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SUPPLEMENTARY METHODS 

 

Carbon-Hydrogen-Nitrogen Analyses 

To prep samples for carbon-hydrogen-nitrogen (CNH) analyses, a mm-sized section of 

tissue was dried under vacuum for 48 hours at room temperature. Triplicate subsamples were 

analyzed of muscles that had not been incubated in kaolinite/sand (two specimens), muscles that 

were exhumed from kaolinite after 45 days (two specimens) and a single muscle that was 

exhumed from quartz sand after 45 days. Results were reported as percent weight of each 

element. 

Due to the small number of exhumed muscles, each mm-sized section of tissue was 

measured separately and considered to be an independent sample. Gaussian distributions were 

identified by creating quantile-quantile plots of carbon, hydrogen and nitrogen contents 

(Supplementary Fig. 5); slight deviations from normal distributions were assumed to result from 

the small sample size, rather than failure of the data to fit Gaussian curves. We performed Welch 

two-sample t-tests to determine differences in elemental composition (CHN) between samples 

incubated in kaolinite and those analyzed before incubation. Muscles incubated in quartz sand 

were excluded from these analyses because only one sample was successfully recovered during 

experimentation. Corrections for multiple hypothesis testing were made using Bonferroni post 

hoc analyses (α = 0.05/n, where α = significance level and n = 3, the number of hypotheses). All 

statistical tests were conducted using the statistical software package R (version 3.4.4).  

 

Electron Microscopy 



Scanning Electron Microscopy.–Muscles were imaged by scanning electron microscopy 

with energy dispersive X-ray spectroscopy (SEM-EDS) to determine the presence and 

distribution of elements in the mineral veneers that coated and/or impregnated muscle tissues. 

Pieces of exhumed muscles (~2 cm wide) were separated using a 1 mL plastic pipette tip. 

Samples for SEM were fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer with 

0.1% CaCl2*H2O (pH = 7.4) and stored for three to seven days at 4˚C to ensure the complete 

fixation of tissues. Fixed samples were rinsed twice for 10 min with a 0.1 mM sodium cacodylate 

buffer solution (stored at 4˚C), followed by 6 rinses with double distilled water. Samples were 

dehydrated using an ethanol-water drying series (30%, 50%, 70%, 80%, 90%, 100%, 100%, 

100%) in successive 20 min steps and left overnight to dry. Dehydrated muscle tissues were 

transferred to carbon tape and coated with gold and palladium to reduce SEM image charging 

(Keck Facility, Whitehead Institute, MIT, Cambridge, MA, USA). All samples were imaged on a 

Zeiss Supra Scanning Electron Microscope with a secondary electron detector (Center for 

Nanoscale Systems, Harvard University, Cambridge, MA, USA). Elemental composition in 

regions of interest was determined using an electron-dispersive X-ray spectrometer operating at 

10-13 kV.  

 

Transmission Electron Microscopy.–Samples were imaged by transmission electron 

microscopy (TEM) to determine the mineral composition of the veneers. To prepare select 

samples for TEM analyses, pre-frozen muscles (-80˚C) were partially thawed at room 

temperature for 5 to 10 min and small pieces (~2 mm wide) were separated using a sterile plastic 

pipette tip. These subsamples were placed in a 1.7 mL microcentrifuge tube (VWR International, 

Radnor, PA, USA), suspended in filter-sterilized double distilled water (Arodisc® Syringe 



Filters with Supor® Membrane, Pall Laboratory, Port Washington, NY, USA) and shaken by 

hand for 30 s. Two microliters of the suspended solution was placed on an LC-200 grid (Electron 

Microscopy Sciences, Cat # LC-200-Cu, Hatfield, PA, USA) and imaged with a JEOL 2010F 

transmission electron microscope (TEM, JEOL 2010F, JEOL, Peabody, MA, USA). Gold 

standard was used as a reference for SAED determination of the sample. The high-angle annular 

dark-field detector (Gatan HAADF, Pleasanton, CA, USA) for atomic resolution scanning 

electron transmission microscopy in free-lens control mode (STEM) and energy dispersive 

spectrometer (EDS, Bruker silicon drift detector SDD, Billerica, MA, USA) enabled elemental 

analysis at nanoscale resolution. Images were taken using a digital camera (Gatan Orius, 

