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LINKING NUMBERS IN THREE-MANIFOLDS

PATRICIA CAHN AND ALEXANDRA KJUCHUKOVA

Abstract. We give an explicit algorithm for computing linking numbers between curves
in an irregular dihedral p-fold branched cover of S3. This work extends a combinatorial
algorithm by Perko which computes the linking number between the branch curves in
the case p = 3. Owing to the fact that every closed oriented three-manifold is a dihedral
three-fold branched cover of S3, the algorithm given here can be used to compute linking
numbers in any three-manifold, provided that the manifold is presented as a dihedral
cover of the sphere. The algorithm has been implemented in Python, and we include the
code in an Appendix.

1. Introduction

Non-abelian branched covers are among the oldest and most effective tools for studying
knots1. One invariant which can be extracted from the non-cyclic branched covers of a knot
is the collection, over all covers of a given type, of linking numbers between the branch
curves. It is hard to overstate the usefulness of this classical apparatus, in testament
of which fact we offer a most abbreviated history. Reidemeister opened the gates by
introducing the linking number invariant in [24] and using it to distinguish a pair of knots.
Subsequently, Bankwitz and Schumann [2] classified knots of up to nine crossings, primarily
by using linking numbers in dihedral covers of two-bridge knots. Perko extended these
methods to all knots, which led to the classification to knots of ten and eleven crossings [21].
Burde proved that dihedral linking numbers can tell apart all two-bridge knots [4]. Linking
numbers in dihedral covers are also good for analyzing properties of knots, as they provide
an obstruction to amphichirality [8], [21] and invertibility [11]. For a more thorough account
of the role of linking numbers in knot theory, as well as a couple of illuminating examples,
the reader is referred to [23].

Perko obtained the majority of his classification results using linking numbers between the
branch curves in dihedral covers; on occasion, other types of non-cyclic covers were needed.
His tabulation of linking numbers in three-fold dihedral covers was carried out by designing
an algorithm and a computer program for their combinatorial calculation [19]. Since the
1960s, Perko’s combinatorial algorithm has been replicated, for example by Thistlethwaite;
he gives a self-contained description of the method and illustrates it on a 5-fold cover of

1The authors recently learned from [23] that a picture of an irregular dihedral cover of the trefoil appeared
in Heegard’s thesis!
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2 PATRICIA CAHN AND ALEXANDRA KJUCHUKOVA

the knot 73 in [26]. To our understanding, the combinatorial approach to linking numbers
which this paper extends remains the most efficient known method for computation.

To emphasize, Perko’s algorithm serves to compute the linking numbers between the branch
curves, and this has been the focus of all further work we are aware of, even though theo-
retical advances call for more general methods for computing linking numbers in branched
covers. There are many instances in the literature where linking numbers of non-branch
curves play an important role. In [6], Cappell and Shaneson gave a formula, in terms of
linking numbers in a cyclic cover of a characteristic knot for α, for the µ invariant of a
dihedral cover of α. (Since every oriented three-manifold is a dihedral cover of a knot [13],
[18], this method is universal. By the same token, linking numbers in three-fold dihedral
covers of S3 include all linking numbers in all three-manifolds.) The curves whose linking
numbers appear in Cappell and Shaneson’s formula are lifts to a (cyclic) branch cover of
curves which live in the complement of the branching set downstairs, that is, lifts of what
we call pseudo-branch curves in this article. (Despite the apparent ambiguity, we also use
the phrase “pseudo-branch curves” to refer to the lifts themselves.) For a second appli-
cation, in an unpublished manuscript, Litherland [16] showed that Casson-Gordon gordon
invariants of a knot can also be computed using linking numbers of pseudo-branch curves
in a branched cover. More recently, Florens et al. have used (twisted) linking numbers
in relation with multivariate signatures (a generalization of Tristram-Levine signatures to
colored links). As these results show, being able to compute linking numbers of pseudo-
branch curves in terms of data in the base bears relevance to many current problems
in three-manifolds and knot theory, including questions about slice genus and unlinking
numbers of links.

Among the many potential uses of computing linking numbers of pseudo-branch curves,
the primary application motivating our work is the following one. In [14], the second
author gives a formula for the signature of a p-fold irregular dihedral branched cover f :
Y → X between closed oriented topological four-manifolds X and Y , in the case where
the branching set B of f is a closed oriented surface embedded in the base X with a
cone singularity described by a knot α ⊂ S3. This formula shows that the signature of
Y deviates from the locally flat case by a defect term, Ξp(α), which is determined by the
singularity α and can be calculated in part via linking numbers of pseudo-branch curves
in a dihedral cover of α. If the base X of the covering map f is in fact S4, the signature
of the cover Y is exactly equal to Ξp(α). In particular, an effective method for computing
linking numbers between pseudo-branch curves in dihedral covers would help establish the
range of signatures of dihedral branched covers of S4 with singular branching sets. More
generally, the same computations play a key role in understanding the classification of
branched covers with singular branching sets over any four-manifold base.

With these applications in mind, we set out to produce an algorithm for computing linking
numbers between pseudo-branch curves in dihedral covers of S3. The main idea of our
approach, described in detail in Section 3, is a certain refinement of Perko’s original algo-
rithm. That Perko’s method can be extended to other curves besides the branch curves
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is noted in Appendix B of [14]. The present work is the first detailed treatment, with
applications to concrete examples, of these ideas.

Our algorithm yields the following formula for the linking number Ij,k between the kth and

jth lifts δk and γj of the pseudo-branch curves δ and γ, respectively, with branching knot
α. (Here a lift refers to a connected component of the preimage of δ or γ under the covering
map f : M → S3.) The hi are the arcs of δ in an oriented link diagram of α∪ δ ∪ γ, where
0 ≤ i ≤ t − 1 and t is the number of self-crossings of δ plus the number of crossings of δ
under γ and α. The function f(i) denotes the number (subscript) of the arc of α, γ, or δ
which crosses over hi; the numbering system is described in Section 3. The sign ε(i) is the
sign of the crossing at the head of the ith arc of δ in the diagram. The functions ε5, ε6 and
ε7 are used to compute the intersection between a given one-cell and a given two-cell in the
cover; exact formulas are given in Section 3.5, and can be computed purely combinatorially

from the colored knot diagram. The xji are a solution to an inhomogenous system of linear
equations, which describe a 2-chain with boundary γ. This system of equations can also be
derived combinatorially from the diagram. A solution exists if and only if γj is rationally

null-homologous in the branched cover, so, in particular, the xji exist if the linking number
in question can be computed. 2

Theorem 1. Let f : M → S3 be a three-fold irregular dihedral cover branched along a knot
α, and let γ, δ ⊂ S3 − α. If the lifts γj and δk are rationally nullhomologous closed loops
in M for j, k ∈ {1, 2, 3}, then, in the notation of the above paragraph, the linking number
Ij,k of δk with γj is

t∑
i=0

Ci,

where Ci is given by

Ci =


ε(i)εk5(i)xjf(i) if hi meets an arc of α;

ε(i)εj,k6 (i) if hi meets an arc of γ;
0 if hi meets an arc of δ.

