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Abstract

Life history theory argues that exposure to early life adversity (ELA) accelerates development,
although existing evidence for this varies. We present a meta-analysis and systematic review
testing the hypothesis that ELA involving threat (e.g., violence exposure) will be associated with
accelerated biological aging across multiple metrics, whereas exposure to deprivation (e.g.,
neglect, institutional rearing) and low-socioeconomic status (SES) will not. We meta-analyze 54
studies (7= 116,010) examining associations of ELA with pubertal timing and cellular aging
(telomere length and DNA methylation age), systematically review 25 studies (n7= 3,253)
examining ELA and neural markers of accelerated development (cortical thickness and amygdala-
prefrontal cortex functional connectivity) and evaluate whether associations of ELA with
biological aging vary according to the nature of adversity experienced. ELA overall was associated
with accelerated pubertal timing (¢'= —0.10) and cellular aging (¢= —0.21), but these associations
varied by adversity type. Moderator analysis revealed that ELA characterized by threat was
associated with accelerated pubertal development (d'= —0.26) and accelerated cellular aging (=
-0.43), but deprivation and SES were unrelated to accelerated development. Systematic review
revealed associations between ELA and accelerated cortical thinning, with threat-related ELA
consistently associated with thinning in ventromedial prefrontal cortex, and deprivation and SES
associated with thinning in frontoparietal, default, and visual networks. There was no consistent
association of ELA with amygdala-PFC connectivity. These findings suggest specificity in the
types of early environmental experiences associated with accelerated biological aging and
highlight the importance of evaluating how accelerated aging contributes to health disparities and
whether this process can be mitigated through early intervention.

Correspondence concerning this article should be addressed to Natalie L. Colich, Department of Psychology, University of
Washington, Box 351525, Seattle, WA 98195. ncolich@uw.edu.
Maya L. Rosen is now at the Department of Psychology, Harvard University.
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Exposure to early life adversity (ELA)—including exposure to child abuse, sexual assault,
neglect, and chronic poverty—is associated with elevated risk for numerous mental and
physical health problems, including depression, anxiety disorders, substance abuse, suicide,
and cardiovascular disease (Felitti et al., 1998; Green et al., 2010; Heim & Binder, 2012;
Kessler et al., 2010; McLaughlin et al., 2010; McLaughlin, Green, et al., 2012; Norman et
al., 2012; Scott et al., 2011). The associations of ELA with mental and physical health
problems are observable beginning in childhood and adolescence (Boynton-Jarrett, Ryan,
Berkman, & Wright, 2008; Halpern et al., 2013; McLaughlin, Basu, et al., 2016;
McLaughlin, Green, et al., 2012) and persist into adulthood (Dong et al., 2004; Felitti et al.,
1998; Green et al., 2010; Kessler et al., 2010). Recent evidence from longitudinal and
population-based studies indicates that exposure to ELA is also associated with elevated risk
for premature mortality (Brown et al., 2009; Chen, Turiano, Mroczek, & Miller, 2016).

Accelerated Development/Biological Aging

One potential mechanism linking exposure to ELA with this wide range of physical and
mental health problems is accelerated biological aging. Specifically, exposure to adversity
early in life may alter the pace of development, resulting in faster aging. Most conceptual
models on the link between ELA and accelerated development are based in life history
theory (J. Belsky, Steinberg, & Draper, 1991; Ellis, Figueredo, Brumbach, & Schlomer,
2009; Ellis & Garber, 2000) and postulate that experiences in early life can program an
individual’s developmental trajectory in order to respond most effectively to the
environmental demands they are likely to encounter later in life. The pattern and timing of
life history events—such as age of sexual maturation, gestational period, number of
offspring, birth spacing, length of parental investment, longevity, and others—is determined
by the relative prioritization of time and energy invested in growth, reproduction, and
survival (Del Giudice, Gangestad, & Kaplan, 2016; Hill & Kaplan, 1999). For instance, in a
safe, predictable and enriched environment, a slow and protracted development may be
optimal, as it allows for maximal parental investment prior to offspring independence.
However, in a harsh or unpredictable environment, a faster pace of development in which
individuals reach adult-like capabilities at an earlier age may be favored in order to
maximize reproduction prior to potential mortality. Life history theories of human
development argue that early environments characterized by harshness (e.g., trauma,
violence exposure) may accelerate the onset of puberty in order to maximize the opportunity
for reproduction prior to mortality (J. Belsky, 2012; Ellis et al., 2009; Rickard, Frankenhuis,
& Nettle, 2014). However, in unpredictable environments, where there is large variation in
harshness, it may be optimal to delay reproductive milestones, depending upon various
features of the environment including population density and resource availability. For
instance, according to some models, increased unpredictability in juvenile mortality tends to
delay development, whereas increased unpredictability in adult mortality tends to accelerate
development (J. Belsky, 2012; Ellis et al., 2009).
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More recently, life history theories regarding the pace of development following ELA have
been extended to focus on additional measures of biological aging. First, predictive adaptive
response models (Nettle, Frankenhuis, & Rickard, 2013; Rickard et al., 2014) focus on
cellular and molecular development and how it relates to an individual’s morbidity and
mortality across the life span. These models propose that ELA negatively influences
physical health, through altered cellular development as a result of reduced energy to build
or repair cellular tissue. This advanced cellular aging forecast may reduce longevity and
contribute to acceleration in reproductive maturity (Nettle et al., 2013; Rickard et al., 2014).
Second, the stress acceleration hypothesis (Callaghan & Tottenham, 2016) suggests that
ELA accelerates the development of neural networks underlying emotional processing,
specifically, the amygdala-prefrontal cortex (PFC) circuit thought to underlie emotion
regulation capabilities. This accelerated development in the context of unreliable or absent
caregiving may occur in order to allow for independent emotion regulation at an earlier age
(Callaghan & Tottenham, 2016). Each of these theories rest on the assumption that ELA
impacts the pace of development across multiple domains and metrics of biological aging
(pubertal timing, cellular aging, and neural development).

ELA and Biological Aging

Biological aging following ELA has been measured with a variety of different metrics. By
far the most commonly used metric is the timing and pace of pubertal development,
including age of menarche in females (Boynton-Jarrett & Harville, 2012; Deardorff,
Abrams, Ekwaru, & Rehkopf, 2014; Graber, Brooks-Gunn, & Warren, 1995) and pubertal
stage controlling for chronological age (Colich et al., 2020; Mendle, Leve, Van Ryzin,
Natsuaki, & Ge, 2011; Negriff, Blankson, & Trickett, 2015; Noll et al., 2017; Sumner,
Colich, Uddin, Armstrong, & McLaughlin, 2019). A second line of work has examined
measures of cellular aging, including leukocyte telomere length (Coimbra, Carvalho,
Moretti, Mello, & Belangero, 2017; Drury et al., 2014; Price, Kao, Burgers, Carpenter, &
Tyrka, 2013) and DNA methylation (DNAm) age (Gassen, Chrousos, Binder, & Zannas,
2017; Wolf et al., 2018). A separate literature has examined markers of neural maturation
such as amygdala-PFC connectivity (Callaghan & Tottenham, 2016; Gee, Gabard-Durnam,
et al., 2013) and cortical thickness (McLaughlin, Sheridan, Winter, et al., 2014).

Evidence for accelerated biological aging following ELA has been found across all of these
metrics. For example, numerous studies have found that ELA is associated with earlier
pubertal timing (Graber et al., 1995; Hartman, Li, Nettle, & Belsky, 2017; Mendle et al.,
2011; Negriff, Blankson, et al., 2015). Similarly, a small but increasing number of studies
have reported accelerated cellular aging following ELA, including shorter telomere length
(Drury et al., 2014, 2012; Mitchell et al., 2014; Shalev et al., 2013), and advanced DNAmM
age relative to chronological age (Jovanovic et al., 2017; Sumner et al., 2019). Finally, much
of the evidence for accelerated neural development following ELA comes from studies
examining amygdala-PFC functional connectivity (Colich et al., 2017; Gee, Gabard-
Durnam, et al., 2013; Keding & Herringa, 2016) and cortical thinning across development
(McLaughlin, Sheridan, Winter, et al., 2014). However, other studies have found no
associations between ELA and pubertal timing (Negriff, Saxbe, & Trickett, 2015; Negriff &
Trickett, 2012) or cortical thinning (McLaughlin, Sheridan, et al., 2016; Rosen, Sheridan,
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Sambrook, Meltzoff, & McLaughlin, 2018). Some studies have even found that ELA is
associated with slower or delayed pubertal timing (Johnson et al., 2018; Negriff, Blankson,
et al., 2015; Sumner et al., 2019) and a more immature pattern of amygdala-PFC
connectivity (Cisler, James, et al., 2013; Marusak, Martin, Etkin, & Thomason, 2015; Silvers
et al., 2016). The strength and direction of the association between ELA and markers of
biological aging varies widely across studies, and to date no systematic review or meta-
analysis on this topic has been conducted.

We argue, and test through meta-analysis and systematic review, that the wide variability in
the association of ELA with accelerated development might be explained—at least in part—
by differences in how distinct types of ELA influence the pace of development. Existing
studies have focused on a wide range of adversity experiences, ranging from physical abuse
and violence exposure to physical and emotional neglect and institutional rearing, and
provide some clues about the types of ELA that might be particularly likely to produce a
pattern of accelerated development. For example, physical and sexual abuse have been
consistently associated with accelerated pubertal development in females (Mendle, Ryan, &
McKone, 2016; Natsuaki, Leve, & Mendle, 2011; Noll et al., 2017; Trickett, Noll, &
Putnam, 2011; Trickett & Putnam, 1993). In contrast, studies of war and famine suggest that
severe material deprivation can delay pubertal development (Prebeg & Bralic, 2000; van
Noord & Kaaks, 1991). Although less work has examined the effects of neglect and
psychosocial deprivation on biological aging, existing studies typically find no association of
neglect or early institutional rearing with pubertal timing (Johnson et al., 2018; Mendle et
al., 2011; Reid et al., 2017; Ryan, Mendle, & Markowitz, 2015). In contrast, early
institutionalization is associated with an accelerated pattern of cellular aging (Drury et al.,
2012) and maturation of the amygdala-PFC circuit (Gee, Gabard-Durnam, et al., 2013),
suggesting that accelerated biological aging might not occur in a uniform manner across
various neurobiological systems. It is important to note that sample size varies widely across
these lines of research. For instance, studies of pubertal timing tend to be significantly larger
in sample size than studies of fMRI connectivity or cortical thickness, which could influence
the variability of the results.

Discrepancies in existing findings may be due to the treatment of ELA as a monolithic
construct with equifinality across all metrics of biological aging. To date, no attempt has
been made to consider how associations of ELA with accelerated biological aging might
vary according to the nature of the adversity experienced. Systematic investigation into
variability in the association of ELA with biological aging across adversity types may help
to reconcile inconsistent findings and advance theoretical models of how early experiences
alter the pace of development at reproductive, cellular, and neural levels of analysis. This
meta-analysis aims to do so by: (a) examining how different dimensions of ELA influence
biological aging, distinguishing between experiences characterized by threat versus
deprivation; and (b) evaluating whether the associations of these different types of adverse
early experiences with biological aging are global or specific to particular domains of aging
—including pubertal timing, cellular aging, and brain development.

Psychol Bull. Author manuscript; available in PMC 2020 September 11.
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Conceptual Model of Early-Life Adversity and Accelerated Development

Many prior studies examining the effects of ELA on accelerated biological aging have
focused on a limited range of ELA experiences, typically focusing on relative extreme
exposures like sexual abuse or institutional rearing. Other studies have utilized a cumulative-
risk approach, which tallies the number of distinct forms of ELA experienced to create a risk
score without regard to the type, chronicity, or severity of the experience and use this risk
score as a predictor of outcomes, with the assumption that all forms of ELA have equal and
additive effects on developmental outcomes (Evans, Li, & Whipple, 2013). Very few studies
attempt to address the high co-occurrence of varying forms of ELA (Green et al., 2010;
McLaughlin, Green, et al., 2012) or examine the differential influences of particular
adversity types on biological aging, with some notable exceptions (Colich et al., 2020;
Mendle et al., 2011; Mendle, Ryan, et al., 2016; Negriff, Saxbe, et al., 2015; Sumner et al.,
2019).

