
Smith ScholarWorks Smith ScholarWorks 

Astronomy: Faculty Publications Astronomy 

9-1-2019 

An Exo-Kuiper Belt with an Extended Halo around HD 191089 in An Exo-Kuiper Belt with an Extended Halo around HD 191089 in 

Scattered Light Scattered Light 

Bin Ren 
Johns Hopkins University 

Élodie Choquet 
Laboratoire d'Astrophysique de Marseille 

Marshall D. Perrin 
Space Telescope Science Institute 

Gaspard Duchěne 
University of California, Berkeley 

John H. Debes 
Space Telescope Science Institute 

See next page for additional authors 
Follow this and additional works at: https://scholarworks.smith.edu/ast_facpubs 

 Part of the Astrophysics and Astronomy Commons 

Recommended Citation Recommended Citation 
Ren, Bin; Choquet, Élodie; Perrin, Marshall D.; Duchěne, Gaspard; Debes, John H.; Pueyo, Laurent; Rice, 
Malena; Chen, Christine; Schneider, Glenn; Esposito, Thomas M.; Poteet, Charles A.; Wang, Jason J.; 
Ammons, S. Mark; Ansdell, Megan; Arriaga, Pauline; Bailey, Vanessa P.; Barman, Travis; Bruzzone, Juan 
Sebastián; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; De Rosa, Robert J.; Doyon, Rene; Fitzgerald, 
Michael P.; Follette, Katherine B.; Goodsell, Stephen J.; Gerard, Benjamin L.; Graham, James R.; 
Greenbaum, Alexandra Z.; Hagan, J. Brendan; Hibon, Pascale; Hines, Dean C.; Ward-Duong, Kimberly; and 
al, et, "An Exo-Kuiper Belt with an Extended Halo around HD 191089 in Scattered Light" (2019). 
Astronomy: Faculty Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/ast_facpubs/118 

This Article has been accepted for inclusion in Astronomy: Faculty Publications by an authorized administrator of 
Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/ast_facpubs
https://scholarworks.smith.edu/ast
https://scholarworks.smith.edu/ast_facpubs?utm_source=scholarworks.smith.edu%2Fast_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/123?utm_source=scholarworks.smith.edu%2Fast_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/ast_facpubs/118?utm_source=scholarworks.smith.edu%2Fast_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Authors Authors 
Bin Ren, Élodie Choquet, Marshall D. Perrin, Gaspard Duchěne, John H. Debes, Laurent Pueyo, Malena 
Rice, Christine Chen, Glenn Schneider, Thomas M. Esposito, Charles A. Poteet, Jason J. Wang, S. Mark 
Ammons, Megan Ansdell, Pauline Arriaga, Vanessa P. Bailey, Travis Barman, Juan Sebastián Bruzzone, 
Joanna Bulger, Jeffrey Chilcote, Tara Cotten, Robert J. De Rosa, Rene Doyon, Michael P. Fitzgerald, 
Katherine B. Follette, Stephen J. Goodsell, Benjamin L. Gerard, James R. Graham, Alexandra Z. 
Greenbaum, J. Brendan Hagan, Pascale Hibon, Dean C. Hines, Kimberly Ward-Duong, and et al 

This article is available at Smith ScholarWorks: https://scholarworks.smith.edu/ast_facpubs/118 

https://scholarworks.smith.edu/ast_facpubs/118


An Exo–Kuiper Belt with an Extended Halo around HD 191089 in Scattered Light

Bin Ren (彬 任)1,2 , Élodie Choquet3,4,5,41 , Marshall D. Perrin6 , Gaspard Duchêne7,8 , John H. Debes6 , Laurent Pueyo6,
Malena Rice9 , Christine Chen1,6 , Glenn Schneider10 , Thomas M. Esposito7 , Charles A. Poteet6 , Jason J. Wang4,42 ,

S. Mark Ammons11 , Megan Ansdell7 , Pauline Arriaga12 , Vanessa P. Bailey5 , Travis Barman13 ,
Juan Sebastián Bruzzone14 , Joanna Bulger15 , Jeffrey Chilcote16 , Tara Cotten17 , Robert J. De Rosa7 , Rene Doyon18,
Michael P. Fitzgerald12 , Katherine B. Follette19 , Stephen J. Goodsell20 , Benjamin L. Gerard21,22 , James R. Graham7,

Alexandra Z. Greenbaum23 , J. Brendan Hagan6, Pascale Hibon24 , Dean C. Hines6 , Li-Wei Hung25 , Patrick Ingraham26 ,
Paul Kalas7,27, Quinn Konopacky28 , James E. Larkin12 , Bruce Macintosh29 , Jérôme Maire28, Franck Marchis27 ,

Christian Marois21,22 , Johan Mazoyer5,43 , François Ménard8, Stanimir Metchev14,30 , Maxwell A. Millar-Blanchaer5,41 ,
Tushar Mittal31 , Margaret Moerchen32, Eric L. Nielsen29 , Mamadou N’Diaye33 , Rebecca Oppenheimer34 ,

David Palmer11 , Jennifer Patience35, Christophe Pinte8,36 , Lisa Poyneer11, Abhijith Rajan6 , Julien Rameau18 ,
Fredrik T. Rantakyrö24 , Jean-Baptiste Ruffio29 , Dominic Ryan7, Dmitry Savransky37 , Adam C. Schneider35 ,

Anand Sivaramakrishnan6 , Inseok Song17 , Rémi Soummer6 , Christopher Stark6, Sandrine Thomas26 , Arthur Vigan3,
J. Kent Wallace5, Kimberly Ward-Duong19,35 , Sloane Wiktorowicz38 , Schuyler Wolff39 , Marie Ygouf40, and

Colin Norman1,6
1 Department of Physics and Astronomy, The Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218, USA; ren@jhu.edu
2 Department of Applied Mathematics and Statistics, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA

3 Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
4 Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
5 NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

6 Space Telescope Science Institute (STScI), 3700 San Martin Drive, Baltimore, MD 21218, USA
7 Astronomy Department, University of California, Berkeley, CA 94720, USA

8 Université Grenoble-Alpes, CNRS Institut de Planétologie et d’Astrophysique (IPAG), F-38000 Grenoble, France
9 Department of Astronomy, Yale University, New Haven, CT 06511, USA

10 Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
11 Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA

12 Department of Physics & Astronomy, 430 Portola Plaza, University of California, Los Angeles, CA 90095, USA
13 Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721, USA

14 Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
15 Subaru Telescope, NAOJ, 650 North A’ohoku Place, Hilo, HI 96720, USA

16 Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
17 Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA

18 Institut de Recherche sur les Exoplanètes, Département de Physique, Université de Montréal, Montréal, QC, H3C 3J7, Canada
19 Physics and Astronomy Department, Amherst College, 21 Merrill Science Drive, Amherst, MA 01002, USA

20 Gemini Observatory, 670 North A’ohoku Place, Hilo, HI 96720, USA
21 University of Victoria, Department of Physics and Astronomy, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada

22 National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
23 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

24 Gemini Observatory, Casilla 603, La Serena, Chile
25 Natural Sounds and Night Skies Division, National Park Service, Fort Collins, CO 80525, USA

26 Large Synoptic Survey Telescope, 950 North Cherry Avenue, Tucson, AZ 85719, USA
27 SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043, USA

28 Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093, USA
29 Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA 94305, USA

30 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
31 Earth and Planetary Science Department, University of California, Berkeley, CA 94720, USA

32 American Geophysical Union, 2000 Florida Avenue NW, Washington, DC 20009, USA
33 Université Côte d́Azur, Observatoire de la Côte d́Azur, CNRS, Laboratoire Lagrange, Bd de lÓbservatoire, CS 34229, F-06304 Nice cedex 4, France
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Abstract

We have obtained Hubble Space Telescope STIS and NICMOS and Gemini/GPI scattered-light images of the
HD191089 debris disk. We identify two spatial components: a ring resembling the Kuiper Belt in radial extent
(FWHM ∼ 25 au, centered at ∼46 au) and a halo extending to ∼640 au. We find that the halo is significantly bluer
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than the ring, consistent with the scenario that the ring serves as the “birth ring” for the smaller dust in the halo. We
measure the scattering phase functions in the 30°–150° scattering-angle range and find that the halo dust is more
forward- and backward-scattering than the ring dust. We measure a surface density power-law index of
−0.68±0.04 for the halo, which indicates the slowdown of the radial outward motion of the dust. Using radiative
transfer modeling, we attempt to simultaneously reproduce the (visible) total and (near-infrared) polarized intensity
images of the birth ring. Our modeling leads to mutually inconsistent results, indicating that more complex models,
such as the inclusion of more realistic aggregate particles, are needed.

Key words: protoplanetary disks – radiative transfer – stars: imaging – stars: individual (HD 191089) – techniques:
image processing

1. Introduction

Debris disks, the extrasolar analogs of the asteroid belt and
Kuiper Belt, have been detected around ∼20% of the nearest stars
(A-type stars: Thureau et al. 2014; FGK stars: Eiroa et al. 2013;
Montesinos et al. 2016; Sibthorpe et al. 2018). They are expected
to be the result of the grinding down of larger dust (Wyatt 2008);
however, the diversity in observables such as morphology and
surface brightness suggests that they are shaped by a variety of
mechanisms (e.g., Artymowicz & Clampin 1997; Stark et al.
2014; Lee & Chiang 2016). Imaging studies of debris disks in
scattered light use not only space-based instruments (e.g., the
Space Telescope Imaging Spectrograph (STIS): Schneider et al.
2009, 2014, 2016, 2018; Konishi et al. 2016; NICMOS: Soummer
et al. 2014; Choquet et al. 2016, 2017, 2018) that offer the best
telescope stability but also extreme adaptive optics–equipped
ground-based instruments (e.g., GPI: Hung et al. 2015; Kalas et al.
2015; Millar-Blanchaer et al. 2015, 2016; Perrin et al. 2015;
Draper et al. 2016; Esposito et al. 2018; SPHERE: Boccaletti
et al. 2015; Lagrange et al. 2016; Wahhaj et al. 2016; Engler
et al. 2017; Feldt et al. 2017; Matthews et al. 2017; Milli et al.
2017, 2019; Sissa et al. 2018; Olofsson et al. 2018) that provide
the best angular resolution and probe closer-in regions of the
disks.

Multiwavelength studies can provide complementary
insights into understanding circumstellar disks, since different
wavelengths probe distinct regions and parameter space for a
disk (Ertel et al. 2012; Sicilia-Aguilar et al. 2016). In this paper,
we focus on using scattered-light observations to understand
one of these systems. In previous studies, the combination of
space- and ground-based instruments has been implemented to
study both protoplanetary (e.g., PDS 66: Wolff et al. 2016) and
debris (e.g., 49 Ceti: Choquet et al. 2017; HD 35841: Esposito
et al. 2018) disks, and those observations are interpreted using
radiative transfer codes (e.g., Augereau & Beust 2006; Milli
et al. 2015; Wolff et al. 2017; Esposito et al. 2018). We
perform such an analysis for the debris disk surrounding
HD191089 to study its specific properties via measurement
and radiative transfer modeling in this paper.

