed line) (e) Running average of 〈φ2〉 compared to the exact solution (orange dashed line).
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By tuning the parameters of the model, one could even study the extreme case where the two wells are
separated by a barrier that cannot be surmounted by the random walk (signaling a breakdown of ergodicity,
a topic that we will return to below). In such a situation, the expectation value 〈φ〉 would indicate that the
discrete symmetry is broken, which certainly is not a physical result for our model. This reflects the problem
of meta-stability of any Markov chain method, which is often very hard to detect a priori. Generally, one
needs to address this issue carefully in real simulations, for example by sweeping numerical parameters in a
systematic manner.

Finally, by inspecting the Langevin equation in Eq. (119) it becomes apparent that the autocorrelation
time between samples τa should be inversely proportional to the Langevin time step ∆t, i.e., statistically
independent samples will be more expensive as the integration step decreases. On the other hand, a coarser
integration step will yield a larger systematic error and thus a balance must be found where both the
computational effort as well as the precision are within reasonable bounds. This behavior is illustrated in
Fig. 9, where we show the dependence for 〈φ2〉 as well as τa on the integration stepsize ∆t. Indeed, we
observe a systematic linear behavior of 〈φ2〉, which is expected due to the order of the Langevin equation
(see discussion in the previous section). Further, also the integrated autocorrelation τa shows the expected
behavior: it increases as the integration step approaches 0.

3.4. A practical guide to complex Langevin

Thus far we have seen that the concept of stochastic quantization works well, given that the action
S[φ] is real, i.e. when there is no sign problem. But what about the much more general and interesting
case of complex-valued actions? In that case, the probability distribution in Eq. (95) becomes a complex
distribution

ρ[φ] =
e−S[φ]

Z , (120)

while the field φ is still a real quantity. With such an action, a single step in the Langevin process according
to Eq. (115) would result in an imaginary component for φ. At least from a practical perspective, as
remarked by Parisi, “nothing forbids to write a Langevin equation also for complex actions” [167]. Formal
aspects aside (we return to those below), the idea is appliedthat one may perform calculations by extending
the real stochastic process described above to a complex one. For a theory governed by a complex action
S[φ], CL extends the target manifold of the field φ(x) to the complex plane by setting

φ→ φR + iφI, (121)
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and analytically extending the domain of the action functional:

S[φ]→ S[φR + iφI]. (122)

Naturally, a necessary condition for this extension to be valid is that S[φ] must be a holomorphic function
of φ.

The two Langevin methods – real and complexified – are compared side-by-side in Tab. 1. With such an
extension, the CL method proceeds very much in the same way as the real Langevin method, but now with
a double system of coupled stochastic differential equations:

∆φR = KR∆t+ ηR(t), (123)

∆φI = KI∆t+ ηI(t), (124)

where the real and imaginary drift functions KR and KI are found by taking the real and imaginary parts
of the functional derivative of the complex action:

KR = −Re
[
δS[φ]
δφ

]
, (125)

KI = −Im
[
δS[φ]
δφ

]
. (126)

The real and imaginary noise obey the properties shown in Tab. 1.
It is important to note that, while the amplitudes of the real and imaginary noise terms are related, the

two Wiener processes are completely independent. Additionally it should be pointed out that, beyond the
complexification of each real degree of freedom, the above (coupled) Langevin processes are themselves real.
In practice, the imaginary noise is usually set to zero, which satisfies the constraints shown in Tab. 1 and it
has been found to have the best numerical properties [221].

Although a rigorous derivation of this empirical “rule” is not available, some intuition may be gained
as follows: For overly broad distributions of the imaginary noise (i.e. large NI) the CL trajectory may be
pushed into regions of the complex plane which are far away from the physical configuration space (which
necessarily needs to be somewhat local in the imaginary directions as discussed further below). If the
trajectory wanders off too far in the imaginary direction, it could take a long time to return and thus a long
time to restore the proper sampling ratios required to reproduce physical results (in that sense, the strategy
may be viewed as a variance reduction technique in a similar spirit to importance sampling). Eventually
such a behavior will interfere with the decay of the sampled histogram in the imaginary directions, with
possible implications for the formal validity of the algorithm, as already pointed out in Ref. [221]. Therefore,
in order to avoid these potential complications, the noise term is typically chosen to be real, which seems
to be the most convenient choice within the formal requirements.

We return to the justification for CL and related challenges after giving an illustrative example.

3.4.1. Toy problem II: a pedagogical example of complex Langevin

In order to see the CL machinery at work, we build on the toy problem in Sec. 3.3.1. Indeed, from a
computational standpoint, CL is largely just the Langevin process of stochastic quantization with complex
variables. Of course we could just turn our toy problem into a CL problem by using complex noise but, as
mentioned above, real noise has preferable numerical properties. Instead we turn our toy problem into a
complex field theory which results in complex drift terms.

The most natural route towards a complex field theory would of course be to consider complex-valued
couplings µ and λ in Eq. (118), which in fact has been considered before, see e.g. [215]. However, this would
amount to solving a different theory as the couplings necessarily take on different values. Alternatively, we
may rewrite the above problem with a suitable Hubbard-Stratonovich transformation which merely amounts
to an alternative representation of the same physical scenario (note, however, that the representation given
below is by no means unique). Moreover, this is very much in the spirit of real-world problems, where
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Real Langevin Complex Langevin

Fields φ(~x, τ) φR(~x, τ) + iφI(~x, τ)

Action S[φ] S[φR + iφI]

Field update ∆φ = K[φ]∆t+ η(t)
∆φR = KR[φ]∆t+ ηR(t)
∆φI = KI[φ]∆t+ ηI(t)

Drift K[φ] = − δS[φ]
δφ(~x,τ)

KR[φ] = −Re
[
δS[φ]
δφ(~x,τ)

]
KI[φ] = −Im

[
δS[φ]
δφ(~x,τ)

]
Noise 〈η〉 = 0 〈ηR〉 = 〈ηI〉 = 0

〈η(t)η(t′)〉 = 2∆δ(t− t′)
〈ηR(t)ηR(t′)〉 = 2NR∆δ(t− t′)
〈ηI(t)ηI(t′)〉 = 2NI∆δ(t− t′)
NR −NI = 1

Table 1: Properties and expressions for the Langevin method with real-valued fields versus complex-valued fields.

a HS-transform is often used to integrate out fermionic degrees of freedom. To achieve this, we insert a
suitable factor of 1 into the partition function in terms of an auxiliary variable σ:

Z =

∫ ∞
−∞

dφ e−S(φ) (127)

=

√
λ

24π

∫ ∞
−∞

dσ exp

(
− λ

24
σ2

) ∫ ∞
−∞

dφ exp

[
−
(
µ

2
φ2 +

λ

24
φ4

)]
. (128)

A shift σ → σ + iφ2 allows us to write

Z =

√
λ

24π

∫ ∞
−∞

dσ

∫ ∞
−∞

dφ exp

[
−
(
φ2

(
µ

2
+

iλσ

12

)
+

λ

24
σ2

)]
, (129)

and subsequently to integrate out the dependence on the old field φ (note that this is only possible in the
case Re[µ] > 0). Ultimately we obtain the “bosonized” version

Z =

∫ ∞
−∞

dσ exp

[
−
(
λ

24
σ2 − 1

2
log

λ

12µ+ 2iλσ

)]
≡
∫ ∞
−∞

dσ e−SB(σ) , (130)

where we defined the “bozonized action”

SB(σ) =
λ

24
σ2 − 1

2
log

λ

12µ+ 2iλσ
, (131)

which is, by construction, a complex quantity. According to the discussion in the previous section we can
still evaluate expectation values stochastically by using the complex Langevin equation

σn+1
R = σnR −∆t Re

[
λ

12
σn + i

λ

12µ+ 2iλσn

]
+ η , (132)

σn+1
I = σnI −∆t Im

[
λ

12
σn + i

λ

12µ+ 2iλσn

]
. (133)
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Figure 10: CL analysis for the action Eq. (118) with µ = 1.0 and λ = 0.4, corresponding to the single well potential. (Upper
left) Imaginary vs. real part of the complex weight in Eq. (130). Samples with Re[σ] > 0 and Re[σ] < 0 are shown in orange and
blue symbols respectively. (Lower left) Integration step dependence of the second moment 〈φ2〉 as obtained with CL (symbols).
The solid line represents a linear fit to the data in order to extrapolate to ∆t→ 0 and the dashed line shows the exact result.
(Right) Classical flow diagram with attractive fixed points (green dots) and the pole associated with the branch point of the
action (red cross). The gray dashed line represents the domain of the equilibrium probability distribution.

Specifically, we write for the second moment of the initial field φ in terms of the new field σ:

〈φ2〉 =

〈
6

6µ+ iλσ

〉
σ

, (134)

where the subscript σ denotes averaging over different realizations of σ.
From this point on, we proceed exactly as in the real case, with the exception that we now have to deal

with a complex variable σ. The qualitative dependence of the numerical results on the integration step size
∆t should still be the same. This is indeed the case, as apparent from the lower left panel of Fig. 10, where
we show CL results for the model given by Eq. (118) with parameters µ = 1.0 and λ = 0.4. We observe that
the CL correctly reproduces the exact result. Interestingly the CL values show a much milder dependence
on the integration step, which is likely a consequence of the specific representation and in any way should
not to be interpreted as a general result.

It is instructive to investigate the sampled configurations by looking at the complex weight according
to Eq. (130). This is shown in the upper left panel of Fig. 10 where it becomes clear that the Langevin
process now samples a complex quantity which is necessary to represent the correct answer. The coloring
highlights the sampled configurations of σ corresponding to regions with Re[σ] > 0 and Re[σ] < 0. These
two sets are connected through a point in configuration space which corresponds to a stationary point in
the “classical flow”, i.e. the vanishing of the drift terms in Eq. (132). (The entire flow diagram is shown
on the right panel of Fig. 10). The attractive fixed point (marked by the lower green dot) pulls the field
towards the connection point, while the noise induces fluctuations around that point, which occur mainly
in the real component, as we have chosen to use only real noise in Eq. (132) (such that the only way the
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imaginary part can change is through the complex part of the drift). Thus, the imaginary component stays
approximately constant during the Langevin evolution.

The situation might change drastically if poles are encountered inside the domain of the distribution,
which could lead to a breakdown of ergodicity, due in turn to a breakdown of holomorphicity of the action
stated above (see also the discussion below). In the model considered here, we can find a pole at the point
σ = 6µλ , which corresponds to the branch-point of the action (marked by the red cross). At first glance
this looks very dangerous as there is also an attractive stationary point (upper green dot) right next to the
pole which would suggest faulty behavior. However, the imaginary part of the drift points away from the
pole and even if a trajectory approaches this area of configuration space, fluctuations (in the real direction)
will kick the process back into a stable trajectory that decays towards the attractive fixed point below. In
equilibrium, the distribution will thus be confined to the gray dashed line far away from the pole, ensuring
correct behavior (i.e. it is approximately shifted from the real axis by a constant offset). In fact, the existence
of such an attractive fixed point is a necessary condition for the existence of an equilibrium distribution of
the Langevin process [222, 223]. Luckily, this appears to be the case for systems of physical interest.

