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Environmental Toxicology

Water Chemistry, Exposure Routes, andMetal Forms
Determine the Bioaccumulation Dynamics of Silver
(Ionic and Nanoparticulate) inDaphnia magna

Emma Lesser,a,1 Fatima Noor Sheikh,a,1 Mithun Sikder,a Marie‐Noële Croteau,b Natasha Franklin,b Mohammed Baalousha,c

and Niveen S. Ismaila,*,1

aPicker Engineering Program, Smith College, Northampton, Massachusetts, USA
bUS Geological Survey, Menlo Park, California
cCenter for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA

Abstract: Treatment wetlands utilize various physical and biological processes to reduce levels of organic contaminants,
metals, bacteria, and suspended solids. Silver nanoparticles (AgNPs) are one type of contaminant that can enter
treatment wetlands and impact the overall treatment efficacy. Grazing by filter‐feeding zooplankton, such as Daphnia
magna, is critical to treatment wetland functioning; but the effects of AgNPs on zooplankton are not fully understood,
especially at environmentally relevant concentrations. We characterized the bioaccumulation kinetics of dissolved
and nanoparticulate (citrate‐coated) 109Ag in D. magna exposed to environmentally relevant 109Ag concentrations
(i.e., 0.2–23 nmol L−1 Ag) using a stable isotope as a tracer of Ag. Both aqueous and nanoparticulate forms of 109Ag were
bioavailable to D. magna after exposure. Water chemistry affected 109Ag influx from 109AgNP but not from 109AgNO3.
Silver retention was greater for citrate‐coated 109AgNP than dissolved 109Ag, indicating a greater potential for
bioaccumulation from nanoparticulate Ag. Feeding inhibition was observed at higher dietary 109Ag concentrations, which
could lead to reduced treatment wetland performance. Our results illustrate the importance of using environmentally
relevant concentrations and media compositions when predicting Ag bioaccumulation and provide insight into
potential effects on filter feeders critical to the function of treatment wetlands. Environ Toxicol Chem 2022;41:726–738.
© 2021 SETAC
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INTRODUCTION
Increasing commercial application of engineered nano-

particles (NPs) has led to nearly 2000 nano‐enabled products in
the consumer market, 20% of which contain silver NPs (AgNPs;
Vance et al., 2015). The AgNPs released from these products
enter aquatic systems through various pathways, such as
stormwater runoff and wastewater effluent (Wiesner
et al., 2006). The environmental fate of these particles can vary
greatly because of various biological and environmental
factors (Dwivedi et al., 2015). Ionic Ag is one of the most toxic
metals in aquatic systems (Erickson et al., 1998; Fabrega

et al., 2011). The presence of AgNPs and the potential release
of Ag ions can have adverse impacts on aquatic organisms,
such as fish, zooplankton, and nematodes, resulting in reduced
mobility, impaired reproduction, and mortality (Fabrega
et al., 2011). Because stormwater runoff and wastewater ef-
fluent can act as sources of AgNP for aquatic systems, it is vital
to consider treatment methodologies that remove Ag from
water.

Natural treatment systems, such as treatment wetlands, can
remove a variety of pollutants including metal‐based NPs. For
example, sorption, sedimentation, aggregation, and phytor-
emediation have been widely studied in relation to the removal
of AgNPs (Auvinen et al., 2016; Lowry et al., 2012). However,
knowledge gaps still exist regarding the fate of AgNPs in rela-
tion to filter‐feeding organisms. Filter‐feeding zooplankton,
such as daphnids, are abundant in natural treatment systems;
they are a critical link in aquatic food chains and can significantly
improve water quality through grazing (Fayer et al., 2000;
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Ismail et al., 2019; Jürgens et al., 1997; Shiny et al., 2005; Trout
et al., 2002). Adverse effects of AgNPs on daphnids at envi-
ronmentally relevant conditions could impact the efficacy of
treatment wetlands.

Based on predictive models and environmental sampling,
expected concentrations of AgNPs in the aquatic environment
are estimated to be <9 nmol L−1 (i.e., <1 µg L−1; Gottschalk
et al., 2013). Most ecotoxicological studies examining the im-
pact of AgNO3 and AgNPs on daphnids or other zooplankton
use concentrations that are orders of magnitude higher than
the expected environmental concentrations (Kwok et al., 2016;
Lekamge et al., 2018; Zhao & Wang, 2010). Although high Ag
aqueous concentrations are usually required to trigger meas-
urable effects, such as mortality, changes in fecundity, and
abnormal swimming (Asghari et al., 2012; Klaine et al., 2008;
Newton et al., 2013), these elevated concentrations do not
adequately portray bioaccumulation or depict the environ-
mental thresholds at which adverse effects might be expected.
The few studies examining the accumulation of Ag in daphnids
at lower concentrations show that bioaccumulation of Ag from
AgNO3 and AgNP occurs and that the toxicity of AgNPs can
vary orders of magnitude depending on the coating (Allen
et al., 2010; Khan et al., 2015; Lam & Wang, 2006). However,
these studies do not directly compare waterborne and die-
tborne uptake of AgNO3 and AgNP at low concentrations or
consider the effects of Ag in complex water matrices, such as
wastewater and storm water, which are relevant to natural
treatment systems.

In the present study, we characterized waterborne and
dietary Ag uptake and elimination kinetics in a model
zooplankton species, Daphnia magna. We used isotopically
enriched Ag, and we synthesized labeled, citrate‐coated
109AgNP to trace Ag bioaccumulation dynamics after environ-
mentally realistic exposures. We also conducted experiments
using isotopically enriched 109AgNO3 to evaluate and compare
the influence of Ag form on bioaccumulation processes. The
use of isotopically enriched 109Ag allows for the detection of
Ag at environmentally relevant, low concentrations. In addition,
we examined the bioaccumulation kinetics of 109Ag (109AgNP
and 109AgNO3) in zooplankton in different water types. Find-
ings from the present study provide insights into the risks of
AgNPs in comparison to AgNO3 to filter‐feeding zooplankton
under environmentally relevant conditions and help assess the
effects of Ag on filter‐feeding zooplankton that play a
critical role in the operational performance of natural treatment
systems.