Pleasanton, CA, USA) for TEM and STEM mode. SAED patterns were imaged using Gatan 

digiscan unit and TEM, STEM and SAED images were recorded and treated using Gatan digital 

micrograph software. EDS spectra were recorded and treated using the INCA software program 

(Oxford instruments, Abingdon, UK).  

 

Synchrotron-Based Analyses 

X-Ray Microprobe.–The distribution and speciation of iron in mineral veneers was 

identified at the Advanced Light Source beamline 10.3.2 (Marcus et al., 2004) (Lawrence 

Berkeley National Laboratory, Berkeley, CA, USA). Pre-frozen samples (-80˚C) were first 

thawed, air dried and then mounted on the non-sticky side of Kapton® polyimide tape (DuPont, 

Hayward CA, USA) for analysis. Micro-focused X-ray fluorescence (µXRF) maps of muscles 

before incubation and samples exhumed from kaolinite and quartz sand were acquired using an 

incident beam at 100eV above the iron K-edge; spots of interest were selected for iron K-edge X-

ray absorption near edge structure (µXANES) spectroscopy measurements. The XANES spectra 



were acquired in five representative spots on each sample and sterile kaolinite grains were also 

measured. X-ray fluorescence emission data were recorded using a seven-element germanium 

(Ge) solid state detector (Canberra, ON, Canada) for S, Fe, Ca, K, Cl, Si, Al and P. XANES 

spectra were calibrated with an iron foil (first derivative maximum set at 7110.75 eV). Maps 

were recorded with a beam spot size of 6 x 6 µm and spectra were recorded with a beam spot 

size of 12 x 3 µm. Maps were deadtime-corrected and decontaminated. All spectra were 

deadtime-corrected, calibrated, pre-edge background subtracted and post-edge normalized using 

a suite of LabVIEW based custom programs available at the beamline following procedures 

described in Marcus et al. (2008). Spectra recorded on various spots were averaged in Athena 

(Demeter 0.9.24, Ravel and Newville, 2005). Individual and averaged spectra were least-square 

fitted as a linear combination of spectra from the large database of iron-bearing standard 

compounds (Marcus et al., 2008 and the updated 10.3.2 database). Two-dimensional plots of iron 

XANES data were generated according to general methods described in Marcus et al. (2008) and 

a Matlab code described elsewhere (Fakra, 2015). This code is available at the beamline. 

 

Micro-X-Ray Diffraction.–The composition of the sterile sediments was determined at the 

Advanced Light Source (beamline 12.3.2, Berkeley, CA, USA) using a combination of micro-X-

ray fluorescence (µXRD) mapping and micro-X-ray diffraction (µXRD) at 10 keV. Previously 

frozen samples were thawed, but not dried and placed on the sticky side of Kapton® polyimide 

tape (DuPont, Hayward CA, USA) for analysis. A 3 x 3 µm XRF map was first generated and 

points with high iron intensity were selected for diffraction. XRD data was converted to 2D 

powder diffractions using the computer program available at the beamline (XRDSol2) and 

minerals were identified using the computer program HighScore Plus.  



 

Water Chemistry 

Oxygen.–Dissolved oxygen concentrations were measured on days 10, 30 and 45 by 

injecting known volumes of samples collected either from the porewater or from the water 

column with a syringe into 60 mL serum bottles and measuring oxygen partial pressure change 

in the headspace. The bottles were previously flushed with oxygen free nitrogen and oxygen 

diffused out of the samples in less than 20 minutes. Oxygen partial pressure was measured by 

detecting changes in the fluorescence lifetime of palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-

pentafluorphenyl)-porphyrin (Pd-TFPP) (Lehner et al., 2015) using an in-house built 

fluorescence lifetime sensor (Pajusalu et al., 2018). Triplicate measurements of each 

porewater/water column sample were made to ensure the accuracy of each oxygen reading. Due 

to unexpectedly large oxygen absorption rates of the reductive compounds in the sample, the 

dissolved concentrations underestimate the actual oxygen concentrations. 