3.5. Formal aspects and justification

The CL process defines a random walk in a complexified manifold, such that for a given configuration
φ = φR + iφI there is a well-defined probability P [φR, φI, t] at time t. For a given observable O, there will
be an expectation value

〈O〉P (t) ≡
∫
DφRDφI P [φR, φI, t]O[φR + iφI]. (135)

By virtue of the CL process, the real probability P [φR, φI, t] obeys the FP equation:

∂P

∂t
= LTP , (136)

where

LT =

∫
dτddx

{
δ

δφR

[
NR

δ

δφR
−KR

]
+

δ

δφI

[
NI

δ

δφI
−KI

]}
. (137)

It is not obvious a priori whether this process would reproduce the desired expectation values of the physical
observables, i.e., whether 〈O〉P (t) actually corresponds to the physical expectation value of the theory, at
least in the large-t limit. In fact, it is not even clear that the process would converge and if it does, whether
it converges to the correct answer. Indeed, following the steps outlined above for the case of real Langevin,
one finds that the resulting FP Hamiltonian is neither self-adjoint nor positive semidefinite, such that the
proof of convergence to the desired probability distribution is spoiled.

The fundamental question underlying the validity of the CL approach is the relation between the CL
distribution P [φR, φI, t] and the desired complex distribution ρ[φ] in Eq. (120). The latter defines the physics
of interest and is a fixed point of its own FP equation

∂ρ

∂t
= LT0 ρ , (138)

where

LT0 =

∫
dτddx

δ

δφR

[
δ

δφR
+

δS

δφR

]
, (139)

which is obtained by temporal differentiation of

〈O〉ρ(t) ≡
∫
DφR ρ[φR, t]O[φR]. (140)

Again, the absence of boundary terms at infinity when integrating by parts was assumed. More specifically,
the crucial question is whether

〈O〉P (t) = 〈O〉ρ(t) , (141)
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holds. Stated explicitly, the question arises whether the expectation value of a given observable with respect
to the complex measure ρ[φR] may be obtained by instead sampling the positive semi-definite probability
measure P [φR + iφI].

In Refs. [221, 224] it was shown how the desired relationship Eq. (141) can be proven for holomorphic
observables, as long as the action and the associated drift are holomorphic functions of φ. The proof relies
on analyzing the behavior of

F (t, τ) =

∫
DφRDφI P [φR, φI, t− τ ]O[φR + iφI, τ ], (142)

where 0 ≤ τ ≤ t. The function F (t, τ) interpolates between the two expectation values of interest:

F (t, 0) = 〈O〉P (t), F (t, t) = 〈O〉ρ(t). (143)

where we have assumed that the initial conditions are chosen as

P (φR, φI, 0) = ρ[φR, 0] δ(φI − φI,0). (144)

We find that

F (t, 0) =

∫
DφRDφI P [φR, φI, t]O[φR + iφI, 0] = 〈O〉P (t), (145)

while, using the initial conditions of Eq. (144),

F (t, t) =

∫
DφRDφI P [φR, φI, 0]O[φR + iφI, t] =

∫
DφR ρ[φR, 0]O[φR + iφI,0, t] = 〈O〉ρ(t), (146)

where we have used Eq. (138) to shift the Langevin evolution operator from O to ρ by transposition (which
involves integration by parts).

Now the crucial observation is that if F (t, τ) is independent of τ , then Eq. (141) holds, and the Langevin
method is formally shown to be valid for complex-valued variables, i.e. to converge to the correct physical
answers (assuming it converges). Naturally, this statement assumes that the expectation values in Eq. (141)
agree at t = 0, which can be ensured by choosing the initial condition of the Langevin process as in Eq. (144).
The τ derivative of F (t, τ) again involves an integration by parts:

∂

∂τ
F (t, τ) =

∫
DφRDφI

{
P [φR, φI, t− τ ]LO[φR + iφI, τ ]−

LTP [φR, φI, t− τ ]O[φR + iφI, τ ]

}
, (147)

where L is the Langevin operator and LT its adjoint, as defined in Eq. (137). If integration by parts is
carried out and – importantly – the boundary terms are zero, then ∂

∂τ F (t, τ) = 0. If the decay of

P [φR, φI, t− τ ]O[φR + iφI, τ ] , (148)

and its derivatives is not fast enough to ensure that the boundary terms will vanish, then it cannot be
guaranteed that the expectation values of the quantities of interest obtained via a Langevin process will
converge to the correct values [221, 224]. It is this property that ultimately determines the applicability of
CL to a given theory.

While the condition of fast decay of Eq. (148) was recognized in [221, 224], the precise rate was not
immediately clear. In Ref. [225], the above arguments were reviewed by considering a finite step-size in
Langevin time. It was then found that the above integration by parts is valid if the probability distribution
of the drift term falls off faster than any power at large drift magnitude. In practice, it is very difficult to
establish the behavior of Eq. (147), but it is perfectly possible to study the probability distribution of the
drift and establish whether the decay is exponential.

38



3.5.1. Practical monitoring of the boundary terms

In practice, it would be useful to have an accessible diagnostic device which tells us whether the results
of the CL evolution are trustworthy. Such a tool may be derived by re-examining the interpolating function
in Eq. (142), which must be independent of the interpolating time τ in order for the boundary terms to
vanish. It has been found [224] that the maximal violation, if there is any, of this condition occurs at τ = 0.
Thus, we focus on the more straightforwardly accessible quantity

∂

∂τ
F (t, τ)

∣∣∣∣
τ=0

= 0, (149)

which is weaker than the expression without the restriction to τ = 0, however, still a sufficient criterion to
ensure correctness (up to some technical conditions, as shown in Ref. [224]).

Evaluating Eq. (147) at τ = 0 we observe that the first term vanishes, since LTP [φR, φI, t =∞] = 0 by
virtue of the Fokker-Planck equation. Therefore, only the second term contributes and we finally arrive at
the so-called consistency conditions

〈L̃O〉 = 0, (150)

with the corresponding Langevin operator7

L̃T =

∫
dτddz

δ

δφ

[
δ

δφ
+
δS

δφ

]
. (151)

These conditions need to be fulfilled in order for the complex Langevin process to be correct. Technically,
Eq. (150) represents an infinite tower of identities, since the condition would need to hold for all observables.
However, it was argued that the check for a finite number of observables suffices in order to establish the
validity of the results [221].

In fact, for practical purposes, it was realized that a slight re-definition of the interpolating function is
more useful. Following Ref. [226] we introduce a cutoff Y in the imaginary direction, such that Eq. (142)
reads

F (Y ; t, τ) =

∫
|φI|≤Y

DφRDφI P [φR, φI, t− τ ]O[φR + iφI, τ ], (152)

and the original interpolating function F (t, τ) is recovered in the limit Y → ∞. Inserting this expression
into the condition Eq. (149) finally yields

∂

∂τ
F (Y ; t, τ)

∣∣∣∣
τ=0

≡ BO(Y, t, τ)

∣∣∣∣
τ=0

=

∫
DφR

{
KI[φR, Y ]P [φR, Y, t]O[φR + iY, 0]−

KI[φR,−Y ]P [φR,−Y, t]O[φR − iY, 0]

}
(153)

where the temporal evolution of the observables ∂
∂τO[φ, τ ] = L0O[φ, τ ] has been inserted.8 The form of this

quantity also makes immediately apparent that a correct CL simulation requires a sufficient decay of the
product KIPO in the imaginary direction.

Just like with regular observables, we must evaluate Eq. (153) in the limit t→∞, such that the relevant
boundary term is given by BO(Y ) ≡ limt→∞BO(Y, t, 0). Note, that this evaluation itself does not require
separate simulations at fixed values of the cutoff, but merely a certain post-processing of the sampled data.
In practice, however, it may be challenging to assess the value of BO(Y ) for large cutoffs due to excessive
noise. Therefore, it is convenient to investigate the boundary term as a function of Y , which typically allows

7Note that this operator agrees with LT defined in Eq. (137) for holomorphic observables because of the Cauchy-Riemann
equations.

8For the sake of simplicity, it was assumed that the integration along the real direction is benign and boundary terms are
absent. In order to accommodate potential issues, a cutoff in the real direction may also be introduced, see, e.g., [227]. An
explicit derivation may be found in the appendix of [228].
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one to identify a converged plateau region before the growing influence of the noise makes an extrapolation
Y →∞ impossible. The value of the plateau may then be interpreted as the value of the boundary terms,
which, if consistent with zero, marks the validtiy of the CL results. For non-zero values, the results suffer
from incorrect convergence. Interestingly, the magnitude of the boundary term may be used to assess the
systematic error of the CL values, as recently exploited in Refs. [229, 230].

Finally, the issue of correct convergence and boundary terms was very recently independently revisited
in Ref. [231], where the understanding of these shortcomings was put on more solid mathematical footing.

3.6. Challenges and some solutions

Although our understanding of CL has progressed considerably during the past few years, the approach
still faces some challenges that remain to be fully understood. These can be roughly divided into two kinds:
mathematical and practical, which naturally have some overlap. In this subsection we attempt to summarize
the current understanding of these issues.

3.6.1. Mathematical shortcomings

Without a doubt, the biggest challenge for CL is the lack of general mathematical proofs, the previous
section notwithstanding. More specifically, as pointed out most recently in Ref. [223], it remains unknown
whether the Langevin operators defined above as L, L0, LT , LT0 properly define unique stochastic processes,
although in practice this is not typically an issue. Crucially, it remains unknown under what conditions
the positive measure P [φR, φI , t] converges to an equilibrium measure, although (again) there is substantial
numerical evidence that such an equilibrium measure exists in many cases of interest.

3.6.2. Instabilities

One of the issues recognized early on (in fact, since the 1980s; see e.g. [173, 174]) is the appearance of
instabilities in the form of runaway trajectories along the CL evolution. These can become frequent enough
to completely spoil a calculation performed at fixed step size. Only with the availability of increased com-
putational resources was it realized that too coarse an integration step would yield problematic trajectories.
Finally, in Ref. [199], the need for adaptive step size integration of the complex Langevin equations was
identified. It was found that such an approach provides a full solution to the problem of instabilities arising
from the coarse integration step, by moderating the change between subsequently sampled configurations.
In fact, this strategy has become standard in the field and virtually all modern applications of CL in both
relativistic and non-relativistic physics implement the adaptive step (which is possible in several ways, see,
e.g., [199]).

3.6.3. Convergence to incorrect values

The above issues aside, CL has been shown to fail in certain cases (due either to failure to converge or
convergence to the wrong answer), but also appears to work in scenarios that lie outside the holomorphic-
action regime mentioned above. In cases of failure, the behavior has been traced back to insufficient decay
at infinity, or to a breakdown of ergodicity due to poles in the action (which should be expected in fermionic
systems as the fermion determinant will vanish at specific points, thus leading to meromorphic drifts).

