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RESEARCH ARTICLE
10.1002/2016GC006301

Contrasting sediment melt and fluid signatures for magma
components in the Aeolian Arc: Implications for numerical
modeling of subduction systems
Denis Zamboni1,2, Esteban Gazel1, Jeffrey G. Ryan3, Claudia Cannatelli2,4, Federico Lucchi5,
Zachary D. Atlas3, Jarek Trela1, Sarah E. Mazza1, and Benedetto De Vivo2

1Department of Geosciences, Virginia Tech, Blacksburg, Virginia, USA, 2Dipartimento di Scienze della Terra, dell’Ambiente
e delle Risorse, Universit�a di Napoli Federico II, Napoli, Italy, 3Department of Geology, University of South Florida, Tampa,
Florida, USA, 4Department of Geology and Andean Geothermal Centre of Excellence, Universidad de Chile, Santiago,
Chile, 5Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum, Universit�a di Bologna,
Bologna, Italy

Abstract The complex geodynamic evolution of Aeolian Arc in the southern Tyrrhenian Sea resulted in
melts with some of the most pronounced along the arc geochemical variation in incompatible trace ele-
ments and radiogenic isotopes worldwide, likely reflecting variations in arc magma source components.
Here we elucidate the effects of subducted components on magma sources along different sections of the
Aeolian Arc by evaluating systematics of elements depleted in the upper mantle but enriched in the sub-
ducting slab, focusing on a new set of B, Be, As, and Li measurements. Based on our new results, we suggest
that both hydrous fluids and silicate melts were involved in element transport from the subducting slab to
the mantle wedge. Hydrous fluids strongly influence the chemical composition of lavas in the central arc
(Salina) while a melt component from subducted sediments probably plays a key role in metasomatic reac-
tions in the mantle wedge below the peripheral islands (Stromboli). We also noted similarities in subducting
components between the Aeolian Archipelago, the Phlegrean Fields, and other volcanic arcs/arc segments
around the world (e.g., Sunda, Cascades, Mexican Volcanic Belt). We suggest that the presence of melt com-
ponents in all these locations resulted from an increase in the mantle wedge temperature by inflow of hot
asthenospheric material from tears/windows in the slab or from around the edges of the sinking slab.

1. Introduction

The geochemical evolution of the Earth is inherently related to subduction as this process recycles crustal
material back into the mantle. The release of slab-derived fluids and melts transports water and other ele-
ments in the mantle wedge during progressive subduction, and lowers the solidus, viscosity, and density of
the mantle wedge triggering partial melting [e.g., Gill, 1981; Tatsumi and Eggins, 1995; Schmidt and Poli,
1998; Elliott, 2003; Manning, 2004; Hermann et al., 2006; Syracuse et al., 2010; Spandler and Pirard, 2013; Pirard
and Hermann, 2014]. Element recycling via subduction directly influences the geochemical variability in the
deep mantle and contributes to the formation of distinct mantle domains evident in intraplate volcanoes
[Zindler and Hart, 1986; Plank and Langmuir, 1993; Rudnick, 1995; Hofmann, 1997; Ryan and Chauvel, 2014].

Compared to intraplate and mid-ocean ridge magmas, the typical arc geochemical signature is character-
ized by higher abundances of light rare earth elements (LREE) and large ion lithophile elements (LILE) rela-
tive to high field strength elements (HFSE). Overall, the contents of HFSE in arc magmas may vary
depending on their relative incompatibility (e.g., moderately incompatibility of Zr, Hf; and highly incompati-
ble element Nb, Ta) or by the presence of phases like rutile [e.g., Foley et al., 2000] that will hold those ele-
ments in the subducting slab. The arc signature depends on the composition and proportion of the
different source components (subducting oceanic crust, the overlying sediment, and mantle) and the ther-
mal regime of the subduction system will control the mineral phase stability and the solidus of the sub-
ducted material. Variations in these conditions define the stability of key potential mineral phases (e.g.,
rutile for Ti, Nb, and HFSE, garnet for HREE, phengite for LILE, zircon for Zr and Hf, allanite, monazite and
apatite for Th, U, and REE) resulting in a slab-signal that will manifest differently in every arc depending
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mainly on subduction temperature and secondary on the potential of extracting fluids or melts from the
subducting slab [e.g., Hermann, 2002; Hermann et al., 2006; Klimm et al., 2008; Hermann and Rubatto, 2009;
Skora and Blundy, 2010; Avanzinelli et al., 2012; Martindale et al., 2013; Skora et al., 2015].

Volcanic arcs are emplaced above subducting oceanic slabs [e.g., Tatsumi, 1989; Hawkesworth et al., 1993;
Stolper and Newman, 1994; van Keken et al., 2011] and in some locations the arc is also accompanied by a
back-arc basin spreading center, dominated by extensional stresses and adiabatic decompression melting
that can also be influenced by fluids derived from the subducting plate (e.g., Marianas, Izu-Bonin, Tonga-
Kermadec, South Sandwich) [Elliott et al., 1997; Barry et al., 2006; Turner et al., 2009; Tollstrup et al., 2010].
Such a tectonic scenario is also found in the southern Tyrrhenian Sea (Italy), where the Aeolian Volcanic Arc
(focus of this study) and associated Marsili back-arc basin (Figure 1a) resulted from the subduction of the
Ionian Plate under the Calabrian Arc [e.g., De Astis et al., 2003; Ventura, 2013; Peccerillo et al., 2013]. Current
geochemical data for volcanic rocks from the southern Tyrrhenian Sea proximal to the Aeolian Islands high-
light the coexistence of mid-ocean ridge basalts (MORB) (i.e., Vavilov basin), intraplate oceanic island basalts
(OIB) (i.e., Ustica and Prometeo seamounts), and typical arc geochemical signatures (i.e., Marsili) [Ellam et al.,
1989; Beccaluva et al., 1990; Trua et al., 2004, 2011; Peccerillo, 2005] as a result of the tectonic complexity of
the region.

