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Denise A. McKay, Anna G. Stefanopoulou, and Jeffrey Cook
Fuel Cell Control Laboratory∗, University of Michigan, Ann Arbor, Michigan, 48109

Contact e-mail: dmckay@umich.edu

ABSTRACT
A membrane-based gas humidification apparatus was em-

ployed to actively manage the water vapor entrained in the reac-
tant gas supplied to a fuel cell stack. The humidification system
utilizes a gas bypass and a series of heaters to achieve accurate
and fast humidity and temperature control. A change in fuel cell
load induces a reactant mass flow rate disturbance to this humid-
ification system. If not well regulated, this disturbance creates
undesirable condensation and evaporation dynamics, both to the
humidification system and the fuel cell stack. Therefore, con-
trollers were devised, tuned and employed for temperature ref-
erence tracking and disturbance rejection. The coordination of
the heaters and the bypass valve is challenging during fast tran-
sients due to the different time scales, the actuator constraints,
and the sensor responsiveness. Two heater controller types were
explored: on-off (thermostatic) and variable (proportional inte-
gral), to examine the ability of the feedback system to achieve the
control objectives with minimal hardware and software complex-
ity. This controller tuning methodology is useful for optimizing
response time versus heater parasitic losses.

1 INTRODUCTION
For the advancement of polymer electrolyte membrane fuel

cell (PEMFC) systems, achieving adequate thermal and humidity
regulation remains a critical hurdle [1]. To maintain high mem-

∗Funding is provided by the U.S. Army Center of Excellence for Automo-
tive Research (DAAE07-98-3-0022) and the National Science Foundation (CMS
0625610).

brane conductivity and durability, the supplied reactants require
humidification. However, excess water can condense and affect
fuel cell performance [2], requiring accurate and fast control of
the gas humidity supplied to the fuel cell [3].

Several humidification strategies have been considered for
fuel cell reactant pre-treatment, including bubblers or sparg-
ers [4], and passive membrane-based humidifiers integral to the
PEMFC stack [2,5,6]. For active humidity and temperature con-
trol of the reactants supplied to a PEMFC stack, a stand-alone
membrane-based humidification system was designed and exper-
imentally validated [7]. The humidification apparatus decouples
the passive membrane humidifier from the PEMFC cooling loops
with the addition of an external gas bypass and a separate water
circulation system, (PEMFC reactant exhaust streams could also
be used), to provide a controllable reactant relative humidity at
a regulated temperature. This humidification system apparatus
is conceptually similar to that proposed by [8]. The operation
of the humidifier consists of a dry reactant gas and liquid water
delivered to opposite sides of a membrane humidifier to produce
a saturated gas. Another stream of dry reactant gas bypasses the
humidifier. The combination of the saturated and dry gas streams
produces a reactant-vapor mixture at a desired relative humidity.
A diagram of the humidification system is provided in Figure 1.

The humidification system control strategy in [8] relied on
a relative humidity sensor for feedback control of an electronic
bypass valve. Due to the strong coupling between gas humid-
ity and temperature, thermal regulation must also be consid-
ered. We are unaware of any achievement claiming active con-
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Figure 1. Overview of the control architecture for the external humidifi-

cation system. Dashed lines indicate controller, C, input temperatures.

trol of the reactant humidity and cathode inlet temperature us-
ing a membrane-based humidification system suitable for auto-
motive applications. In developing our control strategy, critical
steps were accomplished by properly selecting the controller ref-
erences used for temperature feedback; employing a static feed-
forward mapping for humidity control to eliminate the need for
an expensive and slow relative humidity probe for feedback con-
trol; and providing a thorough comparison of the use of on/off
versus variable gas heaters in achieving thermal regulation.

Controllers were designed and a reproducible methodology
for controller tuning is presented to coordinate the three resistive
heaters as well as the mass fractional split of air flow between
the humidifier and air bypass. These controllers must regulate
the temperature of the dry air leaving the bypass and joining the
saturated air leaving the humidifier. Should the temperatures of
these two gas streams not be well regulated during air mass flow
disturbances due to the fuel cell system load demand, condensa-
tion or dehydration will occur. Similar problems arise in engine
thermal management systems employing either a valve or servo
motor to bypass coolant around the heat exchanger [9, 10]. The
coordination of these heaters and the bypass valve is challenging
during fast transients due to the different time scales, the actuator
constraints, and the sensor responsiveness.

2 HUMIDIFICATION SYSTEM OVERVIEW
The humidification system hardware1 was installed in the

Fuel Cell Control Laboratory at the University of Michigan. The
system was designed to deliver moist air to the cathode of a
500W fuel cell stack between 45o-65o C and 50%-100% relative
humidity at dry air mass flow rates between 0-40 slm.