 

Colorimetric Assays.–Porewater samples from kaolinite and sand were collected using 5 

mL plastic syringes with 18 gauge needles (VWR International, Radnor, PA, USA). The needle 

tips were inserted ~6.5 cm below the surface of the substrate on days 10, 15, 30 and 45 to 

measure iron and sulfide and on days 10, 20, 30 and 45 to measure dissolved silica. All samples 

were centrifuged aerobically for 10 minutes at 10,000 rotations per minute to separate the 

particulate matter from the liquid medium. The supernatant was decanted and filtered aerobically 

through 0.2 µm sterile syringe filters with polyethersulfone membranes (Acrodisc®, Pall 

Laboratory, Westborough, MA, USA). Triplicate measurements were made for each sample and 



the average of these was used as a final value. Sterile medium that lacked iron was also measured 

and used for background subtraction. 

 

Iron.–Following the methods of Stookey (1970) for Fe(II) and Fe(III) determination, 100 

µL of ferrozine reagent (3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine, Aldrich 

#160601, prepared in 1.0 M ammonium acetate solution, CH3COONH4, Aldrich #372331) was 

added to one mL of experimental sample and stored at -4˚C until analyzed. Standards were 

prepared from stock solutions of 2.02 mM of FeCl2*4H2O that was diluted with 0.1 M solution 

of NaCl and a previously prepared 6.16 mM FeCl3 reagent that was prepared from anhydrous 

ferric chloride (Aldrich #157740). The stock solutions were diluted with double distilled water 

and acidified with 2% HCl by volume. Total iron was determined by reducing Fe(III) in the 

samples and standards to Fe(II) by adding 150 µL of 1.4 M hydroxalamine hydrochloride 

(H2NOH.HCl, Aldrich # 379921) and 50 µL of 10 M ammonium acetate to 800 µL of 

sample/standard. The concentration of Fe(III) was calculated by subtracting the previously 

determined concentration of Fe(II) from the total iron concentration in the same sample. The 

following standard dilution series were analyzed together with the experimental samples: 0, 

0.001, 0.002, 0.005, 0.025, 0.035, 0.050 and 0.101 mM of Fe(II) and 0, 0.001, 0.003, 0.006, 

0.031, 0.062, 0.074, 0.092, 0.111 and 0.123 mM of Fe(III). 

Several porewater samples exceeded the saturation limit for measurement and were 

diluted 20x with 0.1 M NaCl water after the addition of ferrozine (Supplementary Table 2). The 

effect of sample dilution on the measurements was determined by assaying the following 

standard dilution series that was diluted 20x with a 0.1 M NaCl solution after the addition of 

ferrozine: 0, 0.151, 0.302, 0.754, 1.21, 1.51 and 2.01 mM of Fe(II). Measurements of undiluted 



and diluted samples from the same experiments and time points were compared when possible. 

Dilution had little to no effect on the measured concentration of Fe(II) if the original 

sample/standard contained less than 0.75 mM of Fe(II) (Supplementary Fig. 6). However, the 

assay consistently underestimated the concentrations of total iron when samples were diluted 

after the addition of ferrozine and the concentration of Fe(II) in samples/standards that contained 

higher concentrations of Fe(II) (Supplementary Fig. 6). Thus, all measurements of Fe(III) 

concentrations in samples that were diluted after the addition of ferrozine are lower bounds.  

