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Hard-Wall and Non-Uniform Lattice Monte Carlo Approaches to

One-Dimensional Fermi Gases in a Harmonic Trap
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1Department of Physics and Astronomy,

University of North Carolina, Chapel Hill, NC, 27599, USA

(Dated: May 16, 2018)

Abstract

We present in detail two variants of the lattice Monte Carlo method aimed at tackling systems in

external trapping potentials: a uniform-lattice approach with hard-wall boundary conditions, and

a non-uniform Gauss-Hermite lattice approach. Using those two methods, we compute the ground-

state energy and spatial density profile for systems of N = 4− 8 harmonically trapped fermions in

one dimension. From the favorable comparison of both energies and density profiles (particularly

in regions of low density), we conclude that the trapping potential is properly resolved by the

hard-wall basis. Our work paves the way to higher dimensions and finite temperature analyses,

as calculations with the hard-wall basis can be accelerated via fast Fourier transforms; the cost of

unaccelerated methods is otherwise prohibitive due to the unfavorable scaling with system size.
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I. INTRODUCTION

The quantum Monte Carlo method has been around for nearly as long as modern com-

puters (see e.g. Ref. [1–3] for reviews). By far, most calculations that use that method, from

condensed-matter and ultracold-atom systems to quantum chromodynamics, are performed

in uniform lattices with periodic boundary conditions. This approach makes sense in most

of those cases, as the aim is to describe nearly uniform systems, which are such that periodic

boundary conditions minimize finite-size effects. However, this is not always a good approx-

imation in the case of ultracold atoms, where the optical trapping potential plays a central

role in experiments and dictates the many-body properties of the system [4–6]. It is therefore

essential to include a harmonic trap in realistic calculations. As a result of this inclusion,

translation invariance is broken and plane waves on a uniform periodic lattice are no longer

the natural basis of the system. Indeed, in the presence of a trap, momentum ceases to be a

good quantum number. Moreover, the boundary conditions of the true harmonic oscillator

are not at all periodic; in fact, implementing periodicity would result in undesirable copies

of the harmonic potential across the boundaries (see Figure 1).
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FIG. 1. Schematic view of a harmonic potential in a one-dimensional box with periodic boundary

conditions (dashed lines) as contrasted with the same potential but with hard-wall boundaries

(region 0 < x/L < 1; solid line). The hard-wall potential itself is shown with dashed-dotted lines.

To resolve the above issues, we attempted in Ref. [7] to use the natural coordinate-space

lattice of the harmonic oscillator, namely the Gauss-Hermite points and weights of gaussian

quadrature methods. The dual basis in this case is of course that of harmonic-oscillator
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wavefunctions. Although such a non-uniform lattice is physically and mathematically at-

tractive, it is not efficient from the computational standpoint: the scaling with the system

size is prohibitive in more than a single spatial dimension, and there appears to be no simple

way to accelerate those calculations as Fourier transforms do for uniform lattices (there are,

however, possible routes via non-uniform fast Fourier transforms [8]).

In this work, we carry out a test of a methodological compromise between the choices

mentioned above: we return to the uniform-lattice basis, but implement it with hard-wall

boundary conditions (i.e. an infinite square-well potential). The latter prevent the ap-

pearance of spurious copies of the harmonic potential across the boundary, while at the

same time allow for Fourier acceleration (with a small, sub-leading cost of linearly com-

bining the results of Fourier transforms). As a proof of principle, we compute properties

of trapped 1D fermions, namely the ground-state energy and density profiles, and compare

with calculations in the non-uniform basis. Although much is known about fermions in 1D

in uniform space [9], most previous works have combined the classic Bethe-ansatz solution

with the local-density approximation in order to treat trapped systems [10–16]. (See how-

ever Refs. [17–19] for exact-diagonalization approaches.) Our goal here, in contrast, is to

design a more general Monte Carlo method to account for the trapping potential in an ab

initio fashion, which we could apply in higher dimensions.

II. GENERAL OVERVIEW OF THE METHODS

Our calculations explore the properties of a system ofN nonrelativistic, equal-mass, SU(2)

fermions in one spatial dimension under the influence of an external harmonic potential

V0(x) = (1/2)mω2x2 with mass m and trap frequency ω. We take the particles to have

dispersion ε(p) = p2/(2m) and to interact via an attractive, pair-wise, short-range potential.

Specifically, we study the Hamiltonian Ĥ written

Ĥ = T̂ + V̂0 + V̂ (1)

where T̂ is a one-body kinetic energy operator, V̂0 is coupling to our static background, and

V̂ is the interparticle potential. Throughout, we work in units where kB = ~ = m = 1.