We list the properties of the system in Table 1: HD191089
is an F5V star with Teff=6450 K located at 50.14±0.11pc
(Gaia DR2: Gaia Collaboration et al. 2018). Moór et al. (2006)
identified it as a member of the β Pictoris moving group with
space velocities compatible with the kinematics of the group,
and Shkolnik et al. (2017) estimated the age of this group to be
22±6Myr based on the consensus of the group members.

Before a resolved scattered-light image was reported,
HD191089 was first identified by Mannings & Barlow
(1998) as a debris disk candidate based on IRAS infrared
excess. Chen et al. (2014) suggested a two-temperature model
to explain the spectral energy distribution (SED) of the system,
while Kennedy & Wyatt (2014) argued for one temperature.

The latest SED analysis including CSO, Herschel, and James
Clerk Maxwell Telescope photometry up to 850 μm seems to
confirm the latter hypothesis with a best fit obtained using a
single-component disk: assuming the dust behaves as a black-
body, SED analysis suggests a dust mass of ∼0.037 M⊕, a
temperature of 89K, and a radius of ∼17 au (Holland et al.
2017). However, as is commonly seen for many disks, the radius
derived assuming blackbody dust is several times smaller than
the radius observed in resolved images (e.g., SEDs: Mittal
et al. 2015; images: Hughes et al. 2018, and references therein).
This indicates that the dust grains are not simple blackbodies,
and the smallest dust grains are not efficient emitters at long
wavelengths.
The HD191089 disk was first resolved using Gemini/

T-ReCS at 18.3 μm by Churcher et al. (2011), with the region
interior to 28au reported to have little emission. The disk was
then detected in scattered light in a reanalysis of the archival
2006 Hubble Space Telescope (HST)/NICMOS observations
by Soummer et al. (2014), with the apparent disk extent and
orientation consistent with Churcher et al. (2011).
To further characterize the debris disk, we observed the

target with HST/STIS and Gemini/GPI. By carrying out a
multiwavelength study, we aim to understand (1) the spatial
distribution of the dust; (2) the scattered-light color of the dust;
(3) the scattering phase functions (SPFs) of the dust for the
different spatial components of the system (if available) and
how they suit the trends of the current observed debris disks;
(4) the dust properties, including size distribution, structure,
and compositional information; and (5) whether a universal
description of the dust is able to explain the observations across
different wavelengths and observational techniques.
The structure of this paper is as follows. In Section 2, we

describe our HD191089 observations and the data reduction
procedure. In Section 3, we describe measurables derived from
the observations. In Section 4, we describe our radiative
transfer modeling efforts in studying the disk. In Sections 5 and
6, we discuss our findings and provide concluding remarks.

2. Observations and Data Reduction

2.1. Data Observation and Reduction

2.1.1. HST/NICMOS (2006)

On 2006 May 27, HD191089 was observed using HST/
NICMOS (Proposal ID: 10527; PI: D. Hines) with the NIC2-
CORON aperture and F110W filter (λc=1.12μm, inner working
angle (IWA): 0 3, pixel scale: 75.65maspixel−1; Viana et al.
2009) with two telescope orientations each observing the target
for 2303.67 s (see Table 2 for the observation log). These HST/
NICMOS data, totaling 16 frames, were previously presented in
Soummer et al. (2014). We perform an updated reduction
including application of two different point-spread function (PSF)
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subtraction algorithms to remove the starlight and speckle noise
and reveal the debris disk around HD191089.

We obtain the scattered-light image of the system using the
multireference differential imaging (MRDI) technique. Speci-
fically, we retrieve 849 F110W exposures of 70 diskless
reference stars in the ALICE archive of the NICMOS
observations (PI: R. Soummer; Choquet et al. 2014; Hagan
et al. 2018).44 For each target exposure, we first decompose its
10% closest ALICE images in correlation (i.e., L2-norm sense
and a total of 85 images) using both the Karhunen–Loève
image projection (KLIP; Soummer et al. 2012) and nonnega-
tive matrix factorization (NMF;45 Ren et al. 2018b) data
reduction methods, then model the target with these compo-
nents. The disk then resides in the residual image when the
empirical PSF model is subtracted from the target exposure.
The final NICMOS disk image is then the elementwise mean
of the derotated individual residual exposures. We list the
reduction parameters in Table 3. 46

To calibrate the NICMOS disk image and obtain a
measurement of its surface brightness, we multiply the reduced
data by the calibrated F110W PHOTFNU parameter47

Fν=1.21×10−6 Jy s count−1, then divide the data by the
NICMOS pixel area on sky to obtain the surface brightness
data in units of Jy arcsec−2. See Figure 1 for the results.

2.1.2. HST/STIS (2014)

On 2014 July 19 and August 13 (two visits each),
HD191089 was observed using HST/STIS (Program ID:
13381; PI: M. Perrin) using the 50CORON aperture
(λc=0.58 μm, pixel scale: 50.72maspixel−1; Riley et al.
2018), totaling 76 frames. Each visit was performed with a
different telescope orientation, with position angles of −84°.23,

−61°.23, −2°.23, and 25°.59 for the y-axis in the images
(N to E). These telescope orientations are selected to obtain
360° azimuthal coverage of the disk down to the occulting
mask (similar to Schneider et al. 2014). In each visit, we first
obtained 16 short 32s exposures on the WEDGEA0.6 position
to probe the inner region down to a half-width of 0 3. Then we
obtained three longer 483.3s exposures on the WEDGEA1.0
position (half-width: 0 5) to deeply probe the exterior region of
the disk.
To perform PSF subtraction, we also observed the reference

star HD196081 (selected for color, brightness, and on-sky
proximity matches to HD 19108948) using the same aperture
positions, with one visit interleaved between the two science
(HD 191089) visits at each epoch. With the numerical mask
created by Debes et al. (2017) to mask out the STIS occulters,
we perform multiple PSF subtractions using different
approaches. We first apply the classical reference differential
imaging (cRDI) technique to subtract the starlight in each
exposure by minimizing the residual variation in the region of
the coronagraphically unapodized diffraction spikes (excluding
where the disk resides). We also obtain the STIS reference
exposures from the STIS PSF archive created in Ren et al.
(2017) for MRDI reduction: for each target exposure, we
perform NMF reduction using the 10% most-correlated
references in the STIS archive (i.e., 85 images for WED-
GEA1.0 and 45 images for WEDGEA0.6). The final STIS disk
image is then the elementwise mean of the individual derotated
PSF-subtracted exposures.
To calibrate the STIS image in physical surface brightness

units, we convert the PHOTFLAMphotometric parameter in the
raw FITS file for the HD191089 observations (Fλ=4.15×
10−19 erg cm−2Å−1 count−1) to Fν=4.56×10−7 Jy s count−1

using the conversion equation in Appendix B.2.1 of Viana et al.
(2009),

l
=

´
n

l
-

F
F

3 10
,c

2

13

where λc=0.58 μm is the pivot wavelength of STIS. We then
multiply our combined STIS image in counts−1 pixel−1 by Fν

and divide it by the STIS pixel area on sky to obtain the surface
brightness data in units of Jy arcsec−2.

2.1.3. Gemini/GPI (2015)

On 2015 September 1, HD191089 was observed using
Gemini/GPI in H-band (λc=1.65 μm, pixel scale:
14.166±0.007 maspixel−1; De Rosa et al. 2015) polarimetric
mode (H-Pol; Perrin et al. 2015) during the Gemini Planet
Imager Exoplanet Survey (PI: B. Macintosh; Macintosh et al.
2014). We took 28 exposures, each with 88.74 s integration
time, with a total field rotation of 102°.2. The airmass ranged
from 1.002 to 1.01, the differential motion image monitoring
seeing measurement was 1 16±0 17, and the multi-aperture
scintillation sensor seeing was 1 1±0 3.
To obtain the Stokes cube ({I, Q, U, V}) for the HD191089

debris disk, we followed the recipes described in Perrin et al.
(2014) and Millar-Blanchaer et al. (2015) and reduced the raw
exposures using the GPI data reduction pipeline (DRP; Perrin
et al. 2014, 2016) and theautomated data processing architecture
(Data Cruncher; Wang et al. 2018). The Q and U components in

Table 1
System Properties

Properties HD 191089 Reference

Distance (pc) 50.14±0.11 1
R.A. (J2000) 20 09 05.215 1
Decl. (J2000) −26 13 26.520 1
Spectral type F5V 2, 3
Må (Me) 1.4±0.1 4
Teff (K) 6450 1
V (mag) 7.18 5
J (mag) 6.321 6
H (mag) 6.091 6
Association β Pic moving group 7
Age (Myr) 22±6 8
Ldust/Lå (14.2±0.5)×10−4 9
Proper motion (R.A.) 40.17±0.07 mas yr−1 1
Proper motion (decl.) −67.38±0.05 mas yr−1 1
Radial velocity −5.4±0.4 km s−1 1

References. 1: Gaia Collaboration et al. (2018), 2: Houk (1982), 3: Hales et al.
(2017), 4: Chandler et al. (2016), 5: Høg et al. (2000), 6: Cutri et al. (2003), 7:
Moór et al. (2006), 8: Shkolnik et al. (2017), 9: Holland et al. (2017).

44 https://archive.stsci.edu/prepds/alice/
45 Python-based nmf_imaging package; Ren (2018).
46 The ∼0.9% x- and y-direction scale difference in Schneider et al. (2003) is
ignored.
47 http://www.stsci.edu/hst/nicmos/performance/photometry/postncs_
keywords.html 48 http://www.stsci.edu/hst/phase2-public/13381.pro
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the traditional Stokes cube were then transformed to the local
Stokes cube ({ f , f }), with f representing the polarized light
perpendicular or parallel to the radial direction and f at ±45°
from it (Monnier et al. 2019). On the local Stokes maps of
HD191089, we notice two similar low spatial frequency octopole
structures with a rotation of ∼45°. However, for a f map, we do
not expect any signal from an optically thin disk with single
scattering events on the dust (see Canovas et al. 2015 for a
discussion of the validity and exceptions). Given that we observe
similar structures in the other GPI polarimetry observations, we
expect such a structure to be one of the instrumental artifacts
(T. E. Esposito et al. 2019, in preparation). To reduce the
systematic errors induced by it, we fit an octopole model using the
f map and remove it from the f map, then rotate the model 45°

and remove it from the f map.
We flux-calibrate these data following the procedure described

in Hung et al. (2015, 2016). For HD 191089, we first adopt an H-
band flux of Få=3.749±0.119 Jy (Skrutskie et al. 2006), then
we adopt the satellite-to-star ratio R=2.035×10−4 from the GPI
DRP (Wang et al. 2014; Perrin et al. 2014) and average satellite
spot total flux ( )=  ´ -S 1.12 0.17 10 count s3 1 in the FITS
file header. Combining these, we obtain a conversion factor of

( )= =  ´n
- -F

RF

S
6.87 1.06 10 Jy s count .7 1

We apply that conversion factor and normalize the local
Stokes maps by the exposure time and pixel area to obtain the
disk surface brightness data in units of Jy arcsec−2. The flux-
calibrated data are then geometrically corrected and smoothed
by convolving with a Gaussian kernel (σ=14.166 mas, i.e.,
the scale of 1 GPI pixel; Millar-Blanchaer et al. 2016) to
remove the high spatial frequency noise that impacts regions
smaller than the Nyquist-sampled PSF of GPI.