The dimensional model of adversity and psychopathology (DMAP) argues that the wide
range of experiences currently classified as ELA can be organized into core underlying
dimensions that have unique influences on cognitive, emational, and neural development
(McLaughlin, Sheridan, & Lambert, 2014; McLaughlin & Sheridan, 2016; Sheridan &
McLaughlin, 2014). This model attempts to distill complex adverse experiences into core
underlying dimensions that cut across multiple forms of ELA that share common features.
Two such dimensions are threat, which encompasses experiences involving harm or threat of
harm to the child, and deprivation, which involves an absence of expected inputs from the
environment during development, such as cognitive and social stimulation (e.g., complex
language directed at the child) as well as emotional nurturance (e.g., emotional neglect). In
addition, the DMAP model argues that these dimensions of adversity have influences on
emotional, cognitive, and neural development that are at least partially distinct. Increasing
evidence has demonstrated the unique developmental consequences of threat and deprivation
on developmental outcomes (Busso, McLaughlin, & Sheridan, 2017; Dennison et al., 2019;
Everaerd et al., 2016; Lambert, King, Monahan, & McLaughlin, 2017; Rosen et al., 2018;
Sheridan, Peverill, Finn, & McLaughlin, 2017). Determining whether all forms of ELA are
associated with accelerated development across multiple metrics of biological aging or
whether only particular dimensions of ELA are associated with this pattern is critical for
identifying the mechanisms linking ELA to health outcomes and to better inform early
interventions.

The threat dimension of ELA is conceptually similar, though not identical, to the life history
theory dimension of environmental harshness, and involves experiences of trauma and
violence exposure. We expect that experiences characterized by threat will be associated
with accelerated biological aging, potentially in order to maximize the opportunity for
reproduction prior to mortality (J. Belsky, Schlomer, & Ellis, 2012; Ellis et al., 2009).
However, it is unclear how experiences of deprivation align with life history theory; whereas
nutritional deprivation and food insecurity are thought to delay pubertal timing to ensure
maximal bioenergetic resources should reproduction occur (Rogol, Clark, & Roemmich,
2000), specific predictions about physical and emotional neglect are lacking in life history
models. Preliminary evidence suggests that accelerated development following ELA may

Psychol Bull. Author manuscript; available in PMC 2020 September 11.
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vary across different dimensions of adversity. For instance, we have found that experiences
characterized by threat, but not deprivation, were associated with accelerated pubertal stage
relative to chronological age and accelerated epigenetic aging in a community-based sample
of children and adolescents (Sumner et al., 2019). In contrast, experiences characterized by
deprivation were associated with de/ayed pubertal timing, after controlling for co-occurring
threat experiences. We recently replicated this work in a nationally representative sample of
adolescent females, using age of menarche as our metric of accelerated aging (Colich et al.,
2020); here, we observed earlier age of menarche among adolescents exposed to trauma and
violence, but no association between deprivation and age of menarche. Determining whether
accelerated biological aging is associated with exposure to ELA generally or with particular
dimensions of ELA may help to elucidate the specific psychological and biological
mechanisms underlying these associations. Here we extend the DMAP theoretical model to
encompass multiple biological aging outcomes by integrating it with life history theory, a
well-established conceptual model of how the early environment shapes reproductive
strategies. We make novel predictions based on the integration of these two conceptual
models that we then test using meta-analyses and systematic review.

Metrics of Biological Aging

Accelerated biological aging has been conceptualized in many ways, across multiple
domains of biological development. Historically, these domains have been examined in
isolation, independent of other domains of biological aging. Few studies have empirically
explored the effects of ELA on multiple domains of accelerated development (D. W. Belsky
etal., 2017; Sumner et al., 2019) and recent work suggests that accelerated telomere erosion
and accelerated pubertal development represent similar biological processes as a
consequence of ELA (Shalev & Belsky, 2016).

Pubertal timing.—The most consistently examined marker of accelerated development in
relation to ELA is pubertal timing, typically operationalized as the age of onset of pubertal
development, or the age of achieving a reproductive milestone such as menarche. Puberty
begins as early as ages 8-14 in females and 9-15 in males with the activation of the
hypothalamic-pituitary-gonadal (HPG) axis. This ultimately initiates the start of gonadarche,
in which the gonads mature and produce gonadal hormones or sex steroids. This in turn,
leads to breast development and eventually menarche in girls, and in increased testicle size
and the onset of spermarche in males. Typical measures of pubertal development use
secondary sex characteristics as a metric of pubertal stage (Carskadon & Acebo, 1993;
Marshall & Tanner, 1970). For the purposes of this meta-analysis, we have included studies
that explore how ELA is associated with three commonly used metrics of pubertal timing—
pubertal stage relative to chronological age, age at the achievement of the onset of secondary
sex characteristics, and age of menarche. Although menarche occurs relatively late in the
pubertal process, participants are relatively reliable in their reporting of this milestone,
particularly in adolescence (Dorn, Sontag-Padilla, Pabst, Tissot, & Susman, 2013).

Cellular aging.—The internal predictive adaptive response model of accelerated aging

following adversity postulates that the early environment influences an individual’s somatic
state, which in turn influences reproductive timing and other life history events (Nettle et al.,
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2013; Rickard et al., 2014). One pathway linking ELA to somatic states is cellular aging.
Some argue that if the body detects a shortened cellular life span, mechanisms may exist to
accelerate the development of the reproductive system in order to maximize the chances of
reproduction prior to mortality (Nettle et al., 2013; Rickard et al., 2014). Cellular aging in
the context of ELA has been measured in two different ways—telomere length and metrics
of epigenetic aging using DNAm patterns.

Telomeres are nucleopeptide complexes that sit at the end of chromosomes and protect the
chromosome from degradation (Chan & Blackburn, 2004). Telomeres shorten due to both
cell replication and exposure to oxidative stress and inflammation. In normal aging,
telomeres shorten in all cell types, which allows for the use of telomere length as a
biological marker of cellular age (Frenck, Blackburn, & Shannon, 1998). Chronic stress has
been associated with shortened telomere length in adults (Epel et al., 2004), and several
studies have demonstrated associations between ELA and telomere length in children
(Coimbra et al., 2017; Essex et al., 2013; Price et al., 2013). Shortened telomere length has
been implicated in the pathogenesis of both physical and mental health problems in
adulthood (Gotlib et al., 2015; Hoen et al., 2013; Needham, Mezuk, et al., 2015; Tyrka et al.,
2016), suggesting a potential mechanism linking ELA and maladaptive health outcomes in
adolescence and adulthood.

A second recently established metric of cellular aging is an epigenetic clock that considers
genome-wide DNAm patterns (both increased and decreased methylation of select CpG
sites) to quantify biological age independent from chronological age (DNAm age; Hannum
et al., 2013; Horvath, 2013). This metric correlates strongly with chronological age in both
adolescents and adults (Horvath & Raj, 2018; Suarez et al., 2018) and shows strong positive
associations with age of death (B. H. Chen et al., 2016; Marioni, Shah, McRae, Chen, et al.,
2015), suggesting it is a valid metric of cellular aging. Deviations between DNAm age and
chronological age have been used as a metric of accelerated development (Davis et al., 2017,
Jovanovic et al., 2017; Sumner et al., 2019) and are associated with exposure to ELA
(Jovanovic et al., 2017; Sumner et al., 2019). Advanced DNAm age has been associated with
increased risk of cardiovascular disease, cancer, and obesity (Horvath et al., 2014; Marioni,
Shah, McRae, Ritchie, et al., 2015; Perna et al., 2016), again potentially highlighting a
mechanism linking ELA and physical health problems.

For the purpose of this meta-analysis, we have included studies that explore associations
between ELA and cellular aging, as measured by both telomere length and DNAm age.

Brain development.—Numerous studies have investigated the neural consequences of
ELA. Here, we focus specifically on neural markers of maturation. As such, we focus on
two metrics for which patterns of development have been well characterized: cortical
thickness and functional connectivity between the amygdala and prefrontal cortex (PFC).
We focus on cortical thickness as a metric of structural development because the pattern of
development is well characterized, replicated across many studies, and shows a clear linear
association with age, such that cortical thickness steadily decreases from middle childhood
to early adulthood (Ducharme et al., 2016; LeWinn, Sheridan, Keyes, Hamilton, &
McLaughlin, 2017; Vijayakumar et al., 2016; Wierenga, Langen, Oranje, & Durston, 2014).

Psychol Bull. Author manuscript; available in PMC 2020 September 11.
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Second, we focus on functional connectivity between the amygdala and PFC as a metric of
maturation because it serves as a key component in the stress acceleration hypothesis, which
posits that the amygdala-PFC circuit supporting emotional processing and regulation
matures more rapidly among children exposed to ELA (Callaghan & Tottenham, 2016).

Cortical thickness declines steadily from childhood to early adulthood (Ducharme et al.,
2016; LeWinn et al., 2017; Wierenga et al., 2014), as a result of developmentally appropriate
pruning of synapses and increases in myelination of connections between neurons (Natu et
al., 2019, 2018; Sowell et al., 2004). This linear pattern of development enables assessment
of whether development is accelerated or delayed among children with ELA relative to their
peers. Cortical structure can be measured in a variety of ways including surface area,
thickness, and volume (for review, see Vijayakumar et al., 2016). However, cortical
thickness is the only metric that has a linear developmental trajectory, declining steadily
from early childhood through early adulthood (Ducharme et al., 2016; LeWinn et al., 2017;
Walhovd, Fjell, Giedd, Dale, & Brown, 2017; Wierenga et al., 2014). In contrast, cortical
surface area and volume exhibit nonlinear associations with age and the inflection points of
these trajectories vary across samples and remain a source of debate (Ducharme et al., 2016;
Giedd et al., 1999; Lenroot et al., 2007; LeWinn et al., 2017; Mills et al., 2016; Vijayakumar
et al., 2016). These nonlinear patterns of development make assessing deviations from the
expected pattern more difficult. Therefore, we focus only on studies that use cortical
thickness—including both whole cortex and specific regions—as an outcome.

The stress acceleration hypothesis focuses on the impact of ELA on the developmental
trajectory of neural circuits supporting emotion processing and regulation, particularly on
connectivity between the amygdala and medial PFC (mPFC; Callaghan & Tottenham, 2016).
Animal tracing studies demonstrate that feedforward connections between amygdala and
PFC exist early in life, but feedback connections emerge later in development (Barbas &
Garcia-Cabezas, 2016). It has been proposed that in humans, changes in functional
connectivity between the mPFC and amygdala may reflect the maturation of these feedback
connections (Gee, Humphreys, et al., 2013). In some studies, the pattern of functional
connectivity between the amygdala and the mPFC shifts from positive to negative across
development in the context of emotional processing tasks (Gee, Humphreys, et al., 2013;
Silvers et al., 2016; Wu et al., 2016).

For the purpose of this systematic review, we have included studies that explore how ELA
impacts both cortical thickness and amygdala-mPFC functional connectivity.

Consistency/discrepancies across metrics of biological aging.—L.ittle research
has explored how disparate metrics of biological aging relate to each other, especially in
adolescence. As mentioned above, only one study has empirically explored the effects of
ELA on multiple domains of accelerated development in adolescence (Sumner et al., 2019),
and suggests that threat-related adversity has a similar effect on both pubertal timing and
mDNA age (with these two metrics strongly correlated [r=.52]). Further evidence for
homogeneity across metrics suggests that telomere length may be related to cortical
thickness patterns in adults (Puhlmann et al., 2019). However, there is also evidence to
suggest that metrics of biological aging are independent of each other. For instance, in a
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large sample of middle-aged adults from the longitudinal Dunedin Study, associations
among multiple metrics of biological aging were largely absent, including telomere length
and mDNA age (r=-0.03; D. W. Belsky et al., 2018). One possibility is that metrics of
biological aging diverge in their trajectories across the life-course, producing weaker
associations among adults than children and adolescents, although—to our knowledge—this
has yet to be examined empirically. Finally, there are many other metrics of biological aging
that we do not examine, including “brain age,” markers of inflammation, and cardiovascular
function (D. W. Belsky, Caspi, et al., 2015; Cole, Marioni, Harris, & Deary, 2019).
Currently, it is unclear how these metrics of biological aging are related or independent of
one another.