In both approaches, we place our system on a discrete spacetime of dimensionless size

Nx × Nτ . Where we employ simple harmonic oscillator basis states, the system has no
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well-defined physical volume, and as a result, the length and momentum scales are set by

the frequency ω. Further, for these calculations we choose a nonuniform lattice spacing to

be described in detail below. By contrast, studies performed in the square-well basis are

endowed with a natural volume, and in this instance, we work with a uniform spatial lattice

of size L = Nxℓ, taking ℓ = 1 throughout to fix the relevant scales. Although the details of

the spatial discretization differ between the two approaches, the temporal lattice is uniform

and of dimensionful extent β = Nττ .

We begin, in each method, with a trial state |Ω〉 and obtain the many-body, ground-state

expectation value of an operator Ô via large-imaginary-time projection. Specifically, for

eigenfunctions |En〉 of Ĥ and assuming 〈E0|Ω〉 is nonvanishing, it follows from completeness

that

Oβ ≡ 〈Ω(β/2)|Ô|Ω(β/2)〉
〈Ω(β/2)|Ω(β/2)〉

β→∞−−−→ 〈E0|Ô|E0〉, (2)

where

|Ω(τ)〉 = Û(τ, 0)|Ω〉, (3)

and where we have defined the imaginary-time evolution operator

Û(τb, τa) = e−(τ
b
−τa)Ĥ . (4)

Our representation of each operator comprising Ĥ given in Equation (1) is method-

specific, and the details of the lattice Monte Carlo (MC) technique are in each case intuitively

tied to our choice of basis. In both of the methods discussed below, we partition the

Hamiltonian into two noncommuting operators Ĥ = Ĥ0 + ∆Ĥ , approximating the typical

MC projectors via a symmetric Suzuki-Trotter (ST) decomposition in order to isolate a

single-particle piece Ĥ0 whose exponential we can explicitly diagonalize. In the non-uniform

basis method, Ĥ0 = T̂ + V̂0 (diagonal in harmonic-oscillator space), whereas in the uniform

hard-wall basis we take Ĥ0 = T̂ (diagonal in momentum space). Generically, we approximate

each factor comprising the evolution operator as

exp
[

τ
(

Ĥ0 +∆Ĥ
)]

= exp
(

−τ
2
Ĥ0

)

exp
(

−τ∆Ĥ
)

exp
(

−τ
2
Ĥ0

)

+O(τ 3) (5)

for small τ .

In both cases, the factors involving Ĥ0 are implemented in diagonal form, but in order to

tackle the central factor, we implement a Hubbard-Stratonovich (HS) transformation [20, 21]
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to decouple the central two-body observable. Schematically, we write

exp
(

−τ∆Ĥ
)

=

∫

Dσ(x, τi) exp
(

−∆Ĥσ(i)

)

(6)

for each point on the imaginary-time lattice where we have introduced a spatially fluctuating

HS auxiliary field σ(x, τi) and a collection of one-body operators ∆Ĥσ(i). Gathering the path

integrals, we may write the composite evolution operator as an integral over a (now space-

time varying) field as

Û(β, 0) =

∫

Dσ(x, τ) M̂σ +O(τ 2) (7)

where

M̂σ =
1
∏

i=Nτ

exp
(

−τ
2
Ĥ0

)

exp
(

−∆Ĥσ(i)

)

exp
(

−τ
2
Ĥ0

)

. (8)

Application of the matrices M̂σ for a each configuration of the HS field constitutes a sizable

component of the calculation, and by repeatedly switching between two separate bases, the

action of each factor is computed using its diagonal representation. The above sequence of

transformations (Trotter-Suzuki, Hubbard-Stratonovich) leads to the path-integral represen-

tation of Oβ, which we evaluate using Metropolis-based Monte Carlo methods, in particular

hybrid Monte Carlo [22, 23]. Further details are presented below, and for a more complete

discussion see Refs. [1–3].

III. TECHNICAL ASPECTS OF THE METHODS

A. Non-uniform lattice method

Through its connection to gaussian quadrature methods [24, 25], this partition of the

Hamiltonian, or equivalently the choice of which basis functions to use in the above-

mentioned diagonization, provides a natural lattice geometry. Specifically, the need to

resolve the chosen basis states, as well as projections onto them, with high precision moti-

vates a prudent choice of not only the orbitals themselves but also of the integration method.

Expanding a generic trial state demonstrates immediately that in order to guarantee faithful

resolution of this state in terms of single-particle orbitals, it is sufficient to ensure that the

orthonormality of the basis is preserved. We perform our calculations in each case on the

lattice corresponding to a quadrature appropriate to the basis at hand. In this way, we
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maintain exactly the orthonormality of the single-particle wavefunctions and the fidelity of

our computations expressed thereby.

