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ABSTRACT
We present the design of a multi-cell, low temperature PEM

fuel cell for controlled meteorological balloons. Critical system
design parameters that distinguish this application are the lack
of reactant humidification and cooling due to the low power pro-
duction, high required power mass-density and relatively short
flight durations. The cell is supplied with a pressure regulated
and dead ended anode, and flow controlled cathode at variable
air stoichiometry. The cell is not heated and allowed to operate
with unregulated temperature. Our prototype cell was capable
of achieving power densities of 43 mW/cm2/cell or 5.4 mW/g.
The cell polarization performance of large format PEM fuel cell
stacks is an order of magnitude greater than for miniature PEM
fuel cells. These performance discrepancies are a result of cell
design, system architecture, and reactant and thermal manage-
ment, indicating that there are significant gains to be made in
these domains. We then present design modifications intended
to enable the miniature PEM fuel cell to achieve power densi-
ties of 13 mW/g, indicating that additional performance gains
must be made with improvements in operating conditions target-
ing achievable power densities of standard PEM fuel cells.

1 INTRODUCTION
There are two main categories of operating conditions for

unmanned aerial vehicle (UAV) and unmanned aerial system
(UAS) applications, those that require flight at either low (UASs)
or high altitude (UAVs). Controlled meteorological (CMET) bal-
loons are low altitude aerial systems used for the collection of
weather data. The balloons require power for altitude control,
sensors, data acquisition, data storage and communication [1].

In addition to altitude, flight time plays a critical role in power
system design. A long endurance flight is widely regarded as
having the capability of achieving continuous operation for up to
200 hrs, and typically occurs at high altitude [2]. Whereas low
altitude flights, have mission lengths between 1-15 hours.

At both high and low altitude, several power system strate-
gies have been employed, such as batteries [1], gas engines hy-
bridized with batteries [3], photovoltaic panels hybridized with
fuel cells [4], and even gas turbines hybridized with fuel cells [2].
For non-flight based applications, low temperature PEM stacks
operating in the field have proven to provide reliable power for
well over 3000 hours [5, 6]. This endurance, coupled with their
electrical response time, and ability to startup at ambient, and
even freezing [7] conditions, make PEM fuel cell power systems
a suitable candidate for CMET balloons. The performance con-
straints of the fuel cell, however, vary considerable and will de-
pend upon the operating conditions associated with oxygen par-
tial pressure and temperature at flight altitude.

Miniature and micro fuel cells designed for low power out-
put, ranging between 1-50 W, have been widely explored for
portable electronics, where they are used as an alternative to bat-
tery technologies. The fuel cell active area approaches 8 cm2 [8],
with maximum power densities ranging from 20-190 mW/cm2

[8]. This observed performance is an order of magnitude lower
than that realized for fuel cells with active areas in the range of
100 cm2 and larger. A range of limiting current densities, of 1.05-
1.8 A/cm2, was determined by [9] for a variety of PEM materials
at standard operating conditions (60-80oC, fully humidified flow
through anode and cathode). In their work, this limitation was
defined by induced cathode flooding (mass transport limitations)
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and detected via neutron radiography.
What is not clear is whether the performance discrepancy

between miniature and standard PEM fuel cells is a result of cell
design or cell operating conditions (system architecture). This
work presents an evaluation of miniature PEM fuel cell system
architectures that specify cell operating conditions. This discus-
sion is followed by the presentation of a detailed miniature fuel
cell design, testing and performance evaluation. Specifically,
we distinguish the gains in polarization performance that can be
made due to cell design from those associated with operating per-
formance. Here, we focus on low altitude and ultra-lightweight
CMETs (UASs), with high energy density, low total power pro-
duction, and few volumetric constraints as an alternative to bat-
teries.

2 SYSTEM ARCHITECTURE
The power demands of lightweight aerial systems are driven

by on-board instrumentation and navigation requirements. A sig-
nificant constraint relates to the total system mass, imposing high
energy mass-density constraints on the power and fuel storage
and delivery systems. Thus, a high net system electrical effi-
ciency is needed to reduce the mass of fuel required on board.
With respect to operating conditions, the fuel cell stack must be
able to startup at ambient temperature and pressure conditions at
the altitude at which power is demanded.