Although crustal assimilation can explain localized processes in the genesis of felsic magmas (e.g., record of
anatexis process beneath Lipari) [Di Martino et al., 2010, 2011], the effects on trace elements and radiogenic
isotope ratios have been demonstrated to be limited (e.g., high concentrations of incompatible elements
act as a buffer for the incompatible element ratios and radiogenic isotopes variations) [Peccerillo and
Frezzotti, 2015 and reference therein]. Thus the extreme variations in trace element and isotopic composi-
tions within a single island and along the entire Aeolian volcanic front cannot be simply explained by
crustal interactions [e.g., Peccerillo et al., 2013]. Current interpretations for the geochemical variability along
this arc include differences in melt sources to regional variations in the degree of partial melting [Ellam
et al., 1988; Francalanci et al., 1993; De Astis et al., 2000; Peccerillo, 2005; Peccerillo et al., 2013].

The sediment supply to the central Ionian Sea derives from outflow from the Adriatic Sea and Gulf of Tar-
anto and turbidity flows of terrigenous sediment from both the African margin and Calabrian Arc [Weldeab
et al., 2002]. Subducted sediments and altered oceanic crust components play an important role in arc mag-
matism worldwide [Plank and Langmuir, 1998] and there is a general consensus about the role of subducted
components in the genesis of Aeolian magmas [Ellam et al., 1988; Tonarini et al., 2001; Francalanci et al.,
2007; Peccerillo et al., 2013]. Nonetheless, it is still necessary to discriminate between the effects of
subduction-derived fluids and melts, in order to better understand the role that the different subduction-
zone contributors play in modifying the mantle wedge and their effects on the volcanic output [e.g., Class
et al., 2000; Saginor et al., 2013; Ryan and Chauvel, 2014]. The goal of this study is to investigate which slab-
derived components (i.e., slab fluids or melts derived from the subducting crust and/or sediments) control
the extreme along-arc variations in the geochemical signatures of Aeolian magmas in a west-east section of
the arc from the island of Alicudi to Stromboli (Figure 1). We did not include the islands of Vulcano and
Lipari in this study as the isotopic signature of lavas from these islands clearly points toward a lithospheric
component [De Astis et al., 2013; Forni et al., 2013]. For this purpose, we report new B, Be, Li, As data as well
as whole rock major and trace element compositions for olivine bearing mafic lavas, representative of primi-
tive magmas largely unaffected by crustal contamination [e.g., De Astis et al., 2000; Peccerillo, 2005].

1.1. Geologic and Tectonic Background
The Aeolian Archipelago is located in the southern Tyrrhenian Sea, north of the Sicilian coast and west of
the Calabrian Orogenic Arc (Figure 1a). It includes the islands of Alicudi, Filicudi, Salina, Lipari, Vulcano, Pan-
area, and Stromboli, and several seamounts around the Marsili oceanic basin (Figure 1b). The islands and
seamounts depict a volcanic arc, which has been subdivided into three segments (western, central, and
eastern) based on distinct volcanic and structural evidence [De Astis et al., 2003 and references therein;
Ventura, 2013]. The western segment consists of Alicudi and Filicudi islands and the seamounts to the west,
with the magma rising mainly controlled by the WNW–ESE Sisifo-Alicudi Fault System (SA) (Figure 1b)
[Ventura, 2013 and reference therein]. The volcanism in this segment comprises some of the most primitive
lavas of the entire arc with Mg-numbers (molar [MgO/[MgO1FeO]]*100) up to 73 in equilibrium with the
mantle [Peccerillo et al., 2004]. This segment is currently inactive due to compressional stresses operating
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Figure 1. Tectonic setting and geochemical signatures of volcanic rocks of the southern Tyrrhenian Sea (Italy). (a) The dominant magma
signatures of the main volcanoes are displayed along with the front of the Apennine-Maghrebid fold-and-thrust belt of the central Medi-
terranean region [after Trua et al., 2007]. The depth contours of the Wadati-Benioff zone from Faccenna et al. [2011] are represented with
orange-dashed lines. The red arrow is a geodetic vector representing the rate of subduction [Faccenna et al., 2011]. (b) Geomorphology
and bathymetric features of the Aeolian Arc and surrounding seamounts in the Marsili Basin (modified from Peccerillo et al. [2013]). The
entire subduction/collision front is represented in the inset map of Italy. Abbreviations: IP5 Ionian Plate; SA5 Sisifo-Alicudi Fault System;
Smt 5 seamount; TLF 5 Tindari-Letojanni Fault System.
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west of the NNW–SSE Tindari-Letojanni Fault System (TLF) (Figure 1b) that appear to limit magma ascent
[Peccerillo et al., 2004; Ventura, 2013]. The central arc segment includes the NNW-aligned Salina, Lipari, and
Vulcano islands that are all affected by the TLF (Figure 1b), which produces transtensional stresses [Ventura,
2013]. The eastern arc segment comprises the islands of Panarea and Stromboli (and the seamounts to the
north-east) that are strongly influenced by a prevailing NNE–SSW to NE–SW striking fault system responsi-
ble for the elongation of dikes and eruptive fissures [Ventura, 2013].

The basement of the Aeolian Arc consists of the Calabrian-Peloritan tectonic terrains (Calabria block)
[Rottura et al., 1991] related to the European continental plate. The thickness of the continental crust varies
from �25 km, under the Calabrian Arc and the western Aeolian Islands, to 10 km, in the Marsili Basin
[Piromallo and Morelli, 2003]. The occurrence of deep-focus earthquakes beneath the eastern segment of
the Aeolian Arc defines the presently active subduction zone [Falsaperla et al., 1999; Panza et al., 2003,
2004]. Melting of the mantle wedge above the steep (�708) north-west dipping, and rolling-back Ionian
slab under the Calabrian Arc is responsible for the Aeolian volcanism [Gvirtzman and Nur, 2001; Chiarabba
et al., 2008]. The oldest known volcanic activity in the area was �1.3 Ma submarine volcanism at the Sisifo
Seamount [Beccaluva et al., 1982], while the Eolo and Enarete seamounts around the Marsili Basin range
between 850 and 640 ka in age [Beccaluva et al., 1985]. The subaerial volcanic activity began in Salina, Fili-
cudi, and Lipari around 250–270 ka [Forni et al., 2013; Lucchi et al., 2013a, 2013b] and continues at present
time in the central-eastern segments of the arc (Stromboli and Vulcano) above or at the margins of the
deep seismicity zone [Panza et al., 2003].