Boundaries at infinity. As outlined above, the behavior of boundaries at infinity is a relevant question, and
a possible failure to meet this condition plagues models in both relativistic and non-relativistic physics.
In particular, for gauge theories the complexification of the link variables leads to non-compact groups,
e.g. SU(3) becomes SL(3,C). As we explain in Sec. 5, a similar effect is seen in nonrelativistic physics
when using compact HS transformations. In either case, merely assuming that the derivative of F (t, τ)
in Eq. (147) vanishes is a bad idea. For that to happen, the solutions to the FP equation must fall off
sufficiently quickly along non-compact directions in the (complexified) space of field configurations (see in
particular Refs. [232, 226] for a recent and insightful discussion of an exactly solvable case). That property
is very difficult to determine a priori, but can be checked a posteriori following the arguments of Ref. [225].
Case studies show that in many instances, while the solutions fall off faster than exponentially in the real
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directions, the decay in the imaginary directions may be insufficient [221]. The prime source of the non-
vanishing boundary terms are unphysical excursions far away from the real line, dubbed “the excursion
problem.” Below we present several practical ways to mitigate such a problematic behavior.

Poles, ergodicity and singular drift. Besides the behavior near the boundary at large imaginary direction,
another issue which could potentially spoil the formal justification of the CL method is the non-analyticity
of the action. This is intimately connected to the occurrence of zeros of the measure, due to the relation

S[φ] = e− lnP [φ], (154)

such that the action diverges when P [φ] vanishes. Such potentially problematic points appear, for instance,
for fermionic actions as zeroes of the determinant of the fermion matrix. Naively, one could argue that the
problematic point is never sampled since it has zero probability measure. However, as with the boundaries
at infinity, the success of a CL simulation crucially depends on the behavior of the probability distribution
as the poles are approached. Formally, this can be elucidated by manually cutting out a region around the
singularity, thereby extending the boundary of the integration domain. This procedure is justified as long
as the probability measure vanishes around those poles sufficiently fast; in other words, one has to address
the boundaries around the poles potentially alongside those at infinity mentioned above [222, 233, 234].

A detailed study of incorrect convergence due to poles in the drift function showed that the location of
these poles, the decay of the drift function, and the behavior of the observables in the region near the poles
all played a role in whether the method would return correct results [222, 225]. To be precise, there are
three distinct scenarios, depending on the location of the poles with respect to the support of the probability
measure:

Poles on the outside – These are unproblematic, as the influence of these singularities will be lost after
thermalization such that the equilibrium distribution is not affected. Note that this is also the case
for the toy problem discussed in Sec. 3.3.1 (visible as the red dot in Fig. 10, whereas the equilibrium
distribution lies near the gray dashed line)

Poles at the edge – This type of singularity may potentially spoil the correctness due to a singular drift
and therefore is a violation of the above derived rules for the decay of the histograms. Indeed, a careful
investigation of several toy problems has elucidated such a behavior [222].

Poles on the inside – These are potentially problematic in two ways: As in the above case, a singular drift
probem could appear, however, the additional complication is given by the formation of bottlenecks,
which arise because of the vanishing probability distribution at these points [223]. As a consequence,
the equilibrium distribution separates into disjoint patches and the Langevin process may fail to tunnel
between them, resulting in a correct but restricted sampling of the configuration space and therefore a
failure of ergodicity. If the relative weight of the avoided regions is small, the associated bias might be
indiscernible and useful values may be obtained for practical purposes. Conversely, if the contributions
of the avoided configurations may not be neglected, the CL process converges to erroneous values. Such
a behavior is closely related to the concept of meta-stability in conventional Monte Carlo approaches.

For simple toy models, some of the problems connected to the occurence of zeroes of the measure can be
inferred from the study of so-called classical flow-patterns, as also shown in the toy model studied above.
For real-world applications, on the other hand, these are impossible to generate such that other diagnostic
tools are necessary.

As mentioned above, a re-examination of the conditions for correctness in Refs. [235, 236, 225] revealed
that a failure of CL in some cases has been attributed to the excursion and singular drift problems are
actually due to the drift function falling off too slowly. This motivates the drift histogram as a diagnostic
tool and it has indeed been shown to be a useful indicator for wrongfully converged values [237]. In fact,
this type of analysis covers both types of boundary terms, the ones at infinity and around poles, in the same
manner. It should be noted, however, that the observation of the drift histogram alone may be insufficient
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to distinguish the validity of multiple observables, as recently discussed in the context of the XY-model in
Ref. [229].

Finally, it was argued in Ref. [147], using a semiclassical analysis, that when more than one saddle point
in the complex plane contributes to the ensemble averages, the CL method can lead to incorrect answers
due to the different complex phases associated with each saddle point. The interference of these complex
phases is essential in phenomena such as the Silver Blaze phenomenon and real-time dynamics.

3.6.4. Practical solutions

The preceding discussion lays out the possible issues of a CL simulation with the tentative takeaway that
certain theories seem to be intractable with this method. On the practical side, several practical strategies
have been devised to enable CL simulations in otherwise problematic models and parameter regimes. These
ideas try to either prevent uncontrolled excursions in non-compact complex direction which are ultimately
responsible for the violation of the criteria for correctness, try to circumvent the issues of a diverging drift
term, or a combination of both. In the following we provide an overview on the most successful strategies
in this regard.

Gauge cooling (GC) – By now, this is a standard technique to prevent long excursions of the CL trajectory
in the complex plane when simulating gauge theories [238, 239, 240, 241, 242, 243, 244, 245]. The
underlying idea is that at each Langevin step, one can make a gauge transformation to keep the
link variables, which live in the unbounded complexified manifold, close to the compact subgroup
without interfering with the correctness of the simulation. For full QCD simulations, for instance,
gauge transformations are performed in the extended non-compact group SL(3, C) such that the
sampled configurations are closed to the original compact SU(3) manifold, measured by the unitary
norm. Among all the strategies to mitigate the excursion problem, GC represents the best understood
approach from a mathematical perspective and is, in fact, mathematically exact [242]. Finally, it is
worthwhile to note that GC has been found to be necessary, however, sometimes not sufficient to bring
CL simulations of gauge theories under control.

Dynamic stabilization (DS) – This approach was developed to further aid with the excursion problem [246,
247, 248, 249, 250]. The essential idea is to add a term to the Langevin drift K[φ] in the schematic
form

K[φ]→ K[φ] + iαDSM, (155)

where αDS is a control parameter and M acts only in the non-SU(3) directions. The latter is chosen
such that it grows rapidly with the distance from the SU(3) manifold, thereby suppressing contri-
butions with large deviations from the target manifold. Although this modification to the Langevin
evolution cannot be derived from the action itself, it can be shown to vanish in the continuum limit.

Regulators – The idea behind a regulator, similar to the above presented strategies, is to suppress terms
far from the original configuration space. The approach is similar in nature to DS and first appeared in
a nonrelativistic application, namely Ref. [251], and was further discussed more recently in Ref. [226].

As opposed to DS, the resulting modifications on the Langevin equations are directly derived from the
action, which is modified by a term of the form

S[φ]→ S[φ] +

∫
dτddx ξφ(x, τ)2, (156)

which effectively adds a harmonic oscillator trapping potential, i.e. a restoring force that prevents the
field from running away.9 The modification, strictly speaking, amounts to solving a different theory
and therefore introduces a systematic bias in the computed expectation values. To remove this bias, it
is necessary to either show that the results are insensitive to the regulator strength ξ or, equivalently,

9In a relativistic setting, the modification of the action may be understood as a a mass-like term for the auxiliary field φ.
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extrapolate ξ → 0. Stated differently, the idea is to simulate a series of well-behaved systems with
decreasing deviation from the physical system of interest in order to extrapolate to the physically
correct point.

While the advantages of such a practical solution are clear, it is by no means a full solution and in
many cases – especially at strong coupling or low temperatures – it is not possible to make ξ small
and obtain a converging calculation. Nevertheless, it has been found that this strategy is essential for
simulations of non-relativistic fermions via CL and it is by now a standard approach in this context
(see Sec. 5.2.2 for a detailed discussion).

Deformation technique – In order to mitigate the occurrence of singular drift values, a viable option is to
deform the action by adding a fermion bilinear term to the action [252, 253, 254], ideally in such a
way that the vacuum of the system is minimally affected [252]. For a suitable choice of this term, the
effect is to suppress (near-)zero eigenvalues of the fermion matrix (in this context also often referred
to as the Dirac operator) which are ultimately responsible for exceedingly large drift values [255, 256].
In analogy to the regulator prescription discussed above, it is necessary to extrapolate the coefficient
of this additional coupling to zero to obtain results for the physical theory of interest. For gauge
theories, this strategy is typically used in combination with GC in order to achieve stable and correct
CL simulations, most recently for a full QCD simulation [254]. For non-relativistic theories, this
approach remains unexplored to the best of our knowledge.

3.6.5. Schwinger-Dyson representation

Quantum field theories can be cast in terms of differential equations rather than path integrals; this is
called the Schwinger action principle. A specific set of differential equations resulting from this principle is
the Schwinger-Dyson equations, and these involve variations with respect to the source fields. Of the many
solutions to this set of differential equations, only one at most corresponds to the Feynman path integral.
It appears that the CL method is able to converge to multiple stationary distributions, and while at most
one of those distributions corresponds to the desired distribution, it has been shown that these stationary
distributions of the complex Langevin equation satisfy the Schwinger-Dyson equations [193, 257].

The initial conditions appear to play a role in this behavior: CL converges to certain solutions of the
Schwinger-Dyson equation with one set of initial conditions and to another with a different set, and for
certain conditions CL does not converge at all [258, 259]. The role of the Schwinger-Dyson equations in
the presence of zeros of the complex density ρ was analyzed in detail in Ref. [260]. Further study of the
convergence of CL to incorrect solutions must be an integral part of the understanding and application of
this method to systems with complex actions.

4. Applications in relativistic physics: from toy models to finite density QCD

As already mentioned above, the first applications of CL were undertaken in the context of lattice gauge
theories in the 1980s. Following several successful applications in this regard [261, 262, 174, 181] the initial
wave of excitement simmered down due to observation of incorrect convergence and a poor understanding
of the causes. After a period of reduced activity, the CL method resurfaced in the 2000s in the context of
relativistic physics (see Refs. [192, 193, 194, 196, 197, 263]). Motivated by the revived interest, much work
has gone into the testing of the methodology, its capabilities, and its limitations. While CL has successfully
circumvented the sign problem in a few key areas, it still suffers from some of the problems discussed in
Sec. 3. As a result, recent emphasis has been on determining regions of applicability and adjusting the
method in order to prevent uncontrolled excursions of the Langevin evolution into the complex plane and
ensure convergence to the correct solution.

While the main focus of this review is on applications of CL to nonrelativistic quantum many-body
problems, such an overview would be incomplete without accounting for the developments that enabled
these advances. Therefore, we provide a brief summary of selected applications of CL to relativistic field
theories. For a more in-depth overview on the use of CL in relativistic physics, we refer the reader to
Refs. [263, 264, 223, 265] for various status reports.
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4.1. QCD-inspired toy models

In Lattice QCD, the main promise of CL is its potential to explore regions of the QCD phase diagram
which are currently inaccessible due to a sign problem. One of the primary goals is to reliably treat the
region of non-zero quark chemical potential (see, e.g., Refs. [266, 267, 268, 269]), which eludes efficient
treatment with conventional methods due to a severe complex phase problem. In addition, theories with
coupling to a topological charge (see Ref. [223]) or computation in Minkowski space to obtain real-time
dynamics [192, 193, 198, 270] are also of great interest.