The Current Study

We aimed to test a novel hypothesis that experiences characterized by threat, but not
deprivation, are associated with accelerated biological aging. This prediction is based in the
DMAP framework (McLaughlin, Sheridan, & Lambert, 2014; Sheridan & McLaughlin,
2014), but also extends that conceptual framework to encompass a wide range of
developmental processes that serve as metrics of biological aging and that were not
considered in the original model. Applying this theoretical approach may help to reconcile
discrepant findings in the literature by evaluating how different dimensions of ELA
influence biological aging. In addition, we aimed to integrate disparate literatures by
examining whether different dimension of adversity have general or specific effects on
multiple domains of biological aging—including pubertal timing, cellular aging, and brain
development. We expected that threat and deprivation would have different influences on
biological aging, with threat associated with accelerated biological aging across all metrics
and deprivation associated with delayed pubertal development. We did not have specific
hypotheses about how deprivation would influence cellular aging or brain development,
given conflicting findings in the literature of both acceleration and delayed maturation
following early deprivation. We also separately examined the associations of socioeconomic
status (SES) with biological aging, as SES is a commonly used global measure of early
experience that is associated with increased risk of exposure to both threat and deprivation
(e.g., Green et al., 2010; McLaughlin, Green, et al., 2012). We had no a priori hypotheses
about SES, given that SES is linked to greater risk for both threat and deprivation
experiences. A final guiding question was whether the associations of ELA characterized by
threat and deprivation with biological aging would be consistent across all metrics, given
inconsistencies in the literature as to how these metrics relate to one another (Belsky et al.,
2018). Whereas pubertal development reflects a more global measure of aging, cellular
aging is a metric of biological aging most relevant to physical health, and cortical thickness
and development in the amygdala-PFC circuit may reflect learning or adaptation to a
stressful early environment, but not aging in a global way. Finally, given the potential for
genetic confounding in the link between ELA and accelerated development, we perform
moderator analysis to evaluate whether effect sizes across studies that attempt to control for
such confounding relative to those that do not.
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Information Sources and Search Strategy

This meta-analysis and systematic review was conducted in line with the PRISMA
guidelines for meta-analyses (Moher, Liberati, Tetzlaff, & Altman, 2009; Figure 1). To
identify studies with relevant data, literature searches were conducted using Internet
databases (PubMed, SCOPUS, PsycINFO, Web of Science and Google Scholar) through
May 2019. To ensure a thorough search, search terms encompassed various forms of ELA
(e.g., violence, trauma, neglect, maltreatment, institutional rearing, deprivation, SES,
poverty, early adversity, early life stress) as well as our dependent measures of interest (e.g.,
puberty, cell aging, methylation, menarche, telomere length, methylation, neural) and our
targeted study population (e.g., infant, child, adolescent, pediatric; see online supplemental
materials for all search terms). All included studies were published in English and from
peer-reviewed journals. To further identify eligible studies, we reviewed references of
identified articles for additional studies using forward and backward searching.

In order to be included in the meta-analysis, studies had to meet the following criteria. First,
studies had to examine an association between ELA and one of our dependent measures
(pubertal timing, cellular aging, or brain development) and report sufficient statistics to
calculate an effect size. Second, exposure to ELA had to occur during childhood or
adolescence (participants 18 and younger), rather than using retrospective reports of ELA in
adults. This choice was made given the well documented recall biases associated with
retrospective reporting of childhood experiences in adulthood (Baldwin, Reuben, Newbury,
& Danese, 2019; Green et al., 2010; Hardt & Rutter, 2004; Widom, Raphael, & DuMont,
2004; Yarrow, Campbell, & Burton, 1970). Indeed, a recent meta-analysis comparing
retrospective and prospective methods for measuring ELA exposure demonstrates very little
overlap in the groups identified by each of these methods, suggesting that prospective and
retrospective assessments identify fundamentally different groups of people (Baldwin et al.,
2019). However, reports of age of menarche and metrics of cellular aging do not suffer this
problem to the same degree (Cooper et al., 2006; Gilger, Geary, & Eisele, 1991). As such,
we include studies where adversity was measured prospectively, but the metric of pubertal
timing was retrospective or the measure of cellular aging was collected in adulthood. We did
not include metrics of amygdala-PFC connectivity or cortical thickness measured in
adulthood, given these metrics of development are specific to patterns that occur in
childhood and adolescence, and it is not clear that more negative amygdala-PFC
connectivity or thinner cortical thickness in adulthood reflects accelerated biological aging.

Inclusion criteria for ELA.—We draw on a recent definition of ELA as experiences that
were either chronic or severe in nature that require psychological or neurobiological
adaptation by an average child and that represent a deviation from the expectable
environment (McLaughlin, 2016). As detailed above, we used a wide range of search terms
for ELA encompassing maltreatment experiences (e.g., physical, sexual, and emotional
abuse; physical and emotional neglect), exposure to traumatic events (e.g., observing
domestic violence, being the victim of interpersonal violence), institutional rearing, material
deprivation (e.g., food insecurity), and childhood SES. We did not consider biological father
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absence as a form of ELA given that: (a) it is not clearly a form of ELA based on prevailing
definitions (McLaughlin, 2016); and (b) a meta-analysis on father absence and pubertal
timing was recently conducted (Webster, Graber, Gesselman, Crosier, & Schember, 2014).
We did not include other early experiences or more global stressful life events that did not
clearly meet our definition of ELA (e.g., parental psychopathology, peer victimization).

Inclusion criteria for studies of pubertal timing.—To retain as many studies as
possible, we included studies that used selfreport, parent-report, and physician-rated
Tanner/PDS stage (controlling for age) or age of menarche. Physician-rated Tanner stage and
interview-based assessments of age of menarche in adolescence have been shown to be
acceptably reliable (Coleman & Coleman, 2002; Dorn & Biro, 2011; Dorn et al., 2013;
Petersen, Crockett, Richards, & Boxer, 1988; Shirtcliff, Dahl, & Pollak, 2009). Similarly,
self-report of age of menarche, including retrospective reports, show relatively high
reliability (Dorn et al., 2013; Lundblad & Jacobsen, 2017). We examined whether the
specific measure of pubertal timing or including maternal age at menarche as a covariate
significantly moderated the ELA-puberty associations.

Inclusion criteria for studies of cellular aging.—Although there have been prior
reviews and meta-analyses exploring the effects of ELA on telomere length (Coimbra et al.,
2017; Price et al., 2013) or DNAm age (Gershon & High, 2015; Lewis & Olive, 2014;
Silberman, Acosta, & Zorrilla Zubilete, 2016; Vinkers et al., 2015; Wolf et al., 2018), none
has focused on differences across distinct adversity types or restricted the focus to studies
measuring ELA in childhood or adolescence. Telomere length and DNAmM age can be
assessed through both blood and saliva samples, using multiple analysis techniques. Due to
the limited number of studies on this topic, we have included all tissue types and analysis
techniques in our analyses. Tissue type and analysis technique have been shown to influence
reliability estimates of telomere length (Aviv et al., 2011; Elbers et al., 2014; Kim, Sandler,
Carswell, Weinberg, & Taylor, 2011; Martin-Ruiz et al., 2015). However, mDNA age
appears to be more consistent across tissue types (Horvath & Raj, 2018). Regardless, we
examined whether metric of cellular aging (telomere length and DNAm age) or tissue type
were moderators of the ELA-cellular aging association.

Inclusion criteria for studies of brain development.—We included only studies that
assessed cortical thickness—including both whole cortex and specific regions—as an
outcome and not other measures of cortical structure (e.g., volume and surface area) where
age-related patterns are nonlinear and thus more difficult to interpret with regard to
acceleration of development. If ELA-exposed youth exhibit thinner cortex than nonexposed
youths of the same age, this was interpreted as accelerated maturation; if ELA-exposed
youths exhibit thicker cortex than nonexposed youths of the same age, this was interpreted
as delayed development. Similarly, we focused only on studies exploring task-related
amygdala-mPFC functional connectivity, where a developmental shift from positive to
negative in task-related amygdala-mPFC connectivity has been documented (Callaghan &
Tottenham, 2016; Gee, Gabard-Durnam, et al., 2013). We will evaluate studies of ELA with
this normative developmental pattern in mind; if children who have experienced adversity
demonstrate greater negative connectivity for their age than children who have not, this
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would reflect accelerated development and if children who have experienced adversity
exhibit more positive or less negative connectivity than comparison children, this would
reflect delayed development. Measures of cortical thickness have shown to be highly
reliable, particularly when processed using the same analysis pipelines (Dickerson et al.,
2008; Han et al., 2006; Iscan et al., 2015). In contrast to clear developmental changes
observed in cortical thickness estimates, studies investigating developmental patterns of
connectivity at rest have been more mixed, with some studies demonstrating an increase in
connectivity with age (e.g., Gabard-Durnam et al., 2014) and others demonstrating a
decrease (Jalbrzikowski et al., 2017). Because a consensus has not been reached on the
normative developmental pattern of amygdala-mPFC connectivity during rest, we focus only
on articles that explore the associations of ELA with amygdala-mPFC connectivity using
task-related functional connectivity. Task-related activation has been shown to be highly
reliable both within-subjects and across test sites (Gee et al., 2015), however the exact
reliability of functional connectivity within these regions remains unknown.

We conducted a systematic review for metrics of brain development rather than a meta-
analysis for the following reasons. First, whole-brain fMRI meta-analyses focus on the
spatial nature of associations across the brain as opposed to the strength of effect sizes
within a designated region. Given our focus on a specific measure of functional connectivity
(amygdala-mPFC), spatial maps do not sufficiently address our research question regarding
this metric of neural development. Second, the use of heterogenous ROIs in studies of
cortical thickness and amygdala-mPFC connectivity (e.g., different regions of mPFC), make
it difficult to quantitatively compare results across studies. Third, meaningful differences in
task design and task demands make it difficult to directly compare results of amygdala-
mPFC connectivity using meta-analysis.

Because we were unable to meta-analyze the neuroimaging studies, we implemented the
following criteria to assess the quality of each study included in the systematic review. This
includes four criteria for PFC-amygdala connectivity studies and three criteria for cortical
thickness studies. If the study took adequate steps to address the criterion in question, it
received 1 point. If adequate steps were not taken, it received 0 points. The criteria for both
sets of studies included: (a) adequate sample size (N> 20 per group or /=40 overall if
using continuous independent variables); (b) appropriate cluster correction for whole-brain
analyses and correction for multiple comparisons for ROI-based analyses; and (c)
appropriate methods for correcting for motion artifacts, including checks for between-groups
differences in motion. A final criterion applied only to studies of PFC-amygdala
connectivity examined whether an appropriate control condition was used in the fMRI
contrast (i.e., task-related activation was compared with an active control condition, not
fixation).

Measuring and Coding Adversity

In order to directly compare results from the present study with the majority of the existing

literature, we first conducted an analysis in which we include studies defining ELA broadly,
regardless of adversity type. We then examined whether associations of ELA with biological
aging metrics exhibited significant heterogeneity, and evaluated whether adversity type (i.e.,
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threat, deprivation, SES) was a moderator of these associations (see Moderator Analysis for
details). Consistent with previous work from our group (Colich et al., 2020; Dennison et al.,
2019; McLaughlin, Sheridan, Lambert, 2014; Sheridan & McLaughlin, 2014), we
conceptualized threat-related adversities to include experiences of physical abuse, domestic
violence, sexual assault, witnessing or being the victim of violence in the community, and
emotional abuse. Deprivation-related adversities included physical neglect, low cognitive
stimulation, food insecurity, and early institutionalization/international adoption. We also
examined the effects of SES, including family income and parental education. Although low
SES is associated with reductions in cognitive stimulation among children (Bradley, Convyn,
Burchinal, McAdoo, & Garcia Coll, 2001; Duncan & Magnuson, 2012; Gilkerson et al.,
2017), SES is a proxy for deprivation rather than a direct measure. This is especially true
when studies examine the effects of SES without controlling for co-occurring experiences of
threat or violence. To ensure that we had not diluted our deprivation composite by including
SES as an indicator, we chose to examine studies using SES as a metric of ELA separately.