2.2. Noise Estimation

Based on different PSF subtraction methods for each data
set, we estimate the uncertainties as follows.

NMF and cRDI (STIS, NICMOS). We estimate the noise in
these reductions from the ensemble of science frames to probe
the temporal variations from frame to frame (16 NICMOS
frames, 64 and 12 STIS frames at the two different positions on
the mask; see Table 2). We proceed as follows. After
subtraction of the PSF, we compute the pixelwise standard
deviation across the science frames to obtain the typical noise
map per frame, which is used to account for the noise added by
PSF subtraction. We then replicate this noise map for Nframe

times and derotate each with the same angle as each science
frame. We obtain the final noise map by computing the square

root of the quadratic sum of these derotated noise maps. See
Figure 2 for the S/N maps.
KLIP (NICMOS). For the NICMOS-KLIP reduction, we use

the ALICE library of reference stars that are processed
identically to HD191089 to estimate the residual speckle
noise. For each HD191089 image (16 total), we first select
25% of the most-correlated images in the reference library (i.e.,
212 reference images). In this way, we obtain 413 reference
images that are correlated with at least one HD191089 image
(i.e., ∼50% of the entire library). We split these 413 images
into 25 groups, each containing 16 images (with the leftovers
randomly discarded). In each group, the 16 images are treated
as the mock target images to simulate 16 HD191089
nondetection images. For one mock target image, we first
identify the real target that was observed, then we remove the
images that are taken on the same real target from the reference
library to avoid self-subtraction. We then use the updated
reference library to perform KLIP subtraction of the mock
image following the identical procedure as for HD191089
(i.e., 19 eigenmodes from the 84 most-correlated references).
The 16 reduced mock images are then derotated using the same
orientation angles as the ones in the HD191089 observations.
For each group, we take the elementwise mean of the 16 rotated
reduced mock target images as the mock result for one
realization of HD191089 nondetection. We then obtain a total
of 25 realizations of nondetections using the 25 full groups
from the 413 mock images. We take the elementwise standard
deviation from the 25 mock nondetections as the noise map for
our NICMOS-KLIP reduction.
Polarimetry (GPI). For the GPI f map, we used the

convolved f image as a proxy for the uncertainty (Millar-
Blanchaer et al. 2015). To obtain the noise map, for each
angular separation to the star, we calculate the standard

Table 2
Observation Log

Instrument Filter λc
a Pixel Scale IWAb Texp Nframe ΔθPA UT Date

(μm) (mas pixel−1) (arcsec) (s) (deg)

NICMOS F110W 1.12 75.65 0.3 4607.34 16 30.0 2006 May 27
STIS 50CCD 0.58 50.72 0.3 2048.00 64 109.8 2014 Jul 19, 2014 Aug 13

0.5 5799.60 12
GPI H-Pol 1.65 14.166 0.123 2484.72 28 102.2 2015 Sep 1

Notes.
a For STIS, λc is the pivot wavelength.
b The IWA for STIS is the half-width of the wedge-shaped occulter.

Table 3
Reduction Parameters

NICMOS STIS GPI

Classical RDI Na Ya N
Reference (classical) N HD196081 N
PSF reference no. 85 45 (A0.6) 100

84 (A1.0)
KLIP truncation no. 19 N 20
NMF truncationb no. 10 10 (A0.6) 20

10 (A1.0)
Polarimetry N N Y

Notes.
a Y: performed; N: not performed or unavailable.
b The NMF reductions become stable with more than 10 components.
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deviation of an annulus with 3 pixel width in the convolved f
image as the noise. This noise map provides a reasonable
estimation of PSF subtraction residuals, photon and detector
noise, and residual instrumental polarization (Millar-Blanchaer
et al. 2015). See Figure 3 for the convolved f and f images
used for signal-to-noise ratio (S/N) calculation.

2.3. Comparison of the Reduction Methods

The HD191089 debris disk is detected in all of our HST and
GPI observations. Here we compare the quality of the different
reductions and discuss their relative merits for measuring
different quantities of interest.

STIS. The disk is detected in the STIS data with high
morphological and photometric fidelity in both the cRDI and
NMF reductions (Figure 4). The system shows a bright parent
belt, surrounded by a faint and diffuse halo detected up to ∼6″
from the star. These features are detected with a dynamic range
of 3 orders of magnitude, with a peak ring surface brightness of
∼1 mJy arcsec−2 and the diffuse halo detected down to a few
μJy arcsec−2. Theoretically, unlike KLIP reduction, both the
cRDI and NMF reduction methods are free from oversubtrac-
tion caused by overfitting disk features using the references.
This was discussed in Ren et al. (2018b) and is confirmed in
Ren et al. (2018a), where the NMF method is able to
successfully retrieve the spiral arms for the MWC758 system.

For HD191089, the bright disk and excellent cRDI quality
enable a quantitative comparison between cRDI and NMF. In

Figure 4, we present the reduction results from different
methods for both the STIS and NICMOS data for a comparison
between the methods. For the STIS data, the ring surface
brightness is consistent within±10% between cRDI and NMF.
The NMF achieves higher S/Ns along the major and minor
axes of the disk by a factor of ∼3, i.e., the regions containing
coronagraphically unapodized diffraction spikes, which are
marked by red ellipses in Figure 5.
NICMOS. The halo component discovered in STIS is

confirmed in the NICMOS-NMF image. The NICMOS-KLIP
image in Figure 4 is able to recover the halo that was not
observed in the original discovery image (Soummer et al. 2014).
The new reduction is obtained with a larger field of view and
fewer KLIP components. In retrospect, it is not surprising that
the original reduction by Soummer et al. (2014) did not detect
the halo: the KLIP method is based on principal component
analysis, which requires mean subtraction for each individual
image. When modeling the target with KLIP, the reduced image
also has zero mean, which offsets the faint halo as negative
background; thus, the halo cannot be recovered with positive
signals. In addition, to maximize the removal of the starlight, a
large number of KLIP components was used in Soummer et al.
(2014). In this case, KLIP also removed the halo because its
extended diffuse structure resembles PSF wing.
The NMF independently confirms the existence of the halo

in the NICMOS data while recovering the ring regardless of
increasing component number. The NMF component basis is
nonnegative—thus, not orthogonal—and it does not perform

Figure 1. The 2014 HST/STIS (cRDI, 0.58 μm), 2006 HST/NICMOS (NMF, 1.12 μm), and 2015 Gemini/GPI ( f , 1.65 μm) images of the HD191089 debris disk.
The outer fanlike structure is unambiguously recovered for the first time with STIS and NICMOS. The GPI f image provides the highest spatial resolution. The
following should also be noted. (1) The star positions are marked with white plus signs, and the corresponding S/N maps are shown in Figure 2. (2) To mask out
regions of significant residual artifacts, a numerical mask with twice the radius of the GPI mask is used. (3) The units of these images are mJy arcsec−2. The STIS and
NICMOS data are shown in the same log scale to better display the halo, while the GPI data are shown in linear scale to best reveal the ring. (4) For scale, the solar
system Kuiper Belt (30–50 au; Stern & Colwell 1997) is illustrated with dashed ellipses on the GPI image, and the proper motion of HD191089 is marked with a
white dotted arrow with length corresponding to 10 yr motion from Gaia DR2.
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direct projection of vectors as KLIP, which falls into the
overfitting regime, but instead searches for the best nonnegative
combination of nonnegative NMF components. The halo does
not resemble the NMF components that are used to model the
PSF wings, and thus it remains in the residual after PSF
subtraction.

In the NICMOS results in Figure 4, the NIMCOS-NMF image
has about two times the ring surface brightness of the NICMOS-
KLIP image, supporting the expected behavior of the two
methods: KLIP’s overfitting because of direct vector projection
cannot be avoided, even with a small number of eigenmodes, and
the mean-subtraction offset reduces the overall flux of the system.
In contrast, NMF is expected to preserve the surface brightness of
the NICMOS disk as for the STIS data.

GPI in total intensity.We attempted to detect the disk in total
intensity from this same data set with MRDI: for each
polarization-direction pair of H-Pol exposures, we derive a
single total intensity image. For starlight subtraction, we select
the 100 most-correlated GPI H-band PSFs from the library of
15,847 exposures, then perform KLIP and NMF reductions.
We present the S/N maps of the null detections in Figure 5: we
do not detect the disk or any point source using either KLIP or
NMF. We hypothesize that a larger or better reference library is
needed to obtain the best match for HD191089.
To estimate an upper limit on the surface brightness for the

disk, we calculate the noise map for the GPI-KLIP image using
the standard deviation across the individual reduced images.
We estimate a 1σ uncertainty of ∼3 mJy arcsec−2 at the minor
axis and ∼1 mJy arcsec−2 along the major axis. Assuming gray
scattering for the dust in the ring seen with the NICMOS
F110W filter and GPI H band, the NICMOS-NMF result will
produce surface brightnesses of ∼2.2 and ∼1.0 mJy arcsec−2,
respectively. Therefore, even the disk is not removed by the
reduction methods; it is below a detection threshold of 1σ
(which corresponds to a total S/N of 5 for extended structure
spanning ∼25 pixels; Debes et al. 2019). In this way, its
detectability is beyond the limit of the current methods with the
current GPI H-band PSF library.

3. Disk Morphology and Measurement

3.1. Strategy to Measure Disk and Dust Properties

For the ring, the GPI f map provides the highest spatial
sampling, with STIS and NICMOS offering total intensity

Figure 2. The S/N maps of the reduction results in Figure 1. In the STIS S/N map, the presence of Wedge B truncates the halo on the northwest side, and the
coronagraphically unapodized diffraction spikes reduce the S/N. The following should also be noted. (1) The STIS and NICMOS data are shown in the same scale. (2)
Unless otherwise specified, the correlated noises are not estimated in this paper. (3) The instrument pixel scales are illustrated by black dashes at the center of the
scale bars.

Figure 3. Smoothed and octopole-removed GPI H-band (a) f and (b)
f maps.
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observations at different wavelengths. Using the GPI f map,
we obtain the geometric structure for the ring in Section 3.3.1,
including inclination, semimajor axis, position angle, ring
center position, and eccentricity of the deprojected ring. With
the geometric information and the parallactic distance to
HD191089, we are able to calculate the average intensity of
the disk as a function of physical distance to the host star (i.e.,
the radial profile).

For the halo, the STIS total intensity image is able to probe
the largest spatial extent with a larger field of view and high
sensitivity. Assuming that the halo is coplanar with the ring, we
can measure the radial profile for the halo, which will help to
identify whether the halo is a geometric extension of the ring
by comparing their outer power-law indices. We use the cRDI
reduction for this purpose, since it covers a larger field of view
than the NMF reduction obtained from the fixed-width STIS
archive in Ren et al. (2017).