The configuration of the anode has a significant influence on
cell water management. When supplying reactants to the anode
in excess of the reaction rate, referred to as flow through oper-
ation, the supply gasses must be humidified and well regulated
with appropriate feedback control. An example of typical hard-
ware deployed for a flow through anode is shown in Figure 1. An
undesirable consequence of flow through operation is that excess
reactants are lost unless additional equipment is used to recircu-
late the anode exhaust gases back to the inlet. A flow through
configuration is common for laboratory testing where precise
control of the anode operating conditions is desired, or during
operation with a reformate fuel mixture that contains some frac-
tion of impurities, such as methane or carbon dioxide. With flow
through operation, water is not likely to accumulate on the anode
and can be regulated through stoichiometric control at the anode
inlet.

Dead ended anode operation has proven to be an effective
and simple anode configuration when supplying pure hydrogen
[5, 6, 10], where anode reactants are supplied at the reaction rate
through pressure regulation rather than flow control, as shown
in Figure 1. With a dead-ended anode, a purge solenoid is lo-
cated downstream of the anode and periodically opened to re-
move any water or impurities that have accumulated on the an-
ode. Purging periodicity can be a function of the cell current
density, temperature, cathode air stoichiometry, or simply oper-
ating time. Water flooding will dominate on the anode at low
current densities (¡100mA/cm2), and at the cathode at high cur-

rent densities [11]. Specifically, flooding occurs when back dif-
fusion dominates electroosmotic drag [12]. While dead ended
operation eliminates the need for humidifying the hydrogen gas
supplied to the anode (significantly reducing system weight), as
well as the need for a flow controller, the occurrence of anode
flooding requires appropriate control strategies to remove liquid
water. A common and simple strategy involves purge schedul-
ing, however, more sophisticated strategies, such as exhaust gas
recirculation with a condenser [13], have been considered.
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Figure 1. Standard hardware for dead ended (pressure controlled) vs

flow through (flow controlled) anode reactant delivery.

With respect to onboard fuel, significant investment in hy-
drogen storage has focused on weight constraints, with recent
advances in carbon fiber composition and structure, as well as
lightweight metal hydrides. Unfortunately, due to the low fuel
cell operating power, fuel cell waste heat cannot be used to re-
lease hydrogen gas from hydride storage vessels, making metal
hydrides an impractical storage option for small low altitude
aerial systems. However, unlike portable electronics, the vol-
ume of the hydrogen storage containment system is not critical
for UASs. Rather, weight poses the limiting constraint. Consid-
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ering that hydrogen can be stored at low pressure (supplying gas
to the anode at slightly above atmospheric and greater than the
total pressure observed at the cathode), the containment vessel
does not need to tolerate high pressure nor leverage porous hy-
dride structures for hydrogen sorption. Therefore, in this specific
application, there is a potential for significant weight reductions
to the hydrogen storage system that have not yet been fully eval-
uated.

To reduce or omit the electrical losses in supplying forced air
to the cathode, several researchers have considered air breathing
fuel cells, at the expense of water removal. To examine these
tradeoffs, [14] experimentally manipulated heat and mass trans-
fer material properties to characterize the ratio of heat and ther-
mal resistances for which dehydration or flooding occur in air
breathing cells. In achieving high limiting current densities, they
recommend reducing thermal resistances and increasing mass
transport resistances to increase the current density at which the
cell transitions from flooding to dehydration. This recommen-
dation, however, results in a greater need for water management
with increased cathode water production rates at these higher cur-
rent densities. [15] proposed a cover with a variable opening area
to dynamically change the fraction of exposed cathode surface
area, resulting in a means of regulating oxygen partial pressure,
membrane water content, and the boundary of flooding and de-
hydration as cell temperature fluctuates. While this was achieved
with scotch tape, their work merits a more detailed analysis, as
shown with sliding plates as a means for active humidification in
larger PEMFC stacks [16].

Several strategies have been employed to humidify PEM
fuel cell reactants, in an attempt to maintain the desired mem-
brane hydration state. Membrane-type humidifiers [17] are ei-
ther internal [18–20] or external [21] to the PEM fuel cell stack.
These membrane humidifiers, however, utilize hot coolant as the
water source, an option not available for low power CMET ap-
plications. Humidified reactant exhaust streams can instead be
used to heat and humidify the incoming reactants [22]; how-
ever, the ability to achieve desirable relative humidities at the
reactant inlets will be constrained by the cell operating tempera-
ture and thermal gradients between the power and humidification
portions of the stack. This humidification strategy, also referred
to as air-to-air humidification, while considered extensively for
high power applications, has not yet been rigorously evaluated
for miniature fuel cells.