The literature search yielded a total of 7,903 studies. Studies were first excluded based on
their title or abstract (k= 7363) with exclusion decisions made by one of the authors
(N.L.C.) and confirmed by another. Exclusion criteria included any publication that was not
an analysis of primary data (i.e., a review, book chapter, etc.). We also excluded any studies
conducted outside of the United States, Western Europe, or Australia, given well-
documented effects of ethnicity, nutritional status, and SES on timing of development
(Parent et al., 2003) and difficulties assessing SES consistently across different countries. A
subset of studies were examined more thoroughly for eligibility (k= 540). After a careful
review of the methods, studies were excluded if they didn’t include a relevant independent or
dependent variable (i.e., single gene methylation patterns rather than a measure of epigenetic
aging or resting state amygdala-PFC connectivity rather than task-based connectivity; & =
137), if they were a review article or book chapter (k= 140), if they were conducted outside
of the U.S./Europe/Australia (k= 82), if the study was conducted in infants (k= 9) or
nonhuman animals (k= 6), if adversity was measured retrospectively in adults (k= 39), if
we were unable to access the article (n = 24), if the data were from a conference abstract (k
= 8), published in a foreign language only (k= 3), if the study was not sufficiently powered
(i.e., less than or equal to five participants per group; &= 2), or the study was later retracted
(k=1). Given our focus on understanding deviations in developmental timing following
ELA, studies were also excluded if the exposed and control group differed significantly in
age (k= 1; Humphreys et al., 2016). Finally, studies were excluded if they did not include
data that we were able to convert into an effect size after multiple attempts to contact the
study authors for original data (kK= 9). Overall, the current study included a total of 79
studies: 43 studies contributing to our meta-analysis exploring the effects of ELA on
pubertal timing (7= 114,450), 11 studies contributing to our meta-analysis exploring the
effects of ELA on cellular aging (= 1,560), and 25 studies contributing to our systematic
review exploring the effects of ELA on brain development (7= 3,253; with one study
[Sumner et al., 2019] contributing to both pubertal timing and cellular aging analyses).
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Management of Nonindependent Samples

In many cases, we extracted multiple effect sizes from the same sample. For example, some
studies included multiple measures of pubertal timing (e.g., pubertal stage and age of
menarche) or multiple measures of ELA (e.g., sexual abuse and physical abuse). Similarly,
associations between ELA and developmental timing from a single study were sometimes
examined across multiple publications using the same sample. To deal with this
nonindependence, we conducted multilevel mixed effects analyses with restricted maximum
likelihood estimation, including study nested within sample as a random effect, such that
multiple effect size estimates are nested within a higher-level grouping variable (e.g., study
or sample). In the case of longitudinal data, we always included data from Wave 1, as this
wave tends to have the lowest attrition rate and in turn, the largest sample size (Borenstein,
Hedges, Higgins, & Rothstein, 2009). If a separate article included data from a later wave,
we included that data and did not report data from Wave 1 a second time (as these
associations were included in the analysis from the Wave 1 article; e.g., (Mendle, Leve, Van
Ryzin, & Natsuaki, 2014; Mendle et al., 2011).

Data Extraction

Three trained raters (N.L.C., M.L.R. & E.S.W.) coded individual studies. We screened each
study and coded variables for study year, authors, participant composition/sample, mean age
of participants, number of males and female participants, ethnicity, pubertal timing measure
and informant, ELA measure and informant, cellular aging tissue type, and analysis
technique, as well as whether analyses controlled for other types of adversity, parent
psychopathology, child psychopathology, father absence, mother’s age at menarche, and
body mass index (BMI). All disagreements in coding were resolved via discussion among
the three raters until consensus was achieved.

Data Analysis

To ensure consistency in the directionality of the effect sizes, in all cases, metrics of
developmental timing were coded to indicate that numerically lower values (negative values)
indicated accelerated development, to be consistent with age at menarche or age at pubertal
attainment (the most commonly used metrics). Similarly, adversities were coded so that a
numerically higher value indicates greater adversity. To be consistent with other variables,
SES was coded to indicate that numerically higher SES values indicate lower SES.

For each study we calculated an effect size dand corresponding sampling variance (Cohen’s
d, Cohen, 1988) for each relevant analysis (all effect size and sampling variance listed in
Table S1). A positive dindicates that exposure to ELA is associated with delayed
development (later age at a developmental milestone), where as a negative dindicates that
greater adversity is associated with accelerated development (earlier age at a developmental
milestone). We derived a5 from multiple reported statistics including: unadjusted or adjusted
correlations between two variables, odds ratios, mean differences and standard deviations, ¢
statistics, Fstatistics and associated NVsand pvalues, as well as unstandardized and
standardized regression coefficients. All effect sizes were computed in R (Version 3.4.1)
using the escalc function in the “metafor” package (Viechtbauer, 2010) and converted to
Cohen’s d'using established formulas (Borenstein et al., 2009). Authors were contacted
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when published articles met criteria for inclusion but did not include the necessary data to
calculate an effect size amenable to our analyses, which occurred in 13 cases (of which four
provided necessary data and were included in our analyses).

All meta-analyses were conducted using three-level mixed-effects models and the rma.mv
function in the “metafor” package (Viechtbauer, 2010) in R (Mersion 3.4.1) including both
study and sample as random effect (study nested within sample in order to deal with
potentially nonindependent effect sizes coming from the same article or the same sample of
participants; Assink & Wibbelink, 2016; Konstantopoulos, 2011). Publication bias was
assessed using Begg’s Rank correlation test (Begg & Mazumdar, 1994) and Egger’s
regression test of funnel plot asymmetry (Egger, Davey Smith, Schneider, & Minder, 1997).
Additionally, we conducted p-curve analyses using the pcurve function in the “dmetar”
package (Harrer, Cuijpers, Furukawa, & Ebert, 2019) to examine whether selective reporting
of significant findings (clustering around p = .05 indicative of “p-hacking”) contributed to
our meta-analytic results (Simonsohn, Nelson, & Simmons, 2014). P-curve analysis is based
on the assumption that a “true” effect is present only if significant p values resulting from
studies included in the meta-analysis skew to the right (i.e., include more low vs. high
statistically significant p values). All funnel plot and p-curve figures can be found in the
online supplemental materials. These approaches may be less appropriate for mixed-effects
meta-analysis which include nonindependent data points (Assink & Wibbelink, 2016).
However, we provide the results of these tests to be consistent with prior meta-analyses.
Heterogeneity was assessed using the Brestlow-day test (Cochran, 1954) and the method
proposed by Higgins and colleagues (termed I-squared; Higgins & Thompson, 2002).

We conducted separate sets of meta-analyses to explore the associations of ELA with two
metrics of biological aging: pubertal timing and cellular aging. Within each set of analyses,
we began by exploring the association of all adversity types (regardless of dimension) with
our two domains of biological aging, then examined whether adversity type was a moderator
of these associations. We then ran separate sensitivity analyses to examine associations
separately by threat, deprivation, and SES to assess associations of each adversity type with
biological aging outcomes. As described above, data on neural development was not
reported in a manner across studies that permitted meta-analysis; instead, these results were
systematically reviewed.

Moderator Analyses

Given our primary objective of understanding how adversity type influences associations
between adversity and biological aging, we always first explored adversity dimension
(threat, deprivation, SES, general adversity) as a moderator of the association between
adversity and biological aging. In addition, in cases where effect sizes showed significant
heterogeneity, we tested whether demographic or methodological factors moderated the
associations between ELA and biological aging. These factors were based on prior literature,
and included sample race/ethnicity (% White), sex composition of the sample (% male) and
whether the study con trolled for BMI (0/1) or other forms of adversity (0/1). Additionally,
for pubertal timing analyses, we examined metric of pubertal timing (age of menarche OR
measure of secondary sex characteristics) and whether the association differed for studies
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that included maternal age at menarche relative to those that did not. For telomere length and
DNAm age we also examined the use of blood versus saliva and cellular aging metric
(telomere length vs. DNAm age) as potential moderators in our analyses. If there was no
information given by the article regarding a specific moderator then they were marked as
missing and not included in the moderator analysis. We tested each moderator separately
using the moderator flag in the rma.mv function.

Pubertal Timing

The 43 studies included in this meta-analysis produced 94 effect sizes and a total of 114,450
participants. Sample sizes ranged from 25 to 20,345 (median = 587). Of the 94 effect sizes,
21 focused on ELA characterized as threat, 21 focused on deprivation, 40 on SES, and 12
used a cumulative approach of summing across multiple forms of adversity. Table 1 presents
descriptive demographic information for each study.

All adversities.—We first examined the effect of all forms of adversity on pubertal timing
across all 43 studies included in the meta-analysis. Greater exposure to ELA was associated
with earlier pubertal timing (¢=-0.10, 95% CI [-0.18, —0.01]) and significantly differed
from zero (z = -2.14, p=.03; Figure 2). Significant heterogeneity was observed across
studies, O(93) = 653.92, p<.0001; 2 = 95.40. The result of Begg’s publication bias test
(Kendall’s T = -0.10, p=.18) and Egger’s linear regression test (z = —1.65, p=.10) were
not significant, suggesting no publication bias in our sample of studies (see sFigure 1 for a
funnel plot of all adversities and pubertal timing). The results of the p-curve analysis, in
which 36 effect sizes were included and 30 had p values lower than .025, suggest that there
is a “true” effect size driving these findings, and the results are not due to publication bias or
p-hacking (sFigure 2).

Using adversity type as a moderator, we tested our hypothesis that threat would have a
significant negative effect on pubertal timing (suggesting accelerated development), whereas
deprivation would a significant positive effect on pubertal timing (suggesting delayed
development). The random-effects meta-analysis including four adversity types as a
moderator (threat, deprivation, SES, and any studies using only a composite measure of
adversity) revealed that adversity type significantly moderated the association between ELA
and pubertal timing, A3, 90) = 51.77, p< .0001. Given significant differences across
adversity type, we explored the effect of adversity on pubertal timing separately for each
category of adversity.

Given concerns about genetic confounding of the association between maternal age at
menarche and ELA exposure, we conducted a moderator analysis to test whether effect sizes
derived from studies that controlled for maternal age at menarche differed significantly from
those that did not. Of the 94 effect sizes included in this analysis, 19 of them came from
articles that considered mother’s at menarche. The random-effects meta-analysis including
two categories as a moderator (study controlled for mother’s at menarche or did not control
for mother’s age at menarche) revealed that controlling for mother’s age at menarche did not
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significantly moderate the association between ELA and pubertal timing, A1, 92) = 0.08, p
=.78.

Threat.—In studies that specifically explored the association of threat exposure with
pubertal timing (12 studies; 21 effect sizes, V= 36,194), greater exposure to threat was
associated with earlier pubertal timing (&= —0.26, 95% CI [-0.40, —0.13]). The effect size
was small and significantly differed from zero (z = -3.81, p < .001; Figure 3). Significant
heterogeneity was observed across studies, O(20) = 229.73, p< .001; £ = 94.37. The results
of Begg’s publication bias test (Kendall’s T = -0.27, p=.10) and Egger’s linear regression
test (z = —1.45, p=.15) were not significant, suggesting no publication bias in our sample of
studies (see sFigure 3 for a funnel plot of all threat-related adversities and pubertal timing).
The results of the p-curve analysis, in which 21 effect sizes were included and 12 had p
values lower than .025, suggest that there is a “true” effect driving these findings, and the
results are not due to publication bias or p-hacking (sFigure 4).

Given significant heterogeneity in our studies examining the association of threat-related
adversities with pubertal timing, we conducted a series of moderator analyses. None of the
five moderators (metric of pubertal timing, sex, race/ethnicity, BMI, controls for other ELA
types) were significantly associated with variations in effect size.

Deprivation.—In studies that specifically focused on the association of deprivation
exposure with pubertal timing (12 studies; 21 effect sizes, V= 34,193), deprivation was not
associated with pubertal timing (&= 0.05, 95% CI [-0.07, 0.17]) and did not significantly
differ from zero (z = 0.81, p=.42; Figure 3). Significant heterogeneity was observed across
studies, O(20) =51.17, pt .001; 2 =89.34. The results of Begg’s publication bias test
(Kendall’s p = 0.23, p=.14) and Egger’s linear regression test (z = 1.86, p=.06) were not
significant, suggesting no publication bias in our sample of studies. (see sFigure 3 for a
funnel plot of all deprivation-related adversities and pubertal timing). The results of the p-
curve analysis, in which 21 effect sizes were included and four had p values lower than .025,
suggest that the results are not due to publication bias or p-hacking (sFigure 4).

Given significant heterogeneity in our studies examining the association of deprivation-
related adversities with pubertal timing, we conducted moderator analyses. For the
association between deprivation and pubertal timing, sex was significantly associated with
variation in effect sizes (estimate = 0.01, SE£=0.00, z = 3.50, p < .001), suggesting that the
more males included in the sample, the more positive the association between deprivation
exposure and pubertal timing (i.e., the more delayed the pattern of maturation). Given that
multiple forms of deprivation were included in this category, including emotional
deprivation (e.g., emotional neglect) and markers of deprivation across emational, cognitive,
and social domains (e.g., institutional rearing), we also conducted a sensitivity analysis
exploring whether the effect size varied across different indicators of deprivation. The
random-effects meta-analysis, including two categories as a moderator (neglect,
institutionalization), revealed that controlling for deprivation type did not significantly
moderate the association between deprivation-related ELA and pubertal timing, A1, 19) =
0.53, p= .47.
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SES.—For studies that explored the association of SES with pubertal timing (26 studies; 40
effect sizes, V= 87,654), the random-effects meta-analysis found that SES was associated
with earlier pubertal timing (¢=-0.09, 95% CI [-0.22, 0.04]), but the effect size was not
significantly different than zero (z=-1.40, p=.16; Figure 3). Significant heterogeneity was
observed across studies, Q(39) = 285.68, p < .001; 2 = 96.38. The result of Begg’s
publication bias test (Kendall’s T = —-0.15, p=.18) and Egger’s linear regression test (z=
-1.44, p=.15) were not significant, suggesting no publication bias in our sample of studies
(see sFigure 3 for a funnel plot of all SES-related adversities and pubertal timing). The
results of the p-curve analysis, in which 40 effect sizes were included and 19 had p values
lower than .025, suggest that the results are not due to publication bias or p-hacking (sFigure
4).