For both the ring and the halo, if we assume that they are
coplanar, then we can measure the disk surface brightness as a
function of scattering angle—the SPF. The SPF is related to
properties of the dust and therefore provides insights into the
composition, size distribution, and minimum dust size for the
system, even though this information is degenerate. To extract
the information for the dust, we adopt the spatial distribution
information from GPI f measurements, then use radiative

transfer modeling tools to model the ring. Given that the ring is
well resolved with all three instruments, the SPFs at different
wavelengths are expected to help constrain the dust size and
composition.

3.2. Mathematical Description

The spatial distribution of the dust in the debris disk can be
parameterized using a three-dimensional function in cylindrical
coordinates: the radial distribution in the midplane and the
vertical distribution along the axis perpendicular to the
midplane. Along the radial direction, the dust in the system
follows a combination of two power laws,
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where αin>0 and αout<0 approximate the midplane dust
density power-law indices interior and exterior to r=rc
(Augereau et al. 1999). Along the normal direction of the disk
midplane, the dust follows a Gaussian dispersion form, i.e.,
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Figure 4. Comparison of the HD191089 ring between the NMF reduction (middle) and the other reduction results (left). The right column shows the percentage
difference from the NMF image when it is subtracted from the image in the left column. For the STIS data (top), the classical RDI and NMF image photometry agree
to within ∼10% pixel–1 for the ring; for the NICMOS data (bottom), NMF recovers nearly twice the disk flux recovered by KLIP. See Figure 5 for the S/N maps.
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with

( ) ( )z = br hr , 3

where

( )b = 1 4

for a nonflared debris disk. For the HD191089 system,
h=0.04 is adopted from the vertical structure study
(Thébault 2009).

The power-law index for the surface density radial profile is
then (Augereau et al. 1999)

( )a bG = + , 5

where α is αin or αout in Equation (1), with Γ being Γin or Γout

as the corresponding indices.
Since illumination decreases as a function of distance from

the star, our images must be corrected for illumination effects
before the surface density can be measured. The relationship
between the surface brightness power-law index, γ, and the
surface density power-law index, Γ, is

( )g = G - 2, 6

where γ is γin or γout, corresponding with Γ being Γin or Γout.
The radial distribution of the system in Equation (1) is

supplemented with two extra parameters, rin and rout, which are
the cutoff radii. They are introduced to describe the clearing of
materials interior and exterior to the disk, i.e., when r<rin or
r>rout, ρ(r)=0.

3.3. Disk Morphology

3.3.1. Ellipse Parameters

We measure the geometric parameters for the disk from the
GPI f observation because it has the smallest pixels and is
less biased by the reduction methods.
We assume that the peak radial polarized surface density

matches the peak radial particle density and use the Debris
Ring Analyzer package from Stark et al. (2014) to fit the
peak intensity of the ring in 10° azimuthal wedges by
minimizing the χ2 value between the observation and an
ellipse model, and we quantify the uncertainties by assessing
the change of the χ2 values for the corresponding degrees of
freedom on a grid of the explored parameters (Choquet et al.
2018).
We measure an inclination49 of q = - 

+ 59inc 2
4 from face-on,

a semimajor axis of -
+45 1

2 au, and a position angle of q =PA

- 
+ 70 3

4 from north to east for the major axis. There is no
significant offset between the location of the star and the center
of the ring (3σ upper limit; 8 au). The 3σ upper limit for the
eccentricity of the deprojected ellipse is 0.3.

3.3.2. Radial Distribution

We measure the surface brightness power-law indices by
averaging the flux density at the same stellocentric radius in the
highest-S/N regions. Although this approach implicitly
assumes isotropic scattering, which is a likely incorrect
assumption, we tested it by performing the fit in narrow
wedges (e.g., along the minor or major axis) and obtained
consistent results, indicating that the scattering anisotropy does
not change our results significantly. We plot the surface
brightness radial profiles for the ring and halo in Figure 6 and
summarize the results in Table 4. For both the ring and the
halo, we define the inner and outer cutoff radii, rin and rout, as
the radii for which the corresponding average surface bright-
ness is consistent with zero at the 1σ level.
We measure the following parameters for the ring from the

GPI f observation: γin=4.9±0.2, rc=43.6±0.3 au, and
γout=−6.1±0.2.50 We also fit a Gaussian ring to the
deprojected f surface density map, and the ring is centered at
rcenter=45.6±0.2 au with a 24.9±0.4 au FWHM. We do
not report the results from STIS or NICMOS, since they have
low spatial sampling and are noisy near the corresp-
onding IWAs.
We measure the geometric parameters for the halo from the

STIS data because they cover the largest field of view. We
measure a surface brightness power-law index of γout=−2.68±
0.04. The power-law indices measured at different position
angles are also consistent with the integrated measurement within
1σ. Therefore, we report the integrated radial profiles to reduce
systematic uncertainty.
In the above calculation, we have assumed a flat disk (i.e., h

= 1); however, the disk is not perfectly flat, and the line of
sight passes through different radii at different heights. Under
this scenario, for a nonflared disk, we calculate that the radial
separation will be modified by multiplicative factors of

( ) ( )q -h1 0.5 tan . 7inc
1

Figure 5. The S/N maps of the reduction results with different methods. For
the STIS image, both cRDI and NMF reach similar S/N levels, and the regions
marked by red ellipses in NMF have about three times the S/N in the cRDI
result. For the NICMOS image, NMF is able to recover higher S/N than KLIP.
For the GPI image, neither of the methods are able to extract the disk structure.

49 The uncertainties calculated in this paper are 1σ unless otherwise specified.
50 For the input data, we have taken both x- and y-uncertainty into account
with the orthogonal distance regression method (Boggs et al. 1989).
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For the HD191089 system, these line-of-sight intersections
increase the uncertainties by ∼3% for h=0.04. Therefore, the
approximation of a flat disk will not bias the results for a disk
with small scale height. For a continuous vertical distribution
of the dust that is following a Gaussian decay, this effect is then
an upper limit, since most of the scatterers are close to the
midplane. We thus ignore this effect, given its model-
dependent minor impact on the uncertainties.

We find that the radial power-law indices, γout, for the ring
and halo differ by >10σ. Despite the physical connection
between the ring and the halo, although the two power-law
indices are measured at different wavelengths, when the radial
distribution of the dust is wavelength-independent, the indices
are indicating that the halo is not a geometrical extension of the
ring’s outer part.

3.4. SPF

Hughes et al. (2018) summarized the SPFs for different
systems including zodiacal dust and debris disks and found a
tentative universal SPF trend for the dust in debris disks. To
further investigate the similarities and differences of SPFs in
different systems, we first derive the uncertainty for the
scattering angles and the SPFs in Appendix A, then measure
the empirical SPFs for the ring and halo for our HD191089
observations.
For the ring and halo, we present in Figure 7 the SPFs

averaged for both sides (i.e., the NE and SW sides) using STIS-
cRDI and NICMOS-NMF results to minimize oversubtraction.
We observe different trends of the SPFs between the ring and
the halo: in the STIS data, the halo is more forward- and
backward-scattering than the ring; in the halo, the backward

Figure 6. Left: disk images. Right: average flux density radial profiles and power-law fits for the regions enclosed by white lines (uniformly sampled in stellocentric
distances). For panels (b) and (d), the shaded areas are the 1σ intervals corresponding to the fitted parameters (γin, γout, and rc). The γout parameter for the ring and halo
differs by more than 10σ, strongly indicating the different spatial distributions of the two components.
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scattering is less strong than the forward trend. In addition, for
the phase functions of the ring, the GPI f polarized-light
image and STIS and NICMOS total intensity images have
similar trends.

We measure the polarization fraction for the ring using the
GPI f and NICMOS-NMF images. Given the fact that we
cannot recover the ring in total intensity with GPI H-band
observations at 1.65 μm (Section 2.3), we instead use the

1.12 μm NICMOS-NMF observation that is both close to the
GPI wavelengths and has less of an oversubtraction effect. The
polarization fractions derived from GPI f and NICMOS-
NMF images are around 20%–40%, with no clear trend
(Figure 8). The polarization fraction is possibly peaking at
∼110°; however, it cannot be as firmly established as in

Table 4
Disk Morphology Parameters

Parameter Ring Halo Meaning

Instrument GPI STIS

θinc
a - 

+ 59 2
4 59°b Disk midplane inclination

from face-on
θPA

a - 
+ 70 3

4 70°b Position angle for major axis
(N to E)

γin
c 4.9±0.2 Ld Surface brightness

power-law indicesγout
c −6.1±0.2 −2.68±0.04

rc
c 43.6±0.3 au Ld rc in Equation (1)

rin
c 26±4 au Ld Inner and outer

clearing radiirout
c 78±14 au 640±130 au

rcenter 45.6±0.2 au Ld Peak position and FWHM of
a Gaussian ringFWHM 24.9±0.4 au Ld

Notes.
a Fitted with Debris Ring Analyzer (Stark et al. 2014).
b Values adopted from the GPI results.
c Fitted for Equations (1) and (6).
d Unconstrained from the STIS image.

Figure 8. Polarization fraction for the ring as a function of scattering angle.
The data are extracted from the ratio between the GPI f (∼1.65 μm) and
NICMOS-NMF (∼1.12 μm) surface brightness profiles in Figure 7. We do not
observe a clear trend of polarization fraction. However, it is possible that the
polarization fraction peaks at ∼110°.

Figure 7. The SPFs for STIS-cRDI and NICMOS-NMF data and the polarized
phase function for the GPI f data. The SPF for the halo of the STIS data is
averaged from multiple SPFs at different stellocentric separations, thus
minimizing the illumination and radial profile effects. See Figure 10 for a
linear-scale plot. Note that the radial extent of the ring is defined by the GPI f
image, and that of the other instruments is different due to pixel size.

Figure 9. Normalized SPF ratios for the STIS data. The ratios are obtained by
dividing the normalized SPF of the halo by that of the ring. The halo is likely
both more forward- and backward-scattering in the probed scattering angles.

10

The Astrophysical Journal, 882:64 (24pp), 2019 September 1 Ren et al.



previous measurements (e.g., Perrin et al. 2014; Frattin et al.
2019; Milli et al. 2019). To better constrain the polarized
fraction values, we need H-band total intensity observations to
rule out the wavelength-dependent effect.

To compare SPFs in the STIS image, we first normalize the
SPFs by dividing their average surface brightness at 90°±10°
scattering angle. We then divide the normalized halo SPF by
that of the ring to illustrate the difference. In Figure 9, the halo
is likely both more forward- and backward-scattering in the
probed scattering angles.

To compare the HD191089 SPFs with the ones in the
literature, we present the normalized SPFs in linear scale for
selected samples including both solar system objects (Saturn’s
D68 and G rings; Hedman & Stark 2015) and circumstellar
disk systems (HD 181327: Stark et al. 2014; HR 4796 A: Milli
et al. 2017) in Figure 10. Comparing with the previous studies,
the HD191089 ring SPF lies between the Saturn rings and the
other samples, while its halo SPF lies above the Saturn rings.

