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REGULARITY FOR A CLASS OF QUASILINEAR DEGENERATE

PARABOLIC EQUATIONS IN THE HEISENBERG GROUP

L. CAPOGNA, G. CITTI, AND N. GAROFALO

Questa nota è dedicata a Sandro Salsa, con grande affetto e ammirazione

Abstract. We extend to the parabolic setting some of the ideas originated with Xiao Zhong’s
proof in [36] of the Hölder regularity of p−harmonic functions in the Heisenberg group H

n. Given a
number p ≥ 2, in this paper we establish the C∞ smoothness of weak solutions of quasilinear pde’s
in H

n modelled on the equation

∂tu =

2n
∑

i=1

Xi

(

(1 + |∇0u|
2)

p−2

2 Xiu

)

.

1. Introduction

In this paper we establish the C∞ smoothness of solutions of a certain class of quasilinear
parabolic equations in the Heisenberg group H

n. In a cylinder Q = Ω× (0, T ), where Ω ⊂ H
n is an

open set and T > 0, we consider the equation

(1.1) ∂tu =
2n
∑

i=1

XiAi(x,∇0u) in Q = Ω× (0, T ),

modeled on the regularized parabolic p-Laplacian

(1.2) ∂tu =

2n
∑

i=1

Xi

(

(1 + |∇0u|
2)

p−2
2 Xiu

)

,

where p ≥ 2. The term regularized here refers to the fact that the non-linearity (1 + |∇0u|
2)

p−2
2

affects the ellipticity of the right hand side only when the gradient blows up, and not when it
vanishes, thus presenting a weaker version of the singularity in the p−Laplacian. Here, we indicate
with x = (x1, ..., x2n, x2n+1) the variable point in H

n. We alert the reader that, although it is
customary to denote the variable x2n+1 in the center of the group with the letter t, we will be
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The first author was partially funded by NSF awards DMS 1101478, and by a Simons collaboration grant for

mathematicians 585688.
The second author was partially funded by Horizon 2020 Project ref. 777822: GHAIA, and by PRIN 2015

Variational and perturbative aspects of nonlinear differential problems.
The third author was supported in part by a Progetto SID (Investimento Strategico di Dipartimento) “Non-local

operators in geometry and in free boundary problems, and their connection with the applied sciences”, University of
Padova, 2017.

1

http://arxiv.org/abs/2001.08303v1


2 REGULARITY FOR A CLASS OF QUASILINEAR, ETC.

using z instead, since we have reserved the letter t for the time variable. Consequently, we will
indicate with ∂i partial differentiation with respect to the variable xi, i = 1, ..., 2n, and use the
notation Z = ∂z for the partial derivative ∂x2n+1 . The notation ∇0u ∼= (X1u, ...,X2nu) represents
the so-called horizontal gradient of the function u, where

Xi = ∂i −
xn+i

2
∂z, Xn+i = ∂n+i +

xi
2
∂z, i = 1, ..., n.

As it is well-known, the 2n+1 vector fieldsX1, ...,X2n, Z are connected by the commutation relation
[Xi,Xj ] = δijZ, all other commutators being trivial.

We now introduce the relevant structural assumptions on the vector-valued function (x, ξ) →
A(x, ξ) = (A1(x, ξ), ..., A2n(x, ξ)): there exist p ≥ 2, δ > 0 and 0 < λ ≤ Λ < ∞ such that for a.e.
x ∈ Ω, ξ ∈ R

2n and for all η ∈ R
2n, one has

(1.3)

{

λ(δ + |ξ|2)
p−2
2 |η|2 ≤ ∂ξjAi(x, ξ)ηiηj ≤ Λ(δ + |ξ|2)

p−2
2 |η|2,

|Ai(x, ξ)|+ |∂xj
Ai(x, ξ)| ≤ Λ(δ + |ξ|2)

p−1
2 .

Given an open set Ω ⊂ H
n, we indicate with W 1,p(Ω) the Sobolev space associated with the p-

energy EΩ,p(u) =
1
p

´

Ω |∇0u|
p, i.e., the space of all functions u ∈ Lp(Ω) such that their distributional

derivatives Xiu, i = 1, ..., 2n, are also in Lp(Ω). The corresponding norm is ||u||p
W 1,p(Ω)

= ||u||Lp(Ω)+

||∇0u||Lp(Ω).We denote byW 1,p
0 (Ω) the completion of C∞

0 (Ω) with respect to such norm. A function

u ∈ Lp((0, T ),W 1,p
0 (Ω)) is a weak solution of (1.1) if

(1.4)

ˆ T

0

ˆ

Ω
uφt dxdt−

ˆ T

0

ˆ

Ω

2n
∑

i=1

Ai(x,∇0u)Xiφ dxdt = 0,

for every φ ∈ C∞

0 (Q). Our main result is the following.