While the CL method has not yet been able to produce detailed solutions for these problems (some
attempts notwithstanding, see below), a number of simpler models, which partly contain the phenomenology
of QCD in certain limits, have been successfully studied. The findings in these reduced models allow deep
insights into the behavior of the CL method in these limits and can help elucidate where problems may arise
with such a treatment. In the following we intend to highlight some of these advances.

4.1.1. XY model

The XY model is an extremely useful benchmark case for CL as the sign problem can be circumvented
in other ways, for example by using imaginary asymmetries or dual variables in a world-line formulation..
Results from both of these alternate approaches have been compared to calculations done with CL for
the three-dimensional XY model at non-zero chemical potential [271, 200]. The CL results turn out to
be very promising for the ordered phase at low temperatures but fail to reproduce known answers for the
disordered (high-temperature) phase. From this failure, first criteria for the correctness of CL results have
been extracted, as already discussed above. Similar conclusions on the applicability of the CL method have
been reached in a recent study for the O(3) model [272].

Moreover, the model is very sensitive to instabilities in the algorithm – just as heavy-dense QCD is, see
also below. The instabilities in the algorithm can be eliminated by the addition of adaptive stepsize to the
Langevin evolution, which was first shown to work in the three-dimensional XY model at non-zero chemical
potential. As remarked above, the adaptive step size mitigates the issue of unstable CL trajectories by
preventing overly large changes in the Markov process. Another way to improve the convergence of CL in
the XY model is by dynamic stabilization, which forces the Langevin trajectory to remain near the real axis
by means of unitary transformations [248]. These transformations modify the drift function to prevent large
excursions in the imaginary direction [223, 247].

4.1.2. Polyakov and SU(3) spin models

Polyakov models at non-zero density were among the first theories under investigation with CL, and their
exploration has led to methodological breakthroughs. Most notably, it was realized that the complexification
of the group elements led to an enlarged manifold that needs to be constrained via gauge cooling in order
to prevent unstable trajectories [238]. This strategy is key to studying more sophisticated theories.

The three-dimensional SU(3) spin model is an effective Polyakov loop model for QCD at nonzero tem-
perature and density. It suffers from a sign problem at nonzero chemical potential and typically reweighting
or the phase-quenched approximation are used to study its dynamics. Complex Langevin was used to suc-
cessfully address this model, originally in Refs. [261, 273] and more recently in Refs. [220, 274]. The latter
studies found remarkable accuracy across a phase transition. Some of these results are shown in Fig. 11
along with the average phase factor in the phase-quenched theory, which vanishes quickly with increasing
system size. The success of CL within this model, despite the smallness of the average phase, underlines its
ability to solve severe sign problems. Moreover, a comparison with the 3D XY model, for which CL fails for
such a phase transition, sheds light on the justification of the approach and sets the stage for the derivation
of further criteria of correctness.

Later, CL results for the SU(3) spin-model were also compared with the relative weights method across
a wide range of chemical potentials [275, 276]. While values for the densities agreed perfectly in all cases,
results for the Polyakov loop displayed some discrepancies at large chemical potentials. The shortcoming
that was brought in connection with the appearance of a logarithmic term (and hence a gauge cooling) in
the action, as already encountered in [277]. branch cut
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Figure 11: (Left) SU(3) spin-model in the full and the phase-quenched theory as a function of µ. The inset shows a close-up
of the small µ region. The lines are the predicted linear dependence for small µ in excellent agreement with the CL results.
(Right) Average phase factor as a function of µ for the SU(3) model, highlighting the severeness of the sign problem that the
CL is able to solve. See Ref. [220].

4.1.3. Random matrix theory (RMT)

Random matrix theory has been proven generally useful for the analysis of QCD [278]. Perhaps most
importantly from a CL perspective, just like full QCD, RMT models are “constructed” with complex fermion
determinants and both exhibit a severe sign problem for small masses. As opposed to QCD, however, analytic
solutions for RMT models are available, making them a valuable playground to assess the ability of CL to
deal with complex-valued fermion determinants.

Some work has been done for models without a finite-density transition [279], where it was found that
CL works well for large quark masses but incorrect convergence occurs for smaller values of the mass. The
failure was linked to CL paths that wind around the origin of the complex plane, therefore encountering the
ambiguity in the logarithmic part of the action, i.e., a branch cut. The latter criterion was initially believed
to be a general marker of incorrectly converged CL results and indeed had some success in explaining the
failure encountered in other models. However, a later study found that CL also fails to deliver reliable
results for cases where such a point is on the edge of the domain of the distribution function where no full
winding around the pathological point is possible [222]. In a follow-up study, CL was shown to be able to
fully capture the chiral limit of RMT which was achieved by shifting the integration variables and changing
to a polar representation [277].

In addition, an extended gauge cooling procedure was proposed and shown to deliver exact results in
the regime of light quark masses [243, 280]. Here, the general idea is to avoid small eigenvalues of the Dirac
operator which could possibly spoil the correctnes of CL [255, 256].

Moreover, models with finite-density phase transition, where many problems with CL may arise, has
been addressed. A recent work on one of these models suggests that with suitably designed reweighting
methods, CL is able to fully reproduce the known analytical solution of the model at the finite-density
phase transition [281].

4.1.4. Thirring model

The Thirring model model constitutes one of the rare cases of an exactly solvable quantum field theory.
CL studies of this model have been conducted in the 0 + 1 dimensional case where it was found that CL is
able to reproduce the exact results in the weak coupling regime [282]. At larger couplings the method is only
able to reproduce exact results at small and large values of the chemical potential but fails for intermediate
µ. Similar findings have been reported for the 2 + 1 dimensional scenario [283]. A later comparison (for
both dimensions) with the fermion-bag method (see Sec. 2.5), underscored this behavior and showed that
CL does not perform sufficiently well in this parameter regime [284, 285].

In an independent study of the 0 + 1 dimensional Thirring model, essentially the same behavior was
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lattice for two distinct types of expansions [293]. The lower data shows results for µ = 0.7, where both expansions and full
QCD results (dashed lines) agree well at large orders. For µ = 1.1 (upper data) only one type of expansion gives consistent
results while the other breaks down. (Right) Comparison of the average quark densities as obtained from HQCD and a CL
study of full QCD with staggered fermions, see Ref. [294].

observed and it was found that the CL trajectories were sampled in the vicinity of zeroes of the fermion
determinant [286]. Consequently, large values of the drift occur in such studies and the distributions of
the drift term are no longer localized, thereby violating certain criteria for correctness. A solution in terms
of reweighting and deformation was achieved. However, the scaling of these “remedies” is exponenphase
diagramtial in system size.

4.1.5. Heavy-dense QCD (HDQCD) and hopping parameter expansion

A very prominent simplification of QCD is the limit of large quark masses and large densities, called
heavy-dense QCD (HDQCD). In this limit, the kinetic term of the quarks is suppressed to the point that
they become essentially static. In this sense, the limit may also be used as a starting point for an expansion
in the hopping parameter, which approaches the dynamic limit with increasing order, see below.

Studies of HDQCD have been among the first objectives since CL was revived [194] and have led to
profound insights and methodological advances, most notably in the light of adaptive step-size control [199]
and the gauge cooling procedure [238]. These advances made it possible to map out the phase diagram in
the full T − µ plane at several values of the inverse coupling β, and excellent agreement with known results
was found in the large-β regime [287] (this includes, for instance, the Silver Blaze behavior that was observed
to sharpen with decreasing temperature). More recent studies have refined these findings [288, 289, 290,
291, 292]. However, it was also found that for β . 5.9, instabilities emerged where the histograms of the
drift term developed skirts and sometimes even shifted the mean. These shortcomings were accompanied by
an increasing unitary norm (i.e., the trajectories were far away from the SU(3) submanifold), despite the
use of gauge cooling. Close monitoring was found sufficient to get reliable ab initio insights in the entire
T − µ plane, albeit with reduced precision in different parameter regimes. With advances in the assessment
of systematic errors of CL, the failure was linked to boundary terms which significantly increase as β is
decreased [230]. In fact, such boundary terms are also present in the “correct” parameter regime, but they
are sufficiently small such that the estimated systematic error is well below the statistical accuracy.

In addition to the phase diagrams in the heavy limit, CL studies have also been performed in combination
with a hopping parameter expansion. It has been mentioned [293] that the effective theories resulting from
such an expansion exhibit a much milder sign problem, sometimes allowing a comparison with reweighting.
Low-order expansions have been used in Refs. [295, 296], where excellent agreement between Metropolis-
based algorithms and CL has been observed, and it was reported that CL is vastly superior at larger lattices.
Moreover, all-order hopping expansions have been simulated with CL [297, 293, 298] and were found to agree
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well with CL results for the full theory [294] (see below), which is considered to be a validation. Results for
the density are shown in Fig. 12. It is worthwhile to note that two different expansions – one that includes
poles in the measure and one that does not – agree, indicating the absence of the influence of poles in the
drift term in this case, providing us with an optimistic outlook for the application of CL to full QCD.

4.1.6. Low-dimensional QCD at non-zero chemical potential

Another strategy to benchmark the applicability of CL in the context of QCD is to reduce the spatial
dimensionality of the lattice, thereby considerably reducing the numerical effort. Applications include 0 + 1
dimensional QCD, where the quark density and chiral condensate have been computed using CL, with
gauge cooling used to prevent the simulation from deviating in the imaginary direction [299]. Simulations
in 1 + 1-dimensional QCD have also successfully provided us with results for the chiral condensate in
the thermodynamic limit [300]. In recent years, work on combining reweighting techniques with CL have
expanded the range of applications of the method to previously inaccessible parameter space in QCD,
allowing for greater ranges of values for the mass, temperature, and chemical potential in 1 + 1-dimensional
QCD [301, 302, 303].

4.2. 3 + 1 dimensional QCD at finite chemical potential

As mentioned already above, one of the big goals in the development of CL is the application to full
QCD on the lattice at finite chemical potential, i.e., the consideration of dynamical quarks with physical
masses. The earliest attempts to calculate the properties of full QCD at finite chemical potential is the work
of Refs. [304, 305, 306, 294] which employed a staggered-fermion formulation. As shown in Fig. 12, the CL
approach using gauge cooling agrees with the HQCD results in the valid region, i.e., for large quark masses.
For values of β & 5.9 the simulations are well under control and reliable results may be obtained. Similar to
previous model studies, however, smaller values of β exhibit large unitary norms despite gauge cooling and,
as a consequence, develop skirts in the observable distributions. Another early application to the full theory
was performed in Ref. [307], where an extensive comparison with data from studies based on reweighting
techniques at µ = 0 was performed. Both methods agree in a wide parameter range, however, the conclusion
was similar to the parallel studies of QCD, namely that lower values of β remain problematic.