We focus here on the case where each pseudo-branch curve lifts to three closed loops because
this case is the one we encounter exclusively in our main application (see Section 2). Of
course, computations involving pseudo-branch curves whose pre-images under the branched
covering map consist of fewer than three connected components can be done by the same
methods (see Section 3.6). We also prove a similar formula, Theorem 4, for the linking
numbers of the lifts of a pseudo-branch curve with a branch curve.

2Of course, both δk and γj must be rationally null-homologous for the linking number Ij,k to be well-
defined. We verify this condition by reversing the roles of γ and δ and making sure that each of them
bounds a two-chain.
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In Section 2, we recall the definition of an irregular dihedral cover as well as that of
a characteristic knot, a concept essential both to the construction of dihedral covers of
knots and to the main application we have in mind for this work. Section 3 presents our
generalization of Perko’s algorithm to non-branch curves and the proof of Theorem 1. In
the same section we also derive an analogous formula for the linking number between a
pseudo-branch curve and a branch curve. Section 4 illustrates our algorithm on a concrete
example of a three-fold dihedral cover and several pseudo-branch curves therein. Perko’s
original method for computing linking numbers of branch curves is recalled in detail in
Appendix A. Due to the large number of cells used, computations by hand quickly evolve
into an unwieldy task, even for the most resolute and concentrated persons. Our algorithm
for calculating linking numbers in branched covers has therefore been implemented in
Python, and we include the code in Appendix B. The input used to calculate the example
in Section 4 is given in the very short Appendix C.

The authors would like to thank Ken Perko for many helpful discussions.

2. Irregular Dihedral Covers of Knots

Let α be a knot in S3 and f : M → S3 a covering map branched along α. We can think
of f as being determined by its unbranched counterpart, f|f−1(S3−α), and therefore by a

group homomorphism ρ : π1(S
3 − α, x0) → G for some group G. For us, G is always

Dp, the dihedral group of order 2p, ρ is surjective and p is odd. We can now associate
to ρ the regular 2p-fold dihedral cover of (S3, α); this cover corresponds to the subgroup
ker ρ ⊂ π1(S

3 − α, x0). The irregular p-fold dihedral cover of (S3, α) corresponds to a
subgroup ρ−1(Z2) ⊂ π1(S

3 − α, x0), where Z2 can be any subgroup of Dp of order 2. The
irregular dihedral cover is a Z/2Z quotient of the regular one, and different choices of
subgroup Z2 ⊂ Dp correspond to different choices of an involution. Recall also that ρ can
be encoded by a p-coloring of the knot diagram, where the “color” of each arc indicates
the element in Dp of order 2 to which ρ maps the element of the knot group corresponding
to the meridian of this arc (see Section 3.2).

Cappell and Shaneson proved in [7] that the regular and irregular covers of (S3, α) can
be constructed from a p-fold cyclic branched cover of S3 along an associated knot β ⊂
S3−α, which they called a mod p characteristic knot for α. They also showed that mod p
characteristic knots for α, up to equivalence, are in one-to-one correspondence with p-fold
irregular dihedral covers of α. For a precise definition, let V be a Seifert surface for α and
LV the corresponding linking form. A knot β ⊂ V ◦ is a mod p characteristic knot for α if
[β] is primitive in H1(V ;Z) and (LV + LTV )β ≡ 0 mod p.

It is shown in [14] that the characteristic knots of α play an essential role in the primary
application of this work, namely computing the defect to the signature of a branched cover
g : Y 4 → X4 between four-manifolds X and Y if the (closed oriented) branching set of
g has a singularity of type α. This application will be explored in further work. For the
purposes of this paper, the key property of a characteristic knot β ⊂ V is that every simple
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closed curve in V −β has three disjoint closed lifts in the dihedral cover of α corresponding
to β. As a result, we focus here on computations with curves in S3 − α whose lifts to a
three-fold dihedral cover of (S3, α) have three connected components.

3. The Algorithm

We begin with an overview. Let α ⊂ S3 be a three-colored knot and f : M → S3 a dihedral
cover of S3 branched along α. Next, let δ, γ ⊂ (S3−α) be two oriented curves, and denote
their lifts to M by γj and δk for j, k ∈ {1, 2, 3}. (We continue to assume that the preimages
of δ and γ each have three connected components. Whether this is in fact the case depends
on the colors of the arcs of α which these curves pass under, and on the order in which
they do so.) To compute the linking numbers Ij,k = lk(γj , δk), we endow M with a cell

structure in which the curves γj and δk are one-subcomplexes. This is achieved by lifting
to M an appropriate cell-structure on S3 in which δ and γ are subcomplexes.

The approach here is a generalization of the one used by Perko in [19]. In a nutshell, Perko
computes linking numbers between branch curves by: (1) choosing an appropriate cell
structure on S3; (2) lifting this structure to M ; (3) solving a linear system to find explicit
two-chains the branch curves bound; (4) computing intersection numbers by adding up
the intersection numbers of the one-cells that make up one curve and the two-cells that
cobound the other. We carry out an extension to this procedure proposed in [14]. The
idea is to subdivide the above cell structure, in a way compatible with its lift to M ,
so as to incorporate pseudo-branch curves δ and γ into the picture. Precisely, we treat
the homomorphism ρ : π1(S

3 − α) � Dp from which the branched cover f arises as a
homomorphism of π1(S

3 − α− δ − γ) in which meridians of δ and γ all map to the trivial
element.

3.1. Cell structure on S3. The link diagram α ∪ γ determines a cell structure on S3,
whose 2-skeleton is the cone on the link and whose single 3-cell is the complement of that
cone. More precisely, we have one 0-cell at the cone point, and one 0-cell per crossing in
the link diagram; following the terminology of Perko, we have one “horizontal” 1-cell per
arc in the link diagram, and one “vertical” 1-cell connecting the cone point to each of the
remaining 0-cells; the complement of the 1-skeleton in the cone is a union of 2-cells, one
per each arc in the link diagram, attached in the obvious way.

Figure 1 shows the part of the cell structure determined by the cone on α.

The idea is then to use this cell structure to determine whether there is a 2-chain bounding
each lift of γ in M , and if so, to write down this two-chain explicitly in terms of lifts of
the 2-cells downstairs. Note that what we have described here is a subdivision of the cell
structure used by Perko, in which the 2-skeleton consists only of the cone on α. For more
details about Perko’s convenient and useful naming of the cells, we once again refer the
reader to Appendix A.
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k2

k1

k3

k0

A0

A1

A2

A3

a3

a1

a2

a0

Figure 1. The cell structure on S3 determined by the cone on α.

3.2. Visualizing the cover near crossings of α. Fix a 3-coloring of α using the “colors”
1, 2 and 3. The coloring describes a homomorphism ρ : π1(S

3−α)→ D3 in the usual way:
we identify D3 with S3, and assign the color 1 to a given arc if and only if ρ sends the
corresponding meridian, with either orientation, to (23); similarly for colors 2 and 3. Note
that the 3-cell of S3 has three lifts in M . We number these 3-cells e31, e

3
2 and e33 in such a

way that the meridians of the knot act on the subscripts in the way just described.