3.5. Disk Color

Using the HST disk images, we calculate the color of the
dust as follows. We first bin the 1.12 μm NICMOS-NMF
image and the 0.58 μm STIS-NMF image to two images with a
pixel size of ∼150 mas to reduce correlated noise. We then
divide the binned images by the corresponding pysynphot
(STScI Development Team 2013) NICMOS or STIS counts of
a T=6450 K blackbody to obtain the magnitude per pixel. We
calculate the difference of the two magnitude maps and present
the radial profile along the ansae of the system in Figure 11.

For the ring, the dust scatters ∼25% more light (Δmag≈
0.25) within the NICMOS F110W passband than in the STIS
50CCD, showing a red scattering property. For the halo, Δmag
≈−1. Dust in the halo is expected to be generated in the ring
through collisional cascade, then the smaller dust that is more
sensitive to radiation pressure migrates outward to form the
halo (e.g., Strubbe & Chiang 2006; Thébault & Wu 2008).
Assuming that scattered-light images primarily probe the cross
sections of the dust whose sizes are comparable to the
observing wavelength, this red-to-blue trend from the ring to
the halo in Figure 11 is consistent with this scenario.

4. Disk Modeling

4.1. Radiative Transfer Modeling Tool

We model the HD191089 ring with the MCFOST (Pinte
et al. 2006, 2009) radiative transfer modeling code and describe
the dust using a distribution of hollow spheres (DHS; Min et al.
2003, 2005, 2007). As a derivative of the Mie theory, where
the dust grains are assumed to be spherical (Mie 1908), DHS
adopts vacuum centers for these spherical dust grains. To
approximate small irregularly shaped dust, the only additional
parameter in DHS from Mie—maximum vacuum fraction
( fmax)—parameterizes the central vacuum fraction in the dust
that is uniformly ranging from zero to fmax. The DHS has been
used to successfully reproduce the SPF of linearly polarized

Figure 10. Normalized SPFs for the STIS and NICMOS total intensity data. The red and yellow error bars are the SPFs of the ring in the STIS-cRDI and NICMOS-
NMF data, and the blue ones are for the halo in the STIS data. From the SPFs, the ring and halo are composed of two distinct populations of dust, with the halo dust
more forward- and backward-scattering. For comparison, the observed SPFs for other systems are also plotted with lines. Note that due to the inclination of the
HD191089 system, the scattering angles in the shaded areas are not probed.

Figure 11. Average magnitude difference relative to the star along the ansae
between the 0.58 μm STIS-NMF and the 1.12 μm NICMOS-NMF observa-
tions. The ring (shaded area; the FWHM of the Gaussian ring in Table 4)
scatters more flux in the longer NICMOS wavelengths, indicating the red color
of the dust. The halo has the opposite trend and instead scatters more flux in the
shorter STIS wavelengths. The trend of the ratio is consistent with the ring
containing larger dust than the halo.
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scattered light with incident unpolarized light for quartz
particles in the laboratory (Min et al. 2005), characterize the
spectral features of the interstellar medium (e.g., Min et al.
2007; Poteet et al. 2015), and better fit the scattering properties
of the HR4796A circumstellar disk system (Milli et al. 2015).

In our study, we adopt the geometrical parameters derived in
Section 3.2 for the ring and perform radiative transfer modeling
with MCFOST using the DHS theory to probe the dust
properties (e.g., dust mass, minimum dust size, composition,
porosity, and maximum void fraction). Due to the complex
nature of the constituent dust, DHS is a computationally
intensive technique, and we thus adopt parallel computation in
the Python environment and use the DebrisDiskFM package
(Ren & Perrin 2018).51 The framework is developed to
efficiently explore debris disk properties through radiative
transfer modeling.

DebrisDiskFM is based on two software codes. We use
MCFOST (version 3.0.33) to generate disk model images using
given input parameters. We use emcee (version 3.0rc1;
Foreman-Mackey et al. 2013), which makes use of a Markov
chain Monte Carlo (MCMC) strategy with affine invariant
ensemble samplers (Goodman & Weare 2010), to obtain the
posterior distributions for these parameters. With the two
software codes, we use DebrisDiskFM to distribute posterior
calculations among multiple computation nodes in a computer
cluster,52 with each node calculating its own MCFOST models
in parallel. Specifically, for each combination of input
parameters, we store the model in a unique folder, with the
folder named by the hashed string for the array of input
parameters. We also append the folder name with a hashed

random number, preventing multiple nodes from simulta-
neously accessing the same folder and causing errors.

4.2. Modeling the Ring

We model the STIS-cRDI and GPI f rings, since they cover
the largest wavelength range and have higher data quality. To
study the dust properties, we assume the dust is made of different
types of grains, each with a pure composition. We adopt the
three compositions in Esposito et al. (2018): the amorphous
silicate dust (i.e., “astronomical silicates,” denoted by “Si”;
Draine & Lee 1984), amorphous carbonaceous dust (denoted
by “C”; Rouleau & Martin 1991), and H2O-dominated ice
described in Li & Greenberg (1998) to model the β Pic disk
(denoted by “ice”). The size of the dust, a, follows a power-law
distribution with index q, i.e.,

( ) ( )µ -dN a a da. 8q

The distribution is truncated at a minimum size of amin, and we
set a maximum limit of the dust size, amax=1000 μm. For the
HD191089 system, we set q=3.5 for the expected dust size
distribution for debris disks undergoing collisional cascade
(e.g., theory and simulation: Dohnanyi 1969; Pan & Schlichting
2012; observation: MacGregor et al. 2016; Esposito et al. 2018).
In this paper, we probe the following seven parameters of

interest through disk modeling:

1. disk mass, Mdisk, which generally controls the overall
brightness of the disk at different wavelengths;

2. porosity;
3. mass fraction for “astronomical silicates,” f (Si);
4. mass fraction for amorphous carbonaceous dust, f (C);
5. mass fraction for ice, f (ice);
6. minimum dust size, amin; and
7. maximum void fraction for DHS, fmax.

Given the fact that the composition parameters are inter-
connected, i.e., f (Si)+f (C)+f (ice)=1, we only explicitly
sample f (Si) and f (C). We also set the lower limit for amin to be
0.5 μm based on the calculation of the blowout sizes for different
dust compositions by Arnold et al. (2019). In the implementation
of MCMC modeling of the system using the DebrisDiskFM
framework, for a given set of parameters, we first generate two
parameter files for MCFOST to represent the spatial sampling
and field of view for the three instruments. We then perform
radiative transfer modeling with MCFOST, using the DHS
theory, to calculate the images for the three instruments at their
central wavelengths in Table 2.
To simulate instrument responses, we convolve the disk

models with TinyTim PSFs (Krist et al. 2011)53 for STIS and
a two-dimensional Gaussian profile for GPI (FWHM=
53.8 mas, corresponding to 3.8 times the pixel scale for GPI
to match the GPI PSF; Esposito et al. 2018).
We compare the STIS model directly with the STIS-cRDI

image. We compare the GPI model with the GPI f image by
first converting the Stokes Q and U models to a f model, then
comparing the PSF-convolved f model with the observation.
With the models and observations, we maximize the following

Figure 12. Observed SED and SED models for HD191089. Green dashed–
dotted line: SED generated using the best-fit STIS parameters. Black line: SED
generated using the best-fit GPI f parameters. Other: observation data
obtained from Soummer et al. (2014).

51 https://github.com/seawander/DebrisDiskFM
52 We performed the calculations at the Maryland Advanced Research
Computing Center (MARCC): https://www.marcc.jhu.edu. 53 http://www.stsci.edu/software/tinytim/
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In the above equation, X is a flattened image with N pixels.
Subscripts “obs” and “model” denote observation and model,
respectively, and σobs,i is the uncertainty for Xobs,i at the ith
pixel. We only focus on the disk region (i.e., between rin and
rout determined by GPI f image) to minimize the influence
from the halo. In this paper, we assume that the pixel noise
follows a Gaussian distribution, and that all pixels are
independent of each other (see, e.g., Wolff et al. 2017, for a
proper treatment of correlated pixels).

4.2.1. GPI f Image

One-step GPI. While the ring is resolved with all three
instruments, we first only fit the GPI f image to investigate
the dust properties. Using the flat priors presented in Table 5,
we assign 60 chains to explore the parameter space and run the
MCMC modeling procedure for 9000 steps. We discard the
first 2000 steps that are identified as the burn-in stage and
calculate the posterior distributions using the last 7000 steps (a
total of 4.2×105 models).

Table 5 reports the credible intervals from the posterior
distributions in Figure 13 (generated by corner; Foreman-
Mackey 2016). We notice the small uncertainties in the results;
these uncertainties are underestimated, since the correlated noise
is ignored in our likelihood function (e.g., Wolff et al. 2017). In

addition, we also argue that these small uncertainties are also
the results from the limited dust models and that various
scenarios may lead to small uncertainties (e.g., spatial distribu-
tion asymmetries, non-power-law surface density distribution);
thus, the inclusion of correlated noise may still not lead to
physical interpretations of the retrieved parameters.

4.2.2. STIS Image

One-step STIS. We fit the STIS image using the same priors
as for the GPI image. We run MCMC modeling for 9000 steps
with 60 chains and discard the first 2000 as burn-in steps, as for
the GPI f image. For this approach, we also present the
posterior results in Table 5 and Figure 13.
Two-step MCMC. Noticing the two distinct sets of MCMC

posteriors for the two images, we try to establish the connection
between the GPI and STIS images with a two-step MCMC
fitting: we obtain the posterior distributions for the seven
variables from the GPI f image, then use them as the priors to
fit the STIS image. In this way, we use the GPI posterior
distribution as the null hypothesis and test it on the STIS
image.
We use the probability integral transform (PIT; Appendix B)

to draw samples from the GPI posterior distributions. To find
the posterior ranges from the STIS image, we only explore the
GPI posteriors between their 2.5th and 97.5th percentiles as an
analogy to the conventional level of significance for one
parameter (i.e., p-value �0.05 for double-tailed distribution).
We run MCMC modeling for 3500 steps with 60 chains and
discard the first 1000 as the burn-in stage.
For the STIS modeling with the PIT approach, we generate

the posterior distributions and overplot them on the one-step
GPI data in Appendix B.4. From the following, we notice the
statistical deviation of the STIS posteriors from the GPI
posteriors: (1) the STIS posteriors using PIT are adjacent to the
2.5th- or 97.5th-percentile boundaries of the GPI posteriors,
indicating the trend of drifting away from the null hypothesis;
and (2) the STIS posteriors using PIT have extremely narrow
credible intervals, indicating that there is no statistically
preferred solution within the explored intervals.