Later on, the results of Ref. [308] suggested CL with gauge cooling produces trustworthy solutions for
3 + 1-dimensional QCD at zero temperature and finite chemical potential. Work on this same system using
a combination of adaptive step size and gauge cooling to prevent runaways in the complex plane for weak
coupling showed promise. In fact, the results share some important physical traits with the system. However,
known results were not accurately recovered and CL results seem to be influenced by the phase-quenched
theory. To be more specific, the observation of the transition from hadronic to nuclear matter (at µ ≈ mN/3)
is visible, as is evidence of saturation at large chemical potential [309]. The zero chemical potential limit
disagreed with known results, but to a very small degree. With larger lattices and smaller coupling, the
known results are still not accurately recovered. However, it was argued that the agreement becomes better
in these cases [309]. This has been traced back to the fact that these calculations suffer from the appearance
of zeroes in the fermion determinant in this regime [310] (see also [311, 312]). Very recent extensions of these
investigations employed modified actions with additional irrelevant terms (for the continuum theory) that
are designed to separate the physics between different mass scales [313]. This strategy seemed to improve
the location of the phase transition, however, further computations, in particular towards the continuum
limit, are required.

A parallel development started with investigations of full QCD at small 43 × 8 lattices [314] where
encouraging results have been obtained with gauge cooling alone. While problems associated with a singular
drift have not been observed at these lattice sizes, somewhat increased autocorrelation times have been
argued to be the harbinger of potential issues in that regard on larger lattices. A subsequent study on the
same lattice size but with the deformation technique yielded well-controlled results and was able to extend
the applicable parameter range [254, 315]. In fact, it was found that the deformation is a necessary tool
to circumvent the increasingly problematic influence of the singular drift and it was argued that when µ is
chosen within the region of validity of CL, the eigenvalue distribution of the Dirac operator exhibits a gap

47



along the real axis [253]. Most strikingly, a delayed onset of the influence of the chemical potential on the
quark density was observed, a signal that was argued to be in agreement with the Silver Blaze property.
Later, the results were extended to larger lattices [316], where the formation of a plateau in the quark density
has been found. This was interpreted as the onset of nuclear matter (i.e., the formation of a Fermi surface)
which was observed to persist even for lattices up to 163× 32, which to date is the largest calculation of full
QCD with CL [317, 318].

Although progress has been made in the exploration of full QCD in 3+1 dimensions, many aspects of the
role of CL in this regard remain to be investigated. One of the pressing questions is the general applicability
of CL in the confined phase, which was argued to be questionable at least due to the structure of the Dirac
operator [319, 320]. Note that this was suspected, on more practical grounds, already in Ref. [307]. In
addition, the issue of erroneous convergence and the absence of a systematic error estimate constitutes a
potential roadblock. To this end, recent advances in the analysis of boundary terms may constitute a way
to handle this situation and, in fact, have also been applied to full QCD recently [229, 230]. Finally, it
remains to be seen if the use of certain improved operators, a strategy that was recently employed in a
precise calculation of the equation of state in the quark gluon plasma [321], will help to circumvent some of
these issues. A very recent overview on the current status of full QCD simulations with CL can be found in
Ref. [265].

4.3. Other applications in relativistic field-theories

Although most of the applications and development of CL have been achieved in the context of lattice
QCD and related models, several other attempts have been made in the past. Here, we only provide a short
overview of such studies.

4.3.1. Real-time dynamics

As mentioned above, a very intriguing application of the CL method is the direct simulation of QFTs
in Minkowski spacetime, which suffers from a so-called “dynamical” sign-problem, originating from the
complex exponent in the path integral (and typically avoided by going to the imaginary-time formulation).
This potential was realized immediately after the CL prescription was originally proposed [322] which led to
several applications in the context of high-energy physics and related models [322, 323, 324, 325, 326] (with
early applications even in the field of gravity [327]), see Ref. [168] for an overview on the formalism and an
early review.

After a period of relatively low activity, stochastic quantization once again was employed to study non-
equilibrium QFT in the context of non-relativistic physics in the mid 2000s. Due to the non-perturbative
nature of these non-equilibrium systems, standard approximation techniques fail. heavy ionulations may
potentially be applied here but a Minkowski formulation suffers from a sign problem. In 2005, Berges
and Stamatescu demonstrated the viability of CL to treat non-equilibrium QFT using first-principles sim-
ulations [192, 198], albeit, only close to the equilibrium case as the long-time limit is prone to erroneous
convergence. Later progress built on these results to examine how CL could lead to breakthroughs in our
understanding of QCD plasmas in heavy ion collisions, early thermalization, and other open questions in
quantum field theory [193].

More recently, CL in combination with non-Markovian Langevin equations was used to address non-
equilibrium physics for simple non-interacting field theories [270], leading to first sucesses and a potential
route to future applications for interacting theories. Moreover, non-equilibrium aspects of scalar 0 + 1 di-
mensional field theories (or, equivalently, quantum mechanics) have been studied within the CL algorithm
and found promising results but also potentially troublesome, unphysical fixed points in the Langevin prop-
agation [328]. To deal with the latter issue, a restriction in phase space was introduced, yielding correctly
converged, yet potentially approximate, results. Finally, Ref. [328] also contains an elucidating comparison
of real-time stochastic quantization with several state-of-the-art methods for the determination of dynamical
properties.
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4.3.2. Theories with topological terms

To (potentially) address the question of the strong CP problem, theories need to contain a so-called
θ-term, generically written as Sθ = −iθQ with the topological charge Q. Such a term is purely imaginary,
thereby introducing a phase problem. Besides results obtained by reweighting [329], a few CL studies have
been conducted to examine the effect of such terms.

In Ref. [239, 330] the SU(3) Yang-Mills theory was investigated, for the first time directly with a purely
real θ - for imaginary θ the sign problem is absent and HMC may therefore be used as a benchmark in
this regime. It was found that gauge cooling is essential for an efficient implementation and that CL is well
controlled above an inverse coupling of β & 5.9, below which the conditions for correctness were observed
to be violated.

Additionally, the two-dimensional U(1) gauge theory in the presence of a θ-term was investigated [331].
It was shown that a naive implementation fails because of the crossing between different “topology sectors”
(which implies the crossing of a branch cut). Reassuringly, the failure was observed to be accompanied by
the violation of correctness markers. By removing a plaquette from the torus, i.e. “piercing” the manifold,
the CL model was observed to deliver reliable results even at large values of θ, previously inaccessible with
methods based on reweighting.

4.3.3. Matrix models for superstring theory

While the overwhelming application of CL in the context of relativistic field theories has been in the
context of QCD and related simplified models, several studies have explored quantum field theories beyond
this scope. Recent progress was specifically made in the realm of matrix models, which are conjectured to
provide a non-perturbative formulation of certain superstring theories [332] (in a similar fashion as lattice
gauge theories constitute a numerically accessible non-perturbative formulation of QCD).

Amongst others [333, 334], particular interest was paid to the type IIB matrix model, which is conjectured
to be a nonperturbative definition of type IIB superstring theory [335]. In its Euclidean version, a severe sign
problem arises upon integrating out the fermions, leaving a complex-valued Pfaffian. The complex-valued
measure was found to be responsible for the central phenomenon in these theories, namely a dynamical
compactification of spacetime from ten to four dimensions, which rules out phase-quenched approaches to
investigate these models [336]. Initial CL studies focused on the low-dimensional sector [252] and found
that a singular drift problem arises which is treatable with the deformation technique. Subsequently, the
study of this model was extended to six dimensions [337, 338], where the a breakdown from SO(6) to
SO(3) was observed, marking a major improvement over reweighting-based methods. Most recently, these
investigations have been extended to the original ten dimensions of the model in the Lorentzian [335] as well
as the Euclidean version [339, 340] of the model, where clear signals of the spontaneous symmetry breaking
have been observed.

5. Applications in non-relativistic matter: ultracold atomic gases

In contrast to relativistic theories, applications of CL to non-relativistic matter remain largely in their
infancy (notwithstanding notable early work such as Ref. [182]), perhaps not least due to an early finding
that conventional MC approaches are superior to CL in this regard because of uncontrolled runaway trajec-
tories [341]. Recent advances concerning these issues made largely in the high-energy community, however,
induced progress also for non-relativistic models. As described below, there have been several attempts
to characterize bosons as well as fermions in a variety of situations [342], but as of this writing only one
calculation has been successfully carried out for a strongly coupled fermionic system in 3D [343] (see the
discussion in Sec. 5.3). Non-relativistic systems have difficulties of their own in the form of phase transitions
and strongly coupled regimes, but they do not feature quintessential (and technically challenging) QCD
elements such as non-abelian gauge fields. Nevertheless, as we shall see, some of the challenges faced by CL
calculations are universal, as are the ideas to diagnose and tackle them. The different viewpoints taken in
relativistic and non-relativistic applications leads to an important interplay between these two subfields and
ultimately progresses the exploration of CL in both communities (see Sec. 3).
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Figure 13: (Left) Log-histogram for sampled ground-state energies at strong attractive coupling γ = −3.0. Perfect gaussian
behavior is observed (dashed line). (Center) Ground-state energy of N = 5 + 5 fermions as a function of the dimensionless
coupling γ. The CL results (blue squares) are compared to HMC results (red diamonds) as well as to the Bethe-ansatz solutions
for strong and weak coupling (solid and dashed lines, respectively) and results obtained by a DFT-RG approach [348] (dashed-
dotted line). (Right) Log-histogram for sampled ground-state energies at strong repulsive coupling γ = 3.0. Heavy tails of the
distributions (as compared to a Gaussian, dashed line) spoil the correctness criterion.

Among the vast array of non-relativistic systems that remain to be explored, some pressing candidates
remain across different areas. In the condensed matter context, for example, the leading candidate is
undoubtedly the repulsive 2D Hubbard model which faces a severe sign problem upon introducing a finite
doping; a single exploratory study was conducted for the repulsive 2D Hubbard-model at half-filling [344]).
Other highly interesting candidates include the spin-polarized electron gas, spin-isospin polarized nuclei,
and neutron and nuclear matter, to name only a few. The list of applications outlined in this section may
potentially also lead to further advances in those areas.

5.1. Non-relativistic bosons

One of the pioneering applications of CL to non-relativistic systems in the modern era (roughly within
the last decade) concerned the study of a 3+1 dimensional bosonic quantum field theory in a rotating
frame [344, 345]. The number density and condensate fraction with no rotation computed via CL was found
to agree with mean-field calculations, and when rotation was introduced, the CL results showed quantized
circulation for high condensate fraction. This is consistent with vortex formation in rotating superfluids, a
phenomenon which has been directly observed using rotating ultracold bosonic atoms. The results for the
circulation using CL do not agree with mean-field calculations for small condensate fraction, as expected
due to the breakdown of mean-field theory to describe a system with strong quantum fluctuations. Besides
this study in three spatial dimensions, an exploration in two spatial dimensions, where quantum fluctuations
exhibit an even greater impact, was conducted [346]. However, in the latter study, the parameter regime
where a quantized vorticity is expected remained out of reach, requiring further CL studies on the topic.

In addition to these single component systems, the effect of spin-orbit coupling in a two-dimensional Bose
gas with two pseudospin components interacting via a delta function potential was explored [347]. In this
case, the sign problem arises due to a first-order derivative in the imaginary time which was well controlled
with the CL approach. Mean-field predictions were found to overestimate thermodynamic equations of state,
in particular at large spin-orbit coupling.

Aside from these brief explorations, the application of CL to circumvent the sign problem in systems of
non-relativistic bosons remains scarce.