Consider an inhomogeneous knot crossing – that is, a crossing where three arcs of different
colors meet – together with the vertical 2-cells below the knot, as pictured in the upper
left corner of Figure 2. Let λ denote the small loop which runs underneath the crossing.
The blue loop λ, which we view as based at x0, has three lifts, all of which are loops. We
can subdivide λ into four arcs, with endpoints on the vertical walls, such that the lift of
the interior of each arc is contained in a single 3-cell. In Figure 2, the subscripts i of the
four corresponding 3-cells e3i , for each of the three lifts of λ, starting at x0 and following
the orientation of λ, are: 1, 2, 2, 1; 2, 1, 3, 3; and 3, 3, 1, 2. One can see this directly from
the colored crossing downstairs, using the rule that a curve in the jth 3-cell which passes
through a lift of the wall under an arc colored i ∈ {1, 2, 3} either stays in 3-cell j if j = i,
or else enters 3-cell k where {k} = {1, 2, 3} − {i, j}. In contrast, the red meridian has two
path lifts which are not closed loops and one which is. The lifts fit together to form two
closed curves in the cover.
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1

3

3

2

2

1

x
0

Figure 2. The lift of cells below an inhomogeneous crossing, with p = 3.
In red, visualizing the lifts of loops in S3 − α.

Remark 2. This approach to visualizing the lifts of crossings generalizes to all odd values
of p. For an illustration of the case p = 5, see Figure 3.

3.3. Cell structure on the branched covering space. This section serves primarily
to establish the notation we use throughout. The arcs of α in the link diagram of α∪γ are
labelled k0, k1, . . . , km−1, where m is the sum of the number of crossings of α with itself
and the number of crossings of α with γ where α passes under γ. The arcs of γ are labelled
g0, g1, . . . , gs−1, where s is the number of crossings of γ with itself plus the number of
crossings of α with γ where γ passes under α.
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3

3

4

2

1

2

4

5

Figure 3. The lift of cells below an inhomogeneous crossing, with p = 5.

Denote by c(i) the color of the arc ki, let f(i) denote the subscript j of the arc (kj or
gj) passing over crossing i of α, and let fγ(i) denote the subscript j of the arc (kj or gj)
passing over crossing i of γ. We will sometimes write f(i) rather than fγ(i) to simplify
notation, when it is clear we are referring to arcs of γ rather than α.

Let k1 denote the index-1 branch curve and let k2 denote the the index-2 branch curve.
Each arc ki has two pre-images under the covering map. Let k1,i denote the index-1 lift of
ki and let k2,i denote the index-2 lift of ki.

Choose a basepoint x0 on the arc g0 of γ. The curve γ has three path lifts under the
covering map, γ1, γ2, and γ3, beginning at each of the three preimages of x0. Assume
the γi are labelled so that the lift of g0 which lies in the 3-cell e3i is contained in γi. The
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path lifts γi can fit together to form either one, two, or three closed loops in the covering
space. In general, we want to find surfaces bounding each of these closed loops that is
null-homologous. For the rest of this section, however, we assume that each γi is a closed
loop.

We label the 2-cells below ki, and their lifts, using the notation of Perko, described in
Appendix A. Briefly, Ai is the 2-cell below ki, and its lifts are A1,i, A2,i and A3,i. A1,i

bounds the index-1 lift of ki, and the function w(i), also defined in Appendix A, encodes
which of the two remaining lifts of Ai is labelled A2,i. In order to use Perko’s method, we
need to assume that the number of self-crossings of α is even; we can do this by performing
a Type 1 Reidmeister move.

Let gj,i, j = 1, 2, 3, denote the lift of gi which lies in the lift γj of γ. Let Bi denote the
2-cell below arc gi of γ downstairs. Denote by Bj,i the lift of Bi which is contained in the
lift γj of γ; its boundary contains gj,i. There are many possible configurations of 2-cells
above a self-crossing of γ; see Figure 4 for one example. Let lgj (i) denote the number of

the 3-cell which contains the lift gj,i of the arc gi. For example, in Figure 4, lg1(i) = 2,
lg2(i) = 3, and lg3(i) = 1.

B2,f(i)
B1,i+1

b1,i

g1,i

g1,i+1g2,f(i)

B1,i

e32 B1,f(i)
B2,i+1

b2,i

g2,i

g2,i+1g1,f(i)

B2,i

e33 B3,f(i)
B3,i+1

b3,i

g3,i

g3,i+1g3,f(i)

B3,i

e31

Figure 4. One possible configuration of cells lying above a crossing of γ
with itself.

When the knot α passes under the pseudo-branch curve γ, there is branching above the
crossing. As in the case of crossings of α with itself (described in Appendix A), there are
many possible configurations of cells above that crossing, which depend on the value of
w(i). One such configuration is pictured in Figure 5.

3.4. Finding a 2-chain bounded by a pseudo-branch curve. Now we look for a
2-chain C2,j with ∂C2,j = γj for fixed j. Since

γj =
s−1∑
i=0

gj,i,

each 1-cell gj,i must appear exactly once in the boundary of C2,j . Only the cell Bj,i can

contribute gj,i to ∂C2,j , so C2,j must have
∑s−1

i=0 Bj,i as a summand. Note, however, that
the sum of the Bj,i typically has other boundary components in addition to γj , due to
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A1,i

B3,f(i) a1,i

k1,i

k1,i+1g1,f(i)

B1,f(i)
g2,f(i)

B2,f(i)

A2,iA3,i

A3,i+1 A2,i+1

k2,i

k2,i+1

a2,ia3,i

e31

e32

e33

g3,f(i)

e32

e31

A1,i+1

Figure 5. One possible configuration of cells above a crossing where γ
passes over α, and the arc ki is colored 3.

crossings of the knot under arcs of γ, which contribute additional “vertical” 1-cells (lifts of
1-cells which appear vertical in the cone on α ∪ γ) to the boundaries of 2-cells. To cancel
these additional boundary components, we write:

(1) C2,j =

s−1∑
i=0

Bj,i +

m−1∑
i=0

xji (A2,i −A3,i).

In the above equation, we have used the fact that the coefficients of A2,i and A3,i in C2,j

must be negatives of each other because this is the only way to cancel out the “horizontal”
cells k2,i. (Similarly, we know that cells A1,i can not possibly appear in C2,j because they
would introduce extraneous horizontal 1-cells, k1,i, to the boundary.)

It remains to find the coefficients xji . To that end, we write down a system of linear

equations in the xji , one for each crossing. We obtain three systems of equations, one for
each C2,j with j ∈ {1, 2, 3}, as follows.