Given significant heterogeneity in our studies examining the association of SES with
pubertal timing, we conducted a series of moderator analyses. For the association between
SES and pubertal timing, race/ethnicity was significantly associated with variation in effect
sizes (estimate = -0.002, SE=0.001, z = -3.39, p< .001), suggesting that the higher
percentage of White individuals in the sample, the more negative the association between
SES-related adversity and pubertal timing (i.e., the more accelerated the pattern of
maturation).

Cellular Aging

A total of 11 studies (nine examining telomere length, two examining DNA methylation age)
produced 17 effect sizes across a total of 1,560 participants. Sample sizes for included
studies ranged from 38 to 293 (median = 100). Of the 17 effect sizes, four focused on the
effect of threat on cellular aging, two focused on deprivation, seven on SES, and four used a
cumulative approach of summing across multiple forms of adversity. Table 2 presents
descriptive demographic information for each study.

All adversities.—We first examined the effect of all forms of adversity on cellular aging
across all 11 studies included in the meta-analysis. The random-effects meta-analysis found
that greater exposure to ELA was associated with accelerated cellular aging (¢= -0.21, 95%
ClI [-0.39, -0.04]) and significantly differed from zero (z = -2.43, p=.01; Figure 4). There
was significant heterogeneity observed across studies, Q(16) = 44.27, p< .001; £ = 61.47.
The result of Begg’s publication bias test (Kendall’s © = —0.34, p=.06) was not significant,
but Egger’s linear regression test (z = -2.06, p < .05) was significant, suggesting a slight
asymmetry of the funnel plot and potential publication bias in our sample of studies (sFigure
5). The results of the p-curve analysis, in which seven effect sizes were included and four
had p values lower than .025, were inconclusive. The results of this analysis do not indicate
a “true effect,” free of publication bias, but also do not verify that evidential value or a “true
effect” is absent or inadequate (sFigure 6). These results are most likely due to the small
number of effect sizes included in the p-curve analysis, and the high heterogeneity across all
effect sizes. These results should be viewed as preliminary, until more studies on this subject
are published.
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Using adversity type as a moderator, we tested our hypothesis that threat would have a
significant negative effect on cellular aging (suggesting accelerated development) and
evaluated whether these effects were similar for other adversity types. Adversity type
moderated the association between ELA and cellular aging, A3, 13) = 7.69, p=.05. As
such, we explored the associations of ELA with cellular aging separately for each adversity

type.

Given that multiple forms of cellular aging were included in this analysis, including
telomere length and DNAm age, we also conducted a sensitivity analysis exploring the
impact of adversity on telomere length alone, and a using cellular aging metric (telomere
length and mMDNA age) as a moderator of the association between ELA and cellular aging.
In telomere studies only, greater exposure to ELA was associated with shorter telomere
length (d=-0.21, 95% CI [-0.41, —0.01]) and significantly differed from zero (z = -2.03, p
= .04). Significant heterogeneity was observed across studies, Q(12) = 33.16, p<.001; £ =
61.99. The result of Begg’s publication bias test (Kendall’s T = —0.35, p=.09) was not
significant; however, Egger’s linear regression test was marginally significant (z = 01.98, p
=.05), suggesting potential publication bias in our sample of studies. The results of the p-
curve analysis, in which five effect sizes were included and two had p values lower

than .025, were inconclusive. The results of this analysis do not indicate a “true effect,” free
of publication bias, but also do not verify that evidential value or a “true effect” is absent or
inadequate. These results are most likely due to the small number of effect sizes included in
the p-curve analysis, and the high heterogeneity across all effect sizes. Cell type (buccal,
saliva, blood) did not significantly moderate this association, A2, 10) = 4.20, p=.12.
Similarly, cellular aging metric (telomere length and mDNA age) did not moderate the
association between ELA and cellular aging, A1, 15) =0.04, p=.85.

Threat.—In studies that explored the association of threat exposure with cellular aging
(four studies; four effect sizes, V= 664), greater exposure to threat was associated with
accelerated cellular aging (d=-0.43, 95% CI [- 0.61, —0.25]). The effect size was moderate
in magnitude and differed from zero (z = —4.65, p < .0001; Figure 5). Significant
heterogeneity was not observed across studies, Q(3) = 0.39, p=.94; /2 = 0.00000001. The
results of Begg’s publication bias test (Kendall’s T = -0.33, p=.75) and Egger’s linear
regression test (z = —0.43, p = .67) were not significant, suggesting no publication bias in
our sample of studies (see sFigure 7 for a funnel plot of threat-related adversities and
cellular aging). The results of the p-curve analysis, in which three effect sizes were included
and three had p values lower than .025, were inconclusive (sFigure 8). The results of this
analysis do not indicate a “true effect,” free of publication bias, but also do not verify that
evidential value or a “true effect” is absent or inadequate. As with the other analyses
examining cellular aging, this is most likely due to the small number of effect sizes included
in the p-curve analysis, and the high heterogeneity across the effect sizes.

Deprivation.—In studies that explored the association of deprivation exposure with
cellular aging (two studies; two effect sizes, V= 347), the random-effects meta-analysis
found that deprivation was not associated with cellular aging (¢= -0.01, 95% CI [- 0.24,
0.23]), with an effect size that did not significantly differ from zero (z = -0.07, p=.94;
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Figure 5). Significant heterogeneity was not observed across studies, Q(1) = 0.31, p= .58; £
= 0.00000002. The results of Begg’s publication bias test (Kendall’s T = -1.000, p = 1.000)
and Egger’s linear regression test (z = —0.56, p = .56) were not significant, suggesting no
publication bias in our sample of studies. However, given this analysis only contained two
effect sizes, this is not a reliable estimate of publication bias. P-curve analyses were not
conducted due to the small number of significant p values < .05 (n < 2), which suggests no
evidence of p-hacking or publication bias given the absence of significant published effects.
We did not explore moderators given the lack of heterogeneity in effect sizes.

SES.—In studies of SES and cellular aging (six studies; seven effect sizes, /= 1,005), SES
was not associated with cellular aging (¢=-0.03, 95% CI [-0.20, 0.14]), with an effect size
that did not significantly differ from zero (z = -0.35, p=.73; Figure 5). Significant
heterogeneity was not observed across studies, Q(6) = 8.94, p=.18; £ = 25.48. The result of
Begg’s publication bias test was not significant (Kendall’s T = -0.52, p=.14), however
Egger’s linear regression test (z = —2.45, p=.01) was significant, suggesting a slight
asymmetry of the funnel plot and potential publication bias in our sample of studies. P-curve
analyses were not conducted due to the small number of significant pvalues < .05 (n < 2).
We did not explore moderators given the lack of heterogeneity in effect sizes.

Brain Development

We systematically reviewed the associations between ELA and two metrics of brain
development: cortical thickness and task-based amygdala-PFC functional connectivity.
Across the two metrics there were 25 studies and a total of 3,253 unique participants (17
cortical thickness articles, N=2,825; 7 amygdala-PFC connectivity articles, V= 428). As
described above, we created quality ratings for these studies with a 3-point scale for cortical
thickness articles and a 4-point scale for amygdala-PFC connectivity articles. All ratings can
be found in Table 3 and Table 4.

Cortical thickness.

Threat.: We found six articles that investigated the association between experiences of
threat and cortical thickness in childhood and adolescence (N = 232; Busso, McLaughlin,
Brueck, et al., 2017; Edmiston et al., 2011; Gold et al., 2016; Kelly et al., 2013; Lim et al.,
2018; McLaughlin, Sheridan, et al., 2016). Of these six studies, five found that children
exposed to threat had accelerated thinning of the cortex. Four of these studies found
decreased cortical thickness among children exposed to threat in the ventromedial PFC
(Busso, McLaughlin, Brueck, et al., 2017; Edmiston et al., 2011; Gold et al., 2016; Kelly et
al., 2013). Four found additional associations that follow the same pattern of decreased
thickness among threat-exposed youths in regions including the lateral PFC (Busso,
McLaughlin, Brueck, et al., 2017; Edmiston et al., 2011; Gold et al., 2016; Lim et al., 2018).
Three found evidence for reduced thickness in the orbitofrontal cortex (Edmiston et al.,
2011; Gold et al., 2016; Lim et al., 2018) and three found evidence for reduced thickness in
medial and lateral temporal cortex (Busso, McLaughlin, Brueck, et al., 2017; Edmiston et
al., 2011; Gold et al., 2016). In contrast, one study that spanned a larger age range found no
association between experiences of threat and cortical thickness in regions of interest in the
dorsal anterior cingulate or ventromedial PFC (McLaughlin, Sheridan, et al., 2016). As a
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whole, these studies provide support for the hypothesis that experiences of threat are
associated with accelerated development, especially in the ventromedial PFC.

Deprivation.: A total of four studies (7= 353) met inclusion criteria for our review of the
association between experiences of deprivation and cortical thickness. This included two
studies investigating cortical structure among previously institutionalized children (Hodel et
al., 2015; McLaughlin, Sheridan, Winter, et al., 2014) and two investigating the association
between cognitive stimulation/deprivation in the home environment and cortical structure
(Avants et al., 2015; Rosen et al., 2018). Both studies of institutionalized children
demonstrate support for the hypothesis that experiences of deprivation are associated with
accelerated cortical thinning. In one study institutionalization was associated with
widespread reductions in cortical thickness, including in nodes of the frontoparietal and
dorsal attention networks (superior parietal lobule, frontal pole, superior frontal gyrus),
default mode network (inferior parietal cortex, precuneus, midcingulate), lateral temporal
cortex, parahippocampal cortex, and insula at age 8-10 years (McLaughlin, Sheridan,
Winter, et al., 2014). In contrast, Hodel et al. (2015) examined only prefrontal cortex regions
of interest and found reduced cortical thickness only in the inferior frontal gyrus among
previously institutionalized children compared with controls at age 12-14 years.

The other two studies investigated cortical thickness and its association with cognitive
stimulation/deprivation in the home environment. In a cross-sectional study spanning
children and adolescents, cognitive stimulation (i.e., lower deprivation) was positively
associated with cortical thickness in two nodes in the left, but not right frontoparietal
network (superior parietal lobule and middle frontal gyrus; Rosen et al., 2018). These results
are consistent with the idea that deprivation (i.e., low cognitive stimulation) is associated
with accelerated development. In contrast, in a longitudinal study, results revealed that
cognitive stimulation at age 4, but not at age 8, was negatively associated with cortical
thickness at age 19, such that lower deprivation was associated with thicker cortex in the
ventral temporal cortex and inferior frontal gyrus. These results suggest that cognitive
deprivation is associated with delayed development in these regions.

SES.: Eight studies met the criteria for inclusion examining SES and cortical thickness (N =
2,303; Jednordg et al., 2012; Lawson, Duda, Avants, Wu, & Farah, 2013; Leonard et al.,
2019; Mackey et al., 2015; McDermott et al., 2019; Noble et al., 2015; Piccolo, Merz, He,
Sowell, & Noble, 2016; Rosen et al., 2018). Of those, five found that low SES was
associated with thinner cortex across large swaths of cortex encompassing the frontoparietal
network (lateral prefrontal cortex, superior parietal cortex), default mode network (lateral
temporal cortex, precuneus), and the visual system (lateral occipital and ventral temporal
cortex), supporting the idea that low SES is associated with accelerated cortical
development. Piccolo, Merz, He, Sowell, and Noble (2016) found that SES moderates the
association between age squared and cortical thickness such that low SES individuals show a
sharper decline in cortical thickness early in development, which may reflect accelerated
development compared with higher SES individuals. Additionally, Lawson and colleagues
(2013) demonstrate that low parent education is associated with reduced cortical thickness in
the right cingulate gyrus and right superior frontal gyrus, and Mackey and colleagues (2015)
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demonstrate that low SES individuals demonstrate thinner cortex across much of the brain
including the frontoparietal network (right middle frontal gyrus, left superior parietal lobule,
right frontal pole), default mode network (left precuneus, bilateral lateral temporal cortex,
right frontal pole), and visual system (bilateral occipital and ventral temporal cortex).
McDermott et al. (2019) demonstrate that SES is positively associated with mean cortical
thickness, but when looking at regional specificity, found that the association was only
significant in the right supramarginal gyrus. Two studies spanning large age ranges (Noble et
al., 2015; Rosen et al., 2018) found no association between SES and cortical thickness.
Importantly, Noble et al. (2015) and Piccolo et al. (2016) used the same sample and while
there were no main effects of SES on cortical thickness and no Age x SES interactions
(Noble et al., 2015), Piccolo et al. (2016) demonstrate an Age Squared x SES interaction
such that children from low-income households demonstrate accelerated thinning compared
with high-income counterparts. One other study in young children (Leonard et al., 2019)
found that SES was positively associated with cortical thickness in the occipital cortex and
posterior intraparietal sulcus, but only at a very liberal threshold.