Geochemical studies on the Marsili Seamount [Trua et al., 2007, 2011] suggest a compositional variation
from a dominant arc signature to a younger, sporadic intraplate signature, geochemically similar to the
Etna-Hyblean Plateau and related to the African mantle source [Trua et al., 2003]. Because of similarities in
isotopic and trace element compositions between Alicudi lavas and the intraplate Marsili lavas [Trua et al.,
2004, 2011], several authors proposed that the western segment of the Aeolian Arc includes some contribu-
tion of asthenospheric flow from the northern African mantle into the southern Tyrrhenian mantle wedge
around the edges of the subducting Ionian slab [Trua et al., 2003, 2011; Chiarabba et al., 2008]. De Astis et al.
[2006] also hypothesized that a similar mantle flow from the northeastern side of the slab might be respon-
sible for the alkaline volcanism of Vesuvius and Stromboli. Additionally, Peccerillo [2001] proposed that the
eastern segment of the Aeolian Islands might extend to Vesuvius and the Phlegrean Fields, based on com-
positional affinities (radiogenic isotopes and incompatible element ratios) between the Campanian Province
lavas and Stromboli potassic rocks; although U-series disequilibria suggest the possibility of different meta-
somatizing components for Stromboli and Vesuvius [Voltaggio et al., 2004; Tommasini et al., 2007; Avanzinelli
et al., 2008].

2. Materials and Methods

We collected mafic samples on the islands of Alicudi, Filicudi, Salina, and Stromboli based on previous stud-
ies [e.g., Francalanci et al., 2013; Lucchi et al., 2013a, 2013b, 2013d] that suggested that the units collected
are not only the most mafic but also they do not show any important evidence of crustal contamination.
Peccerillo and Frezzotti [2015] demonstrated that samples with MgO� 3.5 wt. % do not show significant evi-
dence of crustal interaction in their incompatible elements ratios and radiogenic isotope signatures. Based
on this, we revisited outcrops of these well-characterized units and collected samples from olivine-bearing
scoria and lavas with the goal of elucidating the effects of subducted components on the magma sources
and avoiding any significant crustal contamination signatures. GPS locations are reported in supporting
information Table S1A. For additional geologic background, Lucchi et al. [2013c] presents a comprehensive
geologic description and history of the Aeolian archipelago and the units selected for this study.

All the samples were processed in the geochemistry laboratory at the Department of Geosciences at Vir-
ginia Tech. Rock sample preparation and analytical work were conducted following the procedures
described in Mazza et al. [2014]. Major element composition were determined on rock powders fluxed into
homogeneous glass fusion disks with a combination of Li2B4O7 LiBO2-LiBr from SpexVR (certified �1 ppm
blank for all trace elements) and analyzed with X-ray fluorescence (XRF) at Virginia Tech. For the major ele-
ments, the relative standard deviation (RSD) for 10 replicates of BHVO-2, run as an unknown, was <1% for
all major elements while for AGV-2, run as unknown, was <1% with accuracy better than 2%. Additional
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trace element compositions for samples of Stromboli were collected at Virginia Tech by laser ablation induc-
tively coupled plasma mass spectrometry (LA-ICP-MS) in the same fusion disks with an Agilent 7500ce
ICPMS coupled with a Geolas laser ablation system, with a He flow rate of �1 L/m25 Hz and an energy den-
sity on sample �7–10 J/cm2. Data were calibrated against USGS standards BHVO-2, BCR-2, BIR-1a, and G-2,
using Ti from XRF as an internal standard and the standard element values reported in Kelley et al. [2003].
The accuracy for 10 replicates of BHVO-2 run as an unknown was better than 6% for all elements except for
V, Cr, Sr, Nb, Ba, Eu, Lu, and Ta (7–9%) and Cs (10%), with RSD (1r) better than 5% except for Cu, Zn, and Pb
(7–9%) and Cs (12%). Trace elements contents from the island of Alicudi, Filicudi, and Salina were deter-
mined by solution ICP-MS at the USF Center for Geochemical Research at the University of South Florida
together with Be and Li contents (also for Stromboli). Sample preparation for ICP-MS follows the analytical
method described by Kelley et al. [2003], with sample dissolution by HF-HNO3 digestion, using distilled acids.
Data were calibrated against natural standard reference materials USGS CRM BHVO-2, BIR-1, BCR-2, NBS-
688, and GSJ (Geological Survey of Japan) CRM JA-2 prepared as above. Accuracy was determined using
GSJ standard JB-3 with RSD (1r) for 4 replicates <5% for all elements. Errors on the analyses were generally
6% on Be and better than 10% on Li.

Boron and arsenic contents were determined by solution ICP-MS at the Center for Geochemical Analysis at
the University of South Florida. Methods were modified from Ryan and Langmuir [1993] as follows: 0.5 g of
each sample was mixed with 2 g of Na2CO3 flux (>99.9% purity) in 20 mL Pt crucibles. The covered crucibles
were heated in a muffle furnace to 10508C (conditions that are not reducing enough to make element com-
pounds that are volatile under fusion conditions, like As hydrides), and then cooled to room temperature.
The cooled crucibles were immersed in 80 mL of de-ionized mannitol distilled B-free water 180 mL Savillex
jars, sealed and placed on a hot plate at 1008C for 12 h. Boron and arsenic are separated as part of the
water-soluble fraction of the fusion cake (compose of highly water soluble but poorly volatile oxides), along
with the heavier alkali metals; other species remain sequestered in the water-insoluble portion. The fusion
cakes were extracted from the crucibles with Teflon spatulas, and rinsed profusely in B-free DI water. The
resulting solution was evaporated to �20 mL total volume. These solutions were then decanted, rinsed, and
centrifuged for 15 min to separate the insolubles. Supernates were collected in Savillex jars, dried, and
resuspended in 20 mL of B-free water and 5 mL of distilled HNO3. The acidified solutions were allowed to sit
at room temperature for several hours for SiO2 to precipitate, and were then centrifuged to separate silica,
and diluted to 50 g total solution weight using de-ionized B-free water, centrifuged to separate silica, and
decanted to 15 mL centrifuge tubes for analysis.