 

Silica.–Silica concentrations were determined following the methods described in 

Newman et al. (2017). To determine the concentrations of dissolved silica, filtered and frozen 

samples that had been stored at -20˚C in tightly capped 15 mL conical centrifuge tubes were left 

at room temperature until the liquid had completely thawed. Samples were diluted 10x in a 

silica-free, sterile medium. Two standard dilution series were prepared using a concentrated 

silica standard (J.T. Baker “Dilut-IT” silica standard, 16.64 mM) and added to the silica-free 

medium: (1) 0, 0.02, 0.04, 0.08, 0.10, 0.21, 0.42 and (2) 0, 0.21, 0.42, 0.83, 1.04, 2.08, 4.16 mM. 

Silica standards were also diluted 10 times. Potential contamination by silica from the syringe 

filters (0.2 µm, Acrodisc®, Pall Laboratory, Westborough, MA, USA) and needles (VWR 

International, Radnor, PA, USA) was determined to be negligible.  

 

Sulfide.–The concentration of dissolved S(-II) species (H2S, HS- and S2
-) were 

determined by adding one mL of 0.05 M zinc acetate (Zn(CH3COO)2·2H2O, Aldrich #383058, 

prepared in double distilled water) to 200 µL of sample, using the modified method of Cline 

(1969). Samples were stored at 4˚C until measurement. The 0.1 M stock solution of Na2S was 



prepared by adding 0.1 M of sodium sulfide nonahydrate (Na2S·9H2O, Aldrich #431648) to 

anaerobic double distilled water that had been allowed to boil at 100˚C. The solution was 

transferred to a hermetically sealed container and the headspace of this bottle was flushed with 

CO2:N2 (20:80, v/v) using standard anaerobic techniques. Standards were prepared by diluting 

100 mM Na2S with 0.05 M zinc acetate (to 0.005, 0.010, 0.020, 0.050 and 0.100 mM 

concentrations). Before the colorimetric assay, 40 µL of diamine reagent was added to all 

samples and standards. This reagent included 1.6 g N,N dimethyl-p-phenyldiamine sulfate salt, 

(CH3)2NC6H4NH2·H2SO4, Aldrich #186384) and 4 g of anhydrous ferric chloride (Aldrich 

#157740) dissolved in 100 ml of 6 N hydrochloric acid.  

 

Saturation Indices.–The degree of solution saturation state with respect to each mineral 

phase dissolution/precipitation reaction is expressed in terms of the Gibbs free energy of 

reaction, Gr 

Gr = RT ln[IAP/Keq]=RTln[Ω] 

 

where R is the gas constant, T is the absolute temperature (K), IAP and Keq are the ion activity 

product and the equilibrium constant, respectively and ΩIAP/ Keq. To calculate the saturation 

indices (SI) of different mineral phases, we used the geochemical computer program 

PHREEQC Version 1.6 (Parkhurst and Appelo, 1999). For input information, we used chemical 

and physical concentrations for each experimental condition. We did not measure aluminum 

concentrations in the pore fluids and used an assumed value of 0.1 µM (Mackin and Aller, 1986).  
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SUPPLEMENTARY RESULTS 

Oxygen 

Dissolved oxygen values were determined for pore fluids (~6.5 cm below the sand/clay 

surfaces) and water columns (~3 cm above the sand/clay surfaces) (Supplementary Fig. 1). 

Values for dissolved oxygen in the porewaters were less than or equal to 8.1 ± 2.8 µM. 

Dissolved oxygen values in the water column ranged from 20.4 ± 12.9 to 40.8 ± 10.9 µM on day 

10, 19.1 ± 2.3 to 60.3 ± 6.0 µM on day 30 and 32.0 ± 5.7 to 63.8 ± 15.7 µM on day 45. The 

observed increase in dissolved oxygen concentrations between 30 and 45 days likely reflects the 

removal of the decaying organic material during the medium replacement and the decreasing 

amounts of dissolved organic matter and organic decay after day 30.  