No arc of k1 or k2 appears in the boundary of C2,j . By examining the configuration of cells

above an inhomogeneous self-crossing of α, as in Appendix A, we see that the xji satisfy
the equation

(2) xji − x
j
i+1 + ε1(i)ε2(i)x

j
f(i) = 0,

where ε1, ε2 and ε3 (which appears below) are defined as in Appendix A.

By the same reasoning, for homogeneous crossings of α the corresponding equation is
identical to Perko’s equation for the surface bounding the index 1 curve (also in Appen-
dix A):
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(3) xji − x
j
i+1 + 2ε3(i)x

j
f(i) = 0.

Now we consider crossings of α under γ, as in Figure 5. To capture the combinatorics at
play, we associate a function to such crossings as follows:

εj4(i) =


−1 if lgj (i) = w(i);

0 if lgj (i) = c(i);

1 otherwise.

For example, in Figure 5, ε14(i) = 1, ε24(i) = 0, and ε34(i) = −1.

The equation associated to a crossing of the knot under a pseudo-branch curve can now be
written as:

(4) xji − x
j
i+1 = ε(i)εj4(i).

Unlike the previous two, this equation does depend on j; the right hand side will be 1 for
one lift, −1 for another, and 0 for the third.

The boundary of C2,j is then, by construction,
∑s−1

i=0 gj,i = γj . We have thus proved:

Proposition 3. Let s denote the number of crossings of γ under α plus the number of
self-crossings of γ, let m denote the number of crossings of α under γ plus the number n
of self-crossings of α. Let f(i) denote the index of the overstrand kf(i) at crossing i, and
let the signs ε, and εx for x = 1, 2, 3, 4 be as defined above. If the following inhomogeneous
system of linear equations


xji − x

j
i+1 + ε1(i)ε2(i)x

j
f(i) = 0 if crossing i of α is inhomogeneous

xji − x
j
i+1 + 2ε3(i)x

j
f(i) = 0 if crossing i of α is homogeneous

xji − x
j
i+1 = ε(i)εj4(i) if strand i of α passes under γ

has a solution (xj0, x
j
1, . . . , x

j
m−1) over Q then the lift γj of γ is rationally nullhomologous

and is bounded by the 2-chain

C2,j =
s−1∑
i=0

Bj,i +
m−1∑
i=0

xji (A2,i −A3,i).
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3.5. Computing linking numbers and proof of Theorem 1. To complete the com-
putation, we introduce a second pseudo-branch curve δ into the diagram containing α and
γ without changing the numbering on the arcs ki of α or the arcs gi of γ. We label the
arcs of δ h0, . . . , ht. (Self-crossings of δ do not contribute anything to the linking number.
When numbering arcs of δ for the computer program, we will assign consecutive arcs of δ
the same number if they are separated by an overcrossing by another arc of δ, in order to
slightly simplify the input.)

We again use f(i) to denote the number of the crossing of the overstrand at the end of arc
hi. Like γ, the curve δ may lift to one, two or three closed loops. We begin with the case
where the lifts of δ and γ form three closed loops. Let δ1, δ2, and δ3 denote the three lifts
of δ; as before, we choose the superscripts on the δi so that the lift of h0 which is contained
in the 3-cell e3i is part of δi. Let lhk(i) denote the number of the 3-cell which contains the

lift arc hi in δk.

Having established the notation, it remains to explain how to compute the following inter-
section numbers:

• The intersection number of γj with a surface bounding δk, for j, k ∈ {1, 2, 3}

• The intersection number of γj with the a surface bounding the degree 1 lift of α
for j ∈ {1, 2, 3}

• The intersection number of γj with the a surface bounding the degree 2 lift of α
for j ∈ {1, 2, 3}

We begin by computing the intersection number Ij,k of γj with δk, which amounts to
proving our main Theorem.

Proof of Theorem 1. Assume that we have found a solution (xj0, . . . , x
j
m−1) to the set of

equations discussed in the previous section. Then the 2-chain bounding γj is

s−1∑
i=0

Bj,i +
m−1∑
i=0

xji (A2,i −A3,i).

Crossings of δ under both α and γ may contribute to the linking number. Self-crossings
of δ do not contribute to the linking number, which is why our numbering system ignores
these crossings. One possible configuration of cells above a crossing of δ under γ is show in
Figure 6. The lift hj,i will intersect one of the cells A1,f(i), A2,f(i) or A3,f(i). If it intersects
A1,f(i), this crossing does not contribute to Ij,k because A1,f(i) is never contained in the

2-chain bounding γj . If it intersects A2,f(i), the crossing contributes ε(i)xjf(i) to Ij,k. If it

intersects A3,f(i), the crossing contributes −ε(i)xjf(i) to Ij,k. Define εk5 as follows:
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εk5(i) =

 1 if lhk(i) = w(i),
0 if lhk(i) = c(i), and
−1 otherwise.

The contribution to Ij,k of a crossing of δ under α is then ε(i)εk5(i)xjf(i).

Now consider crossings of δ under γ. The picture in the cover is similar to that of Figure 4,
except that the under-crossing arcs are h·,i’s rather than g·,i’s. The cell Bj,f(i) appears in

the 2-chain bounding γj exactly once, so the contribution of such a crossing to Ij,k is ε(i)
if the lifts of hk,i and gj,f(i) are in the same 3-cell, and 0 otherwise.

Define ε6 as follows:

εj,k6 (i) =

{
1 if lhk(i) = lgj (f(i)), and

0 otherwise.

By construction, crossings of δ under γ contribute ε(i)εj,k6 (i) to Ij,k. The theorem follows.
�

3.6. A note on pseudo-branch curves which lift to fewer than 3 loops. As seen in
Figure 2, the pre-image of a pseudo-branch curve γ under the covering map may well have
fewer than three connected components. Precisely, the lifts of γ could include two closed
loops γ1 · γ2 and γ3, or one closed loop γ1 · γ2 · γ3, where each γj covers γ and · denotes
concatenation of paths.

If some concatenation σ of the γi’s forms a closed, null-homologous loop, we can still find a
2-chain C2,σ with boundary σ using the methods given in the previous Section 3.4 . We do
this by writing down the three systems of equations for j = 1, 2, 3 listed in Proposition 3.
The 2-chain C2,σ bounding σ is then:

C2,σ =
∑
j∈S

(
s−1∑
i=0

Bj,i +
m−1∑
i=0

xji (A2,i −A3,i)

)
.

Now let’s consider the linking number between two such pseudo-branch curves. Suppose
the closed loop σ is a concatination of paths γi, where i ∈ S ⊂ {1, 2, 3}, and the closed loop
τ is a concatenation of paths δi, where i ∈ T ⊂ {1, 2, 3} and each δi is a lift of a second
pseudo-branch curve δ ⊂ S3 − α. It follows from Section 3.6 that, in the notation of the
same section, if σ and τ are rationally null-homologous, their linking number is equal to∑

j∈S,k∈T Ij,k.
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e32
h2,i

h2,i+1

e31

e33k2,f(i) k1,f(i)

h1,i

h1,i+1

h3,i

h3,i+1

A2,f(i)

A3,f(i)

A1,f(i)

Figure 6. One possible configuration of cells above a crossing of δ under α.