The humidifier system consists of five control volumes,
namely the water heater, humidifier, reservoir, bypass, and mixer,
shown in Fig. 1. For nomenclature, the letterM in (kg/mol) is
used to denote molar mass,P in (Pa) for pressure,Q in (W) for
heat added to a control volume,r for the fraction of the total air
flow, T in (K) for temperature,W in (kg/s) for mass flow rate,
and the symbolφ for relative humidity. Subscripts are used to
indicate first the substance of interest, wherea is for air, b for
bulk materials,g for gas mixture,l for liquid water andv for wa-
ter vapor; secondly the control volume such asbp for bypass,
ca for cathode,cvgenerically for control volume,r for reservoir,
f c for fuel cell, wh for water heater,hm for humidifier, andmx
for mixer; finally ani or o indicates the control volume inlet or
outlet. Superscripts are used assat for saturation,o for nominal
values, and∗ for desired values.

When coupled with a fuel cell, the total dry air mass flow
through the humidification system,Wa, depends on the amount
of current produced by the fuel cell and is a system disturbance.
The fraction of air supplied to the bypass,rbp, or humidifier,
rhm, is controlled with mass flow controllers that regulate the
bypass and humidifier air mass flow rates,Wa,bp,i , andWa,hm,i .
The humidifier produces a saturated air stream at a temperature,
Tg,hm,o, dependent upon the supplied liquid water temperature,
Tl ,hm,i . Air bypassing the humidifier is heated with a 50W heater,
Qbp. The saturated air stream from the humidifier and dry air
stream from the bypass are combined in the mixer to produce
a desired air-vapor mixture relative humidity,φg,mx,o, to be sup-
plied to the fuel cell. A 52W resistive heater,Qmx, is used in
the mixer for temperature control and to minimize condensation
during the mixing of the saturated and dry gases.

Liquid water is circulated from the reservoir through the wa-
ter heater and humidifier using a pump and manual throttle valve.
The reservoir is shared with the fuel cell coolant, shown with an
input to the reservoir at the fuel cell coolant temperature,Tl , f c,o.
The humidification system is designed to heat the supplied reac-
tants to the temperature of the coolant leaving the fuel cell stack.
If the water system is well insulated and well controlled, the
waste heat from the fuel cell stack is used to maintain the water
reservoir temperature. However, a 1000W resistive heater,Qwh,
is used to heat the liquid water before entering the humidifier to
mitigate thermal disturbances and offset heat losses to the ambi-
ent. Note, this water heater power should be chosen based on the
fuel cell electrical subsystem design to ensure that the heater is
supported during thermal transients.

1Designed in collaboration with the Schatz Energy Research Center at Hum-
boldt State University
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3 MODELING SUMMARY

This section summarizes the humidification system model-
ing effort that was experimentally validated in [7]. Applying the
conservation of mass and energy, the resulting state equations are
expressed for the bypass,

dTa,bp

dt
=

1
mbpCbp

[

Qbp+Wa,bp,iCp,a(Ta,bp,i −Ta,bp,o)

−h̄b2amb,bpAb2amb,bp(Ta,bp−Tamb)
]

, (1)

the water reservoir,
dTl ,r

dt
=

1
ml ,rCl ,r

[

Wl , f c,iCp,l (Tl , f c,o−Tl ,r,o)

+Wl ,wh,iCp,l (Tl ,hm,o−Tl ,r,o)− h̄l2b,rAl2b,r(Tl ,r −Tb,r)
]

,
(2a)

dTb,r

dt
=

1
mb,rCb,r

[h̄l2b,rAl2b,r(Tl ,r −Tb,r)

−h̄b2amb,rAb2amb,r(Tb,r −Tamb)] , (2b)

the water heater,
dTl ,wh

dt
=

1
ml ,whCl ,wh

[

Wl ,hm,iCp,l (Tl ,r,o−Tl ,hm,i)

+h̄b2l ,whAb2l ,wh(Tb,wh−Tl ,wh)] , (3a)

dTb,wh

dt
=

1
mb,whCb,wh

[Qwh− h̄b2l ,whAb2l ,wh(Tb,wh−Tl ,wh)

−h̄b2amb,whAb2amb,wh(Tb,wh−Tamb)] , (3b)

the humidifier,
dTl ,hm

dt
=

1
ml ,hmCl ,hm

[

Wl ,hm,iCp,l (Tl ,hm,i −Tl ,hm,o)

−h̄l2g,hmAl2g,hm(Tl ,hm−Tg,hm)−Wv,hm,oCp,vTg,hm,o

−h̄l2amb,hmAl2amb,hm(Tl ,hm−Tamb)] , (4a)

dTg,hm

dt
=

1
mg,hmCg,hm

[

Wa,hm,iCp,a(Ta,hm,i −Tg,hm,o)

+h̄l2g,hmAl2g,hm(Tl ,hm−Tg,hm)
]

, (4b)

and the mixer,
dTg,mx

dt
=

1
mg,mxCg,mx

[

Wa,bp,iCp,a(Ta,bp,o−Tg,mx,o)

+(Wa,hm,iCp,a +Wv,hm,oCp,v)(Tg,hm,o−Tg,mx,o)

+h̄b2g,mxAb2g,mx(Tb,mx−Tg,mx)
]

, (5a)

dTb,mx

dt
=

1
mb,mxCb,mx

[

Qmx− h̄b2g,mxAb2g,mx(Tb,mx−Tg,mx)

−h̄b2amb,mxAb2amb,mx(Tb,mx−Tamb)] . (5b)

A list of the parameter values was given in [7]. The relative
humidity of the mixer outlet gas is estimated by

φg,mx,o = φg,hm,o rhm
psat

g,hm,o

psat
g,mx,o

(

pg,mx,o

pg,hm,o− rbp φg,hm,o psat
g,hm,o

)

.