METHODOLOGY
NP synthesis

Isotopically labeled, citrate‐coated 109AgNPs were synthe-
sized by modifying previously published methods (Laycock
et al., 2014; Römer et al., 2011; Sikder et al., 2018). Full details
of the synthesis procedure are provided in the Supporting In-
formation. All further references to our experimental 109AgNPs
refer to citrate‐coated 109AgNP.

NP characterization
The 109AgNP suspension was characterized using a multi-

method approach that included measurements of surface
plasmon resonance using ultraviolet‐visual spectrometry
(UV‐vis), core diameter and morphology using transmission
electron microscopy (TEM), z‐average hydrodynamic diameter
(Z‐avg), and polydispersity index (PDI) using dynamic light
scattering (DLS), zeta potential (ζ) using laser Doppler electro-
phoresis, and Ag concentrations using inductively coupled
plasma mass spectrometry (ICP‐MS; Supporting Information,
Table S1). The core diameter and morphology of the NPs were
determined using a TEM (JEOL USA) operated at 200 keV and
equipped with a Jeol EX‐230 Silicon Drift Detector (JEOL USA).
Sample preparation and analysis for the TEM are described in
the Supporting Information. The zeta potential (ζ) was estimated
from measurements of electrophoretic mobility of undiluted
109AgNP suspensions using Smoluchowski's approximation.
The Z‐avg hydrodynamic diameter was calculated from
the diffusion coefficient using the Stokes‐Einstein equation.
Electrophoretic mobility and diffusion coefficient measure-
ments were performed using a Malvern Zetasizer Nano‐ZS DLS
equipped with an He‐Ne 633‐nm laser at 25 °C after a
2‐min temperature equilibration. Aggregation kinetics of
109AgNPs (4.59mmol L−1) were measured in triplicate in syn-
thetic moderately hard water (MHW), synthetic stormwater
(SW), and secondary treated wastewater (WW; Supporting In-
formation, Tables S2–S4) by monitoring the growth of the Z‐avg
hydrodynamic diameter as a function of time immediately after
mixing with MHW, SW, or WW (more details in the Supporting
Information). The UV‐vis absorption spectra of the stock sus-
pension of 109AgNPs were collected in the range of
300–600 nm on a Shimadzu 2600 UV‐vis instrument (Shimadzu)
using a 10‐cm path length quartz cuvette.

Organism laboratory culture
Daphnia magna (Connecticut Valley Biological) were main-

tained in glass aquaria in MHW, SW, and WW (Supporting In-
formation, Tables S2–S4). They were fed ad libitum
Nannochloropsis sp. green algae (4–6 μm diameter; Florida
Aquafarms). Nannochloropsis sp. was continuously cultured in
sterile ultrapure water (UPW; 18.2MΩ cm; Thermoscientific
Barnstead Nanopure) using Guillard f/2 medium. On the day of
the experiment, the appropriate number of adult daphnids
(approximately 7 days old, dry wt per daphnid= 0.11± 0.08
mg, n= 20) were transferred to experimental beakers con-
taining the experimental solutions spiked with 109Ag (Sup-
porting Information, Tables S2–S4).

Biodynamic model
A bioaccumulation dynamic model (Croteau et al., 2004;

Luoma & Rainbow, 2005) was used to characterize 109Ag up-
take and elimination in D. magna after waterborne and dietary
exposures to 109Ag. Variations in 109Ag concentrations in
D. magna ([109Ag]org) over time are a function of the
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waterborne and dietborne 109Ag uptake as well as 109Ag
elimination and body growth dilution (Equation 1).
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Specifically, 109Ag influx from solution is expressed as a func-
tion of kuw (liters per gram per day), a unidirectional 109Ag influx
rate constant from solution, and the dissolved or dispersed
109Ag concentration in solution ([109Ag]water, nanomoles per
liter). The kuw value is determined from the slope of the linear
relationship between 109Ag uptake rates and 109Ag exposure
concentrations. Influx of 109Ag from food varies as a function of
kuf (grams per gram per day), a unidirectional 109Ag influx rate
constant from food (i.e., algae), and the dietborne metal con-
centration ([109Ag]food, nanomoles per gram). The rate constant
kuf can be expressed as a function of food ingestion rate (IR,
grams per gram per day) and metal assimilation efficiency (AE,
unitless; Supporting Information, Equations S2–S5). Changes in
[109Ag]org are a function of the rate constant of physiological
loss (ke, per day), body growth dilution (kg, per day), and the
metal concentration in D. magna ([109Ag]org, nanomoles per
gram). The ke value is determined using nonlinear regression
models (Supporting Information, Equations S6 and S7), and kg
is determined using an exponential growth curve (Supporting
Information, Equation S8; Croteau et al., 2011). Calculations
are described in Supporting Information, Equations S2–S10.

Membrane transport characteristics
The accumulated 109Ag concentrations in D. magna

([109Ag]org in nanomoles per gram) can be fitted to a one‐site
ligand binding model similar to the Michaelis‐Mentenequation,
which provides insights into the membrane transport
processes:
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In Equation 2, Bmax (nanomoles per gram) represents the
number of transport sites, Kmetal (nanomoles per liter) repre-
sents the affinity of each transport site, and [109Ag]exposure is the
109Ag exposure concentration (nanomoles per liter). The log(K)
value, which is indicative of binding site affinity, is derived from
the logarithm of the inverse of Kmetal (moles per liter).

Waterborne uptake experiments
Silver uptake rates from solution were characterized after

109Ag exposure in MHW, SW, and WW. Silver was added as
isotopically enriched 109AgNO3 or 109AgNP. The nominal ex-
posure concentrations ranged from 0.2 to 23 nmol L−1

(0.02–2.5 µg L−1), covering the range of environmentally rele-
vant concentrations (Nowack et al., 2015). The aqueous 109Ag
speciation for the initial dissolved 109Ag concentrations was

calculated using PHREEQC (Parkhurst & Appelo, 2013) for
MHW and SW.