 



Micro-X-Ray Diffraction 

Micro-X-ray diffraction (µXRD) of the sterile substrates in the absence of muscle tissues 

demonstrated that sand contained albite, clintonite, gismondine, wüstite, hematite, phlogopite, 

quartz and saponite (Supplementary Fig. 4A). Sterile kaolinite substrates contained kaolinite 

grains, as well as natural impurities such as muscovite, brookite and a lead-rich mineral (possibly 

hinsdalite) (Supplementary Fig. 4B, see Supplementary Fig. 7). Missing major peaks resulting 

from grain orientation during µXRD analyses hindered the identification of some minerals in the 

sterile substrates.  

 

  



 

 

 

SUPPLEMENTARY FIGURE 1.–Concentrations of dissolved oxygen (µM) on days 10, 30 

and 45 after tissue burial. Error bars are shown for triplicate measurements. Purple circles = 

water column values; gray squares = porewater values. 

  



 

  



 



 



SUPPLEMETARY FIGURE 2.–Photographs of muscles at different time points (1, 5, 15, 30 

and 45 days) and specimens exhumed from the sand on day 30 or 45. Photographs of exhumed 

muscles are to the right of corresponding time series photographs. Muscles buried in quartz sand 

for 30 days: A) Muscle incubated in the presence of cyanobacterial cells. B) Muscle incubated in 

the presence of illite. C) Muscle incubated without added cyanobacteria/clay minerals. Muscles 

buried in quartz sand for 45 days: D) Muscle incubated in the presence of cyanobacteria. E) 

Muscle incubated in the presence of illite. F) Muscle incubated without added cyanobacteria/clay 

minerals. Culture jar volume is 190 mL; solid arrows indicate extensive black patches around 

muscles. m = muscle tissue; cy = living cyanobacterial cells; dc = dead cyanobacterial cells; X= 

the complete decay of soft tissues by the end of the experiment. 

  



SUPPLEMENTARY FIGURE 3.–Representative Fe K-edge XANES spectra for muscles 

exhumed from sand and kaolinite and scatterplot comparing normalized absorption values of 

muscle tissues and sterile kaolinite. A) Fe XANES spectra for the muscles exhumed from sand 

and kaolinite after 45 days of burial. The spectra are derived from individual XANES spots 

(spots four and five in Fig. 4B and C, respectively). The best least-square linear combination fits 

for the muscles exhumed from sand and kaolinite are shown in red (sand: 58.9% Fe(II) sulfate, 

39.8% goethite, sum-sq: 3.3x10-4; kaolinite: 37.8% Fe-rich basaltic glass, 22.0% ferrosmectite 

and 20.2% kaolinite, sum-sq: 9.9x10-5) and the residual for both is plotted in gray. B) Scatterplot 

of the normalized Fe K-edge XANES absorption values at 7117.5 eV and 7113 eV (a versus b, 

respectively). Black empty squares = Fe-bearing minerals or chemical standard compounds of 

known Fe valence; blue circles = sterile kaolinite (average of four XANES spots); red stars = 

muscle exhumed from kaolinite (five XANES spots). 

 

  



 

 

 

SUPPLEMENTARY FIGURE 4.–Micro-XRD spectra of sterile substrates in the absence of 

muscle tissues. A) Sterile sand is composed of albite, clintonite, gismondine, wüstite, hematite, 

phlogopite, quartz and saponite. B) Sterile kaolinite is composed of kaolinite grains, as well as 

impurities such as muscovite, brookite and an Pb-rich mineral (possibly hinsdalite). See 

Supplementary Fig. 7 for SEM-EDS results for the Pb-rich mineral found in the sterile kaolinite. 

 



 

 

SUPPLEMENTARY FIGURE 5.–Normal quantile-quantile plots of carbon, hydrogen and 

nitrogen content (%) of muscles. The left column shows samples before and the right column 

shows samples after 45 days of incubation in kaolinite. A) Carbon content of muscles before 

experimentation. B) Carbon content of muscles after burial. C) Hydrogen content of muscles 

before experimentation. D) Hydrogen content of muscles after burial. E) Nitrogen content of 

muscles before experimentation. F) Nitrogen content of muscles after burial. 