(6)
Due to the inability to measure the internal temperature

states, approximations were employed to relate the internal states
to the measurable outlet temperatures and are summarized by

Ta,bp,o =2Tbp−Ta,bp,i , (7a)

Tl ,wh,o =2Tl ,wh−Tl ,r,o, (7b)

Tl ,hm,o =2Tl ,hm−Tl ,hm,i , (7c)

Tl ,r,o =Tl ,r , (7d)

Ta,hm,o =2Ta,hm−Ta,hm,i , (7e)

Tg,mx =Tg,mx,o. (7f)

The locations of the measurements and disturbances are
shown in Figure 1. The inputs to the system are heater power,
Q, and the mass fraction of air diverted through the bypass,rbp;
the states are the respective temperatures,T; the disturbances are
the total dry air mass flow rate,Wa, the air temperature supplied
to the system,Ta,hm,i and Ta,bp,i , and the ambient temperature,
Tamb; and the system output is the air relative humidity leaving
the mixer,φg,mx,o.

4 CONTROLLER ARCHITECTURE
With the model of the external humidification system pre-

sented in Section 3, controllers were designed and tuned to co-
ordinate the heaters as well as the fraction of air supplied to the
humidifier and bypass. The three heaters must be well coordi-
nated to regulate the system temperatures and mitigate the effect
of disturbances. This section introduces the nonlinear static feed-
forward mapping devised for air mass flow control along with the
reference temperatures used for thermal regulation.

4.1 Nonlinear Feedforward for Air Mass Flow Control
Direct relative humidity feedback control requires either a

water vapor mass flow rate or relative humidity measurement
at the mixer outlet. In practice, both measurements are pro-
hibitively expensive. Although an observer based relative hu-
midity feedback estimation could be employed, the coupling be-
tween humidity and temperature poses a performance tradeoff
between these two control objectives, motivating the rationale
for feedforward humidity regulation.

To calculate the desired split of dry air mass flow between
the humidifier and the bypass, mass conservation is applied. As-
suming that in steady-state the mass flow rate of water vapor
and air entering the mixer are equal to the mass flow rates leav-
ing the mixer, and applying the definition for the humidity ratio,
ω = Mvφpsat

Ma(p−φpsat) , the required fraction of air supplied to the hu-
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midifier, rh = Wa,hm,i/Wa, can be expressed as

rhm =
φ∗g,mx,opsat∗

g,mx,o(pg,hm,o−φg,hm,opsat
g,hm,o)

φg,hm,opsat
g,hm,o(pg,mx,o−φ∗g,mx,opsat∗

g,mx,o)
(8)

where a superscript∗ has been used to denote desired reference
values. The commanded air mass flow rates through the humidi-
fier and the bypass are:

Wa,hm,i =rhmWa, (9a)

Wa,bp,i =Wa−Wa,hm,i . (9b)

4.2 Reference Temperatures
To properly coordinate the heaters using feedback control,

reference temperatures must be established for the mixer, by-
pass and humidifier air outlets. The error, or difference between
the reference and actual measured temperatures,δe= δT∗− δT
whereδ indicates a deviation from nominal conditions, can then
be formulated into control objectives for each of the heaters.

Several reference temperature choices exist for thermal reg-
ulation of the humidification system, depending upon the re-
sponse times of the bypass, mixer and water circulation systems.
These reference temperatures have drastically different implica-
tions with respect to controller performance. For example, if the
water circulation, bypass and mixer systems had similar response
times, they could be independently coordinated, motivating the
selection of the desired cathode inlet temperature as the refer-
ence temperature for all three systems. It will be shown later,
in Section 5, that the intermediate step of heating liquid water
to raise the humidifier gas temperature causes the slowest ther-
mal response of the three systems. Because both the mixer and
bypass systems are faster than the water circulation system, con-
densation or evaporation can be avoided upon gas mixing if both
the mixer and the bypass track the temperature dynamics of the
water circulation system. The resulting reference temperatures,

T∗
g,mx,o = Tg,hm,o , T∗

g,hm,o = T∗
ca,i , T∗

a,bp,o = Tg,hm,o , (10)

will result in a slower system thermal response but will main-
tain the desired relative humidity. Figure 1 shows the location
of these reference temperatures with the measured states and re-
spective control volumes clearly indicated.

5 PLANT LINEARIZATION AND POLE SENSITIVITY
The system of ordinary differential equations, shown in Sec-

tion 3, was expressed analytically in state space where the con-
trol volume outlet temperatures represented the states, the heater
actuators represented the system inputs, the air mass flow rate
represented the system disturbance, and the liquid water mass
flow rate and ambient temperature were assumed to be constant.
Using this state space representation, the system was linearized
about a set of nominal conditions whereWo

a =0.6 g/s, ro
h=0.7,

To
a,hm,i=To

a,bp,i=20oC, Wo
l ,hm,i=30 g/s,To

amb=27oC, po
g,hm,o=102.57

kPa abs, andTo
a,bp,o=To

g,hm,o=55oC. As previously discussed, the

humidification system was designed to regulate the cathode
air supplied to an 8-cell PEMFC stack with an active area of
300cm2. Applying a 0.3A/cm2 electric load to this PEMFC stack
requires 0.6 g/s of air at an air stoichiometry of 250%. These
nominal conditions were selected to approximate the midpoint
of the expected stack operating range.