Amygdala-PFC connectivity.

Threat.: Our search yielded five articles that evaluated the association between amygdala-
PFC connectivity and threat-related experiences. Of these five studies (V= 250), three
support the hypothesis that experiences of threat are associated with accelerated maturation
of this network such that threat-exposed children exhibit more negative connectivity between
amygdala and PFC during an implicit dynamic emotion face task, an explicit affect labeling
task, and viewing of negative versus neutral images, than children of the same age (Colich et
al., 2017; Keding & Herringa, 2016; Peverill, Sheridan, Busso, & McLaughlin, 2019). The
two other studies demonstrate the opposite pattern of results such that children who have
experienced threat demonstrate more positive task-related amygdala-PFC connectivity
compared to controls while viewing emotional faces and while performing an emotional
conflict task (Cisler, Scott Steele, Smitherman, Lenow, & Kilts, 2013; Marusak et al., 2015).
These mixed findings do not provide conclusive evidence that experiences of threat are
associated with either accelerated or delayed development of the circuits.

Deprivation.: Our search yielded two articles (V= 89) that evaluated the association
between experiences of deprivation and task-related connectivity between mPFC and
amygdala. Of these two studies, one demonstrated evidence for accelerated development of
these circuits such that children who have experienced deprivation exhibit more negative
connectivity earlier in development than comparison children in a passive viewing task of
facial emotion (Gee, Gabard-Durnam, et al., 2013). The other study found the opposite
pattern of results such that children who had experienced deprivation demonstrated more
positive amygdala-mPFC connectivity than comparison children in a fear conditioning
paradigm (Silvers et al., 2016).

Discussion

Through the use of meta-analysis and systematic review, we provide evidence for an
association between ELA and accelerated biological aging, as measured by pubertal timing,
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cellular aging, and cortical thinning in childhood and adolescence. We found no evidence for
a consistent association of ELA and accelerated development of amygdala-mPFC
connectivity. First, although we observed an overall association of ELA with pubertal
timing, moderator analysis revealed that ELA characterized by threat, but not deprivation or
SES, was associated with accelerated pubertal development with a small effect size,
suggesting specificity in the link between ELA and pubertal timing to threat-related
adversity. Second, ELA was also associated with accelerated cellular aging as measured by
both leukocyte telomere length and DNA methylation age. Again, moderator analyses
revealed accelerated aging among children exposed to threat of moderate effect size, but no
association with deprivation or SES. However, given the limited number of studies published
on early adversity and cellular aging, these analyses, though promising in their consistency
with the other metrics of biological aging, should be interpreted as preliminary. Finally, the
results of our systematic review of the effects of ELA on brain development revealed a
consistent association between ELA and accelerated cortical thinning across multiple types
of ELA, although the specific brain regions involved varied by adversity type. Associations
of threat with cortical thinning were most consistent in ventromedial PFC, whereas
associations of deprivation with cortical thinning were most consistent in the frontoparietal
and default mode networks and the ventral visual stream. In contrast, there was no consistent
association of ELA with amygdala-mPFC connectivity. These results support the broad
predictions of the DMAP model in demonstrating divergent patterns of association of
different dimensions of ELA with pubertal timing, cellular aging, and cortical thickness and
extend this model to encompass biological aging as an additional developmental domain
beyond those proposed in the original theory where the effects of different forms of
adversity are at least partially distinct.

ELA and Pubertal Timing

ELA was associated with accelerated pubertal timing overall, but significant heterogeneity
existed in this effect as a function of adversity type. The strength of the association of ELA
with pubertal timing was significantly moderated by adversity type, such that the association
between ELA and accelerated pubertal timing was specific to experiences characterized by
threat, and showed no association with deprivation or SES. These results are consistent with
predictions from life history models that exposure to environmental harshness (i.e., threat) in
childhood accelerates sexual maturation, in order to increase chances of reproduction prior
to mortality (J. Belsky et al., 2012; Ellis et al., 2009). They are also consistent with recent
findings from our lab demonstrating that threat-related adversities are associated with
accelerated pubertal development even after adjustment for exposure to co-occurring
deprivation (Colich et al., 2020; Sumner et al., 2019). Some have argued that ELA impacts
pubertal timing through influences on the hypothalamic-pituitary-adrenal (HPA) axis
(Negriff, Saxbe, et al., 2015; Saxbe, Negriff, Susman, & Trickett, 2015). Given associations
between threat-related adversity and altered diurnal patterns of cortisol and cortisol
reactivity in childhood (Carpenter, Shattuck, Tyrka, Geracioti, & Price, 2011; Jaffee et al.,
2015; King et al., 2017; Tyrka et al., 2009), it is plausible that trauma-related alterations of
the HPA-axis may interact with the HPG-axis to accelerate the onset of pubertal
development (J. Belsky, Ruttle, Boyce, Armstrong, & Essex, 2015; Negriff, Saxbe, et al.,
2015; Saxbe, Negriff, Susman, & Trickett, 2015).
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It is also important to consider the role of gene-environment correlations in the association
between threat-related ELA and pubertal timing (Cousminer, Widén, & Palmert, 2016;
Harden, 2014; Rowe, 2002). For instance, mothers who experience earlier onset of puberty
may reproduce at an earlier age, and have children who are both more likely to experience
trauma and an earlier onset of puberty (de Vries, Kauschansky, Shohat, & Phillip, 2004;
Towne et al., 2005). This topic has been written on extensively (Barbaro, Boutwell, Barnes,
& Shackelford, 2017; Gaydosh, Belsky, Domingue, Boardman, & Harris, 2018; Mendle et
al., 2006; Tither & Ellis, 2008), however most studies exploring the association between
ELA and age at menarche do not control for potential genetic confounding, as the influence
of genetics versus the shared and nonshared environment on development can be difficult to
disentangle (see Gaydosh, Belsky, Domingue, Boardman, & Harris, 2018; Mendle et al.,
2006 for research designs that have attempted to disentangle these factors). However, many
more studies have used maternal age at menarche as a covariate in analyses exploring
associations between ELA and age at menarche, including nine of the 43 studies included in
the pubertal timing meta-analysis. We found no variation in effect size in the studies that
controlled for maternal age of menarche from those that did not, which provides some
support for the notion that these effects are environmentally mediated to at least some
degree. Future research using genetically informed designs is needed to disentangle the
genetic versus environmental pathways through which ELA influences pubertal timing in
order to better understand the mechanisms linking threat-related ELA and accelerated
pubertal development.

We did not find support for our hypothesis that ELA characterized by deprivation would
show an association with delayed pubertal timing. Instead, we found no association between
deprivation and pubertal timing. Life history theory posits that deprivation of bioenergetics
resources could result in delayed maturation and later pubertal development (J. Belsky et al.,
2012; Ellis et al., 2009). In this analysis, we included emotional and physical neglect
(Boynton-Jarrett & Harville, 2012; Colich et al., 2020; Mendle et al., 2014, 2011; Mendle,
Ryan, et al., 2016; Ryan et al., 2015; Sumner et al., 2019), and early institutionalization
(Hayes & Tan, 2016; Johnson et al., 2018; Reid et al., 2017; Sonuga-Barke, Schlotz, &
Rutter, 2010; Teilmann et al., 2009) as forms of deprivation. It is likely that deprivation in
our modern context, represented by the forms of psychosocial deprivation included in our
analyses, is qualitatively different from deprivation in our evolutionary past, and as
conceptualized in life history theory. Whereas there is strong evidence for associations of
food insecurity and severe deprivation associated with war and famine with delayed pubertal
timing (Prebeg & Bralic, 2000; van Noord & Kaaks, 1991), there is less support for
association of early institutionalization (where most children experience severe emotional
deprivation but not necessarily food insecurity) with pubertal timing (Johnson et al., 2018;
Reid et al., 2017). Our novel finding that deprivation is unrelated to the pace of biological
aging has clear theoretical implications for life history theory, which to date has made no
clear predictions about how psychosocial forms of deprivation should impact the pace of
aging and relevant reproductive milestones.

In this meta-analysis, we decided to isolate the effects of deprivation (including neglect and
early life institutionalization) from the effects of SES. Low SES, defined as poverty and low
parental education, has previously been used as an indicator of deprivation in studies that
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adjust for co-occurring threat exposure (e.g., Lambert et al., 2017; Sheridan et al., 2017),
based on extensive evidence demonstrating that children from families with low parental
education and/or income experience reductions in cognitive and social stimulation than
children from higher-SES families (Bradley et al., 2001; Duncan & Magnuson, 2012).
However, within the DMAP model, poverty is conceptualized as a risk factor for both threat
and deprivation, rather than a direct marker of deprivation (McLaughlin, Sheridan, Lambert,
et al., 2014; Sheridan & McLaughlin, 2014). Indeed, there is a strong association between
SES and exposure to violence (Foster, Brooks-Gunn, & Martin, 2007) in addition to
deprivation. Here, the association of SES with accelerated pubertal timing was not
significant, potentially reflecting the fact that SES is a risk marker for exposure to other
forms of adversity (e.g., trauma) that are associated with accelerated pubertal development
rather than having a direct association with pubertal timing. Despite little overlap in
inclusion/exclusion criteria and resulting studies included in the analyses, results of a recent
meta-analysis examining associations between SES and pubertal timing in males similarly
observed no association between SES and pubertal timing (Xu, Norton, & Rahman, 2018).
Overall, these findings highlight the importance of considering the nature of the exposure
when exploring the developmental consequences of ELA. Future research should carefully
distinguish between the effects of threat- and deprivation-related adversities on pubertal
timing.

There was no evidence for the moderating effect of metric of pubertal timing (age of
menarche vs. secondary sex characteristics) on associations of ELA with pubertal timing, or
whether studies controlled for BMI or exposure to other adversity types. However, sex did
moderate the association between deprivation-related adversities and pubertal timing such
that the more males included in the sample, the more positive the association between
deprivation exposure and pubertal timing, suggesting more delayed pubertal maturation.
These results suggest that deprivation may have a differential effect on males and females.
Sex differences in the impact of adversity on pubertal timing are not surprising, given
significant sexual dimorphisms in the development of biological systems beginning in early
development and continuing throughout sexual maturation and adulthood (Cousminer et al.,
2016). Animal models of nutritional challenge (including undernutrition and obesity) have
differential effects on pubertal timing in male and female rats (Sanchez-Garrido et al., 2013),
suggesting that sex-specific metabolic effects of deprivation may have a significant impact
on pubertal timing. Future research in humans studying the impact of food insecurity
specifically, should explore this question directly. These results, along with the fact that
pubertal timing differs significantly in males and females (Dorn & Biro, 2011) , suggest that
future analyses exploring the impact of deprivation on pubertal timing should be conducted
separately in males and females.

Race/ethnicity also significantly moderated the association between SES and pubertal
timing, such that the higher percentage of white individuals in the sample, the more negative
the association between SES-related adversity and pubertal timing (i.e., the more accelerated
the pattern of development). Documented differences in pubertal timing depending upon
race/ethnicity suggest that Mexican American and non-Hispanic Black girls develop
secondary sex characteristics earlier and experience earlier age at menarche than non-
Hispanic White girls (Biro et al., 2010). Similarly, there are well-documented differences in

Psychol Bull. Author manuscript; available in PMC 2020 September 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Colichetal.

Page 26

SES across race/ethnicity among adolescents in the U.S. (McLaughlin, Costello, et al.,
2012). These results highlight the need to carefully consider race and ethnicity in studies
examining ELA and pubertal timing and evaluate whether these factors moderate observed
associations.

ELA and Cellular Aging

ELA was associated with accelerated cellular aging, as measured by both leukocyte telomere
length and DNAm age, such that greater exposure to adversity was associated with
decreased telomere length and more advanced DNAm age relative to chronological age.
These results replicate earlier meta-analyses conducted in adult populations of adversity
with DNAm age (Wolf et al., 2018) and telomere length (Hanssen, Schutte, Malouff, & Epel,
2017). These results are also broadly consistent with an earlier meta-analysis exploring the
effects of stress exposure (broadly defined) on telomere length (Coimbra et al., 2017). The
consistency in findings is striking given significant differences in the approach of these
meta-analyses. Whereas Wolf et al. (2018) and Hanssen, Schutte, Malouff, and Epel (2017)
examined the association between ELA and accelerated biological aging in adults, Coimbra
et al. (2017) examined a broad range of stressors in childhood and adolescence, including
stress reactivity as indexed by cortisol reactivity and parental psychopathology. We did not
include cortisol reactivity or parental psychopathology as adversities in the current meta-
analysis, yet results are largely consistent with Coimbra et al. (2017). However, it important
to note the small number of studies included and the potential publication bias present in this
meta-analysis. Thus, these results should be interpreted as preliminary, and further meta-
analyses should be conducted once more studies on this topic are conducted.