The simplest operational strategy was chosen for the CMET
prototype system. The fuel cell operates with no reactant pre-
treatment (humidification), a dead ended and pressure controlled
anode, and a flow controlled cathode. A schematic of the major
system components is depicted in Figure 2, specifically targeting
experimentation. When the fuel cell is deployed on the balloon,
the air compressor would be replaced with a miniature air pump.
Dry pure hydrogen is pressure regulated at the anode inlet to 3
psig (1.2 bar). This pressure regulation system replenishes the

hydrogen consumed in the chemical reaction. For the major-
ity of the operational time, the hydrogen stream is dead-ended
with no flow external to the anode. Using a purge valve located
downstream of the anode, hydrogen can be momentarily purged
through the anode to remove water and gases. The mass flow rate
of dry air is provided to the cathode at a desired stoichiometric
ratio.
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Figure 2. Fuel cell experimental hardware.

3 CELL DESIGN
Each cell was comprised of a conductive and relatively im-

pervious flow field separator plate, Buna-N gaskets, gas diffusion
layers (GDL), and a membrane electrode assembly (MEA). End-
plates were used to apply a compressive force to the cells using
tie-rods. This section describes the choices made in material se-
lection and design. Due to the large number of CMET balloons
that could be launched in a single campaign, standard off the
shelf components were deemed to be more desirable than cus-
tom fabricated components if these standard components proved
to have relatively similar performance. A summary table of the
component masses is provided in Table 1.

3.1 MEA and GDL
The fuel cell utilizes standard commercially available MEAs

purchased from Ion Power. These MEAs consist of a Nafion
111 membrane electrode assembly, an active area of 5.5 cm2, a
catalyst layer of 0.3 mg/cm2 Pt/C on the anode and cathode with
integrated Kapton gaskets.

The selection of the gas diffusion layers (GDL) employed in
the cell can have a considerable consequence for cells that oper-
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Table 1. Cell component masses.

Part Mass(g)

Cathode Flow Field 36.16

Anode Flow Field 37.53

Endplate Gasket 2.12

GDL Gasket 0.68

Anode Endplate w/fittings 14.02

Cathode Endplate w/fitting 13.5

Tie-rods and nuts 1.69

GDLs 0.26

ate at high current density. In comparing the use of microporous
layers (MPLs) with carbon cloth based GDLs, [23] found that
there is better voltage performance and lower membrane resis-
tance (related to increased hydration) when the MPL is omitted
if the cell is operated under dry conditions (as is the case for
our UAS application), irrespective of current density. With non-
woven GDLs operated under dry conditions, there is no signifi-
cant difference in performance related to the use of MPLs at cur-
rent densities less than 200 mA/cm2 [23]. Additionally, under
dry conditions, the performance of the carbon cloth versus the
non-woven GDL were comparable at low current density [23].
Because non-woven carbon papers are easier to physically as-
semble into fuel cells as a result of their rigidity, and because the
cell current density for our UAS is less than 200 mA/cm2, a non-
woven SGL Sigracet 10BB GDL was chosen with an uncom-
pressed thickness of 0.38mm. Should higher current density op-
eration be realizable under dry conditions, a non-woven carbon
paper was recommended for UASs with a PTFE coating [23].

3.2 Separator Plates
Although aluminum is attractive due to its low mass, with-

out a corrosive resistant coating, aluminum and its alloys have
been observed to leach ions in an acidic environment, negatively
affecting the output of the cell [24]. Various stainless steel al-
loys including 316 stainless steel have been found unsuitable
for separator plate use due to the lack of corrosion resistance
as well as the contact resistance being too high for acceptable
performance for longterm operation [25]. Many multi-cell PEM
fuel cell designs leverage graphite that is pyrolytically coated,
resin-impregnated, or comprised of a composite which renders
the plate impervious to gas flow through the pore structure. This
graphite material choice is made due to the corrosion resistance
required for relatively long (>4000 hours) stack life times as
well as the low mass densities achieved at the expense of re-
duced strength and added manufacturing complexity. We elected

to use flow field separator plates made of 316 stainless steel, due
to their ability to be easily procured and machined with relatively
quick lead times. Coating these stainless steel plates was unnec-
essary due to the low risk of corrosion during the short lifetimes
expected of UASs, as well as the reduced cost and lead times.
Mass comparisons between the use of stainless steel and graphite
will be discussed in Section 4.