Transfer functions from the heater inputs to the outlet tem-
peratures were then derived and the sensitivity of the pole loca-
tions on total air mass flow rate was examined. Table 1 summa-
rizes the open loop time constants and DC-gains for this range
of air flow for each of the three systems. The total air mass
flow rate range considered,Wa=0.3-0.9 g/s, represents a humidi-
fication system disturbance for PEMFC stack electrical loads be-
tween 0.15-0.45A/cm2. The linear and nonlinear systems were
compared, both to steps in heater inputs and air mass flow rates,
indicating that the linear system response well approximates the
nonlinear system for small deviations from nominal conditions.

Table 1. Open loop characteristics for Wa=0.3-0.9 g/s.

System DC-gain(oC/W) Time Constant(sec)
δTg,cv,o
δQcv

|s=0

Water Circulation 0.10-0.08 123-59

Bypass 6.93-3.32 1490-1195

Mixer 1.01-0.52 714-498

Transfer functions can also be expressed from the air flow
disturbance to the outlet temperatures. However, the DC gains of
these transfer functions indicate that there is a very small change
in the steady-state heat required for a change in air mass flow
rate. As a result, the use of static feedforward to reject air flow
disturbances does not significantly improve temperature regula-
tion. Therefore, only transfer functions from the heater inputs to
the temperature outputs will be presented here.

The first order analytical transfer function from the bypass
heater input to the bypass air outlet temperature, assuming the
dry air mass flow rate is constant, is expressed as

δTa,bp,o

δQbp
=

b0,bp

s+ pbp
, (11)

where the numerator coefficient and pole location are defined by

b0,bp =
2

mbpCbp
,

pbp =
2Wo

a,bp,iCp,a + h̄o
b2amb,bpAb2amb,bp

mbpCbp
≈ 0.013.

The bypass pole location (denoted bypbp) is a function of the
air mass flow rate through the bypass which will influence the
system response time and DC-Gain as indicated in Table 1.

A transfer function from the water heater actuator input to
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the humidifier air outlet temperature is expressed as

δTg,hm,o

δQhm
=

b0(s+z1)

(s+ pl ,wh)(s+ pl ,hm)(s+ pa,hm)(s+ pl ,r)(s+ pb,r)
,

(12)
where the coefficient in the numerator,b0, and the pole and
zero locations can be analytically represented as functions of
the heat transfer coefficients and the control volume masses
and specific heats. At the nominal conditions,b0=3.38x10−6

and the poles and zero are located atpa,hm=1.23, pl ,hm=0.292,
pl ,r=0.090, pb,r=8.2x10−4, pl ,wh=0.014, andz2=0.0094, with a
pole-zero cancelation betweenz=pb,wh=0.016. The fastest con-
trol volume response time (pole location furthest from the origin
on the complex s-plane) is the humidifier air, followed by the
liquid water volumes, with the bulk volumes having the slowest
response time. As with the bypass, the water circulation system
response time increases for increasing air mass flow rates.

The mixer thermal dynamics are described by a two state
system including the air-vapor mixture and the bulk materials.
At the nominal conditions, the pole associated with the gas state
is located at s=-0.132 while the pole associated with the bulk ma-
terials is located at s=-0.0017, indicating a significant bandwidth
separation between these two states. As a result, assuming that
δTg,mx,o

dt =0, a first order analytical transfer function from the mixer
heater input to the gas outlet temperature, is expressed by

δTg,mx,o

δQmx
=

b0,mx

s+ pmx
(13)

where,

b0,mx =h̄o
b2g,mxAb2g,mx/β3,mx ,

β1,mx =h̄b2amb,mxAmx+ h̄o
b2g,mxAb2g,mx ,

β2,mx =
(

Wo
a Cp,a +Wo

v,hm,oCp,v
)

,

β3,mx =mb,mxCb,mx
(

β2,mx+ h̄o
b2g,mxAb2g,mx

)

,

pmx =
β1,mxβ2,mx+ h̄b2amb,mxAmxh̄

o
b2g,mxAb2g,mx

β3,mx
.

Comparing the nonlinear full order model to this linear reduced
order model of the mixer thermal dynamics during step changes
in mixer heat shows an insignificant difference between the two
dynamic models. Clearly, the mixer pole location is a function
of the air mass flow rate, either directly, or indirectly through
the heat transfer coefficient (between the bulk materials and the
gases) or the water vapor mass flow rate. As expected, by com-
paring the DC-Gains of the bypass and mixer, more energy is
required to raise the mixer temperature due to the larger air mass
and the presence of water vapor in the mixer.

6 Thermostatic Control
A widely used, simple and inexpensive control strategy em-

ploys thermostatic (two position or on-off) control to cycle a
heater. A commonly recognized disadvantage to thermostatic

control is the cycling of the actuator due to the repeated on-off
action resulting from sensor noise. To reduce this cycling, hys-
teresis is often incorporated to construct a region about the de-
sired temperature for which no control action takes place.