Theorem 1.1. Let Ai satisfy the structure conditions (1.3) for some p ≥ 2 and δ > 0. We also

assume that (1.1) can be approximated as in (1.6)-(1.8) below. Let u ∈ Lp((0, T ),W 1,p
0 (Ω)) be a

weak solution of (1.1) in Q = Ω×(0, T ). For any open ball B ⊂⊂ Ω and T > t2 ≥ t1 ≥ 0, there exist
constants C = C(n, p, λ,Λ, d(B, ∂Ω), T − t2, δ) > 0 and α = α(n, p, λ,Λ, d(B, ∂Ω), T − t2, δ) ∈ (0, 1)
such that

(1.5) ||∇0u||Cα(B×(t1,t2)) + ||Zu||Cα(B×(t1,t2)) ≤ C

(
ˆ T

0

ˆ

Ω
(δ + |∇0u|

2)
p
2 dxdt

)
1
p

.

Besides the structural hypothesis (1.3), Theorem 1.1 will be established under an additional
technical approximating assumption. Namely, for ε ≥ 0 we consider the left-invariant Riemannian
metric gε in H

n in which the frame defined by Xε
1 = X1, ...,X

ε
2n = X2n,X

ε
2n+1 = εZ is orthonormal,

and denote by ∇ε the gradient in such metric. We will adopt the unconventional notation W 1,p,ε(Ω)
to indicate the Sobolev space associated with the p-energy EΩ,p,ε(u) = 1

p

´

Ω |∇εu|
p. We assume

that one can approximate Ai by a 1-parameter family of regularized approximants Aε(x, ξ) =
(Aε

1(x, ξ), ..., A
ε
2n+1(x, ξ)) defined for a.e. x ∈ Ω and every ξ ∈ R

2n+1, and such that for a.e. x ∈ Ω,

and for all ξ = (ξ1, ..., ξ2n, ξ2n+1) ∈ R
2n+1 one has uniformly on compact subsets of Ω× (0, T ),

(1.6) (Aε
1(x, ξ), ..., A

ε
2n+1(x, ξ)) −→

ε→0+
(A1(x, ξ1, ..., ξ2n), ..., A2n(x, ξ1, ..., ξ2n), 0),
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and furthermore

(1.7)

{

λ(δ + |ξ|2)
p−2
2 |η|2 ≤ ∂ξjA

ε
i (x, ξ)ηiηj ≤ Λ(δ + |ξ|2)

p−2
2 |η|2,

|Aε
i (x, ξ)| + |∂xj

Aε
i (x, ξ)| ≤ Λ(δ + |ξ|2)

p−1
2 ,

for all η ∈ R
2n+1, and for some 0 < λ ≤ Λ < ∞ independent of ε. The proof of the C1,α regularity in

Theorem 1.1 is based on a priori estimates for solutions of the one-parameter family of regularized
partial differential equations which approximate (1.1) as the parameter ε → 0. The key will be in
establishing estimates that do not degenerate as ε → 0. Specifically, for any ε > 0 we will consider
a weak solution uε to the equation

(1.8) ∂tu
ε =

2n+1
∑

i=1

Xε
i A

ε
i (x,∇εu

ε)

in a cylinderQ0 = B(x0, R0)×(t0, t1), withB(x0, R0) ⊂ Ω and (t0, t1) ⊂ (0, T ), and with (parabolic)
boundary data uε = u. Since (1.8) is strongly parabolic for every ε > 0, the solutions uε are smooth
in every compact subset K ⊂ Q0 and, in view of the comparison principle, and of the uniform
Harnack inequality established in [2], converge uniformly on compact subsets to a function u0. The
bulk of the paper consists in establishing higher regularity estimates for uε that are uniform in
ε > 0, to show that u0 inherits such higher regularity and is a solution of (1.1), thus it coincides
with u. Here is our main result in this direction.

Theorem 1.2. In the hypothesis (1.6), (1.7), consider for each ε > 0 a weak solution uε ∈
Lp((0, T ),W 1,p,ε(Ω))∩C2(Q) of the approximating equation (1.8) in Q. For any open ball B ⊂⊂ Ω
and T > t2 ≥ t1 ≥ 0 there exists a constant C = C(n, p, λ,Λ, d(B, ∂Ω), T − t2, δ) > 0, such that

(1.9)

||∇εu
ε||pL∞(B×(t1,t2))

+

ˆ t2

t1

ˆ

B
(δ + |∇εu

ε|2)
p−2
2

2n
∑

i,j=1

|Xε
i X

ε
ju

ε|2dxdt ≤ C

ˆ T

0

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 dxdt.