3.3 Gas Flow Channels
When considering the design of the gas distribution chan-

nels machined into the separator plates, there are two particular
design choices to be resolved, channel orientation and channel
dimensions. With respect to reactant distribution, miniature fuel
cells have relatively narrow and shallow channels and thin plates
due to space and/or weight constraints. With miniature fuel cells
there is greater flexibility in channel orientation because uniform
flow distribution can be easily achieved due to their small active
area.

Interdigitated, serpentine, parallel and mesh channel designs
with channel widths of 300um (0.012”) and channel depths of
200 um (0.007”), were compared by [26] at ambient tempera-
ture. They found little difference in water accumulation between
these flow patterns, with each approaching a channel blockage of
between 40-50% and with all four exhibiting the same dynamic
response (first order). Their work suggests that there is little ben-
efit with respect to water management in selecting a particular
channel design. Therefore, straight parallel channels were em-
ployed on the cathode and anode for simplicity.

Channels depths for miniature fuel cells were found to be
between 100-400µm [8], as opposed to an order of 1000µm seen
with standard PEMFCs. Smaller channels cause accumulated
liquid water to more readily occlude channels. The occurrence
of cathode flooding typically not observed until higher current
density operation will, therefore, be more pronounced in minia-
ture fuel cells, setting a lower constraint on the range of operable
current densities [9] as well as a tradeoff between space con-
straints and water management [27]. Moreover, the Peclet num-
bers are not sufficient for liquid water detachment through con-
vection [28], a serious limitation for air breathing fuel cells [9].
As a result, channel depths common for standard PEMFCs were
employed in this work.

Figure 3 displays the flow patterns used for both the anode
and cathode separator plates. Each channel was machined to a
depth of 1.02mm and a width of 1.52mm with the channel lands
and grooves evenly spaced and parallel. The internal manifolds
used to distribute gas between cells are shown at the entrance
and exit of each of the channels. The small holes located at the
corners of the plates are used to pass tie-rods through each cell.

3.4 Endplates and Compression
Four tie-rods were used to hold the cell materials together

and applied a clamping pressure of approximately 85 psi at the
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Figure 3. Separator plate design indicating the flow patterns for both the

anode and cathode.

corners of the stack. This clamping pressure was measured us-
ing Ultra Low Fujifilm Prescale pressure sensitive paper and in-
dicated uniform compression across the active area. To reduce
weight, acrylic endplates were selected along with PTFE tie-
rods and bolts. Initially, acrylic sheets with a thickness of 3.2mm
(1/8”) were selected, however these sheets warped (became con-
cave) upon assembly. As a result, 6.4mm acrylic was used in the
final design. It is important to note, the mass of the endplates
is relatively insignificant ( 4% ) when considering the total stack
mass for a multi-cell stack. Thus, cell compression is of utmost
importance in selecting materials and clamping mechanisms.

4 CELL PERFORMANCE
The CMET PEM fuel cell described in Section 3 was tested

on an experimental test bench with the hardware configuration
presented in Figure 2. Here we present the fuel cell performance
data along with a modeling analysis of the influence of operating
conditions on cell performance.

4.1 Membrane Water Content
For the application of CMET balloons, due to the afore-

mentioned system weight constraints, characterizing cell perfor-
mance under low membrane hydration conditions is critical to
evaluating the tradeoffs associated with system weight and per-
formance. Here we compare two voltage models and evaluate
their ability to capture the influence of low membrane water con-
tent on cell voltage performance. First, to compare the ability of
these two voltage models to capture the cell polarization of the
CMET fuel cell, the membrane relative humidity must be known.
While both the anode and cathode reactant supplies are dry, the
production of water at the cathode requires a detailed numerical
model to predict the transport of water within the cell structure.

The numerical model employed was developed and experi-
mentally validated to characterize the performance of a 300cm2

24 cell PEM fuel cell stack under anode flooding conditions
when operated with a dead ended anode [10]. This model as-
sumes the cell operates under isothermal conditions, an assump-
tion that while limited for large stacks operating at high current
density, is an adequate assumption for the CMET fuel cell which

operates near ambient temperature and has a relatively small ac-
tive area. The model characterizes two phase flow through a spa-
tially distributed gas diffusion layer with a single volume mem-
brane and catalyst layer.

As described in Section 2, the cell is operated with a dry
supply of air and hydrogen (φca,in = φan,in = 0), ambient tem-
perature (Tcell=20oC) due to low current density operation, and
300% air stoichiometry. The model described in [10] was ad-
justed to predict cell performance for a 5.6 cm2 single cell under
the experimental test conditions described here. Under these con-
ditions, the cell was predicted to have membrane water contents
as low asλ=3 H2O/SO−

3 , with little sensitivity to cell operating
temperature. Of critical influence, as expected, is the cathode
inlet humidity, air stoichiometry, electrode volumes and purging
schedules.

