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PHYSICAL REVIEW A 91, 053618 (2015)

Energy, contact, and density profiles of one-dimensional fermions in a harmonic trap
via nonuniform-lattice Monte Carlo calculations

C. E. Berger,1,2 E. R. Anderson,2 and J. E. Drut2
1Department of Physics, The Ohio State University, Columbus, Ohio 43210–1117, USA

2Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599–3255, USA
(Received 5 November 2014; published 20 May 2015)

We determine the ground-state energy and Tan’s contact of attractively interacting few-fermion systems in a
one-dimensional harmonic trap, for a range of couplings and particle numbers. Complementing those results, we
show the corresponding density profiles. The calculations were performed with a lattice Monte Carlo approach
based on a nonuniform discretization of space, defined via Gauss-Hermite quadrature points and weights. This
particular coordinate basis is natural for systems in harmonic traps, and can be generalized to traps of other shapes.
In all cases, it yields a position-dependent coupling and a corresponding nonuniform Hubbard-Stratonovich trans-
formation. The resulting path integral is performed with hybrid Monte Carlo as a proof of principle for calculations
at finite temperature and in higher dimensions. We present results for N = 4, . . . ,20 particles (although the method
can be extended beyond that) to cover the range from few- to many-particle systems. This method is exact up to
statistical and systematic uncertainties, which we account for—and thus also represents an ab initio calculation
of this system, providing a benchmark for other methods and a prediction for ultracold-atom experiments.

DOI: 10.1103/PhysRevA.91.053618 PACS number(s): 03.75.Ss, 67.85.Lm, 05.30.Fk, 74.20.Fg

I. INTRODUCTION

One-dimensional (1D) quantum systems in external poten-
tials are among the small set of problems solved by every
physics undergraduate student, in the absence of interactions.
As soon as interactions are turned on, however, these problems
quickly become intractable and one must generally resort to
numerical methods, even if the interaction is a simple Dirac
δ function. This is true, in fact, in all spatial dimensions;
but whereas the pedagogical 1D case has the advantage of
being exactly solvable in many regimes (as long as translation
invariance is not broken by the presence of an external
potential), the 1D quantum mechanics of trapped, interacting
Fermi gases resides well within the realm of computational
physics. The massive availability of computers today thus
makes it feasible to produce accurate benchmarks for these
simple-yet-elusive many-body problems.

Such benchmarks are not only critical for our general
understanding and the development of computational methods,
but they also constitute predictions for experiments with
ultracold atoms [1,2]. Indeed, as the experimentalist’s ability
to manipulate atomic clouds continues to increase, the real-
ization of quasi-1D atomic gases is becoming more common.
Short-range interatomic interactions, realized experimentally
via broad Feshbach resonances, can moreover be tuned,
inducing correlations whose high-momentum or -frequency
tails are governed by Tan’s contact [3]. The finite-temperature
thermodynamics, on the other hand, is given by universal
equations of state, whose presumably simple structure has so
far remained largely unknown.

Interest in 1D systems can be found in nuclear physics as
well: 1D model calculations such as those in Refs. [4,5], which
resemble nuclear systems, have been performed routinely for
many years, both for insight into the physics as well as to
develop new many-body methods [6].

In this work, we make a prediction for ultracold-atom exper-
iments in highly constrained traps and provide a benchmark
for few- and many-body methods. Specifically, we compute

the ground-state energy, contact, and density profile of
N = 4, . . . ,20 unpolarized, attractively interacting spin-1/2
fermions in a one-dimensional harmonic trap, covering a
range of couplings across the 1D counterpart of the BEC-BCS
crossover.

To this end, we have implemented an ab initio quantum
Monte Carlo approach based on a judiciously chosen nonuni-
form spatial lattice. Since our system is in a harmonic potential,
the lattice is the one defined by the Gauss-Hermite integration
points and weights of the Gaussian quadrature method. This
allows us to enforce the correct boundary conditions and
avoid the appearance of spurious copies of the system across
boundaries, which would show up with periodic boundary
conditions. Further details on our approach are provided below.