For each experiment, adult D. magna were collected and
transferred into glass beakers filled with 150ml of media (MHW,
WW, or SW) spiked with either 109AgNO3 or

109AgNP to achieve
five experimental concentrations and one control. Each exposure
concentration had 15 daphnids, resulting in three replicates with
five pooled daphnids per replicate. Daphnids were exposed to
109Ag for 2 h. The short exposure allowed for the determination
of unidirectional 109Ag influxes while ensuring sufficient 109Ag
accumulation for accurate detection. Daphnids were not fed
during the exposure period, to minimize fecal scavenging and
fecal production. After exposure, daphnids were removed with a
pipette and rinsed thoroughly with UPW to remove externally
bound 109Ag. Daphnia magna were placed on an acid‐washed
polytetrafluoroethylene (PTFE) sheet (five daphnids, three repli-
cates per treatment). Samples were oven dried at 40 °C for 48 h
(Model 40 GC; Quincy Lab). Before and after exposure, water
samples (2ml) were taken from each flask after gentle stirring and
acidified with concentrated nitric acid (1% final concentration).
Separate water samples (4ml) were taken to determine dissolved
109Ag concentration from AgNPs using ICP‐MS following ultra-
filtration using 3‐kDa Amicon filters. The samples were centri-
fuged at 4000 rpm for 20min (Eppendorf 5810R). The reported
kuw values for 109AgNP (Equation 1) were corrected to account
for the newly dissolved 109Ag from 109AgNPs (Supporting In-
formation, Table S6, and text).

Dietborne uptake experiments
Dietborne uptake experiments were conducted to charac-

terize 109Ag uptake rates after dietary exposures to 109AgNP
and 109AgNO3. Algae laden with 109Ag were offered as food
to D. magna. Algae were labeled to limit surface adsorption,
as previously described (Lam & Wang, 2006). A 200‐ml
suspension of Nannochloropsis sp. (concentration of
1 × 106 cells ml−1, algal cell density measured using a Coulter
counter; Beckman Coulter Z2) at stationary phase (7 days old)
was collected and centrifuged at 2000g and 4 °C for 10min
(Eppendorf Centrifuge 5810R). The supernatant was dis-
carded, and the pellet was resuspended in 200ml of soft
water (Supporting Information, Table S5). This step was re-
peated three times to wash off the growth media. The washed
algae were then resuspended in 200ml of soft water and
spiked with different concentrations of 109Ag added as either
109AgNO3 or 109AgNP (i.e., 0.9, 9, and 23 nmol L−1). After a
24‐h exposure, algae were centrifuged and resuspended in
25 ml of ethylene diamine tetraacetic acid (5 mM; Thermo
Scientific) to remove weakly adsorbed 109Ag (Hassler
et al., 2004). Centrifugation and resuspension steps were re-
peated two times in soft water. The washed spiked algae were
resuspended in 5 ml of soft water and used in the experi-
ments. Three replicates of 100 µl of the spiked algal suspen-
sion were dried at 40 °C for 72 h on pieces of PTFE film and
prepared for analysis of 109Ag concentration as described
below (see Sample preparation and analysis). Experimental
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concentrations of algae are shown in Supporting Information,
Figure S1. Dissolution of 109AgNP in the presence of algae
over the 24‐h labeling period was also tested using 3‐kDa
Amicon ultracentrifuge tubes, as described. This washing
procedure was intended to remove weakly sorbed 109Ag. The
internalization of Ag by Nannochloropsis sp. was not tested,
but other studies have shown NP internalization by different
algal species (e.g., Chlamydomonas reinhardtii; S. Wang
et al., 2016; Yan & Wang, 2021).

Daphnids (n = 100) were exposed to each dietary 109Ag
concentration at an algal cell density of 1 × 104 cells ml−1.
After 15 min of feeding, daphnids were collected and rinsed
thoroughly (at least three times) with MHW. The short feeding
duration was chosen because the gut residence time of food
ingested by D. magna is less than 1 h (Gillis et al., 2005; Ri-
gler, 1961; Schindler, 1968), thereby avoiding the con-
founding influence of efflux on uptake. Fifteen daphnids were
collected and prepared for Ag analysis (five daphnids pooled
per sample and dried at 40 °C, see details in Sample prepa-
ration and analysis below). The remaining daphnids were
transferred into 1‐L beakers filled with clean MHW and fed
unspiked (unlabeled) algae at a cell density of 1 × 105 cells
ml−1. After 3, 6, 12, and 24 h of depuration, 15 daphnids were
sampled and prepared for Ag analysis (five daphnids pooled
per sample and dried at 40 °C, see details in Sample prepa-
ration and analysis below). Depuration media and algal food
were renewed after each sampling time point. In addition,
water samples (2 ml, n = 3) were taken before and after each
water renewal. The water samples were acidified to reach a
final concentration of 1% HNO3 and stored until analysis.

Elimination experiments
Elimination experiments were conducted to parameterize

rate constants of 109Ag loss in tissue (Supporting Information,
Equation S7), which were used to quantify and compare the
retention of 109Ag accumulated after exposure to either
109AgNO3 or 109AgNP. Specifically, 200 D. magna were ex-
posed to 0.9 nmol L−1 of each form of 109Ag in MHW for 24 h in
1‐L beakers. Results from waterborne uptake experiments in-
formed the selection of the exposure concentration to ensure
sufficient 109Ag accumulation to allow detection. Daphnids
were not fed during the exposure period, to minimize fecal
production and scavenging. After exposure, daphnids were
collected using a mesh screen, rinsed thoroughly with MHW,
and placed into 500ml of MHW. Fifteen daphnids were sam-
pled after 0, 2, 4, 8, 24, 48, 72, and 120 h of depuration (five
daphnids pooled per sample, three replicates, dried at 40 °C).
Water and algae were renewed after each sampling. Daphnids
were fed unspiked algae at cell counts of 1 × 105 cells ml−1.
Before and after renewal, water samples were collected (2 ml,
n= 3), acidified (1% HNO3), and stored until analysis.