When the temperature error,e = T∗ − T, is less than the
lower error bound,e< −es, the heater is on (Q= Qmax). When
the temperature error is greater than the higher error bound
e > es, the heater is off (Q= 0). For errors within the error
bounds, there is hysteresis such that the heater is either on or
off depending upon the previous state of the heater. In summary,
the discrete time thermostatic control law is represented by,

u(k) =







Qmax, for e(k) ≤−es,
0, for es ≤ e(k),
u(k−1), for −es < e(k) < es.

(14)

Some degree of temperature overshoot,|e|> |es|, is expected
after the heater turns on or off; thus, the steady temperature re-
sponse is oscillatory. The frequency and magnitude of these in-
duced limit cycle oscillations will depend on the system ther-
mal dynamics and the error bounds,es, at which the heater is
switched on or off. The error bound will be selected to keep the
error,e, within a specified limit cycle amplitude,a.

Selecting this error bound,es, is not trivial. Both a describ-
ing function methodology as well as a simulation based strategy
were employed to tune the thermostatic controllers for the three
resistive heaters, as detailed in the following subsections. Ta-
ble 2 shows the amplitude and, where applicable, the limit cycle
period for each of the three regulated systems evaluated at the
nominal conditions.

Table 2. Summary of thermostatic control results.

System Error Bound Amplitude Period

Bypass 0.38oC 0.5oC 2 sec

Mixer 0.38oC 1.0oC n/a

Water Circulation 0.21oC 0.5oC 58 sec

6.1 Water Circulation System Tuning with Describing
Function Method

Describing functions have been used to quantify the ampli-
tude and frequency of limit cycles induced in relay feedback sys-
tems [11, 12], and subsequently used in the tuning of process
controllers [13]. A describing function that approximates the be-
havior of an ideal relay with hysteresis (u= ±Qmax) was derived
in [14]. The physical heater actuators employed, however, do
not allow negative heat to be added to the control volume. As
a result, the describing function in [14] was shifted and scaled,
resulting in

N(a∗,es) =
Qmax

2

[

4
πa∗

(

√

1−
( es

a∗

)2
− j

es

a∗

)

+1

]

, (15)

wherea∗ is the desired temperature limit cycle amplitude.
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In a relay feedback system, the output temperature of the
thermal process,δT(s) = G(s)δQ(s) where G(s) denotes the
plant transfer function (shown in Section 5), oscillates with a
temperature amplitude ofa and frequencyω. Assuming there is
no change in the reference temperature and no disturbances to the
system, the error bound and the resulting frequency of oscillation
can be determined for a given desired amplitude by satisfying
both the real and imaginary parts ofG( jω)N(a∗,es) = −1+0 j.
As the differential gap expands, the resulting limit cycle oscilla-
tion amplitude increases and the frequency decreases.

If the desired limit cycle oscillation is not known, it can be
calculated using the following steps based on a combination of
the smallest achievable output amplitude,aideal, (which occurs
for an ideal relay with no hysteresis), and the temperature mea-
surement noise.

1) A describing function for a shifted ideal relay is formulated
by settinges=0 in Equation 15.

1) The resulting output amplitude which corresponds to the
smallest achievable amplitude,aideal, is calculated by solv-
ing G( jω)N(a∗ = aideal,es = 0) =−1+0 j.

2) The standard deviation in the measurement output noise,σn,
is quantified.

3) A combination of the smallest achievable output amplitude
and the measurement noise is constructed, such asa∗ =
aideal +3σn.

The smallest achievable humidifier air outlet temperature os-
cillations areaideal,wh ≈0.2oC. As a result, the desired output
amplitude for the water circulation system isa∗wc ≈0.5oC. From

evaluation of
δTg,hm,o

δQwh
( jω)N(a∗wc,es,wc) = −1+ 0 j, the resulting

error bound ises,wc≈0.2oC which induces a limit cycle of fre-
quencyωwc ≈0.11 rad/s (corresponding to an oscillation period
of 58 seconds).

6.2 Bypass and Mixer Tuning by Simulation
For first order plants, the describing function methodology

cannot be employed to analytically calculate the thermostatic er-
ror bounds. The Nyquist plot of a first order plant remains in
the right hand plane. Thus, no intersection exists between the
describing function, which accounts for the fundamental com-
ponent of the nonlinear relay element, and the plant Nyquist.
Instead, simulations of the non-ideal relay feedback system are
used to examine the resulting temperature limit cycles for the
bypass and mixer systems.

To tune the thermostatic error bounds using a simulation
based approach, first the error bound is set equal to the de-
sired amplitude of the output temperature oscillations. The error
bound is then incrementally reduced until the simulated temper-
ature error is less than the desired amplitude. This process is
summarized as follows.

1) The desired output amplitude,a∗, is selected.

2) The initial temperature error bounds are chosen to be equal
to the desired temperature output amplitude, such thates=a∗.

3) The closed loop non-ideal relay feedback system response
is simulated using the nonlinear plant model evaluated at the
nominal operating conditions.