Moreover, for any open ball B ⊂⊂ Ω and T > t2 ≥ t1 ≥ 0, there exist constants C > 0 and

α ∈ (0, 1), which depend on n, p, λ,Λ, d(B, ∂Ω), T − t2, δ, such that

(1.10) ||∇εu
ε||Cα(B×(t1 ,t2)) + ||Zuε||Cα(B×(t1 ,t2)) ≤ C

(
ˆ T

0

ˆ

Ω
(δ + |∇εu

ε|2)
p
2 dxdt

)
1
p

.

We emphasise that the constants in (1.9) and (1.10) are independent of ε.

It is worth mentioning here that the prototype for the class of equations (1.1) and for their
parabolic approximation comes from considering the regularized p−Laplacian operator Lpu =

divg0,µ0((δ + |∇0u|
2
g0)

p−2
2 ∇0u) in a sub-Riemannian contact manifold (M,ω, g0), where M is the

underlying differentiable manifold, ω is the contact form and g0 is a Riemannian metric on the
contact distribution. The measure µ0 is the corresponding Popp measure. The approximants are
constructed through Darboux coordinates, considering the p−Laplacians associated to a family
of Riemannian metrics gε that tame g0 and such that the metric structure of the spaces (M,gε)
converge in the Gromov-Hausdorff sense to the metric structure of (M,ω, g0). For a more detailed
description, see [8, Section 6.1]. As an immediate corollary of Theorem 1.1 one has the following.
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Theorem 1.3. Let (M,ω, g0) be a contact, sub-Riemannian manifold and let Ω ⊂ M be an open

set. For p ≥ 2, consider u ∈ Lp((0, T ),W 1,p
0 (Ω)) be a weak solution of

∂tu = divg0,µ0((δ + |∇0u|
2
g0)

p−2
2 ∇0u),

in Q = Ω × (0, T ). For any open ball B ⊂⊂ Ω and T > t2 ≥ t1 ≥ 0, there exist constants

C = C(n, p, d(B, ∂Ω), T − t2, δ) > 0 and α = α(n, p, d(B, ∂Ω), T − t2, δ) ∈ (0, 1) such that

(1.11) ||∇0u||Cα(B×(t1,t2)) + ||Zu||Cα(B×(t1,t2)) ≤ C

(
ˆ T

0

ˆ

Ω
(δ + |∇0u|

2)
p

2 dxdt

)
1
p

.

The C1,α estimates in (1.10) in Theorem 1.2 allow us to apply the Schauder theory developed in
[5, 35], and finally deduce the following result.

Theorem 1.4. Let k ∈ N and α ∈ (0, 1). If Ai(x, ξ), ∂xk
Ai(x, ξ), ∂ξjAi(x, ξ) ∈ Ck,α

loc satisfy the

structure conditions (1.3) for some p ≥ 2 and δ > 0, then any weak solution u ∈ Lp((0, T ),W 1,p
0 (Ω))

is Ck+1,α on compact subsets of Q.

The present paper is the first study of higher regularity of weak solutions for the non stationary
p-Laplacian type in the sub-Riemannian setting, and it is based on the techniques introduced by
Zhong in [36]. The stationary case has been developed so far essentially only in the Heisenberg
group case thanks to the work of Domokos, [15], Manfredi, Mingione [26], Mingione, Zatorska-
Goldstein and Zhong [27], Ricciotti [32], [31] and Zhong [36]. Regularity in more general contact
sub-Riemannian manifolds, including the rototraslation group, has been recently established by the
two of the authors and coauthors [8] and independently by Mukherjee [30] based on an extension
of the techniques in [36]. Domokos and Manfredi [16] are rapidly making substantial progress in
higher steps groups and in some special non-group structures, using the Riemannian approximation
approach as in the work [8].

The plan of the paper is as follows. In Section 2 we collect some preparatory material that will
be used in the main body of the paper. Section 3 is devoted to proving the first part of Theorem
1.2, which establishes the Lipschitz regularity of the approximating solutions uε. In Section 4 we
prove the Hölder regularity of derivatives of uε in Theorem 1.2. Finally, in Section 5 we use the
comparison principle and Theorem 1.2 to establish Theorem 1.1.

Some final comments are in order. The non-degeneracy hypothesis δ > 0 in (1.3) (see also
(1.7)) is not needed in the Euclidean setting and, in the stationary regime, it is not needed in
the Heisenberg group either. We suspect the C1,α regularity of weak solutions for (1.1) still holds
without this hypothesis, but at the moment we are unable to prove it. In this note we use δ > 0
notably in (3.17) and in Theorem 3.13.

In order to extend the parabolic regularity theory to the sub-Riemannian setting one has to find
a way to implement, in this non-Euclidean framework, some of the techniques introduced by Di
Benedetto [14] which rely on non-isotropic cylinders in space-time. The key idea is to work with
cylinders whose dimensions are suitably rescaled to reflect the degeneracy exhibited by the partial
differential equation. To give an example, if one sets x ∈ Ω, R,µ > 0, one can define the intrinsic



REGULARITY FOR A CLASS OF QUASILINEAR, ETC. 5

cylinder
QR(µ) := B(x,R)× (−µ2−pR2, 0), with sup

QR(µ)
|∇0u| ≤ µ.