Sample preparation and analysis
To minimize unintended metal contamination, all labware,

vials, and PTFE sheets were soaked for at least 24 h in nitric acid

or nitric acid and hydrochloric acid baths (10%–30%) and rinsed
several times with UPW. Dried daphnid and algal samples were
weighed using a microbalance (Mettler Toledo XPR206), placed
in fluoropolymer vials (Savillex), and digested with 200 µl of 16N
HNO3 (trace metal grade; Fisher Scientific) in a pressure cooker
(All American) for 3 h at approximately 125 °C and 18 psi, as
previously described (Croteau et al., 2004). Digested samples
were diluted with UPW to reach a final concentration of 5%
HNO3, spiked with an internal standard (to monitor instrument
drift and sensitivity), and filtered using 0.45‐µm polyvinylidene
fluoride syringe filters (Acrodisc). Dogfish liver certified reference
material (DOLT‐3; National Research Council Canada) and pro-
cedural blanks were digested using the same procedure during
each analytical run.

Samples were analyzed for 107Ag and 109Ag by ICP‐MS
(Agilent 7800 or PerkinElmer NexION 300Q). Measured Ag
concentrations in the DOLT‐3 were consistently within certified
values. Standard reference samples from the US Geological
Survey (USGS) were run after approximately every 10 samples.
Deviations from the standard values were <10%. Method
detection limits were 0.05 and 0.06 nmol L−1 for 107Ag and
109Ag, respectively.

Calculation of tracer concentration
The accumulated tracer 109Ag concentrations were de-

termined using previously described equations (Croteau
et al., 2011) that allow for the tracking of newly accumulated
109Ag from background levels (Supporting Information, Equa-
tions S11–S14). Background 109Ag concentrations
(0.018± 0.018 nmol g−1) in tissue were determined using un-
exposed daphnids (n= 20). The total 109Ag concentrations
(Supporting Information, Equation S12) were used in the mass‐
balance calculations for the media samples.

Statistical analysis
Statistical analyses were completed using SPSS (Ver 27; IBM)

and Microsoft Excel (Ver 2104; Microsoft). The statistical sig-
nificance (p value) was set at 0.05. Analysis of variance
(ANOVA), analysis of covariance (ANCOVA), the Kruskal‐Wallis
test, and the Kolmogorov‐Smirnov test were utilized to de-
termine differences among treatment groups. Parametric tests,
specifically ANOVA and ANCOVA, were used as a more robust
alternative to a nonparametric test for linear data. The ANOVA
was used to determine if the dry weight of daphnids varied
over time. The ANCOVA was performed on log linear efflux
data as well as linear uptake of 109AgNO3 versus 109AgNP.
Otherwise, nonparametric tests were used because of the small
sample sizes and nonnormality of the data. The Kruskal‐Wallis
test was performed to determine differences in retention rates
and percent dissolution after 2 h for different water types. The
Kolmogorov‐Smirnov test was used to compare distributions
of retention data for different 109Ag concentrations and
109AgNO3 versus 109AgNP. A Shapiro‐Wilk test was used to
determine the normality of the 109AgNP size distribution.
Mean± standard deviation (SD) or propagated error values
using the SD are presented for experimental data and
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calculations. Both SD and propagated error are referred to as
SD in the text. Standard errors are reported for metal binding
characteristics and biodynamic rate constants. All data needed
to evaluate the conclusions are presented in the text, in the
Supporting Information, and in the USGS data release (Croteau
et al., 2021).

RESULTS AND DISCUSSION
Characterization of NPs in experimental media

The TEM micrograph shows randomly distributed discrete
109AgNPs without agglomerates when suspended in UPW
(Figure 1A). Particles were spherical in shape and exhibited a
consistent log‐normal size distribution with a single peak
(Shapiro‐Wilk test for normality, p > 0.05; Figure 1B). The
number‐weighted 109AgNP core diameter measured by TEM
was 8.3 ± 3.3 nm, with approximately 77% of the particles
between 5 and 9 nm (Figure 1B). The Z‐avg (intensity‐
weighted) hydrodynamic diameter measured by DLS was
17.5 ± 0.0 nm with a PDI of 0.37 ± 0.00 (Figure 1C). The
average core diameter measured by TEM was almost 50%
smaller than the Z‐avg hydrodynamic diameter determined
by DLS. This diameter difference can be attributed to the
higher light scattering intensity of the larger particles and the
diffuse layer thickness included in the 109AgNP hydrodynamic
diameter (Baalousha & Lead, 2012). The zeta potential of the
synthesized citrate‐coated 109AgNPs was −47.1 ± 1.4 mV,
reflecting the colloidal stability of the stock suspension
(Römer et al., 2011). The total and dissolved 109Ag concen-
trations of the 109AgNP stock suspension were 330 ± 28 and

4.1 ± 0.3 mmol L−1, respectively. The citrate‐coated 109AgNP
suspension had a single peak plasmon resonance centered
on 390 nm (Figure 1D), which is consistent with previously
reported values for citrate‐coated 109AgNPs (Sikder
et al., 2018). The physiochemical properties are summarized
in Supporting Information, Table S1.

The 109AgNP aggregation was greatest in MHW and min-
imal in SW and WW (Supporting Information, Figure S3B). The
presence of dissolved organic carbon likely enhanced the col-
loidal stability of 109AgNP in WW (Afshinnia et al., 2017, 2018),
whereas the greater concentration of divalent electrolytes (i.e.,
Ca2+ and Mg2+; Supporting Information, Tables S2–S4) likely
caused the greater 109AgNP aggregation in MHW than in SW
(Baalousha et al., 2013; Supporting Information, text and Fig-
ures S2 and S3).

