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ABSTRACT

Our review of the last interglacial (Marine
Isotope Stage Se) stratigraphic record from the
Boiling Hole exposure in northern Eleuthera Is-
land, Bahamas, revealed the occurrence of two
vertically stacked shallowing-upward sequences
of oolitic coastal deposits showing beach facies at
about 3 and 6 m above mean sea level, respec-
tively. These beach strata dip towards the bank
interior and the upper one includes a paleosurface
on top of an oolitic grainstone bed with a 2-m-
long bird trackway. These fossil beaches corre-
spond to two distinctive sea-level highstands dur-
ing the last interglacial that could have possibly
reached +5 and +8 m above modern datum, re-
spectively, if estimates of regional subsidence are
indeed correct. The bird footprints are the first
reported occurrence of vertebrate trace fossils
from the Bahama Archipelago. The track maker
was probably an extant shorebird belonging to the
Order Charadriiformes. Track preservation in an
oolitic grainstone is remarkable and may be re-
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lated to an early phase of halite cementation. Fi-
nally, the dip of the beach beds indicates that con-
stituent grains were transported onto the island
from the bank side by a westerly flux opposite to
the modern sediment transport direction in the
area.

INTRODUCTION

Northern Eleuthera has some of the most
spectacular rock exposures in the Bahamas, owing
to the presence of steep cliffs bordering the open
North Atlantic Ocean. Moreover, these outcrops
have only been studied in a preliminary way.
Here, impressive 25 m-high sea cliffs displaying
several stratigraphic units await further examina-
tion and promise to provide more information on
past sea-level stands, ancient climates, and sedi-
mentary processes that are no longer operational.
This paper revisits one of the most prominent of
these exposures, the Boiling Hole, in order to (1)
complement the stratigraphic and sea-level re-
cords from the Bahamas for the early part of the
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last interglacial period (Marine Isotope Stage Se);
(2) describe the first fossil vertebrate tracks re-
ported from the archipelago; and (3) present an
example of a large amount of oolitic sediment that
was transported from west to east, contrary to the
present-day main sediment transport vector on
Great Bahama Bank.

GEOLOGICAL SETTING

Eleuthera is a long and narrow carbonate
island (140 x 2-5 km), located on the northeastern
and windward margin of the Great Bahama Bank
(GBB, Figure 1).

North
Aflantic
Ocean

Eleuthera

Figure 1. Location of the study area (modified
Jrom Kindler and Hearty, 1995).

This area belongs to the tectonically passive
northwestern Bahamas (Sheridan et al., 1988) and
is only affected by slow (1.6 cm/10° years; Lynts,
1970; Mullins and Lynts, 1977; Carew and Myl-
roie, 1995) subsidence mostly due to thermal de-
cay and sedimentary loading (Pindell, 1985). The
main physical parameters controlling sediment
distribution on the GBB are wind, wind-induced
waves and currents, and tidal currents. The long-
term influence of tropical storms and hurricanes is
less well constrained (Harris, 1979; Boss and
Neumann, 1993). In the Bahamas, prevailing
winds are from northeast to southeast during most
of the year (Sealey, 1994), with strong northwest-
erly winds, related to cold fronts, further affecting
the area in the winter. Wind further generates
waves and currents that determine the subaqueous
transport of sediment and the primary generation
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and distribution of sedimentary bedforms (Purdy,
1963; Swart et al, 2005). Predominant water
movement and sediment transport on the GBB is
thus towards the west, although some southward
and eastward motion can occur during northwest-
erly gales in the winter (Bathurst, 1975).