In contrast with the usual parabolic cylinders of the linear theory, the shape of the QR(µ) cylinders
is stretched in the time dimension by a factor of the order |∇0u|

2−p.
The use of such non-isotropic cylinders seems necessary in order to make-up for the different

homogeneity of the time derivative and the space derivatives in the degenerate regime δ = 0. In a
future study we plan to return to the problem of extending Di Benedetto’s Caccioppoli inequalities
on non-isotropic cylinders to the Heisenberg group and beyond.

Acknowledgements. We thank Vira A. Markasheva, who collaborated with us on an earlier version
of this project.

2. Preliminaries

In this section we collect a few definitions and preliminary results that will be used throughout
the rest of the paper. As indicated in the introduction, for each ε ∈ (0, 1) we define gε to be the
Riemannian metric in H

n such that X1, ...,X2n, εZ is an orthonormal frame, and denote such frame
as Xε

1 , ...,X
ε
2n+1. The corresponding gradient operator will be denoted by ∇ε.

Definition 2.1. For x0 ∈ Ω ⊂ H
n, we define a parabolic cylinder Qε,r(x0, t0) ⊂ Q to be a set of the

form Qε,r(x0, t0) = Bε(x0, r)× (t0 − r2, t0). where r > 0, Bε(x0, r) ⊂ Ω denotes the gε-Riemannian
ball of center x0 and t0 ∈ (0, T ). We call parabolic boundary of the cylinder Qε,r(x0, t0) ⊂ Q the
set Bε(x0, r)× {t0 − r2} ∪ ∂Bε(x0, r)× [t0 − r2, t0).

First of all we recall the Hölder regularity, and local boundedness of weak solutions of (1.1) and
(1.8) from [2].

Lemma 2.2. Let Q = Ω × (0, T ) ⊂ H
n × R

+, and δ ≥ 0. For ε ≥ 0 and p ≥ 2, consider a weak

solution uε ∈ Lp((0, T ),W 1,p,ε(Ω))∩C2(Q) of the approximating equation (1.8) in Q. For any open

ball B ⊂⊂ Ω and T > t2 ≥ t1 ≥ 0 there exist constants C = C(n, p, λ,Λ, d(B, ∂Ω), T − t2) > 0, and
α = α(n, p, λ,Λ, d(B, ∂Ω), T − t2) ∈ (0, 1), such that

(2.1) ||uε||Cα(B×(t1,t2)) ≤ C

(
ˆ T

0

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 dxdt

)
1
p

.

When ε > 0 and δ > 0, classical regularity results (e.g., [25]) yield that weak solutions have
bounded gradient, and hence (1.8) is strongly parabolic, thus leading to weak solutions being
smooth. Clearly such smoothness may degenerate as ε → 0, and the main point of this paper is to
show that this does not happen.

Let Ω ⊂ R
n be a bounded open set and let Q = Ω × (0, T ). For a function u : Q → R, and

1 ≤ p, q we define the Lebesgue spaces Lp,q(Q) = Lq([0, T ], Lp(Ω)), endowed with the norms

(2.2) ||u||Lp,q(Q) =
(

ˆ T

0
(

ˆ

Ω
|u|pdx)

q

pdt
)

1
q
.

When p = q, we will refer to Lp,p(Q) as Lp(Q). One has the following useful reformulation of the
Sobolev embedding theorem [18] in terms of Lp,q spaces. In the next statement, we will indicate
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with N = 2n+2 the homogenous dimension of Hn with respect to the non-isotropic group dilations,
and we will denote by N1 = N +2 = 2n+4 the corresponding parabolic dimension with respect to
the dilations (x, t) → (δλx, λ

2t).

Lemma 2.3. Let v be Lipschitz function in Q, and assume that for all 0 < t < T , v(·, t) has

compact support in Ω× {t}.

(i) There exists C = C(n) > 0 such that for any ε ∈ [0, 1] one has

||v||
L

2N
N−2

,2
(Q)

≤ C||∇εv||L2,2(Q).

(ii) If v ∈ L2,∞(Q), then v ∈ L
2N1
N1−2

,
2N1
N1−2 (Q), and there exists C > 0, depending on n, such that

for any ε ∈ [0, 1] one has

||v||2

L
2N1
N1−2

,
2N1
N1−2 (Q)

≤ C(||v||2L2,∞(Q) + ||∇εv||
2
L2,2(Q)).

We note that as ε decreases to zero, the background geometry shifts from Riemannian to sub-
Riemannian. The stability with respect to ε of the constant C in the Lemma 2.3 is not trivial, see
[10, 7].