4) The simulated temperature error signal is compared to the
desired amplitude.

5) If the simulated temperature error remains smaller than the
desired amplitude throughout the simulation, then the search
is terminated. Otherwise, the temperature error bounds are
reduced and steps 3-5 are repeated.

Of course, in the physical system, the thermostatically con-
trolled water heater will induce humidifier gas outlet temperature
oscillations that influence both the bypass and the mixer, as in-
puts and/or dynamic reference temperatures. Therefore, it is rec-
ommended that the bypass and mixer thermostatic controllers be
tuned in a manner that accounts for the water circulation system
performance. By first selecting the water heater error bounds, as
discussed in Section 6.1, the error bounds for the bypass relay
feedback system can be determined using the simulation based
iterative approach described above. Then given the error bounds
for the bypass and water heater, the error bounds for the mixer
relay feedback system can be determined via simulation.

In selecting the desired amplitudes for the bypass and mixer,
consideration of the system dynamics must be made. As with the
water heater, the desired bypass temperature limit cycle ampli-
tude was selected to bea∗bp=0.5oC. Because the mixer receives
air and water vapor from the humidifier, oscillations in the hu-
midifier will cause oscillations in the mixer even when the mixer
heater is off. As a result, the mixer amplitude was selected to be
a∗mx=1.0oC to account for the 0.5oC amplitude fluctuations due
to the water circulation system.

Applying this iterative and sequential simulation based tun-
ing approach, at the nominal operating conditions, the bypass er-
ror bound was found to bees,bp=0.38oC to achieve a temperature
limit cycle amplitude ofa∗bp=0.5oC and the mixer error bound
was es,mx=0.38oC to achieve a temperature limit cycle ampli-
tude ofa∗bp=1.0oC. Although the error bounds for the bypass and
mixer are the same, the two systems produce different tempera-
ture limit cycle amplitudes.

7 PROPORTIONAL INTEGRAL CONTROL
The thermostatic controllers, designed in Section 6, are in-

expensive to implement and are capable of regulating tempera-
ture to within 1oC of the desired cathode inlet temperature. If,
however, zero steady-state temperature error is required or the
limit cycle temperature oscillations are undesirable, a more so-
phisticated controller is needed. With the addition of controller
integrator states, zero steady-state error to a step command in
the reference temperature can be achieved. As a result, propor-
tional integral (PI) control was considered due to the simplicity
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of tuning with time domain constraints and guarantee of zero
steady state error. Note, however, that in contrast to thermostatic
control, PI control requires the heater actuators to be capable of
producing a variable heat transfer rate. Thus, there is a tradeoff
between regulation capability and hardware and software com-
plexity.

The PI controller is expressed in the frequency domain as

δQ =

(

kP,cv+
kI ,cv

s

)

e , (16)

where the proportional and integral controller gains are denoted
by kP,cv andkI ,cv, respectively, for each control volume. By sub-
stitution into Equations 11 and 13, the mixer and bypass closed
loop transfer functions from the reference to the actual tempera-
ture is described by,

δTg,cv,o

δT∗
=

bo,cvkP,cv(s+kI ,cv/kP,cv)

s2 +(bo,cvkP,bp+ pcv)s+bo,cvkI ,bp
(17)

wherepcv is the open loop pole location. The PI controller gains
can be tuned upon inspection of the characteristic polynomial of
this closed loop transfer function. For tuning the controller gains,
two of the following three time domain constraints are selected,
from 1) the proportional controller gain, 2) response time, and 3)
the damping coefficient (overshoot).

The mixer and bypass proportional gains are selected based
on the expected maximal actuator heater power (at steady-state
over the range of operating conditions) supplied,Qdesign,cv, for a
specified temperature error,edesign,cv, such that

kP,cv =
Qdesign,cv

edesign,cv
. (18)

Given an expected error ofedesign,cv=1.0K (corresponding
to a∗=0.5K used for thermostatic controller tuning) and
the maximum steady-state heater power ofQdesign,bp=15W
and Qdesign,mx=25W, the proportional gains arekP,bp=15W/K,
kP,mx=25W/K. For a critically damped response, the resulting in-
tegral controller gains can then be calculated. Note, if the heater
power were reduced due to limitations of the electrical subsys-
tem, the closed loop thermal response time would increase ac-
cordingly.

The closed loop transfer function from the desired humidi-
fier air outlet temperature to the actual temperature is sixth order;
therefore, time domain design constraints (overshoot, settling
time, etc.) cannot be used analytically to specify the controller
gains. Instead, iterative pole placement was used to achieve a
desired closed loop response. From inspection of the open loop
water circulation system poles and zeros, a stable slow pole is
located on the real axis at approximatelys=-0.0008. This pole
could be shifted or canceled by a carefully tuned PI controller.
Because the humidifier water circulation system has an air flow
input disturbance and the model parameters were well identified,
a pole shifting controller was employed for improved input dis-

turbance rejection [15]. Using the linearized model of the water
circulation system, shown in Equation 12, the PI controller was
tuned to achieve a fast response with less than 20% overshoot.