Written entirely in position space, we have the kinetic energy operator

T̂ =
∑

s=↑,↓

∫

dx ψ̂†
s(x) ε

(

1

i

∂

∂x

)

ψ̂s(x) (9)

expressed via field operators ψ̂s(x) and ψ̂†
s(x) for a state specified by position and spin

quantum numbers (x, s), as well as the two-body contact interaction

V̂ = −g
∫

dx n̂↑(x)n̂↓(x) (10)

given in terms of the density operators n̂s = ψ̂†
sψ̂s with nonnegative bare coupling g and the

static background potential

V̂0 =
∑

s=↑,↓

∫

dx V0(x) n̂s(x). (11)

As described in Ref. [7], a convenient basis is the set of single particle orbitals αk(x)

satisfying
(

− ∂2

∂ξ2
+ ξ2

)

αk = (2k + 1)αk (12)

for dimensionless variable ξ =
√
ωx and nonnegative integer k, corresponding to the har-

monic oscillator (HO). Expanding the field operators in terms of creation and annihilation

operators b†k,s and bk,s corresponding to HO quantum numbers (k, s) as

ψ̂(†)
s (x) =

∞
∑

k=0

αk(x)b̂
(†)
k,s, (13)

we diagonalize the first two summands comprising Ĥ as

T̂ + V̂0 =
∑

s=↑,↓

∞
∑

k=0

ω

(

k +
1

2

)

b̂†k,sb̂k,s. (14)

Using this diagonal form, we perform the calculations using the nonlinear lattice (described

below) by implementing the operator given in Equation (14), in HO space, the remaining

contact interaction V̂ in position space, and switching between throughout the application

of Equations (7),(8). In order to efficiently represent the HO single-particle orbitals αk(x)

in coordinate space, we place the system on a lattice corresponding to Nx Gauss-Hermite

(GH) integration points xi (with associated weights wi > 0) in lieu of the more conventional
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uniform discretization associated with calculations performed using a basis of momentum

eigenstates.

Indeed, a real-valued function f(x) sampled on an n-site GH lattice may be numerically

integrated (see Refs. [24, 25]), often to exceptional accuracy, via

∫ ∞

−∞

dx f(x)e−x2

=
n

∑

i=1

wif(xi) +
n!
√
π

2n (2n)!
f (2n)(ζ) (15)

with weights

wi =
2n−1n!

√
π

n2 [Hn−1(xi)]2
, (16)

for real ζ , and where the values xi are determined by the roots of the n-th order Hermite

polynomial Hn(x). These conditions are derived by requiring the sum in Equation (15) to

exactly reproduce the desired integral when the function f is taken to be a polynomial of

degree deg f < 2n. By choosing to represent our system in coordinate space on a Nx-site

spatial lattice, we maintain exactly that the first Nx HO orbitals form an orthonormal set.

B. Uniform lattice with hard-wall boundary method

Although the previous approach is attractive in its elegant preservation of system’s un-

derlying structure even after discretization, its scaling, particularly in comparison to conven-

tional Fourier-accelerated MC approaches (see Ref. [26, 27]), places discouraging limits on

this method’s applicability vis-à-vis higher dimensional systems. In any dimension, the scal-

ing is determined by the computational cost of matrix-vector operations, which naively scales

quadratically in the lattice volume, that is O(V 2) for V = Nd
x . Accelerated calculations us-

ing a uniform lattice, however, achieve scaling as benign as O(V lnV ) [7]. Additionally, the

Fourier-transform basis is naturally orthonormal on a uniform lattice making it all the more

appealing.

Computational cleverness and simplicity aside, the basis functions associated with conven-

tional uniform-lattice techniques exhibit boundary conditions that differ dramatically from

those characterizing eigenstates of the system at hand. For any finite system size, decom-

position in periodic functions fails to capture the required asymptotic behavior, specifically

that the density must be localized in space and must eventually vanish monotonically as

the distance from the trap’s center grows. Although they do not exhibit the same type of

decay and despite being compactly defined, the eigenfunctions corresponding to the infinite
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square well (SW), that is a system confined by a hard-wall (HW) trapping potential, do

vanish at the system’s boundaries. Further, even though the GH lattice is defined to repre-

sent functions defined on the entire real line, for any finite lattice size, it inevitably fails to

capture effects coming from the long-distance tails where the discrete representation of the

function is no longer supported. Judicious use of this technique circumvents the problem

almost entirely, as these omissions are minimal when the function of interest is localized

near the origin.