Fluid mobile element (FME) solutions were analyzed on a Perkin Elmer Elan DRC II Q-ICPMS using a PFA tef-
lon front end attached to a pure quartz concentric spray chamber. Since the potential for contamination by
boron in glass is high, blanks were repeatedly run to ensure that there was no contamination from the sam-
ple introduction system. Analytical conditions on the ICP were standard mode for all elements (including
As) and tuning was performed by standard routines with special emphasis on low mass elements. Since no
chloride matrix was present, there was no potential for ArCl interference at mass 75; which was confirmed
by our blank analysis. Calibration curves were obtained using a series of natural standard reference materi-
als (USGS CRM BHVO-2, BIR-1, BCR-2 and GSJ CRM JA-2) prepared in the same manner as samples. Accuracy
and precision were referenced against GSJ CRM JB-3 using SRM ANRT-DRN as a drift standard (which also
provides an additional check of accuracy) also prepared as before. Reproducibility of the As and some of
the other FME (Cs and Rb) measured in the HF-HNO3 solution confirm our results from the Na2CO3 fusion
fluxed method. Accuracy and precision was generally 9% or better on B and close to 6% on As as obtained
by replicate analysis of the reference material JB-3. Additionally Rb, Cs, Sr, and Ba were analyzed by this
method with good reproducibility on JB-3. Samples were analyzed as duplicates during the analysis and
reproducibility on Boron was better than 8% and better than 6% on sample replicates (supporting informa-
tion Table S1B).

3. Results

The samples collected for this study range in composition from calc-alkaline to high potassium basalt to
andesite. The samples are characterized by porphyritic texture with variable phenocryst content. When plot-
ted in the classic SiO2 versus K2O diagram from Peccerillo and Taylor [1976], our new data (supporting
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information Table S1C) have compositions in agreement with previously collected major element data (Fig-
ure 2). In the western segment of the Aeolian Arc (Figure 2a), samples from Alicudi vary from basalt to ande-
site and plot in the calc-alkaline and high potassic calc-alkaline fields. Most of the Filicudi samples are
basalts that plot near the boundary between the calc-alkaline and high potassic calc-alkaline series. Samples
from Salina in the central arc segment (Figure 2b) are calc-alkaline basalts, and basaltic-andesites. In the
eastern arc segment, Stromboli displays an important separation between lavas with high potassium con-
tents (K2O> 3.5 wt. %) that belong to the potassic series and other samples that plot in a range between
the calc-alkaline and shoshonitic series (Figure 2c), in agreement with the compositional behavior described
by Francalanci et al. [2013]. Major element trends are consistent with observed mineral phases in the sam-
ples that evidence the cotectic crystallization of olivine and clinopyroxene typical of wet arc magmas, char-
acterized by an overall decreasing CaO and MgO and increasing Al2O3 during fractionation [e.g., Zimmer
et al., 2010].

Our new B, Be, Li, and As data are reported in supporting information Table S1D and average values are
plotted in Figures 3a, 3b, 3c, 3d to highlight the regional variations of these elements along the volcanic
front. The Aeolian Arc shows varying B abundances, increasing from west to east, with Alicudi and Filicudi
characterized by the lowest average B contents (�7 ppm) and Stromboli showing the highest (�19 ppm).
The highest B content (30.3 ppm) is displayed by Stromboli calc-alkaline rocks. Samples from Salina and Fili-
cudi have the lowest average Be concentrations (�1 ppm), while Alicudi and Stromboli samples have the
highest (�2 and �4 ppm, respectively). More in details, Stromboli calc-alkaline rocks average �2 ppm while
the potassic ones have an average �6 ppm. The maximum Be contents in the range 4.9–7.2 ppm are found
in the potassic rocks of Stromboli and are �5 times greater than any other island in the Aeolian Arc. Lithium
and arsenic contents vary similarly to B, with a general increasing from west to east along the arc with the
highest values in Stromboli. However the variations in Li (and As) are not perfectly uniform with a gradual
increase toward east, in fact Filicudi samples, for either Li and As, are characterized by the lowest average
values (�6 and �1 ppm, respectively). The average Li and As budgets of Alicudi and Salina are similar (�8
and �2 ppm, respectively) while Stromboli has the highest. When fluid mobile elements (B, As and Li) are
plotted against Be, there is a clear bimodal behavior with distinct trends for the calc-alkaline rocks and the
potassic samples of Stromboli (Figures 3e, 3f, 3g).

4. Discussion

Magmas from the Aeolian Arc display some of the largest along-arc geochemical variations in the world
[e.g., Peccerillo, 2005; Peccerillo et al., 2013]. This is particularly evident in the significant change in 87Sr/86Sr
and 143Nd/144Nd isotopes ratios in less than 90 km along the volcanic front, from Alicudi to Stromboli (Fig-
ure 4). Current interpretations [Francalanci et al., 2007; Peccerillo et al., 2013] suggest that this signature is
controlled by a depleted mantle source at Alicudi with an increasing role for subduction components or
crustal contamination from west to east (Figure 4). Crustal contamination cannot account for the entire geo-
chemical variation along the arc [Ellam and Harmon, 1990; Peccerillo et al., 2004, 2013] as it requires unrealis-
tic extents of assimilation (up to 40% of average Calabrian crust) while at the same time maintaining a
primitive basaltic composition in the erupted material [De Astis et al., 2000; Peccerillo, 2005]. Peccerillo et al.
[2013] presented additional isotopic evidence of the source composition controlling the geochemical signa-
ture in the Aeolian Islands. These authors described how combination of O- and Sr-isotope studies is a
powerful tool to discriminate magma-lithospheric interaction from source composition processes, conclud-
ing that variations in 87Sr/86Sr along the volcanic front is a direct manifestation of variations of source com-
position in the Aeolian Arc. Therefore, the regional geochemical trends recorded in the mafic lavas in the
Aeolian Arc are most likely controlled by the addition of subduction components to the mantle wedge in
the form of fluids and/or melts.