A summary of the final controller gains and resulting settling
times to a step in the reference temperature is shown in Table 3,
along with the gain and phase margins. To prevent integrator
windup, a logic based case structure was employed which en-
ables or disables the integrator while the actuator is saturated at
Qcv(t) =0 orQcv(t) = Qmax,cv.

Table 3. Proportional-integral controller gains and system response

Heater kP,cv kI ,cv tsettle GM PM

(s) (dB) (deg)

Bypass 15 3.25 9.4 ∞ 142

Mixer 25 0.22 256 ∞ 145

Water Heater 263 1.60 176 20 138

8 CONTROLLER PERFORMANCE COMPARISON
To compare the thermostatic and PI controller responses for

a step in the cathode inlet reference temperature from nominal
conditions, a closed loop experiment was conducted, as shown
in Figures 2-5. It is important to note that the fuel cell stack is
not connected to the water reservoir during these experiments,
thus waste heat from the fuel cell is not being used to maintain
the reservoir water temperature. As a result, significantly more
energy is required to heat the liquid water supplied to the fuel
cell stack than would be expected during normal operation.

Using thermostatic control, the desired 0.5oC humidifier air
outlet temperature limit cycle amplitude was achieved, see Fig-
ure 2. Additionally, the time required to transition from the min-
imum to maximum limit cycle temperature, approximately 34
seconds, closely matched the expected value. Note, a 68 second
period would have resulted if the free and forced response times
were the same. For the water circulation system PI controller,
the resulting overshoot following the step in the reference tem-
perature is larger than predicted in simulation but still within the
designed 20%.

The bypass responses to this reference step is shown in Fig-
ure 3. The resulting temperature limit cycle amplitude is approx-
imately 0.5oC, as designed. Throughout the experiment, the PI
controller tracks the dynamic reference humidifier air outlet tem-
perature with approximately zero steady-state error. The mixer
responses to the temperature reference step is shown in Figure 4.
The limit cycle amplitude was found to be slightly less than the
designed 1oC. The mixer PI controller performed as expected
throughout the experiment. The mixer outlet relative humidity
response for this temperature reference step is shown in Figure 5.
Because the actual mixer outlet temperature response is approx-
imately sinusoidal using thermostatic control, the relative hu-
midity also exhibits an approximately sinusoidal response. Both

7 Copyright c© 2008 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/FU

ELC
ELL/proceedings-pdf/FU

ELC
ELL2008/43181/841/5135686/841_1.pdf by U

niversity of M
ichigan user on 07 June 2022



0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

Q
h

m
 (

W
)

Time (s)

0 100 200 300 400 500 600 700 800

55

56

57

58

59

T
g

,h
m

,o
 (

C
)

Time (s)

 

 

PI

Thermostatic

Reference

Figure 2. Experimental humidifier air outlet closed loop temperature re-

sponse to a reference step, comparing PI and thermostatic control.
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Figure 3. Experimental bypass air outlet closed loop temperature re-

sponse to a reference step, comparing PI and thermostatic control.

in simulation and in the experiment, the maximum excursion in
the mixer air outlet relative humidity is approximately 10% for
both controllers. Note, the mixer gas outlet relative humidity
presented here is an estimation based on physical measurements
applying Equation 6.

9 PI CLOSED LOOP DISTURBANCE RESPONSE
Using feedforward control of the air mass flow rate and pro-

portional integral control of the resistive heaters, another closed
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Figure 4. Experimental mixer air outlet closed loop temperature re-

sponse to a reference step, comparing PI and thermostatic control.
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Figure 5. Mixer gas outlet relative humidity response to a step in the

reference temperature, comparing PI and thermostatic control.

loop experiment was conducted for changes in the system refer-
ences (cathode inlet temperature and relative humidity) and the
system disturbances (ambient temperature, total air mass flow,
and a reservoir fill event). As expected the PI controller results
in zero steady-state error. The overshoot and response time fol-
lowing step changes in reference temperature is approximately
equal to the response the controller was tuned to achieve.

Figure 6 shows the humidifier air outlet temperature re-
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sponse to disturbances. Interestingly, the cathode inlet reference
temperature step results in an increase in the air flow supplied to
the humidifier, causing an initial decrease in the humidifier air
outlet temperature which resembles a non-minimum phase re-
sponse but is actually due to the feedforward regulation of air
flow. The rapid 10oC increase in ambient temperature increased
the humidifier air outlet temperature, requiring the humidifier
heater power to decrease to regulate the air temperature. A de-
crease in total air flow resulted in a decrease in the fraction air
supplied to the humidifier, in turn increasing the humidifier air
outlet temperature. The reservoir fill event, which injects cold
water into the reservoir, causes a dramatic decrease in the hu-
midifier air outlet temperature that initially saturates the water
heater. Finally, the decrease in desired cathode inlet relative hu-
midity decreases the humidifier air flow in turn increasing the air
outlet temperature.
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Figure 6. Humidifier air outlet response to disturbances using PI control.

The response of the bypass system to these disturbances is

shown in Figure 7. Again, the intent of the bypass controller is
to track the humidifier air outlet temperature. The bypass ad-
equately tracks the humidifier air outlet temperature excursions
well due to the difference in closed loop response times of these
two systems. There is an insignificant difference between the
bypass and humidifier air outlet temperatures throughout the ex-
periment.
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Figure 7. Bypass air outlet response to disturbances using PI control.