Despite the small number of studies, we conducted a stratified analysis and found that
exposure to threat was associated with accelerated cellular aging of moderate magnitude,
whereas neither deprivation nor SES was associated with cellular aging. These results
support our hypotheses based on the DMAP model that threat-related adversities would be
specifically associated with accelerated cellular aging. Again, these differential associations
should be interpreted with caution, however, as the number of studies examining deprivation
and SES with cellular aging was small. Similarly, Egger’s linear regression test was
significant and results of the p-curve analysis suggest potential publication bias in this
sample of studies, which is unsurprising given the small number of studies included in these
analyses. Nonetheless, these findings provide preliminary evidence that threat-related
adversities are associated with accelerated cellular aging. Greater work is needed to clarify
the magnitude and direction of associations of deprivation and childhood SES with cellular

aging.

These cellular aging results are consistent with “internal prediction” models of predictive
adaptive response (Nettle et al., 2013; Rickard et al., 2014), which propose that ELA
negatively influences physical health through altered cellular development as a result of
reduced energy to build or repair cellular tissue. This theory expands earlier models focused
on allostatic load, or the accumulation of environmental insults on biological systems
(Danese & McEwen, 2012; McEwen, 1998; McEwen & Stellar, 1993), and developmental
origins of health and disease models (Barker, 2007) focused on how early experience
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programs biological development to adapt to later environmental conditions. These theories
all suggest that accelerated cellular aging occurs as a result of environmental experiences in
development. Accelerated cellular aging following ELA may occur in response to alterations
in mitochondrial function, oxidative stress, and inflammation (Shalev, 2012). Although we
observed consistent effects of ELA across two metrics of cellular aging (telomere length and
DNAm age), some work indicates that exposure to ELA may not have consistent
associations across other metrics of biological aging (D. W. Belsky et al., 2018). Future
research should explore the effect of distinct forms of ELA on additional metrics of
allostatic load that may represent accelerated biological aging, including cardiometabolic
risk, inflammation, and respiratory health.

Similar to pubertal timing, it is important to consider the role of gene-environment
correlations when examining associations among ELA and cellular aging. It is plausible that
a higher mutation load (i.e., number of genetic point mutations), associated with many
physical and mental health problems, may underlie both exposure to adversity and
accelerated cellular aging. For instance, parents who have higher mutation loads that may
put them at risk for greater physical and mental health problems may then have children who
are both more likely to experience trauma and also show accelerated cellular aging. Thus,
the link between ELA and cellular aging could potentially be accounted for by genetic
factors that could contribute to both adverse early environments and accelerated cellular
aging. Future research should explore this important alternative explanation.

ELA and Brain Development

Cortical thickness.—Consistent with the hypothesis that ELA leads to accelerated
development, the majority of studies investigating the association between ELA and cortical
thickness found that children exposed to adversity of any kind have thinner cortex than their
nonexposed counterparts across threat, deprivation, and SES. However, it is critical to note
that the specific brain regions that exhibited this pattern of thinning varied consistently by
adversity type. This specificity may reflect precocious maturation of particular regions of the
brain depending on the particular type of adversity experienced, reflecting adaptive
experience-related tuning of neural systems to the environment in which they are
developing. There was remarkable consistency across studies of threat-related experiences
and cortical thickness—two of which were high-quality, one that was moderate quality, and
one that was poor quality—with the majority observing thinner cortex in the ventromedial
PFC among children exposed to trauma (Busso, McLaughlin, Brueck, et al., 2017; Gold et
al., 2016; Kelly et al., 2013). The vmPFC is implicated in multiple forms of emotion
processing, including recall of extinction learning, appraisal of episodic memories, and
appraisal of simulated future events (Dixon, Thiruchselvam, Todd, & Christoff, 2017; Milad
& Quirk, 2012; Phelps & LeDoux, 2005). The vmPFC has strong interconnections with the
amygdala and modulates amygdala activation based on appraisals and prior learning (Phelps
& LeDoux, 2005). Accelerated thinning of this region among children exposed to trauma
could reflect earlier or more frequent recruitment of this region to modulate amygdala
responses, which are well-established to be elevated in response to threat cues among
children exposed to violence (Hein et al., 2017; McCrory, De Brito, & Viding, 2011;
McLaughlin, Peverill, Gold, Alves, & Sheridan, 2015), ultimately producing more rapid
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specialization of this region, potentially through more rapid synaptic pruning or increased
myelination in this region.

Association between experiences of deprivation and cortical structure were more mixed.
While one high-quality study of previously institutionalized children demonstrated
widespread reductions in cortical thickness across regions of the frontoparietal, default
mode, and visual networks (McLaughlin, Sheridan, Winter, et al., 2014), another high-
quality study that focused only on prefrontal cortex regions of interest found reduced
cortical thickness only in the inferior frontal gyrus (Hodel et al., 2015). Studies investigating
low cognitive stimulation have also been mixed in the two high-quality studies included
here. One study found that low cognitive stimulation was associated with thinner cortex in
the frontoparietal network across childhood and adolescence (Rosen et al., 2018), and
another found that lower cognitive stimulation was associated with thicker cortex in the
lateral prefrontal cortex and ventral visual stream in late adolescents (Avants et al., 2015).
Differences in the age of the samples and timing of assessment of cognitive stimulation may
have contributed to these inconsistent findings.

The studies investigating SES-related differences in cortical thickness also had mixed
results. Two studies—one high-quality and the other low-quality—found widespread
positive associations with SES and thickness in the frontoparietal and default mode networks
and the visual system (Jednorog et al., 2012; Mackey et al., 2015). One study of moderate-
quality focused only on the PFC also found similar reductions in thickness (Lawson et al.,
2013). Another high-quality study found overall SES related differences in mean cortical
thickness, and a regional specificity analysis showed that higher SES was associated with
greater cortical thickness specifically in the supramarginal gyrus, a region in the default
mode network (McDermott et al., 2019). Broadly, these regions are involved in a wide range
of cognitive processing including working memaory, cognitive control, autobiographical
memory, theory of mind, and visual processing (M. W. Cole & Schneider, 2007; Corbetta,
Kincade, & Shulman, 2002; DiCarlo, Zoccolan, & Rust, 2012; Spreng & Grady, 2010).
Given that SES-related differences in many of these domains are well-established (Noble,
McCandliss, & Farah, 2007), these findings could represent a neural mechanism explaining
these SES-related differences in cognitive function. In contrast, two high-quality studies
spanning a large age range did not find SES-related differences in thickness (Noble et al.,
2015; Rosen et al., 2018). This could be because SES associations with cortical thickness
vary across childhood and adolescence. Indeed, using the same sample as Noble et al., 2015,
Piccolo et al. (2016) found an SES by age interaction for average cortical thickness such that
lower SES was associated with a more rapid age-related decrease in cortical thinning early
in development while higher SES was associated with a less steep linear decline in thickness
from childhood to adolescence. These findings are consistent with the hypothesis that low
SES is associated with accelerated maturation of the cortex.

Linear decreases in cortical thickness from infancy to adulthood are well-established
(LeWinn et al., 2017; Vijayakumar et al., 2016; Wierenga et al., 2014), although the
mechanisms by which this pattern emerges remain in question. One interpretation is that
synaptic connections that are underutilized or inefficient are pruned, allowing the brain to
adapt to the environment in which it develops (Huttenlocher, 1979; Petanjek et al., 2011;
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Rakic, Bourgeois, Eckenhoff, Zecevic, & Goldman-Rakic, 1986). If pruning is the primary
mechanism driving cortical thinning, it is possible that ELA-related differences in cortical
thickness are due to accelerated pruning. In the case of deprivation-related experiences, this
may be due to a lack of experience with socially or cognitively stimulating environments
(McLaughlin, Sheridan, & Nelson, 2017). Alternatively, greater pruning could reflect
precocious specialization and maturation of circuits utilized more frequently by children
exposed to ELA,; in the absence of behavioral data associated with specific patterns of
cortical thinning, caution is warranted in interpreting these patterns as either adaptive or
maladaptive (Ellwood-Lowe, Sacchet, & Gotlib, 2016). Other work suggests that age-related
decreases in cortical thinning may actually be due to increases in myelination across
development (Natu et al., 2019, 2018; Sowell et al., 2004). Increased myelination, which is
most pronounced in deeper cortical layers may increase the intensity of voxels at the gray-
white matter border, therefore making the cortex appear thinner across age. If myelination is
the primary mechanism by which cortical thinning happens, it is possible that increased
cortical thickness in response to ELA may be due to faster development of structural
connectivity between regions. Of course, these mechanisms are not mutually exclusive and
future longitudinal work measuring multiple forms of ELA utilizing both T1-weighted
imaging and diffusion tensor imaging is needed to disentangle the precise mechanisms by
which ELA leads to thinner cortex in youths.

Estimates of heritability of cortical thickness ranges across specific regions of the cortex but
have been shown to be consistently highly heritable (Blokland, De Zubicaray, McMahon, &
Wright, 2012; Schmitt et al., 2008; Van Soelen et al., 2012; Winkler et al., 2010). However,
despite high levels of heritability, environmental factors have also been shown to contribute
to cortical thickness patterns across development in twin studies that control for genetic
contributions to neural outcomes (Bootsman et al., 2015; Joshi et al., 2011; Yang et al.,
2012). It is therefore clear that both the environment and genetic factors influence adversity-
related differences in cortical structure. Only two studies reviewed here control for any
genetic influence (Noble et al., 2015; Piccolo et al., 2016), but those studies control for
genetic ancestry (a proxy for race) and not any genetic factors known to directly influence
cortical thickness. One other study directly addresses the issue of heritability of cortical
thickness in the discussion (Avants et al., 2015). That study demonstrated an age-dependent
association between cognitive stimulation and cortical thickness such that cognitive
stimulation at age 4 but not 8 is associated with differences in cortical thickness in late
adolescence. However, as noted by the authors, while it is possible that there is a genetic
influence on cortical thickness of parents that then influences the environment, it is unclear
how this would explain differential timing of the environmental influence. It is also
important to note that cortical thickness is positively associated with 1Q in developmental
samples, which may have implications for interpreting heritability of SES and cortical
thickness (Karama et al., 2009, 2011). However, it has been argued that 1Q should not be
used as a covariate in analyses of neurocognitive development (Dennis et al., 2009), but
many previous studies have conceptualized IQ as an outcome that is associated with cortical
structure and have investigated cortical structure as a mechanism explaining SES-related
differences in 1Q (Hair, Hanson, Wolfe, & Pollak, 2015; Noble et al., 2015). Future studies
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focused on childhood adversity will be needed to disentangle the environmental and genetic
contributions to cortical thickness.

Amygdala-PFC connectivity.—EXxisting work examining ELA and task-related
amygdala-PFC connectivity has produced mixed findings. Across both threat and
deprivation, approximately half of the studies—three of which were high-quality and one of
which was moderate-quality—observed that ELA was associated with more negative
functional connectivity, indicating accelerated development (Colich et al., 2017; Gee,
Gabard-Durnam, et al., 2013; Keding & Herringa, 2016; Peverill et al., 2019), while several
others—two of which were moderate-quality and one of which was poor-quality—showed
the opposite pattern of results such that youths exposed to ELA demonstrate more positive
amygdala-PFC connectivity than nonexposed youths, indicating delayed development
(Cisler, James, et al., 2013; Marusak et al., 2015; Silvers et al., 2016). Therefore, existing
work has yet to provide clear evidence for an association between ELA and accelerated
development of these systems. However, overall more studies showed evidence for an
association between adversity and greater negative amygdala-PFC connectivity than for
greater positive connectivity and these studies were overall of higher quality. Moreover,
there is no clear evidence that specific types of adversity have differential influences on the
development of this circuit.