Fluids and melts derived from subducting sediments and oceanic lithosphere are known to be responsible
for the chemical and rheological modification of the mantle wedge in subduction systems [e.g., Ryan and
Langmuir, 1993; Elliott et al., 1997; Johnson and Plank, 1999; Kelemen et al., 2003; Eiler et al., 2005; Kimura and
Stern, 2008; Gazel et al., 2009; Hermann and Rubatto, 2009; Saginor et al., 2013; Martin et al., 2014; Gazel
et al., 2015]. At higher P-T conditions, the distinction between fluids and melts may not be possible if the
system reaches a supercritical fluid phase [Manning, 2004; Kessel et al., 2005; Pirard and Hermann, 2014].
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Figure 2. K2O versus SiO2 geochemical classification after Peccerillo and Taylor [1976] for the volcanic rocks of the Aeolian Arc showing our
new samples compared with previous data collected in these islands from the compilation of Lucchi et al. [2013c].
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Figure 3. Regional along-arc variations of B (a), Be (b), Li (c), and As (d) for the Aeolian volcanic rocks collected in this study. Note the two
trends between the calc-alkaline and potassic units in (e), (f), and (g) with respect to the average B, Be, Li, and As contents in the upper
mantle (UM) derived melts. Those trends represent linear regression. R2 for calc-alkaline and potassic trends: (e) 0.17 and 0.86, (f) 0.44 and
0.72, (g) 0.40 and 0.78. Upper mantle melts consist of MORB values from Gale et al. [2013] and White and Klein, [2014], and OIB values from
Ryan et al. [1996b] and Krienitz et al. [2012]. No significant studies qualitatively measure As in MORB or intraplate magmas, thus we assume
that the composition of these melts will plot at the convergence of the two trends as evident in the other elements. Vertical bars are the
1r standard deviation of the range of the data; n 5 number of samples.
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Kawamoto et al. [2012] demon-
strated that a supercritical fluid
derived from the slab could
separate to form fluid and melt
components in most subduc-
tion zones. We can use trace
elements that are compatible in
either hydrous fluids or melts to
discriminate between these two
subduction components. For
instance, the high field strength
elements (HFSE, e.g., Nb, Ta, Zr,
Th) and middle to heavy rare
earth elements (REE) preferen-
tially partition into melts. The
alkali metals (e.g., K, Rb), the
alkaline earth metals (e.g., Ba,
Sr), and U are soluble-lithophile
elements because hydrous flu-
ids preferentially mobilize these
elements. Similarly, light REE
(e.g., La) are mobilized more
easily by hydrous fluid than the
rest of the REE [Brenan et al.,
1995; Johnson and Plank, 1999;
Elliott, 2003; Turner et al., 2003].

Once elemental behaviors are understood, then element ratios can be used to minimize the effect of partial
melting and fractionation processes on the determination of geochemical signatures. For example, com-
monly used ratios of elements mobilized by subduction related fluids to those mobilized only in melts (e.g.,
Ba/Nb, U/Th, Sr/La) are highest in the central segment of the Aeolian Arc (Salina), while for the external
islands (particularly Stromboli) these ratios are low, consistent with the increased contribution of silicate
melt components (Figure 5). These along-arc variations suggest that fluids play a major role in element
transport into the mantle wedge beneath the central region of the arc (Salina), while under Stromboli and,
to a lesser extent under Alicudi, a silicate melt is the dominant contributing component. Based on isotopic
evidence, Tonarini et al. [2001] also suggested the important role of a hydrous fluid component in the
magma genesis in the central sector of the Aeolian arc.

In this study, we also explore these element systematics further by the use of additional fluid mobile ele-
ments (e.g., B, As, Li), and Be, a melt-soluble element, as geochemical indicators of subduction components
(Figure 3) [Leeman, 1996; Ryan et al., 1996a] with the goal to better discriminate between slab-derived fluid
and melt signatures in the Aeolian Arc. While B and As mobilize in slab fluids starting very early in the sub-
duction process, Li is largely retained on the slab until temperatures increase, and it is also retained in the
mantle wedge much better than B or As, because it can substitute for Mg [Bebout et al., 1999; Bebout, 2007;
Savov et al., 2005, 2007; Penniston-Dorland et al., 2012]. In the subducting slab, B and Be are most likely
going to be hosted by phengitic white micas while Li will be host by phengite and chlorite. Due to B high
mobility in fluids while at the same time, Be is going to be strongly retained in phengite and only mobilized
by melts [e.g., Bebout et al., 1999], their relative concentrations in resulting arc magmas are considered to
be powerful indicators of the role of fluids versus melt components in subduction zones. Arsenic behaves in
slab metasediments very much like B [e.g. Noll et al., 1996], so we can infer that its phengite-fluid partition-
ing behavior is similar to B. Additionally, neither B nor Be are going to be impacted by accessory phases like
tourmaline and beryl as usually these phases can be stable under extreme high silica concentrations [e.g.,
London and Evensen, 2002; Marschall et al., 2009]. Tourmaline in ultrahigh-pressure metamorphic rocks
requires silica-rich fluids; however, it is also a common trace phase in medium to high-grade metasediments
[Marschall et al., 2009]. Arsenic concentrations can be strongly controlled by segregating sulfide phases, but