3.7. The linking number of a branch curve with a pseudo-branch curve. In the
same manner, we compute the intersection number of a closed lift of γ with each of the
index 1 and 2 branch curves. In this case γ is the only pseudo-branch curve in the picture.
Its arcs are again labelled h0, h1, . . . ht, where arcs separated by a self-crossing of γ are
given the same label hi and viewed as one arc, and adjacent arcs of γ separated by an
overcrossing of α are labelled hi and hi+1.

We define one last sign, εk7, as follows:

εk7(i) =

 1 if lhk(i) = w(i),
1 if lhk(i) = c(i), and
−1 otherwise.

Theorem 4. Suppose that the pseudo-branch curve γ lifts to three null-homologous closed
loops γk for k ∈ {1, 2, 3}. Let {x1i } and {x2i } be the solutions to the two systems of equations
in Proposition 5. The linking number I1k of γk with the index 1 branch curve k1 is

t∑
i=0

Ci

where Ci is given by ε(i)εk7(i)x1f(i).

The linking number I1k of γk with the index 2 branch curve k2 is

t∑
i=0

Ci

where Ci is given by ε(i)εk5(i)x2f(i).
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x1i 0 -1 -1 -1 -1 0 1 0 0 0 1 0 0 1
x2i 0 0 1 1 1 1 0 0 -1 0 -1 0 0 -1
x3i 0 1 0 0 0 -1 -1 0 1 0 0 0 0 0

Table 1. The coefficients xji of A2i in the 2-chain bounding the jth lift of β.

4. Examples

To conclude, we illustrate the output of the algorithm for a collection of pseudo-branch
curves. We begin with a three-colorable knot, α, which is the connected sum of two copies
of the trefoil knot. Since the trefoil is a two-bridge knot, the dihedral three-fold cover of
S3 branched along α is S1 × S2.

Recall from Section 2 that, corresponding to a given three-coloring of α and a Seifert surface
V for α, we have a characteristic knot, β ⊂ V ◦. As explained in Section 2, characteristic
knots play a key role in our applications (see [14]), as do essential curves in V − β. In this
example, we let V be the connected sum of two copies of the familiar Seifert surface for the
minimal-crossing diagram of the trefoil in two-bridge position, namely a surface consisting
of two disks joined by three twisted bands. The characteristic knot β is then the connected
sum of two copies of a characteristic knot for the trefoil; it is shown in blue in Figures 8
and 7.

We apply our algorithm to the following pseudo-branch curves: the characteristic knot β,
described above; an essential curve ω1 in V − β, which has one null-homologous closed lift
and two homologically nontrivial closed lifts; and a pseudo-branch curve ω2 which is a push-
off of a curve in V −β intersecting β once transversely, and lifts to a single null-homologous
closed curve.

Our computer algorithm detects the number of lifts and whether each is null-homologous,
and allows us to compute the linking numbers of all pairs of null-homologous lifts. The
results of this computation are discussed below. The input used to generate these results
is given in Appendix C.

Part I. First, the role of the first pseudo-branch curve, denoted by γ throughout the
previous section, is played by the characteristic knot β.

The algorithm finds a 2-chain bounding each closed lift of β. The 2-chain bounding the jth

lift of β can be described by a list of coefficients xji of 2-cells A2,i, as defined in Section 3.
The coefficients for the three lifts of β are given in Table 1.

The matrix of intersection numbers Ij,k of a 2-chain bounding the jth lift of β with the kth

lift of ω1 is
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1

1

2

2

3

3

0

0

0

β

ω1

Figure 7. The connected sum, α, of two trefoils; a characteristic knot, β,
for α; and a curve, ω1, on a Seifert surface for α which is disjoint from β.

(Ij,k) =

 0 0 0
−1 0 1
1 0 −1

 .

However, we will see in Part II of this example that only the first lift of ω1 is null-
homologous. Thus, the first column of the matrix (in bold) gives the linking numbers
of the null-homologous lift of ω1 with each lift of β. The combinatorial intersection num-
bers in the second and third columns are not linking numbers.

The matrix of intersection numbers Ij,k of a 2-chain bounding the jth lift of β with the kth

(path) lift of ω2 is

(Ij,k) =

−1 −1 0
−1 1 −2
0 −2 0

 .

In this case the 3 path-lifts of ω2 fit together to form one closed curve – which we call a
closed lift – in S1 × S2. We will see that the linking numbers of this one closed lift with
each of the 3 lifts of β are obtained by summing the rows of the matrix. Hence the linking
numbers are each −2.
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1

1

2

2

3

3
0

0

0

β

ω2

Figure 8. The connected sum, α, of two trefoils; a characteristic knot,
β, for α; and a push-off, ω2, of a curve on a Seifert surface for α which
intersects β once transversely.

Part II. To complete the example, we let the role of the first pseudo-branch curve be
played by ω1.

The list of coefficients xji of the 2-cells A2,i in the 2-chain bounding lift j of ω1 is given in
Table 2. When j = 2, 3 these coefficients are not defined because the corresponding lifts of
ω1 are not null-homologous, and the algorithm detects this, failing to produce a solution

for the xji .

The matrix of intersection numbers of the 2-chain bounding the jth lift of ω1 with the kth

lift of β is

(Ij,k) =

0 −1 1
x x x
x x x

 .

The program inserts x’s into the matrix when the corresponding 2-chain is not defined.
The first row of the matrix gives the linking numbers of the null-homologous lift of ω1

with each lift of β, and we see these numbers agree with the first column of the matrix of
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i 0 1 2 3 4 5 6 7 8 9
x1i 0 0 0 0 -1 0 1 1 0 0
x2i . . . . . . . . . .
x3i . . . . . . . . . .

Table 2. The coefficients xji of A2i in the 2-chain bounding the jth lift of
the curve ω1 in V − β. Note that the x2i and x3i are undefined because the
corresponding lifts are homologically nontrivial.

intersection numbers of 2-chains bounding lifts of β with lifts of ω1, confirming our first
computation.

5. (Appendix A) Perko’s combinatorial method

Our purpose here is to recall Perko’s algorithm for computing the linking numbers of
the index 1 and 2 branch curves in the 3-fold irregular dihedral branched cover of S3

along α. The algorithm constructs 2-chains whose boundaries are the degree 1 and 2
branch curves by lifting a cell structure of S3 to the cover, and finding suitable linear
combinations of the cells upstairs. Perko’s notation is adhered to, but we introduce a
different method of visualizing the lift of the cell structure, which generalizes more easily
to the case p > 3.

5.1. The cell structure on S3 defined by Perko. We return to the cell structure on
S3 determined by the cone on α, described in Section 3.1, and discuss the labels of the
cells. We continue to use Perko’s jargon to refer to the cells (calling 1-cells “vertical” or
“horizontal” as before and saying a two-cell lies “below” the arc of the knot contained in
its boundary) to help guide us through the vast expanse of unavoidable notation.