4.2 Cell Polarization

While steady-state polarization measurements do not offer
a conclusive data set for predicting transient phenomena such as
electrode flooding [10, 29] or hysteresis, they provide a useful
characterization when predicting the steady influence of cell op-
erating conditions such as temperature, pressure and humidity.
The cell voltage,v, is equal to the theoretical open circuit volt-
age,E, minus the activation,vact, and ohmic,vohmic, losses such
that

v = E−vact−vohmic . (1)

Here we neglect to model the concentration overvoltage asso-
ciated with a mass transport limitation at high current density
due to our operation at relatively low current densities (i < 0.4
A/cm2).

When chemical potential is related to concentration through
activity in a nonreversible system, the theoretical open circuit
voltage varies with respect to reactant partial pressures and tem-
perature. This variation is expressed through the change in Gibbs
free energy and the Nernst Equation [30]. The activation over-
voltage accounts for both the forward and reverse activation bar-
riers through the Butler-Volmer Equation to reflect the concen-
tration dependence of the exchange current density [30]. Modi-
fying the Butler-Volmer equation to also account for the the loss
current density resulting from the transport of molecular hydro-
gen from the anode to the cathode through the membrane [31],
the total activation voltage loss can be described. There is little
dispute over these mathematical models, described by

E =−

(

∆H
2F

−
Tcell∆S

2F

)

+
RTcell

2F
ln

(

pH2
,an
√

pO2
,ca

(po)1.5

)

, (2)
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vact =K1
RTcell

2F
ln

(

i + i loss

io

)

, (3)

i0 =K2

( pO2
,ca

po

)K3

exp

[

−
Ec

RTcell

(

1−
Tcell

To

)]

, (4)

where∆S and ∆H are the differences in entropy and enthalpy
from standard state conditions,po is the standard pressure, the
oxygen and hydrogen partial pressures,pO2

,ca andpH2,an, are lo-
cated either at the GDL surface in contact with the catalyst layer,
or within the catalyst layer,Tcell is the cell operating temperature,
F is Faraday’s constant,R is the universal ideal gas constant,
K1-K3 are tunable parameters (K1 is the reciprocal of the charge
transfer coefficient),i loss is the loss current density due to hydro-
gen crossover,i is the current density,io is the exchange current
density [31],Ec is the activation energy for oxygen reduction on
Pt, andTo is the reference temperature.

Of greatest importance to our task of characterizing cell volt-
age performance under low humidity conditions is consideration
of the ohmic voltage loss. Charge transport is dominated by
membrane ionic conductivity, as well as contact and bulk electri-
cal resistance of the electrically conductive materials [30]. The
cells considered in this work do not operate at significant pres-
sure gradients, thus convective transport is neglected. Generally,
the ohmic voltage loss is expressed as a linear function of this
charge transport resistance with a variety of functional relation-
ships having been posed depending upon the cell operating con-
ditions.

A widely used model for capturing the influence of mem-
brane water content and temperature on membrane conductivity
was originally presented in [32] where the ionic conductivity is
a linear function of membrane water content at 30oC, with the
following functional form,

vohmic= K4

[

tmb

(b11λmb−b12)
e
−1268

(

1
303−

1
Tcell

)]

i , (5)

whereK4 is a tunable parameter,tmb is the membrane thickness,
b11 andb12 are experimentally identified parameters from [32],
andλmb is the membrane water content. Here, the ionic resis-
tance is assumed to dominate the electrical resistance, thus elec-
trical resistance has been neglected.

Neglecting the influence of temperature in air breathing
PEM fuel cells, [14] posed a different ohmic voltage loss,

vohmic=

(

ARelectric+
tmb

σRH

)

i, (6)

where σRH is the membrane conductivity as is described by
a polynomial function of membrane relative humidity (σRH =

7.46φ3
mb−7.45φ2

mb+3.13φmb−0.378),Relectric is the cell electri-
cal resistance, andA is the membrane active area. This particular
model could be best suited for low temperature CMET applica-
tions. Unfortunately, this relationship for membrane conductiv-
ity has a root atφmb=0.19, indicating that the ohmic overpoten-
tial would be a gain rather than a loss at low humidity. Thus,
this model is not appropriate for low membrane humidities (wa-
ter contents). The main distinction between these two models
is in the mathematical order of the relationship between mem-
brane conductivity and membrane water content (humidity) and
the inclusion of temperature effects.

