
Smith ScholarWorks Smith ScholarWorks 

Mathematics and Statistics: Faculty 
Publications Mathematics and Statistics 

11-1-2021 

System Identification Through Lipschitz Regularized Deep Neural System Identification Through Lipschitz Regularized Deep Neural 

Networks Networks 

Elisa Negrini 
Worcester Polytechnic Institute 

Giovanna Citti 
Alma Mater Studiorum Università di Bologna 

Luca Capogna 
Smith College, lcapogna@smith.edu 

Follow this and additional works at: https://scholarworks.smith.edu/mth_facpubs 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Negrini, Elisa; Citti, Giovanna; and Capogna, Luca, "System Identification Through Lipschitz Regularized 
Deep Neural Networks" (2021). Mathematics and Statistics: Faculty Publications, Smith College, 
Northampton, MA. 
https://scholarworks.smith.edu/mth_facpubs/122 

This Article has been accepted for inclusion in Mathematics and Statistics: Faculty Publications by an authorized 
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/mth_facpubs
https://scholarworks.smith.edu/mth_facpubs
https://scholarworks.smith.edu/mth
https://scholarworks.smith.edu/mth_facpubs?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/mth_facpubs/122?utm_source=scholarworks.smith.edu%2Fmth_facpubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


System Identification Through Lipschitz Regularized Deep
Neural Networks

Elisa Negrini 1 Giovanna Citti 2 Luca Capogna 1

Abstract
In this paper we use neural networks to learn governing equations from data. Specifically
we reconstruct the right-hand side of a system of ODEs ẋ(t) = f(t, x(t)) directly from
observed uniformly time-sampled data using a neural network. In contrast with other
neural network based approaches to this problem, we add a Lipschitz regularization term
to our loss function. In the synthetic examples we observed empirically that this regular-
ization results in a smoother approximating function and better generalization properties
when compared with non-regularized models, both on trajectory and non-trajectory data,
especially in presence of noise. In contrast with sparse regression approaches, since neu-
ral networks are universal approximators, we don’t need any prior knowledge on the
ODE system. Since the model is applied component wise, it can handle systems of any
dimension, making it usable for real-world data.

Keywords — Machine Learning, Deep Learning, System Identification, Ordinary Differ-
ential Equations, Generalization Gap, Regularized Network.

1 Introduction

Dynamical system models are widely used to study, explain and predict behaviour in multi-
ple application areas such as Newton’s laws of mechanics, economic and financial systems,
biology, medicine, social systems and so on (see for instance [5] for more examples of ap-
plications). Governing laws and equations have traditionally been derived from expert
knowledge and first principles, however in recent years the large amount of data available
resulted in a growing interest in data-driven models and approaches for automated model
discovery.

1Mathematical Sciences Department, Worcester Polytechnic Institute,
100 Institute Road, Stratton Hall, Worcerster, MA, 01609, USA

2Department of Mathematics, University of Bologna
Piazza di Porta S. Donato, 5, 40126 Bologna BO, Italy

Email Addresses: enegrini@wpi.edu (Elisa Negrini, corresponding author),
giovanna.citti@unibo.it (Giovanna Citti),
lcapogna@wpi.edu (Luca Capogna)

1

ar
X

iv
:2

00
9.