In the sequel we will use an interpolation inequality that will take the place of the Sobolev
inequality in a Moser type iteration, just as, for example, in [11, Proposition 4.2]. Although the
result does not use the equation at all, we state it in terms that will make it immediately applicable
later on. Henceforth, to simplify the notation, we will routinely omit the indication of dx, dxdt,
etc. in all integrals involved, unless there is risk of confusion.

Lemma 2.4. Let uε be a weak solution of (1.8) in Q. If β ≥ 0, and η ∈ C1([0, T ], C∞

0 (Ω)) vanishes
on the parabolic boundary of Q, then there is a constant C > 0, depending only on ||uε||L∞(Q), such

that

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p+2)/2|η|β+2 ≤ C(β + p+ 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p+β−2

2

2n+1
∑

i,j=1

|Xε
jX

ε
i u

ε|2|η|β+2

+ Cβ2

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p)/2|η|β(|η|2 + |∇εη|
2).
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Proof. Writing (δ + |∇εu
ε|2)(β+p+2)/2 = (δ + |∇εu

ε|2)(β+p)/2(δ + |∇εu
ε|2), one has

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p+2)/2|η|β+2 = δ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p)/2|η|β+2

+

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p)/2Xε
i u

εXε
i u

ε|η|β+2 = δ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p)/2|η|β+2

−

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Xε

i

(

(δ + |∇εu
ε|2)(β+p)/2Xε

i u
ε
)

uε|η|β+2 − (β + 2)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p)/2Xε
i u

εuε|η|β+1Xε
i η

≤ δ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p)/2|η|β+2 + (β + p+ 1)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p)/2
2n+1
∑

i,j=1

|Xε
i X

ε
i u

ε||uε||η|β+2

+ C(β + 2)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p+1)/2|η|β+1|∇εη|.

To conclude the argument, it suffices to apply Young’s inequality.
�

3. Caccioppoli type inequalities and Lipschitz regularity of uε.

In this section we establish Lipschitz regularity for the derivatives of the solutions uε. The main
results of this section are summarized in the following estimates, which are unform in ε > 0.

Theorem 3.1. Let Aε
i satisfy the structure conditions (1.3) for some p ≥ 2 and δ > 0. Consider

an open set Ω ⊂ H
n and T > 0, and let uε be a weak solution of (1.8) in Q = Ω × (0, T ).

For any open ball B ⊂⊂ Ω and T > t2 ≥ t1 ≥ 0, there exists a constant C > 0, depending on

n, p, λ,Λ, d(B, ∂Ω), T − t2, δ, such that

||∇εu
ε||pL∞(B×(t1 ,t2))

+

ˆ t2

t1

ˆ

B
(δ + |∇εu|

2)
p−2
2

( 2n
∑

i,j=1

|Xε
i X

ε
ju

ε|2 + |∇εZuε|

)

(3.1)

≤ C

ˆ T

0

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 .

The proof of Theorem 3.1 will follow from combining the results in Theorem 3.11, Lemma 3.12,
Proposition 3.13 and Proposition 4.1, that are all established later in the section. The Caccioppoli
inequalities needed to prove Theorem 3.1 will take up most of the section, and they all apply to
a solution uε of the approximating equation (1.8) in a cylinder Q = Ω × (0, T ). We begin with
two lemmas in which we explicitly detail the pde’s satisfied by the smooth approximants Xε

ℓ u
ε and

Zuε.
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Lemma 3.2. Let uε be a solution of (1.8) in Q. If we set vεℓ = Xε
ℓu

ε, with ℓ = 1, ..., 2n, and

sℓ = (−1)[ℓ/n], then the function vεℓ solves the equation

∂tv
ε
ℓ =

2n+1
∑

i,j=1

Xε
i

(

Aε
i,ξj(x,∇εu

ε)Xε
ℓX

ε
ju

ε
)

(3.2)

+

2n+1
∑

i=1

Xε
i

(

Aε
i,xℓ

(x,∇εu
ε)−

sℓxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε)
)

+ sℓZ(Aε
ℓ+sℓn

(x,∇εu
ε)).

Proof. Differentiating (1.8) with respect to Xε
ℓ , when ℓ ≤ n, we find

∂tv
ε
ℓ =

2n+1
∑

i=1

Xε
ℓX

ε
i A

ε
i (x,∇εu

ε) =
2n+1
∑

i=1

Xε
i

(

Xε
ℓA

ε
i (x,∇εu

ε)
)

+
2n+1
∑

i=1

[Xε
ℓ ,X

ε
i ]A

ε
i (x,∇εu

ε)

=

2n+1
∑

i,j=1

Xε
i

(

Aε
i,ξj (x,∇εu

ε)Xε
ℓX

ε
ju

ε
)

+

2n+1
∑

i=1

Xε
i

(

Aε
i,xℓ

(x,∇εu
ε)−

xℓ+n

2
Aε

i,x2n+1
(x,∇εu

ε)
)

+ Z(Aε
ℓ+n(x,∇εu

ε)).