For the purposes of the algorithm, we require that the diagram of α have an even number
of crossings, and we can arrange this to be the case by performing a Type 1 Reidemeister
move on α, if necessary. As observed by Perko, this allows for a convenient and consistent
labeling of the two-cells in the diagram, reviewed below.

Label the oriented arcs of the projection k0, . . . , kn−1 where n is the number of crossings
of α. These are the “horizontal” 1-cells referred to earlier. The line segment starting at
the head of the arc ki and ending at the cone point p of S3 is denoted ai; these are the
“vertical” 1-cells. Perko’s cell structure is given by: a 0-cell p at the cone point and an
additional 0-cell per crossing in the knot diagram; a 1-cells ai and a one-cell ki to each
arc of the knot diagram; a 2-cells Ai “below” ki bounded by ai−1, ki, and ai (and possibly
some other aj ’s, in the event that ki passes over other arcs of the knot); a single 3-cell. The
2-skeleton here is the cone on α; see Figure 9. Lastly, let f(i) denote the number of the
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Ai

Af(i)Ai+1

ai

ki

ki+1kf(i)

Figure 9. Cells at crossing i of α.

arc which passes over ki, and let c(i) ∈ {1, 2, 3} denote the color of arc i. Let ε(i) ∈ {+,−}
denote the sign of crossing i.

Next, lift this cell structure to M . Each ki has two lifts k1,i and k2,i, which are part of the
degree one and degree two branch curves, respectively. Each ai and Ai have three lifts, as
does the three cell. Call the three 3-cells e31, e

3
2, and e33 (again, in a way that is consistent

with the action of π1(S
3 − α) on the fiber).

Now we describe Perko’s method of labelling the lifts of the Ai. For each i, one lift of Ai
has boundary meeting the degree 1 branch curve. Call this lift A1,i. The other two lifts of
Ai share a common boundary segment along the degree 2 curve. These lifts will be called

A2,i and A3,i. One makes the choice as follows. Let ~Ai be a vector field along ki tangent

to Ai. The vector field ~A = ∪ni=0
~Ai determines a blackboard framing of k. Now lift ~A to

a continuous vector field ~A2 along the degree two lift of k. There are two choices for such
a lift. We make a choice arbitrarily along k2,0 and this uniquely determines the lift along

the entire curve. Call A2,i the lift of Ai to which ~A2 is tangent. Last, we denote by aj,i the
lift of ai which is a subset of the boundary of Aj,i for j = 1, 2, 3.

Ai

Ai+1 A2,iA3,i

A3,i+1 A2,i+1

Figure 10. A lift of a blackboard framing of α along the degree two curve,
which determines the labeling of the lifts of the 2-cells Ai.
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Now we discuss the 3-cells e31, e
3
2, and e33 in more detail. The lift of a meridian mi about

ki has two connected components. One is a meridian of the degree 1 curve k1,i and lies
entirely in one 3-cell, namely e3c(i). The other is a meridian of k2,i, is a 2 : 1 covering of

mi, and lies in the 3-cells e3x and e3y, where {x, y} = {1, 2, 3}−{c(i)}. It will be convenient
to distinguish these 3-cells as follows. Pick a point q on k2i. Let ~vx,q and ~vy,q be vectors
in TqM lying in the half-spaces Tq(e

3
x) and Tq(e

3
y) respectively. One of the two 3-frames

{~k2,i,q, ~A2,q, ~vx} and {~k2,i,q, ~A2,q, ~vy} is positive, and the other is negative. Let w(i) ∈ {x, y}
be the value such that {~k2,i,q, ~A2,q, ~vw(i)} is positive.

Several configurations of 2-cells are possible above a given crossing with prescribed colors.
In the case of an inhomogeneous crossing, w(i) equals either c(f(i)) or c(i+1), and w(f(i))
equals either c(i) or c(i + 1). In addition the crossing may be positive or negative. One
possible configuration of cells for a positive inhomogeneous crossing is shown in Figure 11.
In this figure, c(i) = 2, c(i + 1) = 1, and c(f(i)) = 3. From this figure one can see that
w(i) = 3 and w(f(i)) = 2.

A1,i
A2,f(i)A1,i+1

a1,i

k1,i

k1,i+1

k2,f(i)

A3,f(i)

k1,f(i)
A1,f(i)

A2,iA3,i

A3,i+1 A2,i+1

k2,i

k2,i+1

a2,ia3,i

e31

e32

e33

Figure 11. One possible configuration of the cells above an inhomogeneous
positive crossing i, where ki is colored 2, ki+1 is colored 1, and kf(i) is
colored 3.

In the case of a homogenous crossing, the colors c(i), c(i+ 1) and c(f(i)) are all equal, and
the 3-cell e3c(i) is adjacent to the arcs k1,i, k1,i+1, and k1,f(i). There are, however, multiple

possible configurations for the 3-cells near the degree 2 lifts of k; the value of w(i) either
coincides with w(f(i)), or not. One such configuration, for a positive homogenous crossing,
is pictured in Figure 12. For this crossing, all arcs are colored 3, and w(i) 6= w(f(i)).
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A1,i

A2,f(i) a1,i

k1,i

k1,i+1k2,f(i)

A3,f(i)
k1,f(i)

A1,f(i)

A2,iA3,i

A3,i+1 A2,i+1

k2,i

k2,i+1

a2,ia3,i

e31

e32

e33

k2,f(i)

e32

e31

A1,i+1

Figure 12. One possible configuration of the cells above a homogeneous
positive crossing i, where all arcs are colored 3. The two copies of k2,f(i)
are identified.

The complete lift of the 2-skeleton may now be constructed by gluing together the config-
urations above each crossing.

5.2. Finding surfaces bounding the degree 1 and 2 lifts of α. Now we recall Perko’s
method for finding surfaces with boundary equal to the index 1 or 2 branch curves, denoted
α1 and α2. Such surfaces will be linear combinations of the 2-cells A1,i, A2,i, and A3,i. That
is, we seek integers xi, yi and zi such that

∂

(∑
i

ziA1,i + xiA2,i + yiA3,i

)
=
∑
i

k1,i or
∑
i

k2,i.

The strategy is as follows: the 1-chains a1,i, a2,i and a3,i appear only above crossing
i. Depending on the configuration of cells above the crossing, they may appear in the
boundaries of any of the 2-cells A1,i, A2,i, A3,i, A1,f(i), A2,f(i) or A3,f(i). These 2-cells
appear xi, yi, zi, xf(i), yf(i), or zf(i) times in the 2-chain

∑
i ziA1,i + xiA2,i + yiA3,i.

We begin with k1. In this case zi = 1 for all i ∈ {0, . . . , n − 1}, because k1 must appear
exactly once in the boundary. In addition yi = −xi for all i ∈ {0, . . . , n− 1}, because none
of the k2,i may appear in the boundary.

Now define two signs which we associate to an inhomogenous crossing:

ε1(i) = 1 if c(i) 6= w(f(i)), and ε1(i) = −1 if c(i) = w(f(i)), and

ε2(i) = 1 if c(f(i)) = w(i), and ε2(i) = −1 if c(f(i)) 6= w(i).