The eastern coast of northern Eleuthera
displays locally high (>20 m) cliffs, composed of
vertically stacked carbonate units and paleosols,
that commonly stand less than 1 km from the bank
edge. Carbonate units accumulated during inter-
glacial sea-level highstands, whereas the paleosols
developed mostly during glacial lowstands
(Carew and Mylroie, 2001). Details on the geol-
ogy and stratigraphy of the area can be found in
Kindler and Hearty (1995, 1997), Hearty (1997,
1998), Hearty and Kaufman (2000) and Panuska
and others (2002). These carbonate units are
dominantly composed of eolian sediments, but
marine deposits recording ancient sea stands are
present, with some reported to liec up to 18 m
above modern sea level (Hearty et al., 1999; Kin-
dler and Hearty, 2000). Eolianite foresets most
commonly dip towards the interior of islands, em-
phasizing further that the source material for these
dunes originated from the shore and that only on-
shore winds are effective in dune buildup
(Mackenzie, 1964; Ball, 1967). The widespread
occurrence of oolitic deposits in northern
Eleuthera, as well as on other windward islands is
problematic because no ooids have been reported
as presently forming on the narrow outer plat-
forms fronting these islands, which raises the
question of the origin of these constituent grains.

The Boiling Hole (lat. 25°25°56™N, long.
76°35°54”) is a 75 m-wide cove on the eastward,
ocean-facing shoreline of northern Eleuthera,
situated about 800 m to the southeast of the Glass
Window bridge (Figure 2). The back end of the
cove comprises a large sea cave that is only acces-
sible during fair weather and at low tide. The out-
crop includes three vertically stacked stratigraphic
units (Figure 3) that were first identified by Kin-
dler and Hearty (1995). Unit I forms a chain of
deeply karstified eolian dunes of middle Pleisto-
cene age that nonetheless exhibit original topog-
raphy. The ancient dune crests may reach eleva-
tions of up to 25 m above sea level, whereas the
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interdune swales, such as the Boiling Hole cove,
are partly submerged.

] recent washovers
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Figure 2. Geologic map of the Boiling Hole area
(modified from Kindler and Hearty, 1997).
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The northwestern and southeastern flanks of the
cove consist of oolitic-peloidal and bioclastic
eolianites, respectively (Figure 4) that may corre-
spond to discrete depositional events during sepa-
rate interglacials (possibly MIS 9/11 and 13, re-
spectively; Hearty, 1998). The upper surface of
these limestones is capped by a calcrete and brec-
cia-rich paleosol that commonly has been stripped
away by marine erosion particularly at low eleva-
tions. Unit II is composed of light-grey beds that
partly fill the interdunal depression corresponding
to the Boiling Hole cove. Its thickness varies from
zero on the sides of the depression, to over six
meters in the trough axis. These beds consist of
well-cemented, oolitic-peloidal limestone includ-
ing a small, but remarkable proportion of radial
ooids (Kindler and Hearty, 1995; Figures Sa and
b). According to previous authors (Kindler and
Hearty, 1995; Hearty, 1998; Hearty and Kaufman,
2000), this unit corresponds to one shallowing-
upward sequence from lower shoreface to back-
shore deposits showing fenestrae-rich beach beds

at about +5 m above modern sea level. UnitII is

SW

A _,1'