Waterborne 109Ag uptake in MHW
Silver accumulation rates in D. magna after waterborne ex-

posures increased linearly with exposure concentrations up to
6.5 nmol L−1 for 109Ag added as 109AgNP and 109AgNO3

(Figure 2A,B). Less than 6% of the 109Ag associated with the
109AgNP dissolved during the exposure period (Supporting
Table S6), indicating that Ag uptake in D. magna occurred
predominantly from the 109AgNP. This low AgNP dissolution is
in line with that reported in a previously published study where
<10% dissolution was observed for similarly sized particles
(Misra et al., 2012). All kuw values for 109AgNP have been cor-
rected to account for the 109AgNP dissolution (Supporting In-
formation, Table S6 and text).

FIGURE 1: Characterization of citrate‐coated, isotopically labeled 109AgNP showing (A) transmission electron microscopy micrograph (scale
bar= 20 nm), (B) core diameter distribution (n= 255; bin size 1 nm), (C) Z‐average hydrodynamic size distributions (five replicates) measured by
dynamic light scattering, and (D) visible ultraviolet spectrum showing a plasmon resonance peak at 390 nm. AgNP= silver nanoparticle.
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As shown in Table 1, the kuw values for both 109Ag forms in
MHW (in liters per gram per day) were not significantly dif-
ferent, that is, 40 ± 1 for 109AgNO3 and 37 ± 2 for 109AgNP
(ANCOVA, p > 0.05; Table 1). The lack of difference suggests
that Ag bioavailability is similar between these Ag forms, at
least for D. magna under the conditions tested. The similarity
in kuw between 109Ag forms in MHW suggests a similar uptake
mechanism. This finding is different from the previously re-
ported differences in uptake between particulate and dis-
solved metals. That is, lower bioavailability has often been
reported for colloidal‐bound metals and metal‐based NPs
compared to that for dissolved metals (Croteau et al., 2011;
Zhao & Wang, 2010). However, this assertion of a similar
uptake mechanism for both 109Ag forms in MHW is not sup-
ported by the metal binding characteristics. That is (Kmetal) for
109AgNO3 is half that for 109AgNP (Table 2). Thus, this

difference suggests that waterborne AgNO3 has a higher site
affinity and likely greater toxicity than AgNPs, at least in
D. magna under the conditions tested. Further studies are
required to elucidate this difference.

Previously published studies of Ag bioavailability in D.
magna reported lower kuw values than those reported in the
present study, but these studies used longer exposure times,
higher Ag concentrations, or both. Both factors will bias
downward the constants that define Ag bioavailability because
Ag influxes were not unidirectional (i.e., accumulation rates
were influenced by both uptake and elimination processes).
Greater exposure concentrations also could yield to accumu-
lation rates obeying second‐order kinetics (i.e., ligand‐binding
kinetics) rather than first‐order kinetics (i.e., update depends
solely on exposure concentrations; Croteau & Luoma, 2007).
For example, Khan et al. (2015) exposed D. magna for 24 h to

FIGURE 2: Silver (Ag) influx rates (±SD) in Daphnia magna exposed to 109Ag in experimental media spiked with isotopically labeled 109AgNO3 or
citrate‐coated, isotopically labeled 109AgNP. Water types examined are (A,B) moderately hard water, (C,D) synthetic storm water, and (E,F)
secondary treated wastewater. Each data point represents 109Ag concentration for 15 individuals and three water samples (±SD). The dashed line
represents linear regression relations used to calculate kuw. The solid line represents the nonlinear regression fit to the one‐site ligand‐binding
model. The open symbol in (F) was not included in the model fitting. MHW=moderately hard water; kuw= influx rate constant; LBM= ligand‐
binding model; AgNP= silver nanoparticle; SW= storm water; WW=wastewater.
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citrate‐coated AgNPs (11.6± 3.2 nm core particle size,
22.0± 1.0 nm hydrodynamic diameter) at concentrations
three times higher than those used in the present study
(0–69 nmol L−1). Their reported kuw value for AgNP was 40
times lower (i.e., 0.87± 0.31 L g−1 day−1) than our value (Khan
et al., 2015). Similarly, Lam and Wang (2006) exposed D.
magna for 8 h to AgNO3 (0.07–8.2 nmol L−1) and reported a kuw
six times lower than our value (i.e., 6.20± 0.07 L g−1 day−1).
Unidirectional Ag influxes are best captured after short ex-
posures, and the use of stable isotope tracers allows for the
detection of Ag uptake at environmentally relevant concen-
trations even after short exposure durations (Luoma &
Rainbow, 2005; W.‐X. Wang et al., 1995).

Aggregation of AgNPs at higher concentrations (Afshinnia
et al., 2016) could also explain the lower Ag bioavailability re-
ported at higher concentration exposures. Although ag-
gregation occurred in our experiments conducted in MHW
(Supporting Information, Figures S2 and S3), it did not trigger
detectable differences in 109Ag bioavailability (i.e., similar kuw
values were observed for 109AgNPs and dissolved 109Ag;
Table 1). Zhao and Wang (2010) observed a biphasic relation-
ship between Ag uptake in D. magna and exposure concen-
tration (i.e., lower bioavailability at lower exposure
concentrations and higher bioavailability at higher exposure
concentrations). However, the high exposure concentrations
used (20–4600 nmol L−1 AgNPs), which can influence uptake as
well as aggregate size (Afshinnia et al., 2016), impede direct
comparisons (Zhao & Wang, 2010).

109Ag bioavailability from the aqueous phase in
different media

For all three water exposures (MHW, SW, WW) the majority
of 109Ag added as 109AgNO3 and 109AgNP remained in sus-
pension (Supporting Information, Tables S6 and S7), and up-
take varied based on both the form of 109Ag and the water
type. Detailed information on dissolution and uptake can be
found in Supporting Information, Tables S6 and S7.