4.2.3. Implications

We present the results from independent GPI and STIS
modelings and discuss the implications as follows.
SED. We generate the SEDs corresponding to the best-fit

parameters for the STIS and GPI f images with MCFOST and
compare them with the observed one in Figure 12. We notice
that the SED from the STIS best fit overpredicts the emission
from the system, while the SED from the GPI f best fit
underpredicts the emission. Even though different sizes of dust
dominate the SED and the scattered-light images, the inability
to reproduce the observed SED adds more evidence that our
study using DHS models cannot provide a consistent model
satisfying all observables. For instance, the true dust albedo
differs from the one predicted in DHS models.
Mie versus DHS. Although we do not obtain a set of

parameters that is able to explain both data sets, we can still
focus on the fmax parameter (i.e., maximum void fraction for the
DHS theory). We argue that it is the most profound parameter
that is added to the DHS theory from the Mie theory; the fmax

parameter approximates dust grains from spheres to aggregate-
like structures (Min et al. 2003, 2005, 2007), and we believe it

Table 5
Independent Dust Properties Retrieved from Ring Image Modeling

Parametera Priorb Posteriorc

Image GPI f STIS

Mlog10 disk (Me) (−12, −4) - -
+7.462 0.010

0.015 - -
+6.79 0.04

0.03

Porosity (0, 1) -
+0.600 0.008

0.012
-
+0.01 0.01

0.01

f (Si) (0, 1) -
+0.005 0.005

0.016
-
+0.50 0.05

0.04

f (C) (0, 1) -
+0.004 0.004

0.011
-
+0.50 0.04

0.05

f (ice)d -
+0.989 0.010

0.009 0.003e

alog10 min (μm) (−0.3, 2) - -
+0.115 0.007

0.013
-
+0.24 0.03

0.01

fmax (0, 1) -
+0.213 0.014

0.026 0.001e

cn
2 (GPI best fit) 1.05 240

cn
2 (STIS best fit) 12 10

q 3.5f

alog10 max (μm) 3f

Iteration number 9000f

Burn-in 2000f

Notes.
a The morphological parameters in Table 4 are adopted.
b The parameters are limited to three decimal digits, with uniform sampling in
the prior range. For Mdisk and amin, they are log-uniformly sampled.
c 16th, 50th, and 84th percentiles.
d The mass fraction for ice is ( ) ( ) ( )= - -f f fice 1 Si C ; thus, only Si and C
are explicitly sampled.
e 95th percentile.
f Kept fixed.
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is one of the keys to understanding the scattered-light
properties of the dust.

For the STIS image in total intensity, we obtain fmax≈0. In
DHS theory, this value corresponds to the Mie theory scenario.
For the GPI f image in polarized light, we obtain
fmax≈0.21. In this scenario, the DHS theory is preferred to
the Mie theory, and the fmax parameter is smaller than what is in
the interstellar dust (e.g., 0.7; Min et al. 2007), suggesting that
dust properties are different under various environments. Given
that the two data sets differ in two fundamental ways (different
wavelengths and total intensity/polarization observation), we

cannot determine which is the root cause of this discrepancy.
However, this discrepancy in the fmax parameter is still
informative, since it is an approximation of the dust structure
—the discrepancy indicates that neither Mie nor DHS is able to
well approximate the structure of the dust seen in scattered-
light images.
Distinct parameters. In the radiative transfer modeling of the

scattered-light images, we retrieve distinct sets of parameters in
Table 5 and Figure 13. Although the best fits are not
statistically consistent with each other, we categorize the
difference in the dust properties in the ring into two groups.

Figure 13. Posterior distribution for the variables in Table 5 used in disk modeling for the GPI f (black) and STIS (blue) images. The vertical dashed lines show the
(16th, 84th) percentiles for the data. See Appendix B.4 for the posterior distribution focused on GPI modeling.
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1. Physically possible: minimum dust size. The retrieved
minimum dust size is ∼0.8 μm for GPI f and ∼1.7 μm
for STIS. Both values are within a factor of ∼2, and the
inclusion of correlated noise in the likelihood function
may resolve the discrepancy. The values are reasonably
consistent with blowout size calculations, although we
caution that these are themselves highly dependent on
disk composition, porosity, and aggregate structure—the
blowout size for dust can vary by an order of magnitude
for different composition and porosity (see the Arnold
et al. 2019 calculation for HD 181327, a star similar to
HD 191089).

2. Physically impossible: porosity and composition fraction.
Specifically, these parameters take values in limited
ranges (i.e., from 0% to 100%), and the discrepancy is
currently at the ∼50% level. Even though the discre-
pancies for these parameters can be alleviated with larger
uncertainties, their physical meaning is then uninforma-
tive. A possible solution is to increase the uncertainties to
∼50% (assuming the inclusion of correlated noise is able
to achieve it); however, that would render these
parameters meaningless, since the large uncertainties
would not reject any values in the physically plausible
values (i.e., from 0% to 100%).

We note that the above parameter values are based only on
MCMC fitting results, and neither may be correct given the
limitation of DHS or Mie models. Specifically, these models
are optimized for spectral fitting (e.g., Min et al. 2007; Poteet
et al. 2015), but neither model is able to properly constrain the

composition from scattered-light images (e.g., Milli et al.
2019). See Section 5.2 for more discussion on the dust
properties retrieved from radiative transfer modeling.

4.2.4. Other Attempts

In addition to the above modeling efforts, we have
performed separate modeling attempts with loosened prior
constraints.
For GPI. Set the lower limit in the prior for amin to be

0.01 μm, and keep q unconstrained. We observed a steeper
q≈4.15 with amin≈0.02 μm to describe the GPI f image,
but it still does not recover the STIS flux density. In addition,
although this smaller dust is not blown out by radiation
pressure, its collisional cascade suppliers (slightly larger dust)
are blown out (e.g., Burns et al. 1979; Silsbee & Draine 2016;
Arnold et al. 2019); thus, this scenario is not stable.
For GPI and STIS. Simultaneously model the STIS and GPI

images with the conditions above (i.e., as in the previous bullet
point). However, the best fits indicate a bimodal distribution,
with one better recovering the STIS image and the other better
recovering the GPI image. In the former model, the GPI f
model displays negative polarization at the smallest scattering
angles, failing to properly recover the observation; in the latter,
the STIS model does not recover the ansae in the
observed data.
Based on our modeling efforts, we conclude that the STIS

and GPI data sets cannot be consistently reproduced with a
single model. As a result, we present our separate models for
the GPI f image and the STIS image in Figures 13 and 14.

Figure 14. Best-fit results from MCMC fitting (performed individually). Shown are the observation (left), MCFOST model (middle), and residual map (right) for the
GPI data (top) and the STIS data (bottom). The reduced χ2 values are computed for the nonmasked regions, and the masked regions are denoted by black areas in the
middle column. On the residual maps (both are smoothed with Gaussian kernels of σ=50 mas to remove high-frequency noise), the dotted and dashed–dotted
ellipses represent the peak location and FWHM region of the GPI Gaussian ring.
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See Section 5.2 for more discussion on applying the DHS
theory to disk modeling.

5. Discussion

5.1. Spatial Distribution

Although our radiative transfer modeling efforts cannot
explain the scattering properties of the ring, we are confident in
the results of our geometrical analysis, since they are based
only on the surface brightness distribution of the system.

5.1.1. Ring Measurables

Ring clearing radii (rin and rout). Churcher et al. (2011)
observed the ring at 18.3 μm, reporting a dust belt from 26 to
84au54, which is consistent with our fitting results of
rin=26±4 au and rout=78±14 au at the 1σ level. The
position angle of the major axis, as well as the inclination, is
better constrained with our high spatial resolution data in
scattered light with GPI.

Brightness asymmetry. For the ring, we are not able to find
brightness asymmetry beyond ∼10% or 1σ with the GPI and
STIS data. Although a tentative ∼20% asymmetry was observed
at the 1.8σ level in the 18.3μm observation by Churcher et al.
(2011), if the dust follows the same spatial distribution at these
wavelengths, the 18.3 μm emission asymmetry is likely a result
of statistical or instrumental fluctuation.

Planet perturber. In the GPI H-band total intensity
HD191089 observations, we did not detect any point source
(Figure 5). We report 5σ point-source contrast limits of
∼1×10−5

–∼3×10−6 between 0 3 and 0 8 with the
forward-modeling planet detection method to correct for
selfsubtraction and oversubtraction in Ruffio et al. (2017).
Using these contrast limits, if a planet is shepherding the ring,
for a system with an age of 22 Myr and using the evolution
tracks in Spiegel & Burrows (2012), its mass is expected be
smaller than ∼5MJup.

Using the Morrison & Malhotra (2015) analysis for the outer
edge of a planet’s chaotic zone and assuming this outer edge is
the inner edge of the ring of a debris disk, the upper limit on
planet mass can be translated to the lower limit on the
semimajor axis of the planet’s orbit:
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When we substitute the measured rin into the above equation,
we obtain a lower limit of ap=20±3 au for the semimajor
axis of the planet.

5.1.2. Ring as an Exo–Kuiper Belt

The spatial extent of the ring (rcenter=45.6±0.2 au,
FWHM =24.9±0.4 au for a Gaussian ring) resembles that
of the solar system’s Kuiper Belt (30–50 au; Stern &
Colwell 1997; Bannister et al. 2018). To investigate the
scenario where the ring is an extrasolar version of the Kuiper
Belt, which is perturbed by a corresponding planet (i.e.,
Neptune), we first deproject the S/N map of the GPI
observation to a face-on view, then search for possible mean-
motion resonance orbits for the inner and outer radii of the disk.
Based on Kepler’s third law, we search for the period ratios

corresponding to different combinations of stellocentric radii in
Figure 15, where the period ratios are mapped to simple
fraction values that correspond to the strongest resonance orbits
of a hypothetical potential well.
We set the boundary ranges to be consistent with pixelwise

S/N≈1. Among different combinations of the strongest
resonances, we obtain four pairs of 4:3 and 5:2 resonance orbits
to resemble the extent of the solar system Neptunian resonance
orbits in Chiang et al. (2003). For the other resonance pairs,
their boundary ranges are too narrow to cover the GPI disk,
these pairs cannot be resolved because of the limitation of
instrumental spatial resolution, or these solutions are consistent
with the ranges of the 4:3 and 5:2 pairs; therefore, they are not
presented or analyzed in this paper.
With the four resonance radii pairs, we are able to compute

the location of the potential well (i.e., 1:1 resonance) at
r(1:1)=0 60±0 02, corresponding to a stellocentric distance
of r(1:1)=29.9±1.2 au. The mean resonance radii and the
hypothesized 1:1 orbit of the potential well are shown in
Figure 15. To confirm these resonances, deeper high-resolution
and high-S/N observations are needed to firmly establish the
edges of the ring. If the 1:1 gravitational potential is caused by
a planet, it is likely of small mass and requires the future
LUVOIR or HabEx missions for observation.