Previous approaches to this problem have considered the
homogeneous system, which is solvable via the Bethe ansatz
(see Ref. [7] for a recent and thorough review on that topic),
combined with the local density approximation (see, e.g., [8])
and exact diagonalization, analytically for two and three
particles [9] as well as numerically for larger systems [10].
Previous work, also using Monte Carlo methods but focusing
on large particle number and polarized systems, appeared in
Ref. [11]. Our work complements those results by providing
ab initio benchmarks and predictions for the few- to many-
body regimes, which have been realized experimentally [12].
Although much is known about these systems, here we
benchmark the transition from few- to many-body regimes
for unpolarized systems. Our results also serve as a proof of
principle of our nonuniform-lattice Monte Carlo technique for
extension to higher dimensions and finite temperature.

II. HAMILTONIAN AND MANY-BODY METHOD

We focus on a one-dimensional system of two-species,
attractively interacting fermions, whose Hamiltonian is

Ĥ = T̂ + V̂ext + V̂int, (1)
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where we take T̂ to be the kinetic-energy operator correspond-
ing to a nonrelativistic dispersion relation E = p2/2m; V̂ext to
be the external harmonic trap of frequency ω; and V̂int to be the
two-body attractive zero-range interaction characterized by a
bare coupling g (as in the Gaudin-Yang model [13]), further
specified below.

To treat this many-body problem, we place it in a discretized
spatial line of Nx points (further details on the discretization
are given below), and approximate the Boltzmann weight via
a symmetric Suzuki-Trotter decomposition:

e−τĤ = e−τ/2(T̂ +V̂ext)e−τ V̂inte−τ/2(T̂ +V̂ext) + O(τ 3), (2)

for some small temporal discretization parameter τ (which
below we take to be τ = 0.05 in lattice units). This dis-
cretization of imaginary time results in a temporal lattice
of extent Nτ , which we also refer to below in terms of
β = τNτ and in dimensionless form as βω. This is followed
by a Hubbard-Stratonovich (HS) transformation [14] of the
above interaction factor, as is common in auxiliary-field
Monte Carlo calculations (see, e.g., [15]). With the resulting
path-integral form for the interacting Boltzmann weight, we
use the projection Monte Carlo approach to obtain ground-state
properties of the system. As a trial wave function, we use a
Slater determinant of harmonic oscillator (HO) single-particle
orbitals. Although this choice is not necessarily best (e.g., one
could account for pairing correlations in the form of the wave
function, etc.), it is effective enough for our purposes, as shown
below.

Because we are considering an external harmonic trap, with
the Suzuki-Trotter factorization shown above, it is useful to
define an HO basis and combine T̂ and V̂ext, such that the sum

T̂ + V̂ext =
∑

k

�ωkn̂k, (3)

where �ωk = �ω(k + 1/2), has a diagonal form in the HO
basis. Here, the operator n̂k = n̂↑,k + n̂↓,k counts the num-
ber of HO excitations in level k of both spins, as usual.
Throughout this work, we use units such that � = m = kB =
ω = 1, where m is the mass of the fermions and ω is
the frequency of the harmonic trap. In conventional Monte
Carlo calculations, in the absence of an external potential,
it is common to switch between coordinate and momentum
space to take advantage of Fourier acceleration techniques
via fast-Fourier transform (FFT) algorithms [16]. In those
cases, the Suzuki-Trotter decomposition separates kinetic- and
interaction-energy operators. In the present approach, instead,
we switch between coordinate and HO space, implementing
the imaginary-time evolution by applying the T̂ + V̂ext piece in
HO space, and the V̂int piece in coordinate space. Conventional
Fourier acceleration techniques cease to be useful in this
approach; nevertheless, analogous “nonuniform” algorithms
(NFFT) [17] do exist which can be included in future imple-
mentations of this method. Without acceleration methods, the
computational cost of the required matrix-vector operations
scales as O(V 2), where V is the number of lattice points (i.e.,
V = Nd

x in d dimensions). When applicable, FFT turns this
into O(V ln V ). On the other hand, NFFT algorithms perform
those calculations in O(V ln2 V ) operations. With current

hardware, this acceleration is not essential for 1D systems,
but it is crucial in 3D.