One possibility is that amygdala-PFC functional connectivity is not a reliable marker of
neural development (Zhang, Padmanabhan, Gross, & Menon, 2019). Unlike cortical
thickness which has been studied widely across large representative samples (for review see
Vijayakumar et al., 2016), research documenting amygdala-PFC connectivity as a marker of
maturation is more modest (Gee, Humphreys, et al., 2013; Kujawa et al., 2016; Silvers et al.,
2016; Wu et al., 2016), and to our knowledge, all of the studies that have demonstrated a
developmental shift in this circuit have been cross-sectional. Recently, a large-scale cross-
sectional study of 749 children, adolescents, and adults failed to replicate age-related
developmental patterns in amygdala-PFC connectivity during emotion face processing
(Zhang et al., 2019). As such, it is unclear whether amygdala-mPFC connectivity is a
reliable marker of neural maturation. Alternatively, while all these tasks focused on some
sort of emotional processing, it is likely that heterogeneity in the specific tasks contributed to
differences in the pattern of results across studies. Future longitudinal work with a range of
emotional processing tasks will be needed to establish the developmental trajectory of
amygdala-mPFC connectivity to determine whether it is a robust metric of development.

Associations Between ELA and Multiple Domains of Biological Aging

Given the range in operationalizing accelerated development and potential mechanisms
linking ELA and accelerated biological development, it is surprising that few have attempted
to reconcile across these different metrics of maturation. Only a handful of studies to our
knowledge have incorporated multiple metrics of accelerated development in adolescence. J.
Belsky and Shalev (2016) put forth a “two-hit” model suggesting that ELA accelerates
development first through telomere erosion and second, through earlier reproduction, which
can increase oxidative stress and accelerate telomere erosion. Although this model accounts
for two forms of accelerated aging, it does not directly compare and contrast the effects of
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ELA on both metrics of accelerated development—cellular aging and pubertal timing.
Sumner, Colich, Uddin, Armstrong, and McLaughlin (2019) examined how exposure to
threat and deprivation-related ELA were associated with both DNAm age and pubertal
timing. They found that exposure to threat, but not deprivation, was associated with both
accelerated epigenetic aging and accelerated pubertal timing. There is also evidence to
suggest that pubertal timing and cellular aging are highly correlated (Binder et al., 2018;
Sumner et al., 2019), suggesting a potential shared mechanism contributing to the
development of both domains. However, other work demonstrates variation in the rate of
change across different metrics of biological aging in adults (D. W. Belsky, Caspi, et al.,
2015), indicating that multiple mechanisms might underlie the ELA-accelerated
development association, depending upon the metric of accelerated development and point
in the life-course when aging is measured. Although increased allostatic load has been
proposed as a mechanism linking ELA to accelerated pubertal timing (Danese & McEwen,
2012; McEwen, 1998), empirical evidence testing this possibility is currently lacking.
Moreover, allostatic load is a multidimensional construct involving numerous biological
systems, and it is unclear if accelerated weathering occurs across all systems to a similar
degree (Geronimus, 1992; Geronimus, Hicken, Keene, & Bound, 2006). If allostatic load is a
mechanism contributing to accelerated pubertal development, it could explain our disparate
findings regarding threat and deprivation as exposure to early life trauma has been
consistently associated with elevated allostatic load (Danese & McEwen, 2012; Scheuer et
al., 2018; Widom, Horan, & Brzustowicz, 2015), whereas recent work indicates that even
extreme exposure to deprivation association with institutional rearing is unrelated to
allostatic load (Slopen et al., 2019). It is clear that greater work is needed to elucidate the
mechanisms underlying accelerated development following exposure to ELA across
domains, whether they are global or specific to particular dimensions of early experience,
and how these mechanisms ultimately contribute to changes in reproductive function,
cellular aging, and brain development. Similarly, longitudinal studies that can explore the
time course of the associations of ELA with accelerated biological aging is necessary to
further understand the mechanisms linking ELA and accelerated aging across multiple
systems.

Implications of Accelerated Development

Accelerated aging across domains has been associated with a host of mental and physical
health problems. For instance, accelerated pubertal timing is linked with a range of mental
health problems including heightened levels of risk-taking behavior, delinquency, and
substance abuse problems (Copeland et al., 2013; Harden & Mendle, 2012), as well as
depression and anxiety disorders (Colich et al., 2020; Hamilton, Hamlat, Stange, Abramson,
& Alloy, 2014; Mendle, Harden, Brooks-Gunn, & Graber, 2010; Mendle et al., 2014; Negriff
& Susman, 2011; Platt, Colich, McLaughlin, Gary, & Keyes, 2017; Ullsperger & Nikolas,
2017). Accelerated pubertal timing is also associated with a range of physical health
problems, including cardiovascular disease, polycystic ovarian syndrome in females, and
testicular cancer in males (Day, Elks, Murray, Ong, & Perry, 2015; Golub et al., 2008;
Lakshman et al., 2009; Velie, Nechuta, & Osuch, 2006). Accelerated cellular aging has also
been associated with depression (Ridout, Ridout, Price, Sen, & Tyrka, 2016), anxiety
(Malouff & Schutte, 2017), posttraumatic stress disorder (Li, Wang, Zhou, Huang, & L,
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2017), cardiovascular disease (Rehkopf et al., 2016), cancer (Zhu et al., 2016), and all-cause
mortality (Needham, Rehkopf, et al., 2015). Finally, altered trajectories of cortical
development have been linked to attention-deficit/hyperactivity disorder (McLaughlin,
Sheridan, Winter, et al., 2014) and both internalizing and externalizing psychopathology
(Busso, McLaughlin, Brueck, et al., 2017; Gold et al., 2016). Little research has directly
examined whether accelerated development in these systems is a consequence of preexisting
mental and physical disorders, or a mechanism explaining elevated risk for mental and
physical health problems in youth who have experienced ELA (see J. Belsky et al., 2015;
Colich et al., 2020; Mendle et al., 2014; Negriff, Saxbe, et al., 2015 for work that has
explored this idea). For instance, some evidence suggests that accelerated pubertal timing
explains a significant proportion of the association between threat-related ELA risk for
mental health problems in adolescence (Colich et al., 2020), and that telomere shortening
occurs prior to the onset of depression in an at-risk population (Gotlib et al., 2015).
However, other evidence suggests that early psychosocial difficulties precede early pubertal
onset (Mensah et al., 2013) and could potentially accelerate cellular aging as well (Lindqgvist
et al., 2015). A key issue for future research will be to determine whether early interventions
targeting psychosocial mechanisms linking ELA with mental and physical health problems
are capable of altering observed patterns of accelerated biological aging.

It is also important to acknowledge that although there are strong associations among
accelerated development and negative mental and physical health outcomes, accelerated
development is most likely an adaptation to current and presumably future environmental
conditions (J. Belsky, 2019). In a highly dangerous or unpredictable environment, it may be
adaptive in the short-term to reach adult-like capabilities at an earlier age, in order to either
reach reproductive status earlier, or reach independence from the caregiving situation at an
earlier age. This immediate goal may outweigh the longer-term consequences of mental and
physical health problems. If the environment is signaling imminent mortality, then this trade-
off is one that is evolutionarily adaptive. It will be important that future work consider the
adaptive significance of accelerated development in response to ELA.

Limitations and Future Directions

Several limitations of this work highlight key directions for future research. First, we
examined a relatively small number of studies for some domains and within each dimension
of adversity, particularly with regard to cellular aging and brain development. More research
is needed to evaluate whether all forms of adversity influence cellular aging or whether these
associations are stronger for experiences of threat. Similarly, due to the small number of
studies published on these variables, we collapsed across measures of cellular aging,
including telomere length and DNAm age. Although we ran sensitivity analyses to ensure
that the effect was similar if only exploring studies examining telomere length and when
using metric of cellular aging as a moderator, we could not conduct the same analyses for
DNAmMm age due to the small number of studies published (4= 3). These markers reflect
distinct biological processes with different molecular signatures, and we recognize that
combining across these two metrics of cellular aging is most likely an oversimplification of
the effects of ELA on cellular aging. These findings should be replicated when more studies
have been published on the associations of ELA with both telomere length and DNAm age.
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We also collapsed across cellular aging metrics derived from saliva, buccal swabs, and
blood. Although our moderator analysis revealed no moderation by cell type, it is likely that
gene expression, DNA methylation patterns, and rates of telomere erosion differ across cell
types. Once more studies have been published in this area, future work should conduct a
meta-analysis for each cell type separately. Similarly, it is important to note that we did not
include studies examining the effects of ELA on methylation patterns of single genes due to
difficulties in understanding what typical developmental patterns of specific gene
methylation would be. For a systematic review of the effects of ELA on gene-specific
methylation patterns see Lang et al. (2019). Second, although we show associations among
ELA, pubertal timing, cellular aging, and cortical thinning, we do not have the data to speak
to the underlying mechanisms driving these associations. Although we speculate that
accelerated biological development following ELA is most likely due to the effects of ELA
on HPA-HPG axes interactions and allostatic load, future experimental work should
investigate the underlying biological mechanisms supporting these associations.

Along these lines, we cannot rule out the effects of genetic heritability confounding our
results. It is plausible that individuals who experience accelerated maturation may reproduce
earlier, create a less stable family environment, and in turn put offspring at risk for higher
exposure to ELA. Future studies examining the association of ELA and biological aging
should consider the role of genetics in their approach. It is also important to note that our
meta-analysis examines average effects of adversity on biological aging. It is likely that
some children are more susceptible than others to the effects of trauma on biological aging
(Ellis, Boyce, Belsky, Bakermans-Kranenburg, & Van ljzendoorn, 2011). This may explain
some heterogeneity across effect sizes, and future work should examine factors that confer
risk or resilience to biological aging following ELA. Additionally, given strong links among
ELA, accelerated dev elopment and psychopathology, it is impossible to confidently
conclude that psychopathology is not driving the effects of ELA on accelerated biological
development. Future longitudinal work using at-risk samples should address the
directionality of these associations to determine with confidence the direct effect of ELA on
accelerated biological aging.

Finally, although we explored multiple metrics of biological aging in this meta-analysis and
systematic review, recent work highlights interesting future directions for the field to
explore. Specifically, developments in neuroimaging analyses have led to algorithms that use
whole-brain structural neuroimaging data (both gray matter and white matter) to accurately
estimate deviations between brain maturation and chronological age, known as brain age
metrics (Franke & Gaser, 2019; Franke, Ziegler, Kloppel, & Gaser, 2010). This metric has
been associated with the onset of mental disorders and age of mortality (Cole et al., 2019;
Cole et al., 2018), and has been validated for use in children and adolescents (Franke,
Luders, May, Wilke, & Gaser, 2012), supporting its utility as a biomarker of biological aging
across development. A recent study suggested that both trauma exposure and growing up in
a low-SES neighborhood was associated with more advanced brain age relative to
chronological age (Gur et al., 2019). Future studies should explore how this relatively novel
metric of biological aging relates to established metrics of biological aging (including
pubertal timing and metrics of cellular aging), and how exposure to different dimensions of
ELA relates to deviations in brain age metrics across development.
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Conclusions

Through meta-analysis and systematic review, we find support for the idea that ELA is
associated with accelerated biological aging, as measured by pubertal timing, cellular aging,
and cortical thinning in childhood and adolescence. However, these associations varied
systematically as a function of adversity type. Specifically ELA characterized by threat was
associated with accelerated pubertal development and accelerated cellular aging as measured
by both leukocyte telomere length and DNA methylation age, but exposure to deprivation
and low-SES were not, suggesting specificity in the association of certain forms of ELA
with pubertal timing and cellular aging. ELA was consistently associated with accelerated
cortical thinning, with threat-related ELA associated with ventromedial PFC thinning and
deprivation and SES more consistently associated with thinning in the frontoparietal, default
mode, and visual networks. We found inconsistent associations of ELA with amygdala-
mPFC functional connectivity. These findings suggest specific associations of dimensions of
ELA with multiple domains of biological aging and highlight the importance of delineating
the mechanisms through which specific types of early environmental experiences influence
different aspects of biological aging in childhood and adolescence and determining how
these pathways ultimately contribute to health disparities.
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Public Significance Statement

This meta-analysis and systematic review suggests that biological aging following early
life adversity, including earlier pubertal timing, advanced cellular aging, and accelerated
thinning of the cortex, may be specific to children and adolescents who experienced
violent or traumatic experiences early in childhood. No such effect was found for
children who experienced deprivation or poverty in the absence of violence or trauma.
These findings highlight a potential role of accelerated biological aging in health
disparities associated with early life trauma, and a potential target for early interventions.
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Association of all adversities and pubertal timing. The point sizes are an inverse function of

the precision of the estimates.
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Figure 3.
Association of all adversities and cellular aging. The point sizes are an inverse function of

the precision of the estimates. SES = socioeconomic status.
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Association of adversity and pubertal timing by adversity type. The point sizes are an
inverse function of the precision of the estimates.
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Association of adversity and cellular aging by adversity type. The point sizes are an inverse

function of the precision of the estimates. SES = socioeconomic status.
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