The chemical composition of the exposure media affected
109Ag bioavailability (Table 2 and Figure 2; Supporting In-
formation, Tables S6 and S7). Bioavailability of 109Ag was
greater in SW and WW compared to MHW for both 109Ag
forms, but the difference was more pronounced for 109AgNP
than for 109AgNO3. That is, kuw values for 109AgNP were more
than three times greater in SW and WW compared to MHW.
The greater 109Ag bioavailability from 109AgNP exposures in
SW and WW compared to that in MHW may be due, in part, to
the lower AgNP aggregation in these chemically complex
media. As shown in Supporting Information, Figures S2 and S3,
109AgNP aggregated almost instantly in MHW compared to the
negligible aggregation observed in SW and WW over 10min.
The influence of dissolution on AgNP bioavailability among the
media was inconsequential (i.e., dissolution of 109AgNP in
MHW, SW, and WW was statistically the same after 2 h; Kruskal‐
Wallis, p> 0.05). The difference in 109Ag bioavailability from
109AgNP exposure among water types highlights the im-
portance of using environmentally relevant water matrices
when examining bioavailability and potential toxicity. Data
from our experiments show that some ligand‐rich water types
increase Ag bioavailability from 109AgNP exposures, which can
exacerbate toxicity.

Speciation modeling (Supporting Information, Tables S8
and S9) reveals that the dominant form of Ag varies between
water types, which has implications for bioavailability and
toxicity. In MHW, Ag+ dominates (91%), whereas in SW, 85%
of organo‐Ag is expected (namely a glycine Ag complex).
Speciation modeling of Ag in WW was impeded by the lack of
conditional constants for some of the chemical constituents,
but organo‐Ag complexes are likely to dominate as predicted
for SW. Some organo‐Ag complexes could be bioavailable
(Luoma et al., 2016). Previous studies have shown that a
greater proportion of organo‐Ag can increase Ag bioavail-
ability and result in higher binding site densities depending

TABLE 2: Metal binding characteristics and uptake rate constants for 109Ag uptake for Daphnia magna exposed for 2 h to a range of isotopically
labeled 109AgNO3 and 109AgNP concentrations in different types of water

Water type 109Ag type kuw (±SE; L g−1 day−1)a Bmax (±SE; nmol g−1) Kmetal (±SE; nmol L−1) Log (K) (±SE)

Moderately hard water 109AgNO3 40± 2 (4) 460± 50 5.1± 2.0 8.3± 0.2
109AgNP 37± 2 (4) 590± 20 12± 1 7.9± 0.0

Storm water 109AgNO3 48± 1 (4) 350± 30 3.7± 1.0 8.4± 0.1
109AgNP 130± 20 (3) 930± 110 13± 3 7.9± 0.1

Wastewater 109AgNO3 48± 2 (4) 430± 20 4.5± 0.5 8.3± 0.0
109AgNP 160± 30 (3) 350± 30b 1.7± 0.6 8.8± 0.1

aNumber of data points included for calculation of kuw is in parentheses.
bThe 4.4 nmol L−1 data point was omitted for modeling.
Ag= silver; NP= nanoparticle; kuw= influx rate constant; Bmax= number of transport sites; Kmetal= affinity of each transport site.

TABLE 1: Biodynamic parameter values (±SE) for 109Ag accumulation
and elimination by Daphnia magna in moderately hard water

Parameter Symbol (unit) 109AgNO3
109AgNP

Influx rate constant of
109Ag

kuw (L g−1 day−1) 40± 2 37± 2

Rate constants of
109Ag loss

ke (day−1) 1.1± 0.1 14± 4a

0.14± 0.02b

Ingestion rate IR (g g−1 day−1) 1.0–20 0.85–13
109Ag assimilation

efficiency
AE (%) 57%–62% 16%–43%

Rate constant of
dietborne 109Ag

kuf (g g−1 day−1) 0.6–12 0.1–5.8

aFast exchanging compartment.
bSlow exchanging compartment.
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on the types of organic material present (Bell & Kramer, 2009;
Bielmyer et al., 2002; Yang et al., 2014). Although speciation
modeling was not completed for WW because of the chem-
ical complexity of this water type, it is likely that WW contains
many different forms of organic compounds that can influ-
ence bioavailability and modify membrane characteristics.
Differences in water chemistry may also affect AgNP be-
havior. For example, the higher divalent cation concen-
trations in MHW compared to SW (Supporting Information,
Tables S2–S4) are known to be more efficient at destabilizing
colloidal suspensions according to the Schulze‐Hardy rule
(Trefalt et al., 2020), which may cause instability of citrate‐
coated AgNPs and alter surface charges of AgNPs (Chinna-
pongse et al., 2011). In addition, natural organic matter
(NOM) can adsorb on AgNP surfaces, form NOM coronas,
and enhance NP colloidal stability, which in turn increases NP
bioavailability (Baalousha et al., 2018; Lynch et al., 2014).

Differences in membrane characteristics could also in part
explain the greater bioavailability of 109Ag from 109AgNP ex-
posures in SW and WW compared to that in MHW. However,
trends were not evident for both binding site capacities and
affinity for 109AgNP treatments (Table 1). On the one hand,
binding site capacity (Bmax; Equation 2) values varied from 350
to 930 nmol g−1 among the different water types: Bmax was
greatest in SW and lowest in WW. The increase in binding site
capacity suggests that 109AgNP forms bioavailable 109Ag
complexes after binding to either glycine or Suwannee River
fulvic acids or both (e.g., Suwannee River humic acid has been
shown to enhance uptake of Ag from polyvinylpyrrolidone‐
coated AgNP (Luoma et al., 2016). On the other hand, site
affinities (log[K], Equation 2) were similar in MHW and SW but
almost 1 order of magnitude greater in WW. A greater toxicity
for Ag after 109AgNP exposures in WW is likely, which corre-
sponds to the greatest 109Ag bioavailability (kuw of 160 L g−1

day−1). Note that for the WW treatment with 109AgNP, the
4.4 nmol L−1 data point was excluded from the saturation ki-
netics calculations because of a likely experimental error.
Binding characteristics were not appreciably different for
109AgNO3 among the different water types.