Unithl

new section

Figure 3. Southeastern end of the Boiling Hole
exposure; background cliff height is 20 m. The
dotted line emphasizes the boundary between
Units I and II which is dipping towards the
southwest (modified from Kindler and Hearty,
1995).
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attributed to MIS Se because of its stratigraphic
position and the presence of elevated beach facies
(Kindler and Hearty, 1995), and also because it
yielded whole-rock amino-acid ratios that are
consistent with the beginning of the last intergla-
cial period (Hearty, 1998; Hearty and Kaufman,
2000). Unit IIT overlies Unit II along the back
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Figure 4. a) Sample EL 169. Microscopic view
of the middle Pleistocene (Unit I, MIS 13?) bio-
clastic eolianite exposed on the southeastern end
of the Boiling Hole outcrop. Note the pronounced
diagenetic alteration of constituent grains (e.g.,
peneroplid fragment in lower left corner and
Halimeda clast above center). Note also the early
generation of meteoric vadose cement (thin ar-
row) and the late generation of isopachous fi-
brous rims (thick arrow) likely precipitated dur-
ing a later sea-level event. b) Sample EL 64. Mi-
croscopic view of the middle Pleistocene (Unit I,
MIS 11?) peloidal limestone exposed on the
northwestern end of the Boiling Hole outcrop.
Note extensive, late meteoric sparry cement. Thin
arrow points to remnants of an early isopachous
fibrous rim of marine origin. Thick arrow indi-
cates polygonal boundaries suggesting this rock
was cemented in a phreatic setting. Scale bars =
200 um.
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Figure 5. a) Sample EL 205. Microscopic view
of last interglacial oolitic deposits (Unit II, MIS
Se) at Boiling Hole. Note the abundance of nor-
mal (i.e. thickly coated ooids = no) compared to
Fig. 4B; scale bar = 200 ym. b) Sample EL 204.
Peculiar radial ooid with a miliolid nucleus. Such
ooids are typical of a low energy setting (Land et
al., 1979); scale bar = 100 um. c) Sample EL 69.
Microscopic view of the upper Pleistocene bio-
clastic eolianite (Unit 11, MIS 5a). Note the good
preservation of bioclasts compared to the middle
Pleistocene eolianite (Figure 4a). Note also me-
teoric meniscus cement (thin arrow) binding the
grains and incipient alveolar texture of pedogenic
origin (thick arrow); scale bar = 200 um.
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wall of the Boiling Hole cove. In this exposure, a
thin calcrete occurs between the two units,
whereas at Whale Point, 3.5 km to the NW, they
are separated by a 30 cm thick paleosol. Unit III
consists of small (up to 3 m high) bioclastic
eolianites (Figure 5c) bearing numerous root casts
and it is capped by a calcrete. Constituent grains
have retained their original mineralogy (aragonite
or high-Mg calcite). This difference in petro-
graphic characteristics, the presence of an inter-
vening paleosol, and distinctive whole-rock
amino-acid ratios (Hearty, 1998), all indicate that
Unit IT and Unit III represent separate depositional
events and suggest a correlation of the latter unit
with MIS 5a.

METHODS

For this study, the geometry, stratigraphy
and sedimentology of Unit II were reexamined in
detail in the field. Particular attention was given
to bounding surfaces and physical sedimentary
structures that provide useful information on
sediment transport vectors and past depositional
environments. A new stratigraphic section was
logged at cm-scale on the southeastern flank of
the Boiling Hole cove and sedimentological in-
vestigations were carried out in the sea cave
carved in the back wall of the exposure. The
newly discovered footprints were documented and
measured according to current vertebrate ich-
nological standards and methods (e.g., Leonardi,
1987). Track length was measured axially from
the tip of digit III along the axis of digit III to the
most posterior trace of the heel pad. Width was
measured between the tips of digits II and IV.
Tracings and a silicon cast of the trackway were
made.

RESULTS

The new stratigraphic section logged at the
southeastern end of the Boiling Hole cove (Fig-
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ures 3 and 6) only displays the lowermost two
lithological units exposed in the area.
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Figure 6. Stratigraphic section logged in the
southeastern end of the Boiling Hole exposure.
Precise location is indicated on Fig. 3. Setting
column: s = subtidal, b = beach, e = eolian. Dots
indicate sample locations. Inverted Ys correspond
to rhizomorphs (modified from Kindler and Hine,
2008).

Unit [ is visible from sea level up to an
elevation of 2 m. It consists of a well-cemented,
iron-stained, bioclastic eolianite exhibiting large-
scale foresets dipping steeply towards the south-
west (Figure 7). The upper surface of this rock
body is highly irregular and rises towards the
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Figure 7. Basal part of studied section. Arrows point to the boundary between Units I and II which
rises towards the northeast. Black lines in Unit I correspond to the dip of eolian foresets. White lines in

Unit II (subunit 2a) show the dip of beach beds.