4.3 Testing Results
Upon assembly the fuel cell membrane was pre-soaked with

de-ionized water. The cell was then placed on the test bench with
a sequence of polarization data taken over a period of one hour,
operating at a constant resistance of 5Ω between each polariza-
tion sweep. Because the fuel cell will be operating under low hu-
midity conditions with a relatively short lifetime, the membranes
were not pre-conditioned.

Figure 4 displays the modeled influence of membrane water
content on cell polarization, using the ohmic voltage loss pre-
sented in Equation 5, alongside the experimental data. To com-
pare these two models, the voltage parameters were identified,
as shown in Table 2, using linear least squares to minimize the
difference between the measured and modeled cell voltage if the
membrane water content wereλ=4 H2O/SO−

3 .
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Figure 4. The influence of membrane water content, λ in H2O/SO−
3 ,

on modeled cell polarization along with the experimental data.

When operating at the maximum power point, this cell is ca-
pable of producing 43 mW/cm2 and 5.4 mW/g, within the range
expected for miniature PEM fuel cells. As expected, similar cell
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Table 2. Voltage Model Parameters.

Parameter Value Units

∆H -241980 J/mol

∆S -44.43 J/mol K

To 298.15 K

po 101325 Pa

Ec 66x103 J/mol

i loss 0.001 A/cm2

b2 1268

b11 0.005139

b12 0.00326

tmb 0.00381 cm

K1 1.8

K2 -21.5

K3 2.05

K4 22

performances were observed for a variety of flow channel de-
signs including serpentine flow. Cell channels of less depth, de-
creased from 1mm down to 0.25mm, showed little influence on
cell polarization. Channel distribution differences were also ex-
plored, using perforated metal and screen mesh, also with little
observable difference in cell performance.

To investigate the influence of dead-ended anode operation,
the cell was run for 5 minutes at different loading levels starting
at 13 mA/cm2 and ending at 44 mA/cm2 for a total of 20 min-
utes of operation. The load level was changed every 5 minutes
and the cell was purged before each change in load. Following
the anode purge, cell voltage had no response, indicating both a
lack of water or nitrogen accumulation at the anode. As a result,
dead-ended anode operation is deemed suitable for this UAS ap-
plication.

Given the cell polarization performance shown in Figure 4,
the performance data can be scaled to size a fuel cell stack
comparable to the Lithium Ion batteries currently used for the
CMET balloons in [1]. The target stack voltage is 3.7 VDC
(Vcell=0.465 VDC), resulting in 8 cells/stack operating at 500mA
(92 mA/cm2). The total stack mass would be 380g, with a power
density of 43 mW/cm2/cell or 5.4mW/g. If graphite were used,
rather than stainless steel, for the bipolar separator plates (flow
fields), the power density could be further increased to 13 mW/g
(a stack mass reduction to 140 g). While this material choice is
clearly significant, the target power density still falls well below

that of the Lithium Ion batteries (66 mW/g). Given cell perfor-
mance, the stack mass would need to be reduced to 28 g, in order
to compete with batteries.

A typical, 50 cm2 low temperature PEM fuel cell oper-
ating with a dead-ended dry anode, the same MEA, GDL,
channel depths, channel widths and channel layout, along with
graphite separator plates, a fully humidified cathode operating
at 60oC experimentally exhibits a conservative cell performance
of 250 mW/cm2/cell (0.5 VDC at 500 mA/cm2). This improved
performance suggests the significant gains that can be made with
high temperature and humidity conditions. With this perfor-
mance (under humidified conditions), and the mass expected for
the miniature fuel cell stack (140 g), power mass-densities ex-
ceeding that of batteries (70 mW/g) could be achieved. Thus, a
thorough investigation into the tradeoffs associated with improv-
ing the operating conditions is warranted along with considera-
tion of membranes that can tolerate low humidity conditions.

5 CONCLUSIONS
A prototype PEM fuel cell, designed and constructed

for CMET applications, was capable of maintaining
43 mW/cm2/cell or 5.4 mW/g. Choosing graphite bipolar
separator plates, as opposed to stainless steel plates, could fur-
ther improve this performance to 13 mW/g. However, the stack
masses needed to compete against Lithium Ion batteries, suggest
that significant improvements must be made in the cell operating
conditions. To improve ohmic losses, cell temperature and
membrane water content must be increased without sacrificing
weight.
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