One of the most efficient ways to represent single-particle
HO wave functions in coordinate space, which is needed in our
approach, is to take the spatial mesh to consist of Nx Gauss-
Hermite (GH) integration points (with the associated weights),
rather than the usual uniform lattice and the corresponding
plane waves. The GH lattice guarantees that orthonormality of
the wave functions is preserved (see below). On the GH lattice,
the integral over a given function f (x) is approximated by

∫
dxe−x2

f (x) �
Nx∑
i=1

wif (xi), (4)

where the abscissas xi are given by the roots of the Hermite
polynomial of degree Nx , and wi are the (positive) weights
(see, e.g., Ref. [18]) given by

wi = 1

HNx−1(xi)H
′
Nx

(xi)
, (5)

where Hn(x) is the Hermite polynomial of order n.
The 2Nx variables {xi,wi} take the above form when

chosen such that the integral in Eq. (4) is represented exactly
by the sum on the right and when f (x) is a polynomial of
degree � 2Nx − 1. This choice ensures that the Hermite
polynomials form an (exactly) orthogonal set when evaluated
on the {xi} lattice (relative to a scalar product defined with
the wi weights). For this property to hold with the same
accuracy (i.e., machine precision) on a uniform lattice, a much
larger number of points would be needed. Thus, our choice
preserves both the orthogonality and the dimensionality of the
coordinate representation as the spatial dual of an HO basis of
size Nx , which therefore allows for a precise representation
of HO wave functions up to k = Nx − 1 in Eq. (3). It is
worth noting that the same approach can be pursued for
other types of external potentials; for instance, for a linear
external potential v(x) ∝ |x|, one would use the so-called
Airy functions, and associated points and weights.

For reference, in Fig. 1 we plot the GH abscissas and
weights for the main lattice sizes used in this work. The
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FIG. 1. (Color online) Abscissas and weights for Gauss-Hermite
integration with Nx = 10,20,40,80,160 points. The x axis is scaled
by 1/

√
Nx for display purposes. Note that g(xi) = g wie

x2
i is the

position-dependent coupling constant (see main text).
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physical meaning of these quantities is clarified below, and
precise numerical values for the Nx = 80 lattice are given in
Appendix B.

Using the GH lattice, the discretized interaction becomes

V̂int = − g

Nx∑
i=1

wie
x2

i n̂↑i n̂↓i , (6)

where n̂λi is the lattice density operator for spin λ at position
i. Thus, we obtain a position-dependent coupling constant
g(xi) = g wie

x2
i (see Fig. 1), which yields a corresponding

position-dependent HS transformation.
This kind of approach defines a nonuniform mesh and

a concomitant position-dependent coupling and HS trans-
formation. We find this to be a particularly well-suited
formulation for the zero-range interaction considered here,
but it could be extended to other interactions as well. In
addition, this formulation bypasses the problem of dealing
with periodic boundary conditions, which are problematic
for trapped systems as they introduce spurious copies of the
system across the boundaries. Although efficiency is not an
issue for 1D systems, we have complemented our approach by
implementing the hybrid Monte Carlo algorithm [19], which
will be essential in higher-dimensional versions of this method.

Since we work with a nonuniform lattice, the lattice
spacing varies across the system. There are, neverthe-
less, well-defined infrared and ultraviolet cutoffs—given by
EIR = (Nx − 1)−1

�ω and EUV = (Nx − 1)�ω, respectively—
determined by the maximum single-particle HO state in our
basis, (Nx − 1). The latter will vary with the total number of
lattice points, which therefore enters in the coupling-constant
renormalization. Thus, at fixed physics, the bare coupling
is sensitive to the value of Nx . This connection between
the ultraviolet and infrared cutoffs is natural for systems in
harmonic traps (see, e.g., Ref. [20]).