03
28

8v
1 

 [
cs

.L
G

] 
 7

 S
ep

 2
02

0

mailto:enegrini@wpi.edu
mailto:giovanna.citti@unibo.it
mailto:lcapogna@wpi.edu


System identification deals specifically with the problem of building mathematical models
and approximating governing equations using only observed data from the system. Since
the theory of time-invariant linear system has been widely studied over the past decades,
many methods for linear system identification have been developed (see for instance [17],
[15]). In this work we extend this study to time dependent nonlinear systems.
Some frequently used approaches for data-driven discovery of nonlinear differential equa-
tions are sparse regression, Gaussian processes and neural networks. Sparse regression
approaches are based on a user-determined library of candidate terms from which the most
important ones are selected using sparse regression (see for instance [29], [26], [28]). Identi-
fication using Gaussian Processes places a Gaussian prior on the unknown coefficients of the
differential equation and infers them via maximum likelihood estimation (see for instance
[24], [23], [25]). Being universal approximators, neural networks have been widely used
in nonlinear system identification: depending on the architecture and on the properties
of the loss function, they can be used as sparse regression models, they can act as priors
on unknown coefficients or completely determine an unknown differential operator. Many
kind of architectures have been used for system identification, among which multi-layer
feed forward networks (see for instance [16], [13], [3], [22], [4]) and recurrent networks and
its variants which have been used in dynamic identification of nonlinear systems because
of their ability to retain information in time across layers (see for instance [30], [8], [19],
[21]).

In this work we investigate the problem of approximating unknown governing equations,
i.e. the right-hand side f of the system of ODEs:

ẋ(t) = f(t, x(t)) (1)

directly from observed trajectories using a deep neural network N . The main contribution
of this paper is that we improve generalization and recovery of the governing equation by
adding a Lipschitz regularization term in our loss function. This term forces the Lipschitz
constant of the network N to be small, improving the smoothness of the approximating
function even in presence of noise in the data. The choice of this specific kind of regular-
ization is inspired by Oberman and Calder’s work in [18] where they prove that Lipschitz
regularized networks converge and generalize. We empirically show that the test error on
trajectory data as well as the recovery error on non-trajectory data improves when using
this kind of regularization. Other works, such as [31], [10] and [20] also make use of a
Lipschitz constraint to improve generalization and robustness; however, they differ from
our work since they do not apply such regularization to system identification and they use
a different approaches to estimate and bound the Lipschitz constant of the network.
The use of neural networks for system identification has multiple advantages: since neural
networks are universal approximators, we do not need to commit to a particular dictionary
of basis functions, nor need any prior information about the order or about the analytical
form of the differential equation as in [29], [26], [28], [27], [11]; this allows to recover very

2



general differential equations. Another advantage of our approach is that, thanks to the
Lipschitz regularization term, our network is able to generalize better than non-regularized
networks for unseen data (both for trajectory and non-trajectory data) and it is robust to
noise. This is especially an advantage over works that use finite differences and polyno-
mial approximation to extract governing equations from data (for instance [6], [26]) which
perform poorly in presence of noise. Finally, our model is defined componentwise so it can
be applied to system of equations of any dimension, thus making it a valuable approach
when dealing with high dimensional real-world data.
Specifically, we consider the system of ODEs (1), where x(t) ∈ Rd is the state vector of
a d-dimensional dynamical system at time t ∈ I ⊂ R, ẋ(t) ∈ Rd is the first order time
derivative of x(t) and f : R1+d → Rd is a vector-valued function right-hand side of the
differential equation. We approximate the unknown function f with a neural network N .
Our observables are the trajectories corresponding to the state vectors x(t) sampled at
discrete uniformly-spaced time steps for different initial conditions. We note that, since
our neural network produces a Lipschitz regular approximant, our approach is most useful
when the function f is Lipschitz continuous (corresponding to a deterministic governing
law), however we are not assuming anything about its analytical form.
The loss function we minimize to learn f is:

L(θ) = 1
k

k∑
i=1

l(N(Xi, θ), Yi) + αLip(N(·, θ)), (2)

where θ are the network parameters, α > 0, (Xi, Yi) are the training data and Lip(N(·, θ))
is the Lipschitz constant of the network as a function of the inputs. The targets Yi are ap-
proximations of ẋ(t), the left-hand side of (1) obtained by difference quotients for non-noisy
data or polynomial interpolation in presence of noise. We stress that accurate interpola-
tion of measurement data is necessary to obtain reliable derivative approximation which
are used as target data. The network resulting from this minimization will reach a trade off
between fitting the data (by minimizing the first term in (2)) and having a small Lipschitz
constant (by minimizing the second term in (2)). This second characteristic is the one that
makes our model robust to noise and able to generalize well for unseen data. We evaluate
the generalization capabilities of our model by means of the well known generalization gap
(see [1]).