Figure 4. Regional variations of 87Sr/86Sr and 143Nd/144Nd (ENd) in the Aeolian Arc from lit-
erature data. Note the decrease in 143Nd/144Nd and dramatic increase in 87Sr/86Sr from the
western arc segment (Alicudi) to the eastern one (Stromboli) along a distance less than
90 km. Data compiled from: Alicudi, Peccerillo and Wu [1992]; Peccerillo et al. [1993, 2004].
Filicudi, Francalanci and Santo [1993]; Santo [2000]; Santo et al. [2004]. Salina, Ellam [1986];
Ellam et al. [1988, 1989]; Ellam and Harmon [1990]; Gertisser and Keller [2000]; Peccerillo
[2005]; Lucchi et al. [2013d]. Stromboli, Ellam et al. [1989]; Francalanci et al. [1989, 1993,
1999, 2004, 2008, 2012, 2013]; De Astis et al. [2000]; Landi et al. [2006, 2009]; Tommasini
et al. [2007]; Corazzato et al. [2008]; Petrone et al. [2009].
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Figure 5. Regional along-arc variations of elements mobilized by hydrous fluids (e.g., Ba, Sr, U, B, As, Li) over elements soluble in melts
(e.g., Nb, Th, Be) for the Aeolian samples of this study. Note how the central segment of the arc has higher fluid/melt ratios while the
peripheral arc segments are controlled by melt soluble elements.
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the oxidized nature of volcanic arc melts generally suppresses sulfide during fractional crystallization [Hat-
tori et al., 2002].

Boron is particularly useful as it is strongly enriched in marine sediments and altered oceanic crust, and is
extremely depleted in the upper mantle [Leeman and Sisson, 1996; Bebout et al., 1999; Plank, 2014; Ryan and
Chauvel, 2014]. The general increase in B contents toward the eastern segment of the Aeolian Arc (Figure
3a) is best explained by hydrous fluid inputs derived from the dehydrating subducting slab and sediments,
as also evident by other trace element systematics (Figures 5a–5c). Boron enrichment can be evaluated also
in details with B/Nb and B/Be ratios (Figures 5d and 5f), because these ratios reflect the extent of influence
of fluid-related process more than varying extents of partial melting and fractional crystallization. B/Nb and
B/Be increase from west to east reaching a peak in Salina and then drop off in Stromboli. This ‘‘chevron pat-
tern’’ indicates that the degree of enrichment of boron is higher in Salina and lower at the peripheral islands
regardless of the element concentration that can be controlled by degree of melting of fractional crystalliza-
tion. A very similar trend is also observed for the other fluid mobile elements (e.g., Li/Nb, Figure 5g) along
the volcanic front; nevertheless, As (e.g., As/La, Figure 5e) shows a slightly increase from west to east and it
might be indicative of subducting sulfidic or hydroxide-rich sediments.

Typically B and other fluid-mobile elements (e.g., As, Sb) are also highly enriched in serpentinite, which is a very
important component in a shallow mantle wedge due to its strong enrichment in water. Dehydration of serpen-
tine plays an important role in triggering melt in subarc mantle depths [Scambelluri and Tonarini, 2012].
Although the extent of mobilization of these elements via low-temperature hydrous fluid can be considerable
(as much as 70% of the slab budget for B and >15% for As) [Savov et al., 2005, 2007], a serpentinite component
is probably not involved in the genesis of the Aeolian Arc magmas. This consideration can be deduced by the B
isotopic data presented by Tonarini et al. [2001], in which the value of d11B are too low (26.1 to 12.3&) to be
derived from a serpentinite source, in contrast to the high B isotopic values (up to 118&) that would be charac-
teristic of a serpentinite-derived fluid [e.g., Benton et al., 2001], and the generally elevated d11B signatures
(>15&, for details see the study review of Ryan and Chauvel, 2014] of B-enriched arcs such as South Sandwich
[Tonarini et al., 2011], the Izu-Bonin-Mariana [Ishikawa and Nakamura, 1994; Ishikawa and Tera, 1999; Straub and
Layne, 2002], and the Kuril-Kamchatka [Ishikawa and Tera, 1997; Ishikawa et al., 2001]. The global compilation of
volcanic arc B and d11B data in Ryan and Chauvel [2014] demonstrates a dichotomy in subduction systems, cor-
related to their overall thermal structures, in which most show evidence for the involvement of a high B, high
d11B component, consistent with serpentinite-derived fluids, with a few ‘‘hot’’ systems (e.g., Cascades, Mexico) in
which this component appears to play no role, due perhaps to the release of B early enough during subduction
that it is not carried to mantle depths (see additional discussion in section 4.1).

Beryllium is typically concentrated in marine sediments, and is very depleted in the upper mantle, mimick-
ing the terrestrial distribution pattern of boron [Morris et al., 1990; Ryan, 2002; Plank, 2014; Ryan and
Chauvel, 2014]. Although Be is also a light element, it is very different from boron in terms of behavior, in
that it is immobile in hydrous fluids but highly mobile in silicate melts derived from a subducting slab
[Brenan et al., 1998; Ryan, 2002]. Although, the beryllium contents in calc-alkaline lavas from across the Aeo-
lian Arc are largely similar (Figure 3b), it is strongly enriched in the potassic samples from Stromboli (Figure
3b), as are other incompatible trace elements. This behavior can be explained by partial melting of a source
that is broadly enriched in incompatible trace elements, including Be. Thus, we suggest that this source is
consistent with subducted sediments transported into the mantle wedge by the Ionian slab. The role of sili-
cate melts in Stromboli is also evident when Be contents of different islands are plotted against B in respect
to Upper Mantle (UM) values (Figure 3e). Due to the different compositional trends displayed in Figure 3e,
we suggest two different sources for the calc-alkaline and potassic rocks of Stromboli (in agreement with
other geochemical tracers used by Tommasini et al. [2007] and Francalanci et al. [2013]), a fluid component
derived from the oceanic slab for the calc-alkaline magmas and a sediment melt component for the potas-
sic rocks. The potassic lavas of Stromboli show high Th/Ce and low 143Nd/144Nd as compared to the other
islands of the Aeolian Arc [Francalanci et al., 2007], a clear signature that can be obtained by a sediment
melt component [Elliott et al., 1997; Hawkesworth et al., 1997; Johnson and Plank, 1999; Class et al., 2000].
These results are also consistent with B and Be data collected for young Vesuvius lavas by Morris et al.
[1993], that also suggest a sediment melt-dominated component.