To tune the system to a specific physical point, determined
by the 1D scattering length a0 in units of the HO length scale
aHO (which is 1 in our units), we computed the ground-state
energy of the two-body problem and matched it to that of
the continuum solution (see, e.g., Ref. [21]). The result of
this renormalization procedure is shown in Fig. 2. Once the
coupling constant was determined, and the two-body physics
thus fixed, we varied the particle number and computed other
observables.

III. ANALYSIS AND RESULTS

A. Ground-state energy and contact

In this section, we show our results for the ground-state
energy EGS and Tan’s contact C for a variety of particle
numbers and couplings. To find EGS, we calculated the βω

dependence of the expectation value of the Hamiltonian 〈Ĥ 〉
and extrapolated to large βω [see discussion under Eq. (2)],
as shown in Fig. 3. In that figure, the strongly coupled regime
shows the well-known increasingly noisy behavior at large
imaginary times. This is due to an “overlap problem” which
affects calculations in all areas of physics (see, e.g., Ref. [22]).

The Monte Carlo estimates of 〈Ĥ 〉 were obtained by
averaging over 104 decorrelated samples of the auxiliary
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FIG. 2. (Color online) Tuning of the bare lattice coupling to
match the exact ground-state energy of the two-body problem.
The solid line shows the exact solution for the total ground-state
energy of the two-body problem (including center-of-mass motion)
in units of �ω, from Ref. [21]. For that line, gcontinuum = 2aHO/a0.
The data shown with error bars represent our Monte Carlo results
for different lattice sizes. For the latter, the horizontal axis is the
bare lattice coupling g multiplied by 5/Nx , which yields the correct
renormalization factor at weak couplings.

field, which ensured a statistical uncertainty of order 1%.
Conventional extrapolations would include an exponential
decay to a constant value, but for the systems studied the
exponential fall-off was sufficiently immediate to allow for a
simple fit to a constant. Because 15–20 points in total were
used for the βω fits, the above statistical effects translated into
error bars in EGS on the order of 1% or better at weak coupling,
but as large as 5% at the strongest couplings.

In Fig. 4, we show our results for the ground-state energy
per particle of 4, 6, 8, 10, 12, 16, and 20 particles, in units of
�ω. As evident in the figure, systematic finite-size effects are
very small for 4, 6, and 8 particles, and only become visible
for the smallest lattice size (Nx = 10) and for the highest
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FIG. 3. (Color online) Large-βω extrapolation example for the
energy of four fermions on a Gauss-Hermite lattice of Nx = 10 points.
The unexpectedly large oscillations in the data at large couplings
exemplify the numerical difficulties in computing in that regime. The
horizontal dashed lines show fits to the asymptotic value.
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FIG. 4. (Color online) Top panel: Ground-state energy per par-
ticle for N = 4, 6, 8, 10, 12, 16, and 20 particles (from bottom
to top) as a function of the coupling, for Nx = 10, 20, 40, and 80
lattice points. For two particles, the exact solution is reproduced, per
our renormalization condition. Bottom panel: Ground-state energy
EGS in units of the noninteracting ground-state energy EGS,0, as a
function of the coupling (as in the main plot), for N = 4, 8, 12, 16,
and 20 particles (from bottom to top), showing the approach to the
thermodynamic limit N → ∞.

particle numbers. The results otherwise collapse to universal
curves that depend only on aHO/a0 and N , showing that the
renormalization procedure works as expected. The latter is a
crucial property that must hold if our prescription is valid, as
it indicates that we correctly approach the continuum limit.
Further analysis of the systematic effects for these results can
be found in Appendix A.