 

 

SUPPLEMENTARY FIGURE 6.–Testing the effect of sample dilution after the addition of 

ferrozine on the measured concentrations of Fe(II). Standards were diluted 20x after the addition 

of ferrozine and measured using colorimetric assays. Concentrations of Fe(II) that were 

originally greater than 0.75 mM were underestimated. Solid line shows absorbance values for 

diluted standards; dashed line shows calculated absorbance values based on the known added 

concentrations of standards. 

  



 

SUPPLEMENTARY FIGURE 7.– Representative scanning electron micrograph (SEM) and 

energy dispersive X-ray spectra (EDS) of Pb-rich mineral found in the sterile kaolinite substrate. 

Sample was coated with gold and palladium. White box shows area analyzed by SEM-EDS and 

corresponding EDS spectrum is found below the SEM micrograph.  

  



SUPPLEMENTARY TABLE 1.–List of best fit Fe standards 

Substrate 
Microbes or 

clay added? 

Day 

exhumed 

XANES 

spot 

number 

Minerals identified 
Amounts 

(%) 
Sum-square 

Sum-

absolute 

value 

sand cyanobacteria  30 1 FeS (synthetic) 13.5 1.96E-04 1.27E-02 

   1 Fe(II) sulfate 55.9   

   1 goethite 29.8   

   2 FeS (synthetic) 14.7 1.98E-04 1.31E-02 

   2 Fe(II) sulfate 56.5   

   2 goethite 28.2   

   3 Fe(II) phosphate 41.1 2.59E-04 1.47E-02 

   3 pyrite 12.1   

   3 iron oxyhydroxide* 46.7   

sand cyanobacteria  30 1 Fe(II) sulfate 51.8 1.51E-04 1.13E-02 

   1 goethite 10.6   

   1 siderite 36.8   

   2 seafloor basalt** 53.2 2.30E-04 1.34E-02 

   2 Fe(II) sulfate 18.2   

   2 iron oxyhydroxide* 28.6   

sand cyanobacteria  45 1 Fe(II) sulfate 48.2 2.E7E-04 1.36E-02 

   1 goethite 50.1   

   2 Fe(II) sulfate 58.8 2.11E-04 1.29E-02 

   2 goethite 39.4   

   3 Fe(II) sulfate 52.1 2.04E-04 1.26E-02 

   3 goethite 46.3   

   4 Fe(II) sulfate 55.2 2.03E-04 1.30E-02 

   4 iron oxyhydroxide* 43.8   

sand none 30 1 seafloor basalt** 12.2 9.22E-05 8.22E-03 

   1 Fe(II) sulfate 59.0   

   1 goethite 27.9   

   2 Fe(II) sulfate 68.0 1.61E-04 1.19E-02 

   2 jarosite 30.9   



   3 Fe(II) sulfate 60.6 1.12E-04 8.68E-03 

   3 goethite 38.8   

   4 Fe(II) sulfate 61.8 1.31E-04 9.76E-03 

   4 goethite 37.6   

   5 Fe(II) sulfate 63.0 1.76E-04 1.14E-02 

   5 goethite 36.2   

   6 Fe(II) sulfate 56.1 1.73E-04 1.16E-02 

   6 goethite 43.3   

sand none 45 1 Fe(III) alginate 44.3 2.84E-04 1.30E-02 

   1 Fe(II) sulfate 54.7   

   2 ferrihydrite 36.2 3.58E-04 1.51E-02 

   2 Fe(II) sulfate 62.2   

   3 Fe(II) sulfate 65.0 4.53E-04 1.66E-02 

   3 goethite 33.4   

   4 Fe(II) sulfate 58.9 3.33E-04 1.45E-02 

   4 goethite 39.8   

   5 Fe(III) alginate 35.5 6.78E-05 7.25E-03 

   5 Fe(II) sulfate 52.6   

   5 goethite 43.3   