5.2. Non-relativistic fermions in one dimension

One-dimensional (1D) Fermi gases have drawn considerable interest in the past, when exact solutions for
various models have been derived by the use of the so-called Bethe ansatz (see e.g., Ref. [349] for an extensive
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review). The availability of these exact solutions, paired with a relatively modest computational cost, make
these systems excellent benchmark scenarios for any newly devised method, such as the CL approach for
non-relativistic quantum matter. Moreover, 1D systems have become accessible in experiments in recent
years, which provides yet another motivation to study these exotic and intrinsically strongly-interacting
systems.

It is worthwhile to note here that in the special case of 1D it is often possible to re-write relativistic and
non-relativistic models using dual variables in a way that avoids sign problem. One would be able to then
compute quantities by conventional Monte Carlo methods. While this is an option in 1D, those approaches
do not generalize to higher dimensions, in contrast to the CL method. In fact, the dimensionality of the
problem is mainly a question of computational effort, and all insights gained on the numerical behavior of
CL simulations carry over to higher dimensions.

In this section, we will review recent advances that have been made in applying CL to one-dimensional
fermionic systems that suffer from a sign problem. Specifically, we will discuss systems at zero temperature
featuring attractive and repulsive interactions, finite spin-polarization as well as asymmetry in the masses of
the fermions in Sec. 5.2.1. Furthermore, we recall results obtained at finite temperature in Sec. 5.2.2, where
repulsively interacting fermions are shown as well as systems at asymmetric chemical potential.

5.2.1. 1D fermions in the ground state

In the following, we will consider a system of N = N↑ +N↓ fermions at fixed linear lattices of Nx sites,
which corresponds to working in the canonical ensemble. The physics in 1D is set by the dimensionless
interaction parameter γ = g/n where g is the bare interaction and n is the linear particle density.

Balanced systems. As a first benchmark of the CL method in the ground state, the spin- and mass-balanced
Fermi gas was investigated [118, 351]. A comparison to various other methods is shown in Fig. 13, where
generally good agreement is apparent across the entire range of interactions shown. While the CL results
shown are at N = 5 + 5 particles and a finite lattice of Nx = 40, the curves for the Bethe ansatz expansions
(strong [352] and weak [353] coupling) correspond to the thermodynamic limit (TL) of taking particle number
and volume to infinity at constant density. The agreement on the repulsive sides indicates sufficiently large
box sizes. On the attractive side agreement is observed; however, larger spatial lattices are needed as is
suggested by the slight discrepancy between CL and the volume-extrapolated HMC values of Ref. [354], as
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well as results obtained by a DFT-RG approach in Ref. [348]. Another possible source of systematic bias
is the finite (adaptive) integration step of ∆t = 0.01, which was used throughout this study. Although the
∆t dependence was checked in Ref. [118], where it was found that ∆t was sufficiently small (within the
statistical uncertainty), the influence of ∆t could vary in other areas of parameter space, in particular with
varying coupling strength.

While the agreement among the methods looks excellent, a closer look reveals interesting technical
subtleties. During stochastic calculations it is instrumental to study histograms of all measured quantities
to ensure correct behavior. As can be appreciated in the outer panels of Fig. 13, two distinct behaviors
were observed in different regimes: the strongly attractive case (γ = −3.0) displays well-behaved, localized
distributions; the strongly repulsive case (γ = 3.0), on the other hand, exhibits a large amount of outliers with
respect to an assumed Gaussian. The existence of so-called “fat tails” renders the simulation problematic,
as this violates the conditions for correct behavior and thus undermines the validity of the CL approach.
Therefore, it was conjectured that the CL values are possibly faulty in this parameter regime, which was
later confirmed by a different few-body method [350] based on dual variables and the worm algorithm. A
more precise understanding of the behavior at strong repulsive interaction, and eventually its resolution,
would be very useful.

Mass-imbalanced Fermi-Fermi mixtures. Mixtures of two different fermion species, i.e., systems where the
constituents have unequal masses, are challenging to address theoretically. While many 1D models are
integrable via the Bethe ansatz, there is no such solution in the mass-imbalanced case. Nevertheless, these
systems are of great interest as there are a number of experimental realizations available for these mixtures.
The CL method can be straightforwardly extended to cover fermion systems with unequal masses by the
use of spin-dependent dispersion relations, i.e. a spin-dependent mass mσ (or, equivalently, anisotropic
hopping parameters). To quantify the mass asymmetry between two species, it is convenient to introduce
the dimensionless relative mass imbalance m̄ = (m↑ −m↓)/(m↑ +m↓), which is restricted to the interval
[0, 1]. While the use of spin-dependent dispersion relations is unproblematic from a conceptual viewpoint,
numerical difficulties might occur due to an increasing separation of scales. Thus, one may use different
parametrizations of the mass imbalance depending on the specific implementation of the algorithm.

In Refs. [118, 351] the mass-imbalanced few-body problem was studied and the average mass was fixed to
m0 = 1. In this way, a comparison is made possible to results obtained with the iHMC method (imaginary
asymmetry – introduced in Sec. 2.7). A comparison is shown in the left panel of Fig. 14 for fixed values of
the interaction strength γ. Excellent agreement of CL and iHMC is reported across a wide range of mass
imbalances. Starting at m̄ ∼ 0.6 the iHMC results start to deviate as a consequence of the instability of
the analytic continuation. The CL results, on the other hand, remain smooth and precise up to high mass
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imbalances. The agreement between these different methods provides confidence that the CL method is
suitable to study this problem.

Recently, a worldline algorithm was adapted to study mass-imbalanced few-body systems without a sign
problem [350, 355] in 1D and its results have been compared to the CL values obtained in [118] (shown in
the right panel of Fig. 14). On the attractive side, excellent agreement is observed for all mass imbalances,
which further validates the CL method in this setting. A comparison on the repulsive side, however, revealed
that the CL values deviate from the wordline results, which is connected to the occurrence of heavy tails
mentioned above and in Ref. [118]. It remains to be shown whether mass-imbalanced Fermi mixtures with
repulsive interactions in the ground state are accessible with CL. This question is also intimately related to
the applicability to the repulsive Hubbard model.

Spin- and mass-imbalanced systems. Very recently, the investigation of mass-imbalanced fermionic systems
was extended to study pairing phenomena based on two-body correlation functions [356] which, to date,
is the first determination of correlation functions with the CL approach. Concretely, the effect of unequal
masses on the behavior of a spin-polarized system of two-component fermions was addressed. While it
is known (theoretically) that such a system exhibits Cooper pairing at finite pair-momentum (referred
to as Fulde-Ferell-Larkin-Ovchinnikov or FFLO pairing), the effect of mass imbalance in this situation
remained relatively little explored. Notably, no exact solutions for these mass-imbalanced system are known
to date whereas exact solutions from the Bethe ansatz exist for the mass-balanced case, even for finite spin
imbalance [352], see Ref. [349] for a review on the Bethe ansatz.

With CL, it was shown that the appropriate correlation functions can be extracted accurately. In-
terestingly, in addition to the expected FFLO-type pairing correlations, unprecedented correlations in the
density-density correlation function in momentum space (also referred to as shot-noise correlations) have
been observed in case of finite mass imbalance, see Fig. 15. The extracted results for the mass-balanced case
(leftmost panel in Fig. 15) agree with related DMRG studies of the spin-imbalanced Hubbard model at low
filling [357]. Specifically, dominant correlations are observed at the points (±kF,↑,∓kF,↓) which indicates the
expected pairing at the opposite Fermi momenta. With increasing mass imbalance, on the other hand, an
additional correlation maximum emerges, suggesting a previously unknown scattering of fermions far below
(heavy majority) or far above (heavy minority) the Fermi point of the heavier spin species. It is worthwhile
to note that the underlying mechanism is still associated with pairing of fermions with a pair-momentum also
assumed in case of conventional FFLO correlations, i.e. q = |kF,↑ − kF,↓|. However, the relative momentum
of the bound fermions is shifted.

The two-body quantities obtained from CL provide an exceptionally clean signal of the pairing instability.
Moreover, the shot noise is of direct experimental interest, as it may be extracted with readily available
time-of-flight measurements.

5.2.2. 1D fermions at finite temperature

One of the first attempts to use CL for non-relativistic fermions was made in Refs. [251, 359], where
the thermodynamics of a repulsive10 1D Fermi gas was calculated using that method as well as third-order
lattice perturbation theory (see Fig. 16). The density and pressure were computed for a range of interaction
strengths and temperatures. The calculations were also compared with prior hybrid Monte Carlo results for
attractive interactions, where the sign problem is absent and the convergence of the perturbative expansion
can be assessed. On the repulsive side, CL was found to agree with the third-order perturbative expansion
at weak coupling and away from the virial region (where the fugacity is small), beyond which perturbation
theory was expected to break down. In the virial regime, a related study employed particle projection in
combination with CL to obtain high-order virial coefficients in 1D [360]. This approach, while so far only
applied in 1D, is applicable in any spatial dimension and could therefore be beneficial in extending the range
of accessible temperatures of the virial expansion.

10In fermionic systems with a repulsive coupling, the sign problem is present even for spin-balanced systems, as the Hubbard-
Stratonovich transformation necessarily requires the determinants (and hence the probability measure) to be complex quantities.
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At the same time, the aforementioned work [251] explored for the first time the use of a regulator to avoid
uncontrolled excursions of the auxiliary field into the complex plane. In those calculations, the excursions
into the complex plane were highly problematic because the dependence of the action and the drift on the
auxiliary field σ involved hyperbolic functions. The HS transformation used in that work depends on sinσ,
and the complexification σ → σR + iσI results in

sinσ = sin(σR) cosh(σI) + i cos(σR) sinh(σI). (157)

As a consequence, a growing magnitude of σI amounted to increasing the fermion-fermion coupling at an
exponential rate. In such a situation, the calculation would either stall or result in a converged but incorrect
answer. This exponential growth is similar to the problem found in gauge theories, as the complexified
link variables representing the gauge field become unbounded in the same fashion in those theories. For
lattice calculations of gauge theories, Refs. [247, 248] tackled the problem of large excursions by dynamic
stabilization (see Sec. 3.6). Following a similar idea, Ref. [251] added a regulating term to the CL dynamics
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controlled by a parameter ξ, such that the new CL equations became

∆σR = −Re

[
δS[σ]

δσ

]
∆t− 2ξσR∆t+ η

√
∆t, (158)

∆σI = −Im

[
δS[σ]

δσ

]
∆t− 2ξσI∆t. (159)

As remarked above, the new term in the action can be understood as a harmonic oscillator trapping potential,
i.e. a restoring force that prevents the field from wandering too far in the imaginary direction. That
modification introduces a systematic effect that needs to be studied for each quantity of interest as a
function of ξ as ξ → 0. Fig. 17 shows the running average of the density as a function of the Langevin time
t for several values of ξ in the neighborhood of 0. As is evident in that figure, there is a sizable window of
small values of ξ where CL converges.

Spin-polarized systems. Encouraged by the success of CL in calculating 1D systems with repulsive interac-
tions, the follow-up study of Refs. [361, 359] extended the results of Ref. [251] to the spin-polarized case by
introducing a non-vanishing asymmetry βh = β(µ↑−µ↓)/2. Such an asymmetry leads to a sign problem for
the case of attractive interactions and to a phase problem for repulsive interactions. As mentioned above,
such a sign or phase problem can be avoided in 1D using specific methods which, unfortunately, do not
generalize to higher dimensions.