The paper is organized as follows: in Section 2 we describe the data structure, pre-
proccesing and selection of training and testing data; in Section 3 we describe the neural
network we used, the loss function and we define the generalization gap; in Section 4 we
propose numerical examples and discuss the results; in Section 5 we show an example of
recovery of the right-hand side function on non-trajectory data; in the conclusion Section
we summarize our results and describe possible future directions of research.

3



2 Data

In this section we describe the data structure, preprocessing and selection of training and
testing data.

As explained above, our goal is to recover the right-hand side f of the system of ordinary
differential equations (1) from discrete observations of the state vector x(t) ∈ Rd.
Given equally spaced time points t1, . . . , tM and initial conditions x1(0), . . . , xK(0) ∈ Rd,
define xi(tj) ∈ Rd, i = 1, . . . ,K, j = 1, . . . ,M, to be an observation of the state
vector x(t) at time tj for initial condition xi(0). The recovery of f is obtained through an
approximation with a Lipschitz regularized deep neural network N ; the targets ẋi(tj) ∈ Rd
are the first derivative approximation of x(t) at time tj for initial condition xi(0) and are
generated using the state vector x(t).

Specifically, the network data used in our model are couples (Xh, Yh), h = j + (i− 1)M =
1, . . . ,KM , where Xh is the input and Yh is the target and Xh, Yh are defined as follows:

Xh = (tj , x1
i (tj), x2

i (tj), . . . xdi (tj)) ∈ R1+d,

Yh = Ẋh = (ẋ1
i (tj), ẋ2

i (tj), . . . ẋdi (tj)) ∈ Rd.

The data is separated into training and testing sets made respectively of 80% and 20% of
the data.

(a) Observations of x(t)
for initial conditions
x1(0), x2(0), x3(0) and
time points t1, . . . , t4

(b) Approximations of
ẋ(t) for initial conditions
x1(0), x2(0), x3(0) and time
points t1, . . . , t4, the color
represents the value of ẋ(t)

Figure 1: Example of Training Data

4



(a) Example of Distribution of Train-
ing and Testing Data, No Noise. Gray
points are training data, black points
are testing data.

(b) Example of Distribution of Train-
ing and Testing Data, 2% Noise. Gray
points are training data, black points
are testing data.

Figure 2: Distribution of Training and Testing Data for Different Amounts of Noise. Gray points
are training data, black points are testing data.

In the numerical examples we use synthetic data generated in Python: using the func-
tion odeint from the scipy package in Python, we solve ẋ(t) = f(t, x(t)); this provides
us with approximations of the state vector x(t) for initial conditions x1(0), . . . , xK(0) ∈ Rd
at time steps t1, . . . , tM . We perform the experiments in the case of noiseless data, and
data with 1% and 2% of noise. To generate noisy data, we proceed as follows: for each
component xk(t) of the solution x(t) we compute its mean range Mk across trajectories as

Mk = 1
K

(
K∑
i=1
| max
j=1,...,M

xki (tj)− min
j=1,...,M

xki (tj)|
)
.

Then, the 1% noisy version of xki (tj) is given by

x̂ki (tj) = xki (tj) + nijMk,

where nij is a sample from a normal distribution N (0, 0.01) with mean 0 and variance
0.01. In a similar way we add 2% of noise to the data.

The next step is to generate approximations of the first order time derivative of x(t) by
approximating each component ẋk(t) of ẋ(t) using difference quotients. The difference
quotient approximation of the derivatives can be highly inaccurate at the boundaries of

5











(a) Test error non-regularized network,
2% noise in the data, first component.

(b) Test error Lipschitz regularized net-
work with parameter 0.01, 2% noise in
the data, first component.

(c) Test error non-regularized network,
2% noise in the data, second compo-
nent.

(d) Test error Lipschitz regularized net-
work with parameter 0.005, 2% noise
data, second component.

Figure 17: Test error comparison, 2% noise in the data.

35