northeast (Figure 7). The oolitic-peloidal Unit II
is 6 m thick here and includes two shallowing-
upward depositional sequences separated, at about
4 m, by a pronounced erosional surface dipping
towards the southwest and overlain by a thin con-
glomerate (Figure 6). Each sequence includes
subtidal, beach and eolian facies, identified by
sedimentary structures characteristic of these de-
positional environments (Fig. 6). The subtidal
deposits display small-scale cross beds generated
by the action of waves and currents. The overly-
ing beach sediments are represented by large-
scale, fenestrae-rich, planar cross beds with a low-
angle dip towards the southwest (Figure 7) and
occur between 2.5 and 3.3 m in the lower se-
quence and between 5 and 7 m in the upper one.
The eolian beds dip mainly towards the southwest
and further comprise unusual polygonal structures
with a diameter of up to 0.5 m, already observed
by Kindler and Hearty (1995), and resembling
prism or desiccation cracks (Demicco and Hardie,
1994). The lower sequence disappears towards
the back end of the cove (i.e. towards the south-
west) where the section described by Kindler and
Hearty (1995) was logged. The basal beach beds
from the upper sequence form the floor of the
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large sea cave carved in the back wall of the Boil-
ing Hole cove. Near the southeastern entrance of
the cave, the upper surface of one of these beds
exhibits bird tracks (Figures 8, 9 and 10).

Figure 8. Partial view of the trackway site near
the southeastern entrance of the back-wall cave at
Boiling Hole. Note the occurrence of small wave
ripples in the beds overlying the surface where the
tracks are exposed (black arrow). Small wave
ripples characterize the lower intertidal and up-
per subtidal environments.

These tracks are preserved in an oolitic grainstone
comprising an early generation of isopachous fi-
brous cement of marine origin, rare cubic molds
that could represent an early halite cement, as des-
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Figure 9. Part of the bird trackway showing footprints T2 to T7 (Figure 10). Footprint T7 (far lefl) is
the best preserved track. It has relatively broad digits and a wide divarication, but it shows no evidence

Jor webbing of the foot.
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Figure 10. Site map of the bird footprint-bearing
paleosurface. Most of the footprints can be attrib-
uted to the over 2-m long trackway. Between the
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Jootprints T15 and T16, the bird probably walked
over a slightly drier substrate. This might explain
why only some shallow imprints of the third digit
are visible,

cribed by Davaud and Strasser (1984), and late
blocky spar precipitated in a meteoric phreatic
setting (Figure 11). On the footprint-bearing sur-
face, a total of 19 bird tracks were recognized.
Some of the prints are moderately to fairly well
preserved, but none show anatomical details such
as digital nodes or webbing traces. Nonetheless,
all footprints are believed to be true tracks, as it is
very unlikely that underprints would form in an
unlaminated oolitic grainstone. All but one (foot-
print T4) can be attributed to the about 2 m long
trackway (Figure 10). However, as the left and
right footprints could not clearly be identified,
pace and stride length have not been measured.
Between footprints 15 and 16, several footprints
are poorly defined and only some shallow longi-
tudinal grooves that could be the prints of the
third digit, were observed. Footprint length varies
from 3 to 5.5 cm (average 4.2 c¢m), and width
from 4.5 to 7 cm (average 6 cm). Digit III usually
is the most deeply impressed (up to 0.8 cm). The
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digits are relatively broad and their tips are U- to
V-shaped and without claw impressions. Tracks
with three digit prints mostly have a relatively
pronounced heel region where the three digits
merge together.

Figure 11. Sample EL 220. Thin-section of the
oolitic grainstone bed ontop of which the bird
tracks are imprinted, Thin arrow points to a
square-shaped pore possibly resulting from the
dissolution of a halite crystal. Thick arrow indi-
cates partly preserved fibrous rim likely corre-
sponding to an early marine cement. Note par-
tially leached ooids and widespread late sparry
cement; scale bar = 200 um.