Dietborne uptake in MHW
Silver accumulation rates in daphnids varied between 163

and 280 nmol g−1 day−1 when exposed to dietary 109Ag
concentrations ranging from 12 to 221 nmol g−1 (Figure 3).
Correlation between 109Ag influxes and dietary 109Ag concen-
trations was not apparent for either form of 109Ag
(Figure 3A). Dissolution of 109Ag from 109AgNP during the 24‐h
exposure to algae in soft water was <5%. The fraction of dis-
solved 109Ag in the algal spike was not determined, but the
fraction of newly dissolved 109Ag from the 109AgNP in the water
during dietary exposure was <1% (data not shown). Hence,
109Ag uptake from water during dietary exposure was incon-
sequential.

The 109Ag AE by daphnids after dietary exposures was sig-
nificantly greater after exposure to algae preexposed to
109AgNO3 compared to 109AgNP (Figure 3B; Kolmogorov‐

Smirnov, p< 0.05). That is, the 109Ag AE from 109AgNO3 varied
between 57% and 62%, whereas the 109Ag AE from 109AgNP
varied between 16% and 43%. For 109AgNO3, the

109Ag AE
was not dependent on exposure concentration (Figure 4;
Kruskal‐Wallis, p> 0.05), but for 109AgNP, the 109Ag AE
decreased at higher exposure concentrations (Figure 3B;
Kruskal‐Wallis, p< 0.05). Despite the higher percentage of
109Ag retained after exposures to algae preexposed to
109AgNO3, both forms of 109Ag were rapidly eliminated over
the first 3–6 h of depuration (Figure 4).

These results align with previous studies with D. magna
showing that the Ag AE is independent of concentration for
dietborne exposures using AgNO3 (Lam & Wang, 2006) but

FIGURE 3: (A) Dietborne 109Ag influx (±SD), (B) Ag assimilation effi-
ciency (±SD), and (C) food ingestion rate (±SD) in Daphnia magna
exposed to a range of dietary concentrations of isotopically labeled
109AgNO3 and citrate‐coated 109AgNP concentrations for 15min. Each
data point represents the average value for 15 individuals and three
food (algal) samples. AgNP= silver nanoparticle.
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decreases with increasing dietary Ag concentrations from
AgNP (Zhao & Wang, 2010). It should be noted that the dietary
Ag concentrations in these studies were 2–200 times higher
than our dietary 109Ag concentrations. The higher dietary Ag
concentration could explain the different magnitudes of Ag
AEs (Lam & Wang, 2006; Zhao & Wang, 2010). Increasing
109AgNP exposures induce dietary stress at high 109AgNP
concentrations, causing a decrease in 109Ag AE. The greater
assimilation of 109Ag from dietary 109AgNO3 exposures also
suggests a different biological fate and greater risk of toxicity
than dietary exposure to 109AgNP.

In contrast to the physiological difference in 109Ag assim-
ilation between forms, the behavioral response was similar.
That is, the food IR decreased with increasing dietborne 109Ag
concentrations after exposure to algae preexposed to either
109AgNO3 or

109AgNP (Table 1 and Figure 3C). The decrease in
food IR indicates a shift in feeding behavior in the presence of
109Ag that is independent of the form of 109Ag used. Feeding
inhibition and avoidance of food contaminated with Ag have
been shown in aquatic organisms including D. magna (Croteau
et al., 2011; Zhao & Wang, 2010). Previous studies with
Lymnaea stagnalis, a benthic freshwater snail, showed reduced
IRs for cit‐AgNP versus ionic Ag at higher metal concentrations,
suggesting food avoidance in the presence of AgNP (Croteau
et al., 2011). Studies of bivalves with dissolved Ag showed an
inverse relationship between AE and IR, resulting in higher AE
at lower IR (W.‐X. Wang et al., 1995). In the present study, the
IR decreased with increasing dietborne concentrations for both
forms of 109Ag, whereas the AE only decreased with 109Ag
concentration for the 109AgNP exposures. The difference in the
effects of dietborne exposure of ionic versus NP‐based Ag in
D. magna, as well as in other freshwater invertebrates pre-
viously studied, highlights the complexity of organism re-
sponses and effects. The reduced feeding activity due to Ag
exposures can trigger adverse effects, which can propagate to
higher‐level physiological processes like growth and re-
production and ultimately affect the overall population within
an aquatic system. The behavioral response of daphnids to a
metal‐contaminated diet and the impact of contaminated food

on metabolic processes and long‐term population health are
not well understood and are important areas for future study. In
addition, future studies could include the dietary pathway using
daphnids in SW and WW to better understand the overall bi-
oaccumulation potential and toxicity risks. A study by Oliver
et al. (2014) showed that water chemistry did not impact AgNP
dietborne uptake for freshwater aquatic snails, but this rela-
tionship may be species‐specific and has not been tested with
Daphnia spp.

Physiological elimination of 109Ag
The longer‐term physiological elimination of 109Ag accu-

mulated after waterborne exposures to 109Ag in MHW varied
significantly between 109AgNO3 and 109AgNP (ANCOVA,
p< 0.05), suggesting a different fate of 109Ag within daphnids
between 109Ag forms (Figure 5). The 109Ag accumulated after
109AgNO3 exposure was rapidly eliminated during the first
3 days of depuration (Figure 5A). The rate constant of elimi-
nation (ke), estimated using a one‐compartment model, was
1.1± 0.1 day−1. Less than 3% of the accumulated 109Ag re-
mained in the daphnid tissues after 3 days of depuration, with
no further loss observed afterward. In contrast, elimination of
109Ag accumulated after 109AgNP exposure followed a two‐
compartment model (Figure 5B), with 30% of the accumulated
109Ag rapidly eliminated during the first 4 h of depuration. After
4 h of depuration, the loss of 109Ag was slower, with a rate
constant of loss of 0.14± 0.02 day−1 (Table 1). Body growth
dilution did not influence 109Ag elimination (Supporting In-
formation, Equation S8 and Figure S4).