5.1.3. Halo: Radial Distribution

Overall distribution. In the STIS data, the halo extends to
rout=640±130 au, with a surface density power-law index
of Γout=−0.68±0.04. This power-law distribution index for
the surface density profile is shallower than −1.5, i.e., the
classical expectation for the halo of debris disks (e.g., Strubbe
& Chiang 2006; Thébault & Wu 2008). It is also shallower than
the power-law index of −1, which is expected for the steady-
state radial motion of the dust (Jewitt & Meech 1987). Using
the dust size–free approximation in Jewitt & Meech (1987), a
gravity-dominated slowdown of the radial motion of the dust
corresponds to a power-law index of −0.5, and a constant
acceleration results in an index of −1.5.
A power-law index of - -

+0.68 0.04
0.04 between the two values

(−0.5, −1.5) is thus caused by the joint effect from multiple
force sources. In debris disks, the −1.5 power-law index has
already taken into account both the slowdown from gravity and
the acceleration from radiation pressure; the- -

+0.68 0.04
0.04 power-

law index is thus calling for additional slowdown sources, and
the slowdown by the interstellar medium is a plausible
candidate. In fact, a similar surface density profile has been
observed in the outskirts of the HR4796A halo, which has
an index of −0.7 and a large-scale structure that is strongly
suggestive of interaction with the interstellar medium (Schneider
et al. 2018).
Following the Jewitt & Meech (1987) analytic derivation

relating surface density to the radial speed of the dust, we
assume the size distribution of the dust is independent of its
stellocentric distance. Under this assumption, if the dust has an
outward radial speed of v(r)∝r x, where r is the radial
separation, then the surface density will be Γ(r)∝r− x−1. In
this way, the dust in the halo of HD191089 has a radial speed
of v(r)∝r−0.32±0.04.
Local distribution. The surface density power law of the

HD191089 halo deviates from the classical model at the >10σ
level, calling for detailed investigation of the local variation of
the halo. As an attempt to investigate the variation of the54 Updated with the Gaia DR2 distance to HD191089.
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surface density distribution at different stellocentric distances,
we compute the power-law indices of the surface density radial
profile for the halo at different radii in Figure 16. Assuming the
dust size distribution is independent of its stellocentric distance,
we also present the Jewitt & Meech (1987) analytical
derivation between radial speed and surface density power-
law index under difference scenarios. At different stellocentric
distances, we observe the following.

1. Interior to ∼200 au, the radial speed of dust decreases as
stellocentric distance increases. This indicates the
decrease of the net inward force that slows down the
outward motion of the dust.

2. Between ∼200 and ∼300 au, the radial speed reaches a
constant, then increases as stellocentric distance
increases. At ∼300 au, the surface density power-law
index reaches that for the classical model for the debris
disk halo (e.g., Strubbe & Chiang 2006; Thébault &
Wu 2008).

3. Exterior to ∼300 au, albeit with large uncertainty, the
radial speed marginally increases, then reaches a constant
as stellocentric distance increases.

Given the complex two-dimensional residual structure in the
single SPF-corrected distribution of the halo (Section 5.1.4), we
do not further discuss the trend of the local distribution power-
law indices. In addition, our analysis is based on the
assumption that dust size does not vary as a function of
stellocentric separation; however, the assumption is invalid for
collision-dominated debris disks (e.g., Strubbe & Chiang 2006;
Thébault & Wu 2008). Therefore, a full dynamical modeling of
the halo is needed to better explain the local variations of
the halo.

5.1.4. Halo: Surface Density Variation

In the classical model for the debris disk halo, the dominant
dust size for optical depth decreases as stellocentric distance
increases (e.g., Strubbe & Chiang 2006; Thébault & Wu 2008).
Using the STIS observations of the HD181327 halo, Stark
et al. (2014) found a consistency between the observed SPF
change (under Mie theory) and the classical model. However,
we do not find a clear SPF variation trend for the HD191089
halo. To investigate the HD191089 halo, we adopt the
averaged halo SPF from measurement and explore the two-
dimensional surface density variation for the HD191089 halo.
To investigate the deviation of the scattering properties from

the same SPF for the halo in STIS at different stellocentric
radii, we first scale the whole halo by the surface brightness
radial distribution as measured for Figure 6, thus eliminating

Figure 15. (a) Searching for the mean-motion resonance in HD191089ʼs ring with the deprojected disk on the right; the color bar shows the orbital period ratio
between the inner and outer boundary. The searching range is marked with a dashed rectangle, and the (4:3, 5:2) mean-motion resonance radii for the inner and outer
boundaries are marked with blue crosses. (b) Sketch of the mean-motion resonance orbits between the deprojected HD191089 ring and a hypothesized potential well
(r(1:1)=29.9±1.2 au, marked with yellow dashed and dashed–dotted lines). If the extent of the primary disk matches the resonance orbits, the 4:3 orbit is at
36.2±1.4au, with the 5:2 orbit at 55±2au (white solid lines); the corresponding 3:2 and 2:1 orbits are marked with dotted lines.

Figure 16. Power-law indices for the surface density radial profiles of the halo
at different stellocentric distances and the corresponding radial speed
dependence using the derivation in Jewitt & Meech (1987). The horizontal
error bars are the regions where the radial profiles are calculated, i.e., ±1″.
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both the distance-dependent illumination and radial density
distribution factors. We then divide the image by the
empirically averaged SPF for the halo in Figure 10 based on
the scattering angles for each pixel. The scaled STIS image is
then deprojected to a face-on view, rotated to align the major
axis with the x-axis, and subtracted by the median to show the
first-order deviation from an identical SPF in all of the halo.
Based on the quality of the NICMOS-NMF data, only the
γout=−2.68 correction is applied.

The two-dimensional deviation from one SPF for both the
STIS-cRDI and NICMOS-NMF are shown in Figure 17. We
observe overdensity regions in the NE and SW sides of the
STIS data at the ∼25% level, with the STIS NE region likely
matching the NICMOS NE overdensity region. The under-
density region to the NW region in the STIS image is likely
influenced by the truncation of signal by STIS’s Wedge B
(Figure 2).

Possible explanations for the deviation from a uniform SPF
in the halo are as follows: (1) when the scattering properties of
the dust are the same in the halo, the deviations are
corresponding to local surface density variations; (2) when
there is no density variation, the dust’s scattering properties are
different; or (3) both effects are jointly affecting the SPFs in
the halo.

Stellar encounter. Based on the complicated structure of
the halo, we investigate the scenario of whether the halo
was created by stellar encounter events (e.g., De Rosa &
Kalas 2019). In the current epoch, the star at a separation of
11 4 to the southwest of HD191089 in the STIS field of view
(partially seen at the bottom right corner in Figure 1(a)) is a
background star. It is identified by Gaia DR2 with Source ID
6847146784384527872 at d=1.06±0.06 kpc (Gaia Colla-
boration et al. 2018); thus, it is not responsible for creating
the halo.

To trace the positions of the nearby stars in the past, we
retrieve 44 stars that are within 5 pc from HD191089 using the
Gaia DR2 archive and use the proper motions to linearly
propagate the locations of the 44 stars in the past (∼0.5 Myr
ago). We notice three stars that have the nearest projected

approach from ∼1.2 to ∼1.5 pc, which happened between ∼0.2
and ∼0.35Myr from now.55 For star encounter events, the
closest approaches are typically smaller than ∼200 au (e.g.,
Pfalzner 2003; Pfalzner et al. 2018), and distinct features such
as spiral arms dissipate beyond ∼1000 yr (Pfalzner 2003).
Therefore, if a star encounter event created the halo for the
HD191089 system, it should happen early in a cluster
environment, where close encounters are more frequent (e.g.,
the solar system; Pfalzner et al. 2018). Under this mechanism,
the halo would have been dissipated.

5.2. Dust Properties from Radiative Transfer Modeling

In this paper, based on previous efforts in debris disk
modeling with DHS (e.g., Min et al. 2010; Milli et al. 2017),
we adopted the DHS theory to model the dust in the
HD191089 ring for the GPI f image in polarized light and
the STIS image in total intensity. We cannot yet interpret the
disk images with one model across different instruments.
Although we have considered a limited combination of
compositions, they span the range from refractory (carbon) to
pure ice and even void (through porosity). The models consider
a broad range of refractive index that encompasses most
standard astronomical compositions. Therefore, it is unlikely
that our failure to find a good fit is solely due to not trying
another composition.
In our modeling results, the STIS image favors Mie theory,

and the GPI f image favors DHS theory with a maximum
void fraction of ∼21%. The discrepancy in this parameter,
which is the only additional parameter in DHS from Mie,
indicates that the shape of the dust cannot be well
approximated by either theory. In addition, although previous
modeling attempts (e.g., Rodigas et al. 2015; Choquet et al.
2017) have encountered that simple models cannot reproduce a
total intensity observation at multiple wavelengths, the analysis
performed in this paper adds another dimension—polarization
observation—to the complexity of disk modeling.
For some of the dust parameters (e.g., porosity, mass fraction

of compositions), the discrepancies may be mathematically
resolved using larger uncertainties by taking into account the
correlated noise (e.g., Wolff et al. 2017). However, this
resolution does not change the best-fit values, and in this way,
it would make these parameters less informative, since they can
only take values in a limited range (i.e., from 0% to 100%). The
lack of meaning for these retrieved parameters further supports
the fact that current models (i.e., Mie, DHS) cannot properly
depict the debris disk images obtained at different wavelengths
and with different observational techniques.
The advances in dust descriptions may solve the discrepancies

in the radiative transfer modeling of debris disks, including using
laboratory measurements such as the Amsterdam-Granada Light
Scattering Database (Muñoz et al. 2012) or adopting advanced
models for dust shapes and optical properties (e.g., discrete-
dipole approximation: Purcell & Pennypacker 1973; Draine &
Flatau 1994; Min et al. 2006; Rayleigh–Gans–Debye (RGD)
theory: Sorensen 2001; the T-matrix method: Mishchenko
et al. 1996; Gaussian random spheres: Muinonen et al. 1996;
aggregation of small particles: Kempf et al. 1999; Tazaki et al.
2016; Tazaki & Tanaka 2018; Arnold et al. 2019). Given the
more realistic descriptions of dust properties, the latter may help
to resolve the discrepancies encountered with current dust

Figure 17. Demonstration of the deviation of an identical SPF for the STIS
halo. For comparison and illustration, the NICMOS-NMF data are shown with
black contours (arbitrary units). For the STIS halo, the NE and SW areas host
overdensity regions, with the NE one likely matching that in the NICMOS-
NMF data.

55 The results do not change using the 329 stars within 10pc.
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models. For example, Tazaki et al. (2016) calculated the SPFs
for aggregates using the RGD theory and found that backward
scattering was underestimated in previous studies with simple
models; Arnold et al. (2019) calculated blowout size for
aggregates and found that the size can vary by as much as an
order of magnitude for different particle models. Although these
treatments may resolve the discrepancies, MCMC retrievals of
dust properties for these advanced descriptions of dust are
currently limited by computational power.

For the HD191089 system, the contribution from the halo in
the STIS data is also calling for a more complex structural
model. In addition, if the halo is not coplanar with the ring,
then the halo will bias the SPF of the ring and add another
dimension of complexity to the problem.

6. Summary

In this paper, we report our detection and characterization of
the HD191089 debris disk by combining space- and ground-
based instruments: HST/NICMOS, HST/STIS, and Gemini/
GPI. Using these three instruments, we are able to study the
disk in scattered light at three different wavelengths: 0.58 and
1.12 μm in total intensity and 1.65 μm (H-band) in polarized
intensity. In the scattered-light images, we are able to identify
two components in the debris disk system: a ring and a fainter
fanlike halo structure. For the STIS and GPI f images, we
implement radiative transfer modeling to retrieve the dust
information. Assuming that the ring and halo are coplanar, we
summarize our findings as follows.

Measurement.

1. The HD191089 system has two spatial components: one
exo–Kuiper Belt ring from 26±4 to 78±14au and a
halo extending to 640±130au. The center of the ring
does not have a significant offset from that of the star.
The halo has an overall radial surface density power-law
index of −0.68±0.04, with local variations indicative of
the interaction with the interstellar medium.