Taking the derivative with respect to Xε
ℓ when ℓ ≥ n+ 1, we obtain

∂tv
ε
ℓ =

2n+1
∑

i=1

Xε
ℓX

ε
i A

ε
i (x,∇εu

ε) =

2n+1
∑

i=1

Xε
i

(

Xε
ℓA

ε
i (x,∇εu

ε)
)

+

2n+1
∑

i=1

[Xε
ℓ ,X

ε
i ]A

ε
i (x,∇εu

ε)

=

2n+1
∑

i,j=1

Xε
i

(

Aε
i,ξj (x,∇εu

ε)Xε
l X

ε
ju

ε
)

+

2n+1
∑

i=1

Xε
i

(

Aε
i,xℓ

(x,∇εu
ε) +

xℓ−n

2
Aε

i,x2n+1
(x,∇εu

ε)
)

− Z(Aε
ℓ−n(x,∇εu

ε)).

�

Lemma 3.3. Let uε be a solution of (1.8) in Q. Then, the function Zuε is a solution of the

equation

∂tZuε =

2n+1
∑

i,j=1

Xε
i (A

ε
i,ξj (x,∇εu

ε)Xε
jZuε) +

2n+1
∑

i=1

Xε
i (A

ε
i,x2n+1

(x,∇εu
ε)).

Proof. It follows by a straightforward differentiation of (1.8) with respect to Z, and we omit the
details.

�

Lemma 3.4. Let uε be a solution of (1.8) in Q. For any β ≥ 0 and for all η ∈ C1([0, T ], C∞

0 (Ω)),
one has

1

β + 2

ˆ

Ω
|Zuε|β+2η2

∣

∣

∣

t2

t1
+

λ(β + 1)

2

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εZuε|2|Zuε|β|η|2,

≤
Λ

(β + 1)

(16Λ

λ
+ 2
)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εη|

2|Zuε|β+2 +
2

β + 2

ˆ t2

t1

ˆ

Ω
|Zuε|β+2η∂tη

+ Λ(β + 1)
(16Λ

λ
+ 2
)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 η2|Zuε|β .
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Proof. We use φ = η2|Zuε|βZuε as a test function in the equation satisfied by Zuε, see Lemma 3.3,
to obtain

ˆ t2

t1

ˆ

Ω
∂tZuεη2|Zuε|βZuε =

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Xε
i (A

ε
i,ξj (x,∇εu)X

ε
jZuε)η2|Zuε|βZuε

+

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Xε
i (A

ε
i,x2n+1

(x,∇εu))η
2|Zuε|βZuε.

The left-hand side of the latter equation can be expressed as follows:

ˆ t2

t1

ˆ

Ω
∂tZuεη2|Zuε|βZuε =

1

β + 2

ˆ t2

t1

ˆ

Ω
∂t|Zuε|β+2η2.

Considering the first term in the right-hand side, we obtain

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Xε
i (A

ε
i,ξj (x,∇εu)X

ε
jZuε)η2|Zuε|βZuε = −

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Aε
i,ξj(x,∇εu)X

ε
jZuεXε

i (η
2|Zuε|βZuε)

= −2

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Aε
i,ξj (x,∇εu)X

ε
jZuεηXε

i η|Zuε|βZuε − (β + 1)

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Aε
i,ξj (x,∇εu)X

ε
jZuεη2|Zuε|βXε

i Zuε.

As for the second term in the right-hand side, we have

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Xε
i (A

ε
i,x2n+1

(x,∇εu))η
2|Zuε|βZuε = −2

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Aε
i,x2n+1

(x,∇εu)ηX
ε
i η|Zuε|βZuε

− (β + 1)

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Aε
i,x2n+1

(x,∇εu)η
2|Zuε|βXε

i Zuε.

Combining the latter three equations, we find

1

β + 2

ˆ t2

t1

ˆ

Ω
∂t|Zuε|β+2η2 + (β + 1)

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

∂ξjA
ε
i (x,∇εu

ε)Xε
jZuεη2|Zuε|βXε

i Zuε

= −2

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

∂ξjA
ε
i (x,∇εu

ε)Xε
jZuεXε

i ηη|Zuε|βZuε − 2

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Aε
i,x2n+1

(x,∇εu)ηX
ε
i η|Zuε|βZuε

− (β + 1)

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

Aε
i,x2n+1

(x,∇εu)η
2|Zuε|βXε

i Zuε.
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The structure conditions (1.3) yield