DISCUSSION
MIS Se Sea Level

The recognition of two vertically stacked
shallowing-upward sequences in the MIS Se strata
from the Boiling Hole supports earlier reports on
the occurrence of two distinctive sea-level high-
stands in the Bahamas region during the last in-
terglacial period (Chen et al.,, 1991; Hearty and
Kindler, 1993, 1995; Neumann and Hearty, 1996;
White et al., 1998; Wilson et al., 1998; Carew and
Mylroie, 1999). Due to the lack of suitable mate-
rial (e.g., in situ coral specimens), these sequences
could not be precisely dated with the U-series
methods. Nonetheless, the intervening erosional
surface at 4 m can tentatively be correlated with
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the sea-level lowstand defined by White et al.
(2001) as the Devil’s Point Event, and dated at
about 125-124 ka. Thus, based on Chen et al.’s
(1991) data, the first sequence (sequence Sell;
White et al., 2001) could have been deposited be-
tween 130 and 125 ka and the second one (se-
quence Sel; White et al., 2001) between 124 and
119 ka. However, the ages of these two deposi-
tional/sea-level events ultimately may have to be
shifted towards younger values due to recoil-
related processes that in most cases, add excess
daughter isotopes to the coral framework (Frui-
jtier et al., 2000; Thompson and Goldstein, 2005).
The major point of interest of the MIS 5e record
from the Boiling Hole is the occurrence of well-
expressed beach facies that, even more than coral
reefs, provides a precise estimate of past sea-level
stands. Thus, the elevation of beach bedding sug-
gests that mean relative sea level stood at about
+3 m (i.e. between 2.5 and 3.3 m) during deposi-
tion of sequence 5ell, and at +6 m (i.e. between 5
and 7 m) during accumulation of sequence Sel.
Consideration of the subsidence rates estimated
by Lynts (1970) and Carew and Mylroie (1995)
places the early eustatic sea-level highstand at +5
m and the later one at +8 m above modern datum.
These values are consistent, albeit somehow
higher, with those derived from coral data by
White et al. (2001), despite the uncertainty related
to the depth at which the corals thrived.

Bird Tracks

The bird tracks described here represent
the first reported occurrence of fossil vertebrate
footprints from the Bahama Archipelago. More-
over, previous reports of Pleistocene bird foot-
prints are few. All footprints are wider than long
that is characteristic of shorebird tracks (Abbassi
and Lockley, 2004). Among modern birds of the
Charadriiformes, only a few have webbed feet.
The ichnotaxon Charadriipeda bears webbing
traces (Sarjeant and Langston, 1994) so we cannot
assign the Bahamian footprints to this ichnotaxon,
even if webbing might have been present and
simply not preserved in the Boiling Hole exam-
ples, due to their occurrence in relatively coarse-
grained sediment. The Bahamian tracks do match
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closely with the ichnotaxon Avipeda, that is char-
acterized by three forward directed digits of simi-
lar length with a total interdigital spacing of less
than 95° (Sarjeant and Langston, 1994). For these
reasons, we tentatively assign the Bahamian
tracks to this ichnotaxon, using the designation cf.
Avipeda. Although the tracks are moderately well
preserved, we do not elect to erect a new ichno-
taxon or ichnospecies at this time.

Figure 12. Shorebird trackway exposed on a
modern sand shoal on the leeward side of Long
Island, GBB, Bahamas. Note the association of
the tracks with small, bifurcating wave ripples.
Pen is 15 cm in length.