sand none 45 1 Fe(III) alginate 17.2 1.33E-04 1.04E-02 

   1 Fe(II) sulfate 55.4   

   1 pyrite 26.9   

   2 Fe(II) sulfate 65.1 1.47E-04 1.09E-02 

   2 pyrite 16.4   

   2 iron oxyhydroxide* 17.9   

   3 seafloor basalt** 34.0 1.08E-04 8.94E-03 

   3 Fe(II) sulfate 46.2   

   3 goethite 19.2   

   4 Fe(III) alginate 21.8 1.10E-04 9.49E-03 

   4 Fe(II) sulfate 62.6   

   4 pyrite 15.0   

   5 Fe(II) sulfate 63.9 1.09E-04 9.82E-03 



   5 pseudobrookite 17   

kaolinite n/a 45 1 seafloor basalt** 64.5 1.73E-04 1.12E-02 

  1 smectite 35.6   

  2 seafloor basalt** 75.4 2.85E-04 1.44E-02 

  2 smectite 23.9   

  3 seafloor basalt** 45.3 1.27E-4 1.01E-02 

  3 kaolinite 54.7   

  4 seafloor basalt** 28.5 5.01E-05 6.12E-03 

  4 Fe(II) sulfate 33.1   

  4 kaolinite 37.8   

  5 seafloor basalt** 37.8 9.90E-5 8.44E-03 

  5 ferrosmectite 22.0   

   5 kaolinite 20.2   

Note: Dashed lines separate individual muscle specimens. Spectra were least-square linear combination fitted using a 

large database of Fe-bearing standard compounds. Several XANES spot analyses were taken for each specimen and 

these spots were numbered incrementally, starting with spot one.  

*Reference: Toner B., Santelli C.M., Marcus M.A., Wirth R., Chan C.S., McCollum T., Bach W., 

Edwards K.J., 2009, Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal 

vents: Juan de Fuca Ridge: Geochimica et Cosmochimica Acta, v. 73, p. 388-403. 

**An unidentifiable, likely amorphous and silica-rich phase in the veneers that did not match with any of the iron 

standards. Reference for the seafloor basalt standard: Santelli, C., Geomicrobiology of the ocean crust: The 

phylogenetic diversity, abundance, and distribution of microbial communities inhabiting basalt and implications for 

rock alteration processes: Unpublished Ph.D. thesis, MIT/WHOI Joint Program in Oceanography, Woods Hole, 217 

p. 
 

  



  

SUPPLEMENTARY TABLE 2.– Time series of porewater chemistry measurements in kaolinite/quartz sand 

with buried muscle tissues and sterile control experiments without any tissues. 

  Muscles incubated in clay/sand Sterile experiments, no muscles 

Day 
Ions/dissolved 

silica/pH 

Quartz sand Kaolinite Quartz sand Kaolinite 

R1 R2ᵻ R3 R1ᵻ R2ᵻ R3 R1 R2 R1 R2 

10 

silica (mM) 2.39 1.48 0.40 1.28 1.32 1.71 0.45 0.39 0.46 0.62 

Fe2+ (mM) >1.14* 0.34* >1.17* 0.17 0.20 0.14 <0.01 <0.01 n.d. n.d. 

Fe3+ (mM) >0.24* >0.16* >0.27* 0.16 >0.06* >0.03* <0.01 <0.01 <0.01 <0.01 

sulfide (µM) 1.22 6.53 37.99 0.02 n.d. n.d. n.d. n.d. 0.29 n.d. 

 pH -- -- -- -- -- -- 7.0 7.0 7.0 7.0 

  

15 

silica (mM) -- -- -- -- -- -- 0.48 0.41 0.65 0.64 

Fe2+ (mM) >1.0* 0.13 >1.04* 0.05 0.11 0.15 <0.01 <0.01 <0.01 n.d. 