To calculate Tan’s contact, we use

C = 2
∂EGS

∂a0

= − 1

aHO

(
2aHO

a0

)2
∂EGS

∂(2aHO/a0)
, (7)

which is readily available from our data on the energy per
particle. Our results, for Nx = 80, are shown in Fig. 5. For
the couplings studied here, the contact per particle shows
essentially no dependence on the particle number, which
indicates that the thermodynamic limit is reached quickly in
these systems. This is an unexpected result: in general one
would expect a nontrivial variation of observables as a function
of the particle number (see, e.g., Ref. [23], and contrast with
Fig. 4). In contrast, as shown in the bottom panel of Fig. 4,
the energy does show a clear dependence on particle number
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FIG. 5. (Color online) Contact per particle for N = 2, 4, 6, 8, 10,
12, 16, and 20 particles, as a function of the coupling, for Nx = 80.
For two particles, the exact solution is also shown as a solid line.

when displayed in units of its noninteracting counterpart. The
variation is more pronounced at strong coupling.

As shown in Ref. [24], the ground-state energy and the
contact obey a virial theorem, which in terms of the energy
and its derivative can be written as

〈Ĥ 〉 − 2〈V̂ext〉 = 1

2a0

∂〈Ĥ 〉
∂(1/a0)

, (8)

and is valid for the ground as well as excited states. In Fig. 6,
we show a test of this identity. As seen in that figure, the virial
theorem is satisfied better at weak coupling than at strong
coupling. Although this violation is not very large, there is
room for improvement. In particular, the way the contact was
determined, based on a numerical derivative of EGS, introduces
large uncertainties (not displayed in the figure) that are likely
responsible for the differences observed.

B. Density profiles

The above results are the basic quantities of interest for
these unpolarized one-dimensional systems. A many-body

 0

 0  1  2  3  4  5
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FIG. 6. (Color online) Virial theorem test for Nx = 40,80 lattice
points and N = 4 particles. “E-2V” and “Contact” denote the left-
and right-hand sides of Eq. (8), respectively, divided by the particle
number. The theorem is exactly satisfied for the noninteracting case
a−1

0 = 0.
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theoretical approach, analytic or numerical, would normally
have easy access to these quantities and would therefore be able
to compare with our benchmark. Another essential quantity of
interest, both for theory as well as experiment, is the density
profile. This is naturally of interest for experiments, given
that they are performed in optical traps that are approximately
harmonic. However, profiles are also interesting for theory
because the most common approach (from 1D to 3D, and
for a variety of physical situations) is to use the “poor-
man’s” version of density functional theory: combining a
solution to the homogeneous problem with the local density
approximation. While the latter leads to qualitatively useful
results, it hardly provides a true benchmark, as it suffers
from uncontrolled uncertainties that are rarely accounted for.
In this section, we attempt to overcome this widespread
theoretical limitation by presenting density profiles for the
same unpolarized Fermi systems studied in the previous
section.

In all cases, the density profiles we show correspond to
the Nx = 80 lattice and are normalized to the number of
particle pairs N/2. It is worth mentioning that any integration
over these profiles is to be performed via the Gauss-Hermite
quadrature, which requires the Nx = 80 points and weights;
we provide those in Table I.

In Fig. 7, we show the density profiles of unpolarized,
spin-1/2 fermions for several particle numbers, N = 4, 8,
12, 16, 20. For reference, we provide the result for the
noninteracting case, followed by an intermediate-coupling and
a strong-coupling regime. The data for the density profiles
shown in the figures appear in the Supplemental Material [25].
The attractive interaction clearly tends to compress the density
profile as a whole, enhancing the density oscillations. The
above picture is seen more clearly in Fig. 8, where we show
the density profiles at fixed particle number and superimpose
plots for varying couplings.