Observations by one of us (HAC) of similar tracks
on a modern sand flat on the bank side of Long
Island, Bahamas (Figure 12) indicates that the cm-
sized tridactyle footprints exposed in the Boiling
Hole cave were likely produced by a shorebird
species common today in the Bahamas. It is sug-
gested that the trackmaker belonged to the Order
Charadriiformes and was quite possibly one of the
following: American oystercatcher (Haematopus
palliates), greater yellowlegs (Tringa melano-
leuca), black-necked stilt (Himantopus mexi-
canus), or stilt sandpiper (Calidris himantopus).
Nonetheless, the precise trackmaker species can-
not be identified with the evidence presently in
hand. The preservation of the bird footprints in an
oolitic grainstone is surprising, as is the conserva-
tion of the large polygonal prism or desiccation
cracks in the associated eolianites (Kindler and
Hearty, 1995). Figure 12 shows that such foot-
prints remain discernible for a few hours to days
in cohesive sand, just a few centimeters above the
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normal high tide line. Subsequent burial by
younger (? subtidal) sediment in a low-energy set-
ting could ensure their preservation in the fossil
record. In the Boiling Hole case, the footprint-
bearing sands could have been quickly cemented
by halite crystals precipitated out of marine pore
waters, as documented in upper intertidal deposits
of Holocene age from Bimini (Davaud and
Strasser, 1984), and then rapidly buried and pre-
served, by a younger sediment layer. The rare
occurrence of square pores (Figure 11), possibly
resulting from the dissolution of early halite crys-
tals, appears to support this hypothesis.

Origin of Ooids and Sediment Transport

The dip of MIS Se beach deposits (Figure
7) strongly suggests that their constituent grains
originated from the interior of the bank, to the
southwest. The eolian strata dip in the same di-
rection. However, they are not foresets, as figured
earlier in Kindler and Hearty (1995) and Hearty
(1998), but backsets draped over the pre-existing
middle Pleistocene topography. Thus, their com-
ponent particles were also brought up from the
bank interior from the west, and not from the open
ocean side by the prevailing easterly winds, as
previously interpreted. Further, the unusual oc-
currence of radial ooids (Figure 5b) in these de-
posits suggests a relatively low-energy production
locus (Land et al, 1979; Fliigel, 2004), thus
strengthening a bank-side source for these depos-
its. The case is even clearer at Cotton Hole (Fig-
ure 2), 1 km to the northwest, where bankward-
dipping beach sediments exposed on the ocean-
facing cliffs can be traced all the way to the bank-
facing shoreline of the island. The Boiling Hole
outcrop reveals that a large amount of sediments
dating from the last interglacial period has been
transported onto the island from the west, oppo-
site to the main transport vector (from east to
west) that is prevailing on GBB today. Moreover,
ooids were not carried eastward during a single
and catastrophic depositional event, such as a
storm or a northwesterly gale, but by a sustained
flux from the west that lasted long enough for the

shoreline to prograde significantly towards the
southwest,
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CONCLUSIONS

The MIS Se deposits exposed at the Boil-
ing Hole cove on Eleuthera comprise two super-
imposed shallowing-upward sequences of coastal
deposits separated by an erosional surface and ex-
hibiting beach facies beds at about 3 and 6 m, re-
spectively. These beach beds dip towards the
southwest, i.e. towards the bank interior. A bed-
ding plane surface at 5 m displays a 2 m long bird
trackway consisting of moderately well-preserved
tridactyle footprints that we tentatively assign to
the ichnotaxon Avipeda. These footprints are the
first report of fossil footprints from the Bahama
Archipelago, and they were likely formed by an
extant shorebird of the Order Charadriiformes.
The occurrence of two MIS 5e depositional se-
quences at the Boiling Hole site adds further evi-
dence to confirm that the last interglacial period
was characterized by two sedimentation events
corresponding to distinct highstands of sea level,
and one erosional phase corresponding to an in-
tervening regression. The Boiling Hole sequences
can thus probably be correlated to the Sell and Sel
sequences defined by White et al. (2001), and fur-
ther record eustatic sea-level highstands at about
+5 and +8 m, respectively, that is somewhat
higher than the elevations estimated so far from
coral-age data. The dip of the beach beds towards
the southwest and the presence of radial ooids
generated in a low-energy environment show that,
at this locality, a fairly large amount of oolitic
sediment was transported from west to east during
a significant time period of MIS Se. This trans-
port direction is opposite to the main sediment
transport vector operating on GBB today, demon-
strating that the present is not necessarily the key
to the past.
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