In the study of Ref. [361], the density and magnetization equations of state were calculated with CL and
compared with perturbation theory, imaginary polarization approaches (iHMC), and the virial expansion.
A sample of those results is reproduced in Fig. 18 where the remarkable agreement among all of these
approaches is apparent. However, at the largest chemical potential asymmetry (i.e. βh = 2.0 in the figure),
the results obtained with imaginary asymmetry start to deviate from the ones obtained by other means,
including CL. This trend is not surprising, as the iHMC method is expected to be less robust in this limit
(see also the discussion above). Reassuringly, as in the mass-imbalanced case discussed above, the CL values
continue to agree with benchmark data in this regime, confirming the robustness of CL for spin-polarized
systems. Interestingly, a study based on Lefschetz thimbles (see Sec. 2.8) finds a better agreement with
iHMC in the virial regime for this value of the imbalance [362]. At larger chemical potential, on the other
hand, excellent agreement between thimbles and CL was reported in the same study.

5.3. Non-relativistic fermions in three dimensions: the polarized unitary Fermi gas

One of the most studied many-body systems in recent years is the so-called unitary Fermi gas (UFG)
which is associated with a diverging s-wave scattering length. Due to this dominant length scale, the micro-
scopic information about the interaction between the spin-up and spin-down particles becomes effectively

55



.

.

.

/

CL
DHMC
BDMC
experiment (MIT)
3rd order virial exp.

.

.

.

/ /

= .
= .
= .
= .
= .

Figure 19: (Left) Density in units of the non-interacting density as a function of the dimensionless parameter βµ for the
balanced Fermi gas. Additionally, comparison to theoretical values (BDMC [371], DHMC [364]) and experimental values
from the MIT group [371] are shown. (Center) Density in units of the non-interacting density as a function of βµ for the
polarized Fermi gas, compared to the third order virial expansion at high temperatures. (Right) Magnetization in units of the
non-interacting density as a function of βµ compared to the 3rd order virial expansion at high temperatures.

irrelevant, and all observed quantities may be written as universal functions of the fermion density and
temperature (as these are the only scales left in the system). Its intricate behavior is linked to various
many-body phenomena, and moreover it is realized to an excellent precision in numerous cold atoms ex-
periments, having led to a plethora of precise measurements of its unique behavior (see, e.g., [363] for a
comprehensive review).

For SU(2) symmetric fermions, i.e. for equal numbers of spin-up and spin-down particles, it is possible
– albeit challenging – to study the UFG with conventional Monte Carlo approaches. Past stochastic studies
of the UFG have been conducted using methods such as hybrid Monte Carlo (HMC) [364, 365, 366] and
auxiliary field methods (AFQMC) on the lattice [367, 368, 369] as well as various flavors of diagrammatic
Monte Carlo methods [370, 371] in the continuum. Building on these (and many more) theoretical and
experimental advances, it was found that the UFG undergoes a phase transition from a strongly correlated
normal fluid to a BCS superfluid at the unusually high transition temperature T/TF ≈ 0.17. Moreover, the
Bertsch parameter, which relates the non-interacting energy to the ground-state energy of the UFG, was
determined accurately to be ξ = 0.37(2) in excellent agreement with high-precision experiments [372, 373].

For a broken SU(2) symmetry, in which the particle numbers of the up and down components differ,
experiments have shed light on the phase diagram in the interesting regime of intermediate polarizations up
to p = (N↑ − N↓)/(N↑ + N↓) ≈ 0.4, above which a first-order phase transition (at, and very close to, zero
temperature) from the superfluid to the normal state takes place [374, 375, 376, 377, 378]. On the theory
side, progress was made in the highly-imbalanced limit of polarons through a variational ansatz for the N+1
wavefunction. However, for the full many-body problem with a finite spin-imbalance no sufficiently good
ansatz is known. Diffusion MC calculations in the ground state, however, show good agreement with the
experimental findings despite the fixed-node approximation [379]. This simplification, which enables such
calculations, unfortunately limits the predictive power in terms of possibly exotic pairing states (such as the
FFLO mechanism) and was therefore mainly limited to the normal phase.

Nevertheless, several studies based on mean-field theory (see, e.g., [380, 381] for a broad overview on such
advances) and (semi-)analytic perturbative [382] as well as non-perturbative studies based on the functional
renormalization group [383, 384, 385, 386] and the Luttinger-Ward (LW) formalism [387] have led to insights
into the phase diagram spanned by the temperature and polarization. Whereas these studies do not suffer
from a sign problem, their application requires the construction of truncation schemes (e.g., in terms of a set
of correlation functions that is taken into account). Therefore, complementary studies based on stochastic
approaches allow us to enhance our understanding of the spin-imbalanced UFG.

As stated above, a finite spin polarization introduces a sign problem in stochastic approaches which is
especially severe at low temperatures, where the interesting physics takes place. To circumvent this sign
problem, the CL method was applied to the spin-polarized unitary Fermi gas for the first time in Ref. [343],
finding excellent agreement with available benchmark results in the balanced limit. In the left panel of
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Fig. 19, the density equation of state is shown for a balanced gas in comparison to previously obtained results
from DHMC [364] and bold diagrammatic Monte Carlo (BDMC) [371] studies, as well as experimental values
from the MIT group [371]. Across a wide range of βµ values, excellent agreement was reported down to low
temperatures. In the vicinity of the phase transition to superfluidity, however, the CL results, along with all
other theoretical values, start to deviate from the experimental values, which is attributed to finite lattice
effects and can, in principle, be mitigated by extending the box sizes beyond Nx = 11.

In the central and right panels of Fig. 19 first predictions for the density and magnetic equations of
state are shown, respectively. It is important to note here that these systems require essentially the same
computational effort as in the spin-balanced case, whereas a reweighting approach would suffer from an
exponential increase in computational effort. As can be appreciated from the figure, excellent agreement
with the virial expansion (see e.g. [388]) is achieved at high temperatures, which gives confidence on the
reliability of the CL results in that regime. Moving towards lower temperatures, the virial expansion is
expected to break down, whereas the CL results continue to evolve smoothly across the entire parameter
range studied. With respect to the latter regime, a computation of the pressure equation of state of the
polarized UFG (beyond the mean-field approximation) based on the LW formalism [387] is found to agree
well with the CL results up to small positive values of βµ. Above this regime, the LW study appears to
overestimate the density already in the spin-balanced case, as opposed to the CL values.

This precise treatment of the spin-polarized UFG at finite temperature may considered one of the biggest
successes of the CL method in the context of non-relativistic physics so far and sets the stage for the search
of possibly inhomogeneous superfluid sectors in the phase diagram both at finite and zero temperatures.
Such phenomena, most notably FFLO phases with a spatially inhomogeneous order parameter, are not
only of great current experimental interest but also reminiscent of the dynamics underlying the QCD phase
diagram at finite baryon chemical potential and low temperature, where such inhomogeneous phases may
also exist [389, 390]. This highlights a phenomenological similarity between high-energy physics and cold-
dilute quantum matter with the perspective that success in one of these fields likely will trigger progress in
the other.

6. Summary and Outlook

In this report we have discussed the origin and methods to address the sign problem as it appears across
a wide range of systems in relativistic and nonrelativistic quantum many-body physics. We have proposed
a broad classification of the various methods into new variables, statistical, and complex plane approaches.
After a brief overview of each of those categories, we focused on the complex form of stochastic quantization,
namely CL.

Complex Langevin first appeared in the 1980s as a natural generalization of stochastic quantization
for cases with a complex action. Operationally, stochastic quantization does not require a probability to
be defined (there is no Metropolis accept/reject step), which made field complexification (itself needed
in the presence of a sign or complex phase problem) appear more like a feature than a bug. From the
mathematical standpoint, however, the challenges seemed daunting. It took decades for the community to
begin to understand the properties and behavior of CL, to clarify the origin of its problems and limitations,
and to propose solutions. Some of that progress was enabled by advances in hardware, as modern personal
computers are powerful enough to run small but useful quantum field theory calculations with little wait;
that was certainly not the case in the 1980s, nor in the 1990s when initial explorations of this method were
underway.

As computer power continues to grow, and given the overall progress made during the last decade, there
is good reason for optimism. Furthermore, there are now several groups and international collaborations
around the world applying CL methods to many systems, which generate a wider range of situations than
ever before from which insight can be gained. The most remarkable step forward, in the latest chapter
in the history of CL, is the derivation of conditions for correctness and how they relate to behavior at the
boundaries of the integration region (at infinity and at zeros of the complex weight). This new understanding
has spawned new practical solutions such as gauge cooling, dynamic stabilization, and modified actions
(regulators), which have enabled more applications than previously thought possible. Continued studies of
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CL will help illuminate when the method is reliable and when it is not. A more detailed understanding of
the structure of the problems in CL might help develop new methods to ameliorate or solve those problems.
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[198] Jürgen Berges, Dénes Sexty, Real-time gauge theory simulations from stochastic quantization with optimized updating,

Nucl. Phys. B 799 (2008) 306 .
[199] G. Aarts, F. A. James, E. Seiler, I.-O. Stamatescu, Adaptive stepsize and instabilities in complex Langevin dynamics,

Phys. Lett. B 687 (2010) 154 .
[200] G. Aarts, F. A. James, On the convergence of complex Langevin dynamics: the three-dimensional XY model at finite

chemical potential, JHEP 8 (2010) 20, 1005.3468.
[201] D. Weingarten, Complex Probabilities on RN as Real Probabilities on CN and an Application to Path Integrals, Phys.

Rev. Lett. 89 (2002) 240201.
[202] L. L. Salcedo, Representation of complex probabilities, J. Math. Phys. 38 (1997) 1710, hep-lat/9607044.
[203] L. L. Salcedo, Existence of positive representations for complex weights, J. Phys. A 40 (2007) 9399, 0706.4359.
[204] J. Wosiek, Beyond complex Langevin equations I: two simple examples (2015), 1511.09083.
[205] J. Wosiek, Beyond complex Langevin equations: from simple examples to positive representation of Feynman path

integrals directly in the Minkowski time, JHEP 04 (2016) 146, 1511.09114.
[206] L. L. Salcedo, Gibbs sampling of complex-valued distributions, Phys. Rev. D 94 (2016) 074503.
[207] E. Seiler, J. Wosiek, Positive Representations of a Class of Complex Measures, J. Phys. A 50 (2017) 495403, 1702.06012.
[208] L. L. Salcedo, Positive representations of complex distributions on groups, J. Phys. A 51 (2018) 505401, 1805.01698.
[209] J. Wosiek, B. Ruba, Beyond Complex Langevin Equations: a Progress Report, in: 36th International Symposium on

Lattice Field Theory (Lattice 2018) East Lansing, MI, United States, July 22-28, 2018 (2018), 1810.11519.
[210] G. Jona-Lasinio, P. K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys. 101 (1985) 409.
[211] G. G. Batrouni, G. R. Katz, A. S. Kronfeld, G. P. Lepage, B. Svetitsky, K. G. Wilson, Langevin simulations of lattice

field theories, Phys. Rev. D 32 (1985) 2736.
[212] G. G. Batrouni, R. T. Scalettar, Langevin simulations of a long-range electron-phonon model, Phys. Rev. B 99 (2019)

035114.
[213] S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Hybrid Monte Carlo, Phys. Lett. B195 (1987) 216.
[214] S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken, R. L. Sugar, Hybrid-molecular-dynamics algorithms for the numerical

simulation of quantum chromodynamics, Phys. Rev. D 35 (1987) 2531.
[215] K. Okano, L. Schulke, B. Zheng, Complex Langevin simulation, Prog. Theor. Phys. Suppl. 111 (1993) 313.