It is interesting to note the relatively limited interaction
dependence of the density profiles, as well as the appearance
of oscillations. It would appear that this behavior is a function
of the short-range interaction, our constraint to 1D, and the
fermionic character of the particles. Qualitatively, particles
of opposite spin tend to pair up (note that the number of
density oscillation peaks is one-half the number of particles)
to minimize the energy, and remain well separated in space
from other pairs due to the Pauli principle and the fact
that they are constrained to move in a line. This repulsive
effect, along with the short-range nature of the interaction,
minimizes the change in the width of the density profiles with
increasing coupling. Alternatively, we can understand these
effects from the existence of a shell structure from eigenstates
of the external potential. Indeed, we see the initial appearance
of a harmonic-oscillator shell structure in the ground-state
noninteracting case, where pairs of particles fill the “shells”
of the lowest-energy basis states. Upon close inspection of the
density profiles, the period of these oscillations, along with
the overall width of the density distribution, varies slowly
with the coupling. As the attractive interaction is turned on,
contributions from higher waves in the shell structure—beyond
those present in the noninteracting case—become increasingly
important, leading to a smaller period of oscillation (and
compression of the density profile).

TABLE I. Gauss-Hermite quadrature points and weights for
Nx = 80, for positive x. The weights are symmetric around x = 0.

i xi wie
x2
i

1 0.1237968 0.2476016
2 0.3714377 0.2476959
3 0.6192203 0.2478851
4 0.8672399 0.2481701
5 1.1155929 0.2485522
6 1.3643774 0.2490336
7 1.6136939 0.2496165
8 1.8636453 0.2503041
9 2.1143382 0.2511001
10 2.3658831 0.2520089
11 2.6183953 0.2530355
12 2.8719954 0.2541860
13 3.1268109 0.2554673
14 3.3829764 0.2568875
15 3.6406352 0.2584558
16 3.8999409 0.2601830
17 4.1610583 0.2620815
18 4.4241658 0.2641659
19 4.6894576 0.2664530
20 4.9571459 0.2689625
21 5.2274644 0.2717176
22 5.5006722 0.2747459
23 5.7770582 0.2780801
24 6.0569475 0.2817596
25 6.3407083 0.2858321
26 6.6287621 0.2903562
27 6.9215954 0.2954047
28 7.2197765 0.3010690
29 7.5239773 0.3074663
30 7.8350037 0.3147492
31 8.1538382 0.3231218
32 8.4817022 0.3328630
33 8.8201501 0.3443682
34 9.1712175 0.3582202
35 9.5376679 0.3753231
36 9.9234351 0.3971781
37 10.3344910 0.4265210
38 10.7807965 0.4690695
39 11.2816942 0.5397999
40 11.8878636 0.7010227

IV. SUMMARY AND CONCLUSIONS

We have presented a lattice Monte Carlo determination of
the ground-state energy, Tan’s contact, and density profiles of
1D unpolarized spin-1/2 attractively interacting fermions in
a harmonic trap. We have studied systems of up to N = 20
particles and performed our calculations by implementing the
hybrid Monte Carlo algorithm on a nonuniform Gauss-Hermite
lattice, using lattice sizes ranging from Nx = 10–80. This
discretization is a natural basis for systems in an external HO
potential, and it yields a position-dependent coupling constant
and HS transform. Note that nothing prevents our approach
from being generalized to finite temperature and to other in-
teractions, although it would suffer from a sign problem in the
same situations as conventional uniform-lattice approaches. It
can also be generalized to other external potentials.
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FIG. 7. (Color online) Density profile of unpolarized, spin-1/2
fermions for several particle numbers N = 4, 8, 12, 16, 20. Top:
Noninteracting case. Center: 2aHO/a0 = 1.67. Bottom: 2aHO/a0 =
5.16. See Supplemental Material [25] for the data plotted here.

We have studied systems for a wide range of attractive
couplings. We also make note of the recent work of Ref. [26],
which proposes an exact solution to the strong-coupling limit
of the model studied here for arbitrary trapping potentials.
While we defer the calculation of stronger couplings (which
are stochastically more challenging and also present larger
systematic effects) to future work, it would be instructive to
analyze the approach to the exact solution in the aHO/a0 → ∞
limit.