In light of the above, we propose studying a harmonically trapped gas using a large

uniform lattice, in the sense that L
√
ω ≫ 1, but rather than making use of the conventional

plane-wave decomposition, we work in a basis of SW wave functions φn(x) for positive

integers n, supported for 0 < x < L, and defined by

φn(x) =

√

2

L
sin

(nπx

L

)

. (17)

Expanding the field operators in terms of Fock-space operators which destroy (respectively,

create) a SW state with quantum numbers (n, s), denoted a
(†)
n,s, as

ψ̂(†)
s (x) =

∞
∑

n=1

φn(x)â
(†)
n,s, (18)

we may diagonalize the kinetic energy operator alone to find

T̂ =
∑

s=↑,↓

∞
∑

n=1

p2n
2m

â†n,sân,s (19)

where we have written the SW momenta as pn = πn/L. As is conventionally done, we

apply the remaining operators, those derived from the interparticle interaction and from the

presence of the background potential, in position space where they are diagonal after the HS

transformation. Since φn(x) is a linear combination of (conventional, complex-exponential)

plane waves, it is straightforward to take advantage of fast Fourier transform algorithms to

accelerate these HW calculations. Indeed, that linear combination relating φn to complex

exponentials involves only 2d terms, i.e. it is a sparse operation whose scaling is only linear

with the lattice volume V = Nd
x . In particular, it scales more favorably than a general

change of basis, the cost of which is O(V 2).
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FIG. 2. Energy per particle in units of the energy of the non-interacting case (left panel) and

in units of the harmonic-oscillator energy ~ω (right panel), for N = 2, 4, 6, 8 particles (bottom to

top), as obtained with the harmonic-oscillator basis (SHO) and uniform hard-wall basis (HW).

IV. RESULTS AND DISCUSSION

To tune the bare coupling in our lattice calculations, we first computed the ground-state

energy of the two-body problem. Doing so allowed us to read off the value of the continuum

physical coupling (as given by the inverse scattering length 1/a0), as the exact solution of the

two-body system in a harmonic trap can be obtained exactly and is well-known [28]. Having

fixed the target physics in that fashion, for both methods, we were able to meaningfully

compare the results obtained with each of them for higher particle number. In Figure 2, for

instance, we show our results for the coupling tuning procedure (N = 2), which are exact

by definition, along with results obtained for higher particle numbers (N = 4, 6, 8) for those

couplings.

Figure 3 shows density profiles for noninteracting systems of N = 4 and 8 particles, along

with their counterparts for an interacting case at 2aHO/a0 ≃ 1.7. The left panels in that

figure show the profiles in a linear scale, whereas the right panels show them in a y-log

scale. In all cases we see that, whenever the x axis values coincide (or do so approximately)

the results for density have the expected values, i.e. the two approaches agree quantita-

tively. The logarithmic plots also show excellent agreement; more precisely, we see that the

long-distance tails (in each direction) decay in a parabolic form, which indicates that the

dependence in the linear scale is gaussian, as expected. Note, however, that at large enough
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distances that parabolic form is lost for the hard-wall data, which is not surprising given

the presence of the walls.
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FIG. 3. Density profiles for noninteracting systems (top) and interacting (bottom). The left

panels display the data in linear y scale, while the right panels show a y-log scale. In all cases we

show results for N = 4 and 8 particles, and for the harmonic-oscillator basis (SHO) and uniform

hard-wall basis (HW).

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented two methods to address the problem of interacting

fermions in harmonic traps: a uniform-lattice method with hard-wall boundary conditions,

and a non-uniform Gauss-Hermite lattice method (which we had used in previous work).

While the latter has many attractive features (it diagonalizes the noninteracting Hamiltonian

exactly), it is not amenable to Fourier acceleration (or at least not easily), which makes it

practically unfeasible for higher dimensions (especially away from zero temperature). The
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hard-wall method, on the other hand, shares some of the positive features and can be Fourier

accelerated, as we explained above.

To test the methods against each other, we compared here calculations for 1D attractively

interacting fermions in a harmonic trap. Specifically, we computed the ground-state energy

and density profiles of unpolarized systems of N = 4 and 8 particles. Our results show that

for both the ground-state energy and the density profiles, the methods agree satisfactorily.

For the density profiles, in particular, we note that the expected gaussian decay is reproduced

with the hard-wall basis over multiple orders of magnitude before breaking down at large

distances due to the presence of the wall. From our calculations we conclude that it is

possible to obtain high-quality results using uniform bases with hard-wall boundaries.

Besides the above benefits, the hard-wall method has the advantage that it does not

depend on the precise form of the external potential. Indeed, it is easy to imagine that it

would be a useful method for other trapping potentials that are unbounded at infinity (e.g.

linear or other). Moreover, the hard-wall potential is interesting per se, as experiments with

ultracold atoms can now mimic that kind of configuration as well (albeit with somewhat

rounded corners at the bottom of the trap, which could be introduced quite easily in our

framework).
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