63

nucl-th/0009021
https://doi.org/10.1063/1.2936834
https://onlinelibrary.wiley.com/doi/pdf/10.1002/polb.21334
https://doi.org/10.1063/1.4860978
https://doi.org/10.1063/1.4900574
0807.1597
0810.2089
1005.3468
hep-lat/9607044
0706.4359
1511.09083
1511.09114
1702.06012
1805.01698
1810.11519


[216] V. Ambegaokar, M. Troyer, Estimating errors reliably in Monte Carlo simulations of the Ehrenfest model, Am. J. Phys.
78 (2010) 150, 0906.0943.

[217] I. Drummond, S. Duane, R. Horgan, The stochastic method for numerical simulations:: Higher order corrections, Nucl.
Phys. B 220 (1983) 119 .

[218] A. M. Horowitz, The second order Langevin equation and numerical simulations, Nucl. Phys. B 280 (1987) 510.
[219] S. Catterall, I. Drummond, R. Horgan, Langevin algorithms for spin models, Phys. Lett. B 254 (1991) 177.
[220] G. Aarts, F. A. James, Complex Langevin dynamics in the SU(3) spin model at nonzero chemical potential revisited,

JHEP 2012 (2012) 118.
[221] G. Aarts, E. Seiler, I.-O. Stamatescu, Complex Langevin method: When can it be trusted?, Phys. Rev. D 81 (2010)

054508.
[222] G. Aarts, E. Seiler, D. Sexty, I.-O. Stamatescu, Complex Langevin dynamics and zeroes of the fermion determinant,

JHEP 2017 (2017) 44.
[223] E. Seiler, Status of Complex Langevin, EPJ Web Conf. 175 (2018) 01019, 1708.08254.
[224] G. Aarts, F. A. James, E. Seiler, I.-O. Stamatescu, Complex Langevin: Etiology and Diagnostics of its Main Problem,

Eur. Phys. J. C 71 (2011) 1756, 1101.3270.
[225] K. Nagata, J. Nishimura, S. Shimasaki, Argument for justification of the complex Langevin method and the condition

for correct convergence, Phys. Rev. D 94 (2016) 114515.
[226] M. Scherzer, E. Seiler, D. Sexty, I.-O. Stamatescu, Complex Langevin and boundary terms, Phys. Rev. D 99 (2019)

014512.
[227] G. Aarts, P. Giudice, E. Seiler, Localised distributions and criteria for correctness in complex Langevin dynamics, Annals

of Physics 337 (2013) 238 .
[228] M. Scherzer, E. Seiler, D. Sexty, I.-O. Stamatescu, Complex Langevin: Boundary terms and application to QCD (2018),

1810.09713.
[229] M. Scherzer, D. Sexty, I. O. Stamatescu, Deconfinement transition line with the Complex Langevin equation up to

µ/T ∼ 5 (2020), 2004.05372.
[230] M. Scherzer, E. Seiler, D. Sexty, I.-O. Stamatescu, Controlling complex Langevin simulations of lattice models by boundary

term analysis, Phys. Rev. D 101 (2020) 014501.
[231] Z. Cai, X. Dong, Y. Kuang, On the validity of complex Langevin method for path integral computations (2020), 2007.

10198.
[232] L. L. Salcedo, Does the complex Langevin method give unbiased results?, Phys. Rev. D 94 (2016) 114505.
[233] G. Aarts, E. Seiler, D. Sexty, I. O. Stamatescu, On complex Langevin dynamics and zeroes of the measure II: Fermionic

determinant (2016), 1611.02931.
[234] G. Aarts, E. Seiler, D. Sexty, I.-O. Stamatescu, On complex Langevin dynamics and zeroes of the measure I: Formal

proof and simple models (2016), 1611.02930.
[235] S. Shimasaki, K. Nagata, J. Nishimura, On the condition for correct convergence in the complex Langevin method (2016),

1611.10170.
[236] J. Nishimura, S. Shimasaki, New insights into the problem with a singular drift term in the complex Langevin method,

Phys. Rev. D 92 (2015) 011501.
[237] K. Nagata, J. Nishimura, S. Shimasaki, Testing the criterion for correct convergence in the complex Langevin method,

Journal of High Energy Physics 2018 (2018) 4.
[238] E. Seiler, D. Sexty, I.-O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, Phys. Lett. B 723

(2013) 213, 1211.3709.
[239] L. Bongiovanni, G. Aarts, E. Seiler, D. Sexty, I.-O. Stamatescu, Adaptive gauge cooling for complex Langevin dynamics,

PoS LATTICE2013 (2014) 449, 1311.1056.
[240] G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, I.-O. Stamatescu, Controlling complex Langevin dynamics at finite density,

The European Physical Journal A 49 (2013) 89.
[241] H. Makino, H. Suzuki, D. Takeda, Complex Langevin method applied to the 2D SU(2) Yang-Mills theory, Phys. Rev. D

92 (2015) 085020.
[242] K. Nagata, J. Nishimura, S. Shimasaki, Justification of the complex Langevin method with the gauge cooling procedure,

PTEP 2016 (2016) 013B01, 1508.02377.
[243] K. Nagata, J. Nishimura, S. Shimasaki, Gauge cooling for the singular-drift problem in the complex Langevin method -

a test in Random Matrix Theory for finite density QCD, JHEP 07 (2016) 073, 1604.07717.
[244] C. Zhenning, Y. Di, X. Dong, How does Gauge Cooling Stabilize Complex Langevin?, Communications in Computational

Physics 27 (2020) 1344.
[245] X. Dong, Z. Cai, Y. Di, Alternating Descent Method for Gauge Cooling of Complex Langevin Simulations (2020),

2008.06654.
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[357] A. Lüscher, R. M. Noack, A. M. Läuchli, Fulde-Ferrell-Larkin-Ovchinnikov state in the one-dimensional attractive

Hubbard model and its fingerprint in spatial noise correlations, Phys. Rev. A 78 (2008) 013637.
[358] M. D. Hoffman, P. D. Javernick, A. C. Loheac, W. J. Porter, E. R. Anderson, J. E. Drut, Universality in one-dimensional

fermions at finite temperature: Density, pressure, compressibility, and contact, Phys. Rev. A 91 (2015) 033618.
[359] A. C. Loheac, J. Braun, J. E. Drut, Equation of state of non-relativistic matter from automated perturbation theory and

complex Langevin, EPJ Web of Conferences 175 (2018) 03007.
[360] C. R. Shill, J. E. Drut, Particle Projection Using a Complex Langevin Method, EPJ Web of Conferences 175 (2018)

67

1411.0949
2004.13982
1612.00598
1906.01841
2002.07410
2005.12567
1508.00415
1812.02364


03003.
[361] A. C. Loheac, J. Braun, J. E. Drut, Polarized fermions in one dimension: Density and polarization from complex

Langevin calculations, perturbation theory, and the virial expansion, Phys. Rev. D 98 (2018) 054507.
[362] A. Alexandru, P. F. Bedaque, N. C. Warrington, Spin polarized nonrelativistic fermions in 1 + 1 dimensions, Phys. Rev.

D 98 (2018) 054514.
[363] W. Zwerger (Ed.), The BCS-BEC Crossover and the Unitary Fermi Gas (Springer-Verlag, Berlin Heidelberg).
[364] J. E. Drut, T. A. Lähde, G. Wlaz lowski, P. Magierski, Equation of state of the unitary Fermi gas: An update on lattice

calculations, Phys. Rev. A 85 (2012) 051601.
[365] G. Wlaz lowski, P. Magierski, J. E. Drut, A. Bulgac, K. J. Roche, Cooper Pairing Above the Critical Temperature in a

Unitary Fermi Gas, Phys. Rev. Lett. 110 (2013) 090401.
[366] O. Goulko, M. Wingate, Numerical study of the unitary Fermi gas across the superfluid transition, Phys. Rev. A 93

(2016) 053604, 1507.08230.
[367] S. Jensen, C. N. Gilbreth, Y. Alhassid, The pseudogap regime in the unitary Fermi gas, Eur. Phys. J. ST 227 (2019)

2241, 1807.03913.
[368] J. Carlson, S. Gandolfi, K. E. Schmidt, S. Zhang, Auxiliary-field quantum Monte Carlo method for strongly paired

fermions, Phys. Rev. A 84 (2011) 061602.
[369] D. Lee, Ground-state energy of spin- 1

2
fermions in the unitary limit, Phys. Rev. B 73 (2006) 115112.

[370] R. Rossi, T. Ohgoe, K. Van Houcke, F. Werner, Resummation of Diagrammatic Series with Zero Convergence Radius
for Strongly Correlated Fermions, Phys. Rev. Lett. 121 (2018) 130405.

[371] K. Van Houcke, F. Werner, E. Kozik, N. Prokof’ev, B. Svistunov, M. J. H. Ku, A. T. Sommer, L. W. Cheuk, A. Schirotzek,
M. W. Zwierlein, Feynman diagrams versus Fermi-gas Feynman emulator, Nature Physics 8 (2012) 366.

[372] R. He, N. Li, B.-N. Lu, D. Lee, Superfluid condensate fraction and pairing wave function of the unitary Fermi gas, Phys.
Rev. A 101 (2020) 063615.

[373] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, M. W. Zwierlein, Revealing the Superfluid Lambda Transition in the Universal
Thermodynamics of a Unitary Fermi Gas, Science 335 (2012) 563.

[374] Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, W. Ketterle, Observation of Phase Separation in a Strongly
Interacting Imbalanced Fermi Gas, Phys. Rev. Lett. 97 (2006) 030401.

[375] Y.-i. Shin, A. Schirotzek, C. H. Schunck, W. Ketterle, Realization of a Strongly Interacting Bose-Fermi Mixture from a
Two-Component Fermi Gas, Phys. Rev. Lett. 101 (2008) 070404.

[376] Y.-i. Shin, C. H. Schunck, A. Schirotzek, W. Ketterle, Phase diagram of a two-component Fermi gas with resonant
interactions, Nature 451 (2008) 689.

[377] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, C. Salomon, Exploring the thermodynamics of a universal Fermi gas,
Nature 463 (2010) 1057.

[378] N. Navon, S. Nascimbène, F. Chevy, C. Salomon, The Equation of State of a Low-Temperature Fermi Gas with Tunable
Interactions, Science 328 (2010) 729.

[379] C. Lobo, A. Recati, S. Giorgini, S. Stringari, Normal State of a Polarized Fermi Gas at Unitarity, Phys. Rev. Lett. 97
(2006) 200403.

[380] F. Chevy, C. Mora, Ultra-cold polarized Fermi gases, Rep. Prog. Phys. 73 (2010) 112401.
[381] L. Radzihovsky, D. E. Sheehy, Imbalanced Feshbach-resonant Fermi gases, Rep. Prog. Phys. 73 (2010) 076501.
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