Therefore at each inhomogenous crossing we get the following equation:

xi(a2,i − a3,i)− xi+1(a2,i − a3,i) + ε1(i)ε2(i)xf(i)(a2,i − a3,i) = ε(i)ε1(i)(a2,i − a3,i).
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The first two terms are the contribution of the boundaries of A2,i, A3,i, A2,i+1 and A3,i+1.
The third term is the contribution of the boundary of either A2,f(i) or A3,f(i), depending
on which one contains a2,i − a3,i in its boundary (this is determined by the signs ε1 and
ε2). The right hand side of the equation is the contribution of the boundary of A1,f(i).
Factoring out a2,i − a3,i gives

xi − xi+1 + ε1(i)ε2(i)xf(i) = ε(i)ε1(i).

Next we look at the homogeneous crossings. Associate the following sign to a homogeneous
crossing:

ε3(i) = 1 if w(i) 6= w(f(i)) and ε3(i) = −1 if w(i) = w(f(i)).

By a similar argument as above, we get the following equation:

xi − xi+1 + 2ε3(i)xf(i) = 0.

To find the xi, and hence a 2-chain with boundary k1, one now simply sets up an inho-
mogenous matrix equation using the equations above.

Now we turn to k2. This case is not explicitly written in Perko’s thesis, but we need it in
order to compute linking numbers of arbitrary curves with the degree 2 branch curve. In
this case, the k1,i cannot appear in the boundary, so all the zi are zero. Also, because each
k2,i appears exactly once in the boundary, we have yi = 1 − xi for all i. In this case, the
equations to solve are

xi − xi+1 + ε1(i)ε2(i)xf(i) +
ε2(i)

2
(ε(i)− ε1(i)) = 0

for inhomogeneous crossings, and

xi − xi+1 + 2ε3(i)xfi − ε3(i) = 0

for homogeneous crossings.

In summary, we have the following:

Proposition 5 (Perko [19]). Let n denote the number of crossings in a diagram for the
knot α, let f(i) denote the index of the overstrand kf(i) at crossing i, and let the signs ε,
and εx for x = 1, 2, 3 be as defined above. If the following inhomogeneous system of linear
equations

{
xi − xi+1 + ε1(i)ε2(i)xf(i) = ε(i)ε1(i) if crossing i is inhomogeneous
xi − xi+1 + 2ε3(i)xf(i) = 0 if crossing i is homogeneous
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has a solution (x0, x1, . . . , xn−1) over Q then the degree 1 branch curve is rationally null-
homologous and a multiple of it is bounded by the 2-chain

n−1∑
i=0

A1,i + xi(A2,i −A3,i).

Similarly if the following system{
xi − xi+1 + ε1(i)ε2(i)xf(i) = ε2(i)

2 (ε1(i)− ε(i)) if crossing i is inhomogeneous
xi − xi+1 + 2ε3(i)xf(i) = 0 if crossing i is homogeneous

has a solution (x0, x1, . . . , xn−1) over Q then the degree 2 branch curve is rationally null-
homologous and a multiple of it is bounded by the 2-chain

n−1∑
i=0

xiA2,i + (1− xi)A3,i.
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6. (Appendix B) The computer program

def wallcolorchange(oldcolor,wallcolor):

if oldcolor==wallcolor:

newcolor=oldcolor

elif oldcolor != wallcolor:

s=set()

s.add(1)

s.add(2)

s.add(3)

s.discard(oldcolor)

s.discard(wallcolor)

newcolor=s.pop()

return newcolor

def pseudolifts(subknotcolors,p1overnums,p1overtypes):

l=len(p1overnums)

lift1=[1]

lift2=[2]

lift3=[3]

for i in range(0,l-1):

if p1overtypes[i]==’k’:

newcell1=wallcolorchange(lift1[i],subknotcolors[p1overnums[i]])

lift1.append(newcell1)

newcell2=wallcolorchange(lift2[i],subknotcolors[p1overnums[i]])

lift2.append(newcell2)

newcell3=wallcolorchange(lift3[i],subknotcolors[p1overnums[i]])

lift3.append(newcell3)

else:

lift1.append(lift1[i])

lift2.append(lift2[i])

lift3.append(lift3[i])

return lift1, lift2, lift3

def pseudo2lifts(subknotcolors, p2overnums, p2overtypes):

l=len(p2overnums)

lift1=[1]

lift2=[2]

lift3=[3]

for i in range(0,l-1):

if p2overtypes[i]==’k’:

newcell1=wallcolorchange(lift1[i],subknotcolors[p2overnums[i]])

lift1.append(newcell1)

newcell2=wallcolorchange(lift2[i],subknotcolors[p2overnums[i]])
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lift2.append(newcell2)

newcell3=wallcolorchange(lift3[i],subknotcolors[p2overnums[i]])

lift3.append(newcell3)

else:

lift1.append(lift1[i])

lift2.append(lift2[i])

lift3.append(lift3[i])

return lift1, lift2, lift3

def subwhereisA2(subknotcolors,subknottypes,subknotovernums):

l=len(subknottypes)

if subknotcolors[0]==1:

where=[2]

else:

where=[1]

for j in range(0,l-1):

if subknottypes[j]==’k’:

where.append(wallcolorchange(where[j],subknotcolors[subknotovernums[j]]))

elif subknottypes[j]==’p’:

where.append(where[j])

return where

def xingsign1(i,subknotcolors,subknottypes,subknotovernums):

if subwhereisA2(subknotcolors,subknottypes,subknotovernums)[subknotovernums[i]]

!=subknotcolors[i]:

s=1

else:

s=-1

return s

def xingsign2(i,subknotcolors,subknottypes,subknotovernums):

if subwhereisA2(subknotcolors,subknottypes,subknotovernums)[i]

!=subknotcolors[subknotovernums[i]]:

s=-1

else:

s=1

return s

def xingsign3(i,subknotcolors,subknottypes,subknotovernums):

if subwhereisA2(subknotcolors,subknottypes,subknotovernums)[i]

==subwhereisA2(subknotcolors,subknottypes,subknotovernums)[subknotovernums[i]]:

s=-1

else:

s=1
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return s

def p1surfacecoefmatrix(subknotcolors,subknottypes,subknotovernums,subknotsigns,

p1signs,p1overnums,lift):

n=len(subknotcolors)

coefmatrix= [[0 for x in range(n+1)] for x in range(n)]

for i in range(0,n):

coefmatrix[i][i]+=1

coefmatrix[i][(i+1)%n]-=1

if subknottypes[i]==’k’ and

subknotcolors[i]!=subknotcolors[subknotovernums[i]]:

coefmatrix[i][subknotovernums[i]]+=

xingsign1(i,subknotcolors,subknottypes,subknotovernums)