1

β + 2

ˆ

Ω
|Zuε|β+2η2

∣

∣

∣

t2

t1
+ λ(β + 1)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εZuε|2|Zuε|β|η|2 ≤

1

β + 2

ˆ

Ω
|Zuε|β+2η2

∣

∣

∣

t2

t1
+ (β + 1)

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

∂ξjA
ε
i (x,∇εu

ε)Xε
jZuεXε

i Zuε η2|Zuε|β

= −2

ˆ t2

t1

ˆ

Ω

2n+1
∑

i,j=1

∂ξjA
ε
i (x,∇εu

ε)Xε
jZuεXε

i ηη|Zuε|βZuε +
2

β + 2

ˆ t2

t1

ˆ

Ω
|Zuε|β+2η∂tη

− 2

ˆ t2

t1

ˆ

Ω

2n+1
∑

i=1

Aε
i,x2n+1

(x,∇εu)ηX
ε
i η|Zuε|βZuε − (β + 1)

ˆ t2

t1

ˆ

Ω

2n+1
∑

i=1

Aε
i,x2n+1

(x,∇εu)η
2|Zuε|βXε

i Zuε

≤ 2Λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εZu|η|∇εη||Zuε|β+1 +

2

β + 2

ˆ t2

t1

ˆ

Ω
|Zuε|β+2η∂tη

+ 2Λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 η|∇εη||Zuε|β+1 + (β + 1)Λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 η2|Zuε|β|∇εZuε|,

thus concluding the proof.
�

Lemma 3.5. Let uε be a weak solution of (1.8) in Q. There exists C0 = C0(n, p, λ,Λ) > 0. For
any t2 ≥ t1 ≥ 0, β ≥ 0 and all η ∈ C∞

0 (Ω), we have

1

β + 2

ˆ

Ω
η2[(δ + |∇εu

ε|2)(β+2)/2]

∣

∣

∣

∣

t2

t1

+

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)(p−2+β)/2
2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2(3.3)

≤ C0

ˆ t2

t1

ˆ

Ω
(η2 + |∇εη|

2 + η|Zη|)(δ + |∇εu
ε|2)(p+β)/2

+ C0(β + 1)4
ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)(p+β−2)/2|Zuε|2.

Proof. In view of Lemma 3.2 we know that, if uε ∈ C∞(Q) is a solution of ∂tu
ε =

∑2n+1
i=1 Xε

i A
ε
i (x,∇εu

ε),
then vεℓ = Xε

ℓu
ε solves (3.2). If in the first term in the right-hand side of (3.2) we use the fact that

Xε
ℓX

ε
ju

ε = Xε
jX

ε
ℓu

ε + [Xε
ℓ ,X

ε
j ]u

ε = Xε
j v

ε
ℓ + sℓZvεℓ , we find

(3.4) ∂tv
ε
ℓ =

2n+1
∑

i,j=1

Xε
i

(

Aε
i,ξj (x,∇εu

ε)Xε
j v

ε
ℓ

)

+ sℓ

2n+1
∑

i=1

Xε
i

(

Aε
i,ξℓ+sℓn

(x,∇εu
ε)Zuε

)

+

+

2n+1
∑

i=1

Xε
i

(

Aε
i,xℓ

(x,∇εu
ε)−

sℓxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε)
)

+ sℓZ(Aε
ℓ+sℓn

(x,∇εu
ε)).
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Fix η ∈ C∞

0 (Ω) and let φ = η2(δ + |∇εu
ε|2)β/2Xε

ℓu
ε. Taking such φ as the test-function in the

weak form of (3.10), and integrating by parts the terms in divergence form, one has

1

2

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
β

2 ∂t

[

Xε
ℓu

ε

]2

η2

+

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aε

iξj (x,∇εu
ε)Xε

j v
ε
ℓX

ε
i

(

η2(δ + |∇εu
ε|2)β/2Xε

ℓ u
ε

)

= −sℓ

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Aε

iξℓ+sℓn
(x,∇εu

ε)ZuεXε
i

(

η2(δ + |∇εu
ε|2)β/2Xε

ℓ u
ε

)

+

ˆ t2

t1

ˆ

Ω

2n+1
∑

i=1

Xε
i

(

Aε
i,xℓ

(x,∇εu
ε)−

slxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε)
)

η2(δ + |∇εu
ε|2)β/2Xε

ℓ u
ε

+ sℓ

ˆ t2

t1

ˆ

Ω
slZ(Aε

ℓ+sℓn
(x,∇εu

ε))η2(δ + |∇εu
ε|2)β/2Xε

ℓu
ε.