Our data align with previous studies reporting faster efflux
and lower retention of accumulated Ag after AgNO3 compared
to AgNP exposures in D. magna (Lam & Wang, 2006; Zhao &
Wang, 2010). Zhao and Wang (2010) attributed the greater
retention of Ag accumulated after AgNP exposure in compar-
ison to AgNO3 exposure to translocation and biodistribution of
AgNP throughout the daphnid body. In addition, the biphasic
depuration observed after 109AgNP exposure suggests that
fast elimination occurs from particles originating in the gut,

FIGURE 4: Percentage of 109Ag retained (±SD) in Daphnia magna over time after dietary exposure (15min) to a range of dietborne concentrations
of isotopically labeled (A) 109AgNO3 and (B) citrate‐coated 109AgNP. Each data point represents the average percent 109Ag retained for 15
individuals. Nominal 109Ag concentrations are listed for each symbol.
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where algae can help force out particles; however, the slow
depuration may result from particles distributed in nongut tis-
sues throughout the body (Liu et al., 2019). Hence, increased
retention of AgNPs as a result of slow depuration could lead to
chronic toxicity for daphnids, having multigenerational effects
and ultimately resulting in alterations of overall ecosystem
health (Hartmann et al., 2019).

Biodynamic understanding of109Ag in D. magna
We predicted steady‐state 109Ag concentration, [109Ag]ss,

based on waterborne and dietary 109Ag exposure by
incorporating the uptake and elimination rate constants de-
rived from our experiments (Supporting Information, Equa-
tion S2) along with environmentally relevant concentrations of
109Ag for wastewater‐dominated waters, such as treatment
wetlands (e.g., 0.009–0.9 nmol L−1; Gottschalk et al., 2013). We
assumed that the efflux rate constant, ke, is similar between
exposure routes (Lam & Wang, 2006; Yu & Wang, 2002). As-
suming an environmentally relevant chronic exposure of dietary
109Ag from 109AgNO3 and 109AgNP of 10 nmol g−1 and an
associated waterborne 109Ag concentration of 1 nmol L−1,
model predictions reveal that 109Ag accumulation will be 4.5
times greater for 109AgNP than 109AgNO3. For both forms,
109Ag accumulation will be 1.6–2.8 times greater from food
than from water. Specifically, the model predicts an [109Ag]ss,-
diet of 110 and 410 nmol g−1 for 109AgNO3 and 109AgNP, re-
spectively. The [109Ag]ss,water is 38 and 260 nmol L−1 for
109AgNO3 and

109AgNP, respectively. The contributions of diet
to 109Ag bioaccumulation decrease with increasing 109Ag
concentrations for both forms (because of decreases in IR), but
higher 109Ag concentrations are less likely to be experienced in
natural systems.

Despite seemingly high kuw values, our results show that
dietborne 109Ag had a greater influence on body burdens than
waterborne 109Ag at environmentally relevant concentrations.
In general, filter‐feeding species with fast IR, high AE, and low
ke will achieve a higher metal body burden in comparison to
species with slower IR, lower AE, and higher ke (Luoma &
Rainbow, 2005). In our study, 109Ag from 109AgNP exposure
yielded greater bioaccumulation than 109AgNO3 exposure
because of slower elimination rates and greater 109Ag AEs in

D. magna. Dissimilarities in ke between forms further suggest a
different physiological fate of 109Ag between exposures.

Environmental implications
Our results help improve the understanding of the envi-

ronmental behavior and effects of citrate‐coated AgNPs in a
model keystone zooplankton species. Zooplankton, such as D.
magna, play an important role in the functioning of natural
treatment systems that can experience continual input of
AgNPs. Although continued usage of Ag nanotechnologies
may result in increased Ag concentrations in natural waters, the
environmental concentrations will likely remain in the low
nanomoles per liter range (Gottschalk et al., 2013). Our appli-
cation of a metal isotope tracer technique and biodynamic
modeling allowed the use of environmentally relevant con-
centrations and the derivation of rate constants required to
assess Ag bioavailability among Ag forms, water types, and
exposure routes.

We show that AgNPs are bioavailable to daphnids from
both water and food. Incorporation of the Ag uptake and loss
parameters into the integrated form of Equation 1 (Supporting
Information, Equation S2) shows that dietary exposure at lower
concentrations, which are likely to be found in natural treat-
ment systems, would result in a high body burden of Ag in D.
magna. The primary driver for the higher bioaccumulation of
109Ag after 109AgNP exposure compared to 109AgNO3 ex-
posure is the low rate constant of loss. Given the link between
bioaccumulation and toxicity, dietborne exposures to Ag
(including AgNPs) are likely to elicit adverse effects more
readily than waterborne exposure. Because 109Ag from
109AgNPs is efficiently retained in daphnids (Figure 5A), trophic
transfer of Ag from AgNPs may be a significant threat to
aquatic food chains. Based on the bioavailability and retention
of 109Ag from 109AgNPs, our results indicate that exposure to
AgNPs, which are considered emerging contaminants, could
have chronic effects on daphnid populations and subsequent
generations. With filter‐feeding zooplankton, such as daphnids,
playing a crucial role in the overall functioning of natural
treatment systems, the effects of Ag exposure in different
forms on daphnids and other zooplankton could be fully
quantified with further studies.

FIGURE 5: Percentage of elimination of 109Ag accumulated after waterborne exposures in moderately hard water to isotopically labeled (A)
109AgNO3 and (B) citrate‐coated 109AgNP. Each data point represents the average percent 109Ag retained for 15 individuals (±SD).
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Future studies could evaluate the longer‐term effect of
AgNO3 and AgNPs on the physiological stress in exposed or-
ganisms and offspring, growth inhibition, and the potential of
overall ecosystem imbalances. In addition, biokinetic and tox-
icity studies using natural waters and low contaminant con-
centrations can provide predictions of risk that are more
applicable to complex environmental systems such as natural
treatment systems.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5271.
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