Similarities in the trends of other fluid mobile elements (e.g., As and Li) relative to B versus Be (Figures 3f
and 3g) provide additional evidence for a clear separation between the two magmatic end-members in this
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arc. Figure 5d shows that values in B/Nb, with a peak found at Salina, are similar to the ratios reported by
Ryan et al. [1996b], in which the partition coefficients of B and Nb are very similar (DB�DNb). Also, the fact
that the Li/Nb and K/La both show patterns similar to those of the B/Nb and B/La suggests that the slab
component being sampled in this area is enriched in alkali elements. Furthermore, the Be/Nd ratio for Ali-
cudi, Filicudi and Salina rocks varies slightly from the global arc ratio (�0.05) [Ryan and Langmuir, 1988],
while Stromboli basalts are characterized by higher ratios relative to typical arc magmas that may relate to
a slab component enriched in alkaline elements.

In order to explain the higher values for Be and Nb in the potassic lavas from Stromboli (supporting infor-
mation Table S1C and S1D), the sediment-melt component must be dominant in the genesis of these lavas.
Experimental work suggested that silica-undersaturated alkaline arc lavas could be produced via the reac-
tion of sediment-derived siliceous melt with peridotite in the mantle wedge [Avanzinelli et al., 2008; Mallik
and Dasgupta, 2013]. More recently, an experimental study by Mallik et al. [2015] demonstrated that ultrapo-
tassic magmas (resembling the ones from Stromboli) can be generated by mantle reaction with hydrous
sediment-derived melts. Mallik et al. [2015] indicated that during reactions between hydrous sediment-
derived partial melts of rhyolitic composition and peridotite, the stabilization of orthopyroxene and phlogo-
pite reduces the silica content of the melt, and buffers the composition toward higher K2O contents, yield-
ing compositions resembling the ultrapotassic lavas from the Sunda Arc and from the Roman Magmatic
Province.

4.1. Contrasting the Aeolian Arc With Other Global Volcanic Arc Examples
Understanding how these new data fit into global systematics of volcanic arcs is key for the interpretation
of the geodynamic complexity of the Aeolian Arc. We have compared our new B, Be, and trace-element
data with samples from the Phlegrean Fields, along with other well studied volcanic arcs and arc segments
in the world by assembling a data set via the GEOROC database (http://georoc.mpch-mainz. gwdg.de/
georoc/) accessed in February 2015.

Boron enrichments in Aeolian Arc lavas are consistently low, with B/Be ratios ranging between �2 and 15 in
most samples (Figure 5f). This makes the Aeolian Arc comparable to the Cascades and the Mexican Volcanic
Belt (�2–12 and �1–15, respectively) arcs as ‘‘low boron’’ subduction systems, a trait that is also evident in
its B-isotopic systematics [e.g., Tonarini et al., 2001]. These similarities are clear in Figure 6a, a plot of Th/Nb
versus La/Nb, in which mixing between potential end-members will form linear arrays. This plot allows us to
distinguish between melt components (high Th/Nb and low La/Nb) and fluid components (low Th/Nb and
high La/Nb) as slab-derived metasomatizing agents in the different arcs. In this diagram, the Stromboli data
overlap with data for the Sunda Arc, the Phlegrean Fields, and partially with the Cascades data along a trend
controlled by a melt-dominated component, clearly separating from the other Aeolian Islands, which dis-
play increasing La/Nb, from west to east. Alicudi, Filicudi, and Salina overlap the data field for the Aleutian
Arc, and part of the Marianas, Kamchatka, and the Mexican Volcanic Belt, indicating a transitional nature
between the melt and fluid trends. Meanwhile, the fluid component dominates in the Izu-Bonin, Marianas,
Kamchatka, and Tonga Arcs. Comparable behaviors can also be inferred from a plot of Th/Nb versus Ba/Nb
(Figure 6b).

Figure 6c plots B/Nb versus Th/Nd to further discriminate between fluid and melt components. B/Nb is a
tracer of slab fluid released by dehydration of sediment and altered oceanic crust [Ishikawa and Tera, 1997]
while Th/Nd is a tracer of sediment melt in arc magmas [Class et al., 2000]. The curved line represents a
potential mixing between a fluid-controlled end-member (represented by Izu Bonin samples), and a melt-
dominated end-member (represented by the Sunda Arc, Phlegrean Fields, and Stromboli). The fact that
most of the arc samples included in this comparison plot between these end-members suggests that likely
in all arcs worldwide slab-derived fluids and melts are responsible in different proportions for the
subduction-related elemental enrichments seen in arc lavas. The dominant component will depend on the
thermal structure of the arc, as is evident in arc B/La versus Ba/La systematics (Figure 6d) [see Ryan and
Chauvel, 2014]. The Aeolian suite forms a trend at low B/La consistent with the mixing of a ‘‘hot’’ slab-
derived B source and the upper mantle [Ryan and Chauvel, 2014]. The fluid-mobile element systematics of
Aeolian lavas are thus different from those volcanic arcs such as Izu-Bonin, Marianas, Kamchatka, and Cen-
tral America (Honduras-Nicaragua) as there is no evidence for the involvement of a ‘‘cool’’ slab-derived B
source, suggested to involve contributions from subduction-related serpentinite [e.g., Straub and Layne,
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2002; Savov et al., 2005, 2007; Hattori and Guillot, 2007; Tonarini et al., 2007; Ryan and Chauvel, 2014]. While
the ‘‘cool’’ fluid-mobile element component is not evident in Aeolian lavas, the fact that they nonetheless
show boron enrichment indicates that a slab-derived fluid component is involved.