Despite the apparent simplicity of the system (i.e., only
one spatial dimension, an attractive contact interaction, and an
external potential), determining the ground-state energy and
contact has remained a challenge and therefore our results
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FIG. 8. (Color online) Density profile of unpolarized, spin-1/2
fermions, for 2aHO/a0 = 0.64,1.67,2.71,5.16. Top: N = 4. Center:
N = 8. Bottom: N = 16. See Supplemental Material [25] for the data
plotted here.

are both a benchmark and a prediction for experiments. The
same is true of the density profiles reported here. It should
be emphasized that our approach to this problem is ab initio
and exact, up to statistical and systematic uncertainties, both
of which we have addressed: the former by taking up to 104

decorrelated samples and the latter by computing for multiple
lattice sizes, Nx = 10,20,40,80.

This work paves the road for future, higher-dimensional
studies that will combine nonuniform lattices with nonuniform
fast-Fourier transforms as acceleration algorithms [16,17]. As
mentioned above, the latter would enable O(V ln2 V ) scaling
of matrix-vector operations, which is essential for practical
calculations in 3D.
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FIG. 9. (Color online) Lattice-size dependence of the ground-
state energy of N = 12, 16, and 20 unpolarized spin-1/2 fermions,
for Nx = 20,40,80. Top panel: 2aHO/a0 = 2.0. Bottom panel:
2aHO/a0 = 3.3. The error bars are purely statistical and show an
estimated 3% error for the specific data points shown. Note the change
of scale in the energy axes relative to that of the top panel of Fig. 4:
the present plots are a zoom-in by a factor of �9.
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APPENDIX A: FURTHER ANALYSIS OF
SYSTEMATIC EFFECTS

In this section, we elaborate on some of the systematic
effects in our calculations, namely the dependence of the
ground-state energy on Nx and the temporal lattice spacing τ .

In Fig. 9, we show the Nx dependence of the ground-state
energy per particle at the extremes of coupling and particle

-1
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FIG. 10. (Color online) Temporal lattice spacing (τ ) dependence
of the ground-state energy of unpolarized spin-1/2 fermions on
an Nx = 10 nonuniform lattice, for several values of the coupling
2aHO/a0, and for several particle numbers. The smoothness of the
curves upon reducing τ by a factor of two shows that these effects
are extremely small (see text for further details).

number studied here. The lattice-size dependence displayed
by the data is among the most prominent in the whole energy
dataset of Fig. 4. A naive linear extrapolation would yield
an Nx dependence on the order of 10% for this quantity, but
larger lattices are required for these strongly coupled systems
to clearly determine whether such a naive extrapolation is
warranted. Nevertheless, this represents an approximate upper
bound on the systematic error of the dataset. The majority
of data points reflect weaker coupling and smaller particle
number which have much smaller systematic effects, as can
be seen in Fig. 4.

Figure 10 shows the imaginary lattice spacing dependence
of the energy per particle for N = 4,8,12 fermions. The
smoothness of the resulting curves, at fixed particle number,
is fundamentally due to the success of our renormalization
prescription: for each value of τ , we tune the coupling g to the
physics of the two-body problem. The fact that the energies for
higher particle numbers falls on the same curve implies that
many-body effects induced by a finite temporal lattice spacing
are negligible on the scale studied here. Based on this plot, we
may conservatively estimate these effects as being on the order
of less than 3%. Evidently, the effects due to finite Nx studied
above are much larger than this, as they are clearly discernible
on essentially the same scale (see Fig. 4), at least in the (near)
worst-case scenario explained above.

APPENDIX B: QUADRATURE POINTS AND WEIGHTS

In this section we quote the Nx = 80 quadrature points and
weights, shown in Table I, which should be used with the
density profiles shown above when integrating.
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