Fe3+ (mM) >0.11* 0.24 >0.14* 0.13 >0.01* 0.13 <0.01 <0.01 <0.01 <0.01 

sulfide (µM) 1.82 3.92 10.34 1.05 2.59 n.d. n.d. n.d. n.d. n.d. 

 pH 4.5 6.5 5.5 6.5 6.5 6.0 7.0 7.0 7.0 7.0 

20 silica (mM) 2.01 0.72 1.70 1.45 1.10 0.96 0.27 0.29 0.36 0.38 

 pH 5.5 7.0 5.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 

30 

silica (mM) 0.39 0.45 1.30 0.35 0.65 0.52 0.23 0.42 0.30 0.51 

Fe2+ (mM) 0.03 0.02 0.80** <0.01 <0.01 0.01 <0.01 <0.01 n.d. <0.01 

Fe3+ (mM) 0.08 0.15 0.32** 0.01 0.06 0.05 <0.01 <0.01 <0.01 <0.01 

sulfide (µM) n.d. 1.39 1.61 n.d. n.d. 0.06 n.d. 0.24 0.29 n.d. 

 pH 6.5 7.0 6.0 7.0 6.5 6.5 7.0 7.0 7.0 7.0 

45 

silica (mM) 0.60 0.67 1.12 1.16 0.77 0.93 0.28 0.35 0.45 0.45 

Fe2+ (mM) 0.01 <0.01 0.02 0.03* <0.01 <0.01 <0.01 n.d. n.d. n.d. 

Fe3+ (mM) 0.14 0.16 0.36 >0.05* 0.04 0.03 <0.01 <0.01 <0.01 <0.01 

sulfide (µM) n.d. n.d. 1.95 n.d. n.d. n.d. n.d. 0.39 0.10 0.34 

 pH 7.0 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 

   Note: R1-R3 denotes replicate experiments one through three and n.d. denotes below the limit of detection.  
ᵻSample was successfully recovered on day 45.  

*Sample was diluted 20x in 0.1 M NaCl water after the addition of ferrozine. 

**Sample was diluted 20x in 0.1 M NaCl water before the addition of ferrozine. 
 

 



 

SUPPLEMENTARY TABLE 3.– Porewater pH values in sand that contained cyanobacteria/illite and muscle tissues. The corresponding 

control experiments contained tissues, but did not contain cyanobacteria/illite. 

 Cyanobacteria Illite Quartz sand only 

Day R1 R2 R3 R1 R2 R3 R1 R2 R3 

 PW1 PW2 PW1* PW2ᵻ PW1 PW2 PW1 PW2 PW1* PW2ᵻ PW1 PW2 PW1*  PW2ᵻ PW1 PW2 PW1 PW2 

10 6.0 6.0 6.0 6.2 5.7 5.9 5.9 6.1 6.2 6.1 6.0 6.0 5.7 6.1 6.3 6.0 6.0 6.2 

15 6.1 5.5 6.8 5.8 5.4 5.4 6.3 6.4 6.1 5.9 6.4 6.2 5.2 6.0 6.2 6.4 6.2 6.5 

20 6.4 5.4 5.7 7.0 5.6 5.4 6.8 6.5 6.6 6.2 6.6 6.7 5.0 6.2 6.9 6.9 6.5 6.7 

25 6.5 5.9 6.4 6.0 6.0 5.6 6.7 7.0 6.7 6.2 6.9 6.8 4.9 6.4 7.2 7.0 6.6 6.8 

30 6.7 6.2 6.4 6.9 6.6 6.4 6.6 7.0 6.9 6.5 6.8 6.9 5.1 6.7 7.3 -- 6.7 7.0 

40 -- 6.6 -- 6.8 -- 6.4 -- 6.9 -- 6.7 -- 6.9 -- 6.7 -- 7.3 -- 6.6 

45 -- 6.8 -- 6.6 -- 6.5 -- 7.0 -- 6.9 -- 7.1 -- 6.8 -- 7.2 -- 7.0 

Note: R1-R3 denote replicate experiments one through three; PW1 and PW2 denote pore fluids one and two, respectively. Muscles were 

exhumed from PW1 on day 30 and PW2 on day 45.  
*Intact muscle was recovered on day 30. 
ᵻIntact muscle was recovered on day 45. 
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