When the humidifier air outlet temperature initially de-
creases following the increase in the cathode inlet temperature
reference, the mixer heater turns off and then proceeds to track
the humidifier air outlet temperature, as shown in Figure 8. In
general the ability of the mixer to track the humidifier is ade-
quate. Additionally, the mixer outlet relative humidity is well
regulated throughout the experiment. Although the relative hu-
midity at the mixer outlet was relatively well regulated with ther-
mostatic control, the temperature oscillations may not be desir-
able depending upon the operating conditions of the PEMFC
stack to which the air is supplied. To eliminate these oscilla-
tions, proportional-integral (PI) control is recommended to guar-
antee zero steady-state temperature error. If variable heaters are
available with no cost or reliability penalty with respect to con-
trol implementation, then the PI controllers are recommended.
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Figure 8. Mixer outlet response to disturbances using PI control.

10 CONCLUSIONS
An experimentally validated model of the humidification

system thermal dynamics was employed to design and tune
controllers for thermal and humidity regulation. Thermostatic
and proportional-integral controllers were considered for ther-
mal regulation, and a static nonlinear feedforward map was em-
ployed to control the air split between the humidifier and bypass.
For constant disturbances, the humidification system dynamics
are approximately linear enabling linear control theory to be ap-
plied for controller tuning. As expected, thermostatic control of
the humidification system, tuned using either a describing func-
tion or simulation based methodology, resulted in temperature
and relative humidity limit cycle oscillations. PI control, how-
ever, allowed for adequate control of both temperature and hu-
midity with zero steady-state temperature error, while satisfac-
torily minimizing excursions in temperature following changes
in the disturbances. Therefore, a tradeoff exists between steady-

state thermal regulation and hardware and controller simplicity,
a critical consideration for automotive applications.

REFERENCES
[1] Varigonda, S., and Kamat, M., 1996. “Control of station-

ary and transportation fuel cell systems: Progress and op-
portunities”. Computers and Chemical Engineering,30,
pp. 1735–1748.

[2] McKay, D., Siegel, J., Ott, W., and Stefanopoulou, A.,
2008. “Parameterization and prediction of temporal fuel
cell voltage behavior during flooding and drying condi-
tions”. Journal of Power Sources,178(1), pp. 207–222.

[3] Karnik, A., Stefanopoulou, A., and Sun, J., 2007. “Water
equilibria and management using a two-volume model of a
polymer electrolyte fuel cell”.Journal of Power Sources,
164, pp. 590–605.

[4] Love, A., Middleman, S., and Hochberg, A., 1993. “The
dynamics of bubblers as vapor delivery systems”.Journal
of Crystal Growth,129, pp. 119–133.

[5] Choi, K., Park, D., Rho, Y., Kho, Y., and Lee, T., 1998. “A
study of the internal humidification of an integrated pemfc
stack”. Journal of Power Sources,74, pp. 146–150.

[6] Staschewski, D., 1996. “Internal humidifying of pem fuel
cells”. International Journal of Hydrogen Energy,21(5).

[7] McKay, D., Stefanopoulou, A., and Cook, J., 2008. “Model
and experimental validation of a controllable membrane-
type humidifier for fuel cell applications”. In Proceedings
of 2008 American Control Conference, Vol. ACC897.

[8] Wheat, W., Clingerman, B., and Hortop, M., 2005. Elec-
tronic by-pass control of gas around the humidifier to the
fuel cell. U.S. Patent number 6884534, April.

[9] Cortona, E., Onder, C., and Guzzella, L., 2002. “En-
gine thermomanagement with electrical components for
fuel consumption reduction”.IMechE Int. Journal of En-
gine Research,3(3), pp. 157–170.

[10] Setlur, P., Wagner, J., Dawson, D., and Marotta, E., 2005.
“An advanced engine thermal management system: Nonlin-
ear control and test”.IEEE/ASME Transactions on Mecha-
tronics,10(2).

[11] Khalil, H., 2002.Nonlinear Systems. Prentice Hall.
[12] Slotine, J.-J., and Li, W., 1991.Applied Nonlinear Control.

Prentice-Hall, Inc.
[13] Hang, C., Astrom, K., and Wang, Q., 2002. “Relay feed-

back auto-tuning of process controllers - a tutorial review”.
Journal of Process Control,12(1).

[14] Taylor, J., 1999. “Describing functions”. InElectrical En-
gineering Encyclopedia. John Wiley and Sons, Inc., New
York.

[15] Middleton, R., and Graebe, S., 1999. “Slow stable open-
loop poles: to cancel or not to cancel”.Automatia,35,
pp. 877–886.

10 Copyright c© 2008 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/FU

ELC
ELL/proceedings-pdf/FU

ELC
ELL2008/43181/841/5135686/841_1.pdf by U

niversity of M
ichigan user on 07 June 2022


	A Membrane-Type Humidifier for Fuel Cell Applications: Controller Design, Analysis and Implementation
	Recommended Citation

	A Membrane-Type Humidifier for Fuel Cell Applications: Controller Design, Analysis and Implementation