4.2. Geodynamic Implications
Global thermal models for subduction systems from Syracuse et al. [2010] describe different pressure-
temperature (P-T) paths of subducting slabs using kinematically defined slabs based on physical parameters
(e.g., slab geometries, ages, convergence velocities). The model (D80) portrays the subduction of the Ionian
slab beneath Calabria as one of the coldest subduction zones on Earth (Figure 7). This observation is not
consistent with the observed geochemical signatures, which suggest a substantial sediment melt compo-
nent, as the slab P-T path will not even cross the water-saturated sediment solidus (Figure 7). Nevertheless,
the Syracuse et al. [2010] results come from a two-dimensional model that does not consider the 3-D
complications of lateral or trench-parallel asthenospheric mantle flow, due to slab rollback or slab windows,
[Buttles and Olson, 1998; Stegman et al., 2006; Schellart, 2008], a process that may exist in many subduction
systems. For example, the mantle wedge below the Sunda Arc is affected by flow of upwelling
asthenosphere through a horizontal slab window [Richards et al., 2007; Whittaker et al., 2007; Kundu and

Figure 6. Element ratios discriminating between slab-derived fluid components versus melt components. Different elements ratios (Th/Nb, La/Nb, Ba/Nb, B/Nb, and Th/Nd) are used to
discriminate between sediment melts and slab-fluid components for volcanic arcs/arc segments (a, b, c). In Figure 6c, the curve represents a binary mixing between a fluid (Izu-Bonin)
and melt (Stromboli, Phlegrean Fields, and Sunda) end-member. In Figure 6d, low values of B/La and Ba/La define the ‘‘hot subduction zones’’ where fluid mobile elements get removed
early during subduction processes as described by Ryan and Chauvel [2014]. Global data for the Phlegrean Fields, Aleutians, Kamchatka, Izu-Bonin, Tonga, Sunda, Marianas, Mexican Vol-
canic Belt, and Cascades are from the GEOROC geochemical database (http://georoc.mpch-mainz.gwdg.de/georoc/). Upper Mantle (UM) derived melts are from the same reference
sources as in Figure 3.
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Gahalaut, 2011] but aging in the Syracuse’s
model this arc is not pictured especially hot
as suggested by the geochemical data. The
geochemical variations in the northern seg-
ment of the Cascades are in fact best
explained by asthenosphere toroidal flow
from the northern edge of Juan de Fuca sub-
ducting plate [Mullen and Weis, 2015]. Also,
the origin of the heterogeneous mantle
under the Mexican Volcanic Belt and South-
ern Central America are also explained by
influx of hotter asthenosphere along a
trench-parallel slab window in the Cocos
Plate at the edges of the subducting slab
[Ferrari, 2004; Gazel et al., 2011; Ferrari et al.,
2012].

Seismic studies and numerical models in the
southern Tyrrhenian area [Chiarabba et al.,
2008; Baccheschi et al., 2008, 2011; Neri et al.,
2012; Faccenna et al., 2011] suggest the pres-
ence of African-related asthenospheric flow
around the edges of the narrow Ionian Plate
due to a slab tear caused by the rollback
motion of the Ionian slab [Gvirtzman and
Nur, 1999], which heavily affected the mantle
wedge of the Aeolian Arc [e.g., Faccenna
et al., 2011]. Also, recent work by Chen et al.
[2015] based on dynamic laboratory mod-
els of progressive subduction in three-

Figure 7. Pressure-temperature diagram for the Aeolian Arc (Calabria)
subducting slab (model D80, from Syracuse et al. [2010]) compared to a
cold subduction zone end-member (Tonga) and a hot subducting zone
end-member (Mexico). Note that according to the numerical models the
Ionian slab does not intersect the water saturated-sediment solidus [from
Mann and Schmidt, 2015]. Thus, in order to have sediment melt signatures,
we need another process that will either increase the temperature of the
slab or cause the separation of sediment diapirs that will cross the solidus
before the slab gets dehydrated.

Figure 8. Schematic model representing the Ionian slab subduction system below the Aeolian Arc modified from Trua et al. [2007]. Orange
arrows indicate the asthenospheric mantle inflow over the edges of the Ionian Plate rollbacking toward the SE. The predominant melt
components are represented in red under Stromboli and Alicudi. The predominant fluid component is represented in white under
Stromboli and Salina.
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dimensional space highlights the possibility of a toroidal asthenosphere return flow induced by the slab
rollback of the Ionian Plate. Our new data confirm a sediment melt component at the borders of the arc,
possibly connected to hot asthenosphere flow at the edges of the slab responsible for the melt signature
(Figure 8). Alternatively, buoyant diapirs of slab material can potentially detach from the subducting slab
and enter a regime of elevated temperatures in the mantle wedge that will cause devolatilization and melt-
ing of such rocks and the delivery of the different slab component signatures [Hacker et al., 2011; Marschall
and Schumacher, 2012]. Nevertheless this model still does not explain the systematic variations in the differ-
ent arc segments of the Aeolian arc (one section of the arc is controlled by hydrous fluids and another is
controlled by both slab melts and fluids components) that are still point toward the possibility of hot
asthenosphere flow at the edge of the subducting slab.

5. Concluding Remarks

The Aeolian Arc exhibits strong along-arc geochemical variations. Based on the systematics of B, Be, Li, and
As contents in the Aeolian lavas, we infer that fluids from the subducting altered oceanic lithosphere influ-
ence the whole arc, in particular the central sector. We confirmed the presence of a slab melt component at
the peripheral islands, especially evident in the potassic lavas in Stromboli, that display some of the highest
Be contents reported in arc global lavas.

We propose that the melt component is represented by a partial melt of sediments transported by the sub-
ducting Ionian slab. Hot asthenosphere inflow around the borders of the subducting Ionian Plate could
potentially explain the presence of this component. This process explains why the Aeolian Arc shares clear
geochemical similarities to hot subduction zones like the Cascades and the Mexican Volcanic Belt, rather
than the expected cold conditions from numerical models.
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