*xingsign2(i,subknotcolors,subknottypes,subknotovernums)

elif subknottypes[i]==’k’ and

subknotcolors[i]==subknotcolors[subknotovernums[i]]:

coefmatrix[i][subknotovernums[i]]+=

xingsign3(i,subknotcolors,subknottypes,subknotovernums)*2

elif subknottypes[i]==’p’ and

lift[subknotovernums[i]]==subknotcolors[i]:

coefmatrix[i][n]=0

elif subknottypes[i]==’p’ and

lift[subknotovernums[i]]==

subwhereisA2(subknotcolors,subknottypes,subknotovernums)[i]:

coefmatrix[i][n]=-subknotsigns[i]

elif subknottypes[i]==’p’ and lift[subknotovernums[i]]!=

subwhereisA2(subknotcolors,subknottypes,subknotovernums)[i]:

coefmatrix[i][n]=subknotsigns[i]

return coefmatrix

def solvefor2chain(matrixofcoefs, numcrossings):

M=Matrix(matrixofcoefs)

pivots=M.rref()[1]

numpivots=len(pivots)

RR=M.rref()[0]

x=[0 for j in range(numcrossings)]
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if numcrossings in pivots:

return ’False’

else:

for i in range(0,numpivots):

x[pivots[i]]=-RR[i,numcrossings]

return x

total=[[0,0,0],[0,0,0],[0,0,0]]

l=len(p2overnums)

p2lifts=pseudo2lifts(subknotcolors, p2overnums, p2overtypes)

p1lifts=pseudolifts(subknotcolors,p1overnums,p1overtypes)

coeflists=[]

coeflists.append(solvefor2chain(p1surfacecoefmatrix(subknotcolors,subknottypes,

subknotovernums,subknotsigns,p1signs,p1overnums,p1lifts[0]),len(subknotsigns)))

coeflists.append(solvefor2chain(p1surfacecoefmatrix(subknotcolors,subknottypes,

subknotovernums,subknotsigns,p1signs,p1overnums,p1lifts[1]),len(subknotsigns)))

coeflists.append(solvefor2chain(p1surfacecoefmatrix(subknotcolors,subknottypes,

subknotovernums,subknotsigns,p1signs,p1overnums,p1lifts[2]),len(subknotsigns)))

where=subwhereisA2(subknotcolors,subknottypes,subknotovernums)

for s in range(0,3): # Three lifts of 1st pseudo-branch curve

if coeflists[s]!=’False’:

for i in range(0,l):# Arcs of the second pseudo-branch curve

if p2overtypes[i]==’k’: # If the knot passes over the 2nd pseudo-branch curve

for j in range (0,3):

if p2lifts[j][i]==subknotcolors[p2overnums[i]]:

total[s][j]+=0

elif p2lifts[j][i]==where[p2overnums[i]]:

total[s][j]+=coeflists[s][p2overnums[i]]

elif p2lifts[j][i]!=where[p2overnums[i]]:

total[s][j]-=coeflists[s][p2overnums[i]]

if p2overtypes[i]==’p’:

for j in range (0,3):

if p2lifts[j][i]!=p1lifts[s][p2overnums[i]]:

total[s][j]+=0

elif p2lifts[j][i]==p1lifts[s][p2overnums[i]]:

total[s][j]+=p2signs[i]
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else:

total[s][0]=’x’

total[s][1]=’x’

total[s][2]=’x’

return total

7. (Appendix C) Applying the program to pseudo-branch curves for α

We used the following input to generate the results presented in Section 4:

7.1. The characteristic knot β is the first pseudo-branch curve. The list of over-
strand numbers f(i) for α is (7, 0, 12, 7, 6, 10, 3, 5, 6, 3, 2, 0, 0, 3).

The corresponding list of signs for the knot α is (−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1, 1).

The list of crossing types is (p, p, k, k, p, k, p, k, p, p, p, k, p, k).

The list of colors is (1, 1, 3, 2, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3).

The list of overstrand numbers for the first pseudo-branch curve γ = β is (12, 0, 10, 6, 5, 7, 5, 0, 12, 3).

The corresponding list of signs is (1,−1, 1,−1,−1, 1,−1,−1, 1,−1).

The list of crossing types is (k, k, k, p, k, k, k, p, k, k).

The program returns the matrix

[[0,−1,−1,−1,−1, 0, 1, 0, 0, 0, 1, 0, 0, 1], [0, 0, 1, 1, 1, 1, 0, 0,−1, 0,−1, 0, 0,−1],

[0, 1, 0, 0, 0,−1,−1, 0, 1, 0, 0, 0, 0, 0]],

which is the list of coefficients xji of the 2-cells A2,i in the 2-chain bounding lift i of β.
These coefficients are organized in Table 1.

β is the first pseudo-branch curve and ω1 is the second pseudo-branch curve. The
list of overstrand numbers for the second pseudo-branch curve ω1 is (0, 12, 0, 5, 6, 7).

The corresponding list of signs is (−1, 1,−1, 1, 1,−1).

The list of crossing types is (p, k, k, k, p, k).

The output of the program is [[0, 0, 0], [−1, 0, 1], [1, 0,−1]]. The interpretation of this matrix
is given in Section 4.

β is the first pseudo-branch curve and ω2 is the second pseudo-branch curve.

The list of overstrand numbers for the second pseudo-branch cuve ω2 is (10, 3, 6, 5).

The corresponding list of signs is (1,−1,−1,−1).

The list of crossing types is (k, p, p, k).
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The output of the program is [[−1,−1, 0], [−1, 1,−2], [0,−2, 0]]. The interpretation of this
matrix is given in Section 4.

7.2. The curve ω1 in V −β is the first pseudo-branch curve. The list of over-crossing
numbers f(i) for the subdivided knot diagram is (0, 9, 5, 3, 7, 4, 3, 2, 0, 2).

The list of crossing types is (p, k, k, p, k, k, p, p, k, k).

The list of colors is (1, 1, 2, 1, 1, 3, 2, 2, 2, 3).

The list of signs is (−1, 1, 1, 1, 1, 1,−1, 1, 1, 1).

The program returns the matrix

[[0, 0, 0, 0,−1, 0, 1, 1, 0, 0],′ False′,′ False′],

which is the list of coefficients xji of the 2-cells A2,i in the 2-chain bounding lift i of β is
given in Table 2. The ′False′ entries signal that the second and third lifts of ω1 are not
zero-homologous.

ω1 is the first pseudo-branch curve and β is the second pseudo-branch curve.

The list of overstrand numbers for the second pseudo-branch curve β is (9, 0, 2, 7, 3, 4, 5, 3, 4, 0, 9, 2).

The corresponding list of signs is (1,−1,−1, 1, 1,−1, 1, 1,−1,−1, 1,−1).

The list of crossing types is (k, k, p, k, p, k, k, p, k, p, k, k).

The output of the program is [[0,−1, 1], [′x′,′ x′,′ x′], [′x′,′ x′,′ x′]]. The interpretation of this
matrix is given in Section 4.

References

1. James Alexander, Note on Riemann spaces, Bulletin of the American Mathematical Society 26 (1920),
no. 8, 370–372.
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