2. The ring has an inclination of - 
+ 59 2

4 , enabling the SPF
measurements for the two components from ∼30° to
∼150° in the STIS data. In the range of scattering angles
probed by our observations, both forward and backward
scattering are stronger for the dust in the halo than in
the ring.

3. The polarization fraction curve calculated using 1.65 μm
GPI f and 1.12 μm NICMOS-NMF images does not
have a clear trend; however, it is possibly peaking at
∼110°. Our result may be influenced by wavelength, and
it can be better constrained with future total intensity
observations in the H band.

4. From the color of the dust derived from the NICMOS and
STIS observations, the dust in the ring is redder than that
in the halo. This is consistent with larger dust in the ring,
which is also consistent with theoretical simulations that
the ring serves as the “birth ring” for the smaller dust in
the halo.

5. In comparison with an identical SPF trend (Hughes et al.
2018), the SPFs of the dust in the HD191089 system are
likely deviating from the trend.

6. If the ring is shaped by the strongest orbital resonances,
the gravitational well is likely at 29.9±1.2au, resulting
a 4:3 resonance with the inner edge and a 5:2 resonance
with the outer edge.

Radiative transfer modeling.
We use DHS theory to model the HD191089 ring images

observed with STIS and GPI.

1. Most of the extracted parameters are not statistically
consistent with each other (e.g., composition, porosity).
Specifically, the GPI f ring favors DHS theory with
∼21% maximum void fraction, while the STIS ring
favors Mie theory (i.e., DHS with 0% void fraction). This
maximum void fraction parameter approximates the
structure of the dust, which is the only parameter that is
added between the two theories. The discrepancy for this
parameter thus suggests that neither DHS nor Mie is a
good approximation of the dust structure. However, both
values are smaller than the best fit for interstellar dust
(0.7; Min et al. 2007), suggesting that dust properties are
different in different environments.

2. The discrepant dust parameters retrieved in our DHS
radiative transfer modeling of the ring may be mathema-
tically resolved with larger uncertainties. However, for
the parameters that take a limited range of values from
0% to 100%—e.g., porosity and mass fractions of
compositions—large uncertainties will render these para-
meters less informative on dust properties. Advanced
descriptions of dust models such as aggregates are
expected to physically resolve the discrepancies; how-
ever, such MCMC analyses are currently limited by
computational power.
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Appendix A
The SPF

A.1. 3D Cartesian Coordinates of the Disk System

To quantify the coordinate values, the x and y coordinates
can be directly measured in the image of the system with
(x, y)±(δx, δy), where δ denotes the uncertainty of the
parameters in this paper. In this section, given the other
measured quantities of the system (i.e., inclination and position
angle of the semimajor axis), we obtain the z coordinates for
this system.

To determine the z coordinates, we first set up the
mathematical representation of the system. Let O=(0, 0, 0)
be the origin of the 3D Cartesian coordinate system, with O
placed at the geometric center of the debris disk, and unit
vector ˆ ( )=x 1, 0, 0 pointing W, ˆ ( )=y 0, 1, 0 , N, ˆ =z
( )0, 0, 1 , pointing toward the observer. Let ˆ ( )=n a b c, ,disk
denote the unit normal vector of the midplane of the debris disk
system. Then, all of the points on the disk midplane, which also
contains the origin O, satisfy

( )+ + =ax by cz 0, 11

with a2+b2+c2=1.56

The inclination of the system, which is denoted by
[ ]q dq Î  0 , 90inc inc and defined as the dihedral angle

between the disk midplane and the xOy-plane, satisfies

ˆ · ˆ

∣∣ ˆ ∣∣ ∣∣ ˆ ∣∣
q =

n n

n n
cos ,

xOy

xOy

inc
disk

disk
2 2

where · is the dot product between two vectors, and ˆ ˆ=n zxOy is
the unit normal vector for the xOy-plane. The above equation
becomes

( ) · ( )
( )( )

( )q =
+ + + +

=
a b c

a b c
ccos

, , 0, 0, 1

0 0 1
. 12inc

2 2 2 2 2 2

The position angle of the system, which is denoted by
[ ]q dq Î  0 , 180PA PA , is defined as the angle from N to the

intersecting line between the system and the xOy-plane. For the
intersecting line, it satisfies ax+by=0, since the points on it
are represented as (x, y, 0). Let the mathematical slope angle of
the line be θslope, which is defined as the counterclockwise
angle from x̂ to the line. Then, we have the relationship
between the mathematical slope angle and astronomical
position angle,

q q= - 90 ,PA slope

where

q = = -
dy

dx

a

b
tan ;slope

therefore, we have

( ) ( )q q q= -  = - =
b

a
tan tan 90 cot . 13PA slope slope

For the points on the disk midplane, we can substitute
Equations (12) and (13) into Equation (11); then we have the z-
coordinate of the points as

( )

( )
( ) ( )

⎜ ⎟⎛
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⎞
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q q q q
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Assuming the measured parameters are independent, the
squared uncertainty for z is therefore
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Now, by combining the (x, y) coordinates and the inclination
and position angle of the system, we can obtain z±δz from
Equation (14) and the square root of Equation (15). In this
paper, for the HD191089 disk, the 1σ uncertainties for x and y
are estimated to be 0.33 pixel,57 and the uncertainties for θinc
and θPA are obtained from the GPI f image using the
Debris Ring Analyzer package by Stark et al. (2014).

A.2. Scattering Angle

From the (x, y, z) coordinates of the dust in the debris disk
system, and given the position of the star at (x0, y0, z0)±(δx0,
δy0, δz0), we can then measure the scattering angle for the
photons. A photon, which is emitted from the star and then
interacts with the material at (x, y, z), has an original direction
of ( ) ( )= -r x y z x y z, , , ,0 0 0 . The photon, when collected by
the observer, has a final direction of ẑ . The scattering angle of
this photon, which is defined as the angle between r and ẑ , is

56 Note: the a symbol in this section is not the dust size used in the main text. 57 Scaled from a conservative 3σ uncertainty of 1 pixel.
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thus
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Substituting Equation (14) into the above equation, we have the
scattering angle at the (x, y) position in the detector frame (i.e.,
on the xOy-plane),

Assuming the measured parameters are independent, the
corresponding squared uncertainty for θscatter is then
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denoting ¢ º -v v v0 for { }Îv x y z, , and thus
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0 ; then, the above equation becomes
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Substituting the value and uncertainty of z from
Equations (14) and (15) into Equations (16) and (18), we can
obtain the value and uncertainty for the scattering angle,
θscatter±δθscatter.

In this paper, the input uncertainties are obtained from the
GPI f image measured with the Debris Ring Analyzer
package (Stark et al. 2014). The SPF is then the scattering-
angle dependence of the flux density of the system at specific
radial separations. The original measurements are then

averaged to reduce measurement errors, and the final SPF is
obtained by correcting the limb-brightening effect (by dividing
the observed SPF by that of an isotropic disk model; Milli et al.
2017).

Appendix B
Sampling from Posterior Distributions

B.1. Glivenko–Cantelli Theorem

In probability theory, for n independent and identically
distributed real-valued random variables (  Î X X X, , , n1 2 ),
the empirical cumulative distribution function (ECDF) is

defined as58

ˆ ( ) ( ) ( )[ )å=
=

¥F x
n

x1
1

, 19n
i

n

X
1

,i

where ( )[ )¥ x1 X ,i is an indicator function that is equal to 1 only
when < ¥X xi (otherwise ( )[ ) =¥ x1 0X ,i ). For the ECDF,
the Glivenko–Cantelli theorem (e.g., Chung 2001) describes its
asymptotic relationship with the cumulative distribution
function (CDF) of a random variable Î X , which is denoted
by FX(x), that ˆ ( )F xn converges to FX(x) uniformly to FX(x) as
 ¥n almost surely, i.e.,
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B.2. The PIT

In statistics, for a random variable Î X with CDF FX(x),
the PIT states that Y=FX(x) is uniformly distributed between
0 and 1 (Rosenblatt 1952), in the sense that
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which is the CDF of a random variable that is uniformly
distributed between zero and 1, and FY(y) is the CDF of the
random variable Y. Based on this property, the PIT is used to
sample distributions, especially the ones that do not have
parametric expressions.

B.3. Posterior as Prior

To use the marginal posterior distribution from the previous
MCMC run as the prior for the next run, we transfer the

( )
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58 Note: the x and y symbols in Appendix B are statistical variables, not
Cartesian coordinates.
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information between the two MCMC runs by combining the
Glivenko–Cantelli theorem and the PIT.

First, convert discrete points to a continuous distribution.
Based on the Glivenko–Cantelli theorem, for a specific random
variable X with a large number of samples, we can treat its
marginal ECDF from the previous MCMC run as its CDF, then
use the ECDF as the prior for the next MCMC run.

Second, sample from an ECDF. We first sample a standard
uniform random quantile variable [ ]ÎY 0, 1 , then we find the
corresponding empirical quantile in the given ECDF, i.e.,

ˆ ( )-
F Yn

1
. Using the PIT in Equation (21), we have

ˆ ( ) ˆ ( )~
-

F Y F . 22n n
1

Third, combining the Glivenko–Cantelli theorem in
Equation (20) with the quantile distribution in Equation (22),
we have

ˆ ( ) ( )~
-

F Y F , 23n X
1

Figure 18. Posterior distributions for STIS modeling with the PIT approach (blue). The marginal distribution of the GPI posteriors (black) are used as the priors for
STIS fitting. The vertical dashed lines are the GPI 2.5th and 97.5th percentiles, which are the prior ranges. The majority of the STIS PIT posteriors lie around or
beyond the 2.5th and 97.5th percentiles of the priors, indicating a trend of deviating from them.
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i.e., for a standard uniform random variable Y, its corresp-
onding quantile for the ECDF of a random variable X follows
the distribution of X.

B.4. GPI Posteriors as STIS Priors

In this section, we establish the connection between the GPI
f image and the STIS total intensity image through radiative

transfer modeling. We first obtain the posterior distribution of
the disk parameters by radiative transfer modeling the GPI f
image with MCMC (Section 4.2.1). We then calculate the
marginal distributions from the MCMC posterior values59 and
use the PIT to treat them as the priors when modeling the STIS
image.

The posteriors with the PIT approach for the STIS image are
presented in Figure 18. In this section, our purpose is to
demonstrate the statistical deviation of the posteriors from the
GPI best-fit values. We thus constrain the PIT sampling ranges
to be between the 2.5th and 97.5th percentiles, which is
analogous to the conventional definition of two-tailed statistical
significance: p-value >0.05.

In this paper, we have ignored the correlated spatial noise in
the images in our MCMC modeling; however, correlated noise
is expected to increase the uncertainty of the extracted
parameters (e.g., Czekala et al. 2015; Wolff et al. 2017). To
better quantify the statistical deviation of the two sets of disk
parameters that are extracted from the two disk images
(Table 5), rigorous treatment of the correlated noise is
necessary (e.g., Wolff et al. 2017).
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