The latter equation implies that for every ℓ = 1, ..., 2n one has

1

β + 2

ˆ t2

t1

ˆ

Ω

1

2

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
β
2 ∂t

[

Xε
ℓ u

ε

]2

η2

+
2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aε

iξj
(x,∇εu

ε)Xε
jX

ε
ℓu

εXε
i X

ε
ℓu

ε η2(δ + |∇εu
ε|2)β/2

+
2n+1
∑

i,j=1

β

2

ˆ t2

t1

ˆ

Ω
Aε

iξj (x,∇εu
ε)Xε

jX
ε
ℓu

εXε
ℓu

εXε
i (|∇εu

ε|2) η2(δ + |∇εu
ε|2)

β−2
2

= −
2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aε

iξj (x,∇εu
ε)Xε

jX
ε
ℓu

εXε
ℓu

εXε
i (η

2)(δ + |∇εu|
2)β/2

− sℓ

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Aε

iξℓ+sℓn
(x,∇εu

ε)ZuXε
i

(

η2(δ + |∇εu
ε|2)β/2Xε

ℓu
ε

)

−

ˆ t2

t1

ˆ

Ω

2n+1
∑

i=1

(

Aε
i,xℓ

(x,∇εu
ε)−

sℓxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε)
)

Xε
i

(

η2(δ + |∇εu
ε|2)β/2Xε

ℓu
ε
)

+ sℓ

2n+1
∑

j=1

ˆ t2

t1

ˆ

Ω
Z(Aε

ℓ+sℓn
(x,∇εu

ε))η2(δ + |∇εu
ε|2)β/2Xε

ℓu
ε = I1ℓ + I2ℓ + I3ℓ + I4ℓ .
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Summing over ℓ = 1, ..., 2n, by a simple application of the chain rule, and using the structural
assumption (1.7), we see that the left-hand side can be bounded from below by

1

β + 2

ˆ t2

t1

ˆ

Ω
∂t

[

(δ + |∇εu
ε|2)

β

2
+1

]

η2

+

2n
∑

ℓ=1

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
η2Aε

iξj (x,∇εu
ε)Xε

jX
ε
ℓu

εXε
i X

ε
ℓu

ε(δ + |∇εu
ε|2)β/2

+
2n
∑

ℓ=1

2n+1
∑

i,j=1

β

2

ˆ t2

t1

ˆ

Ω
η2Aε

iξj
(x,∇εu

ε)Xε
jX

ε
ℓu

εXε
ℓu

εXε
i (|∇εu

ε|2)(δ + |∇εu
ε|2)

β−2
2

≥
1

β + 2

ˆ t2

t1

ˆ

Ω
∂t

[

(δ + |∇εu
ε|2)

β

2
+1

]

η2 + λ

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)
p−2+β

2

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2

+
λβ

4

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)
p+β−4

2 |∇ε(|∇εu
ε|2)|2.

Since the last term in the right-hand side of this estimate is nonnegative, we obtain from this bound

1

β + 2

ˆ

Ω
[(δ + |∇εu

ε|2)
β

2
+1η2]

∣

∣

∣

∣

t2

t1

+ λ

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)
p−2+β

2

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2(3.5)

≤
2n
∑

ℓ=1

(

I1ℓ + I2ℓ + I3ℓ + I4ℓ
)

.

Next, we estimate each of the terms in the right-hand side separately. Recalling that from (1.7)

one has |Aiξj (x, η)| = |∂ξjA
ε
i (x, η)| ≤ C(δ+ |η|2)

p−2
2 , one has that for any α > 0 there exists Cα > 0

depending only on α, p, n and the structure constants, such that

2n
∑

ℓ=1

I1ℓ = −
2n
∑

ℓ=1

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aε

iξj (x,∇εu
ε)Xε

jX
ε
ℓu

εXε
ℓu

εXε
i (η

2)(δ + |∇εu
ε|2)β/2(3.6)

≤ 2

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
|η|(δ + |∇εu

ε|2)(p−2)/2|Xε
jX

ε
i u

ε||∇εu
ε||∇εη|(δ + |∇εu

ε|2)
β

2

≤ α

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)(p+β−2)/2|Xε
jX

ε
i u

ε|2 +Cα

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p+β)/2|∇εη|
2.
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Analogously, we find

2n
∑

ℓ=1

I2ℓ ≤ α

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)(p+β−2)/2|Xε
i X

ε
ju

ε|2(3.7)

+ C

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p+β)/2|∇εη|
2 + Cα(β + 1)2

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)(p+β−2)/2|Zuε|2.

In a similar fashion, we obtain

2n
∑

ℓ=1

I3ℓ ≤ α

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p+β−2)/2|Xε
i X

ε
ju

ε|2η2(3.8)

+Cα(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p+β)/2(|∇εη|
2 + |η|2).

Finally, integrating by parts twice, and using the structural assumptions, one has

2n
∑

ℓ=1

I4ℓ = −
2n
∑

ℓ=1

ˆ t2

t1

ˆ

Ω
Z(Aℓ+sℓn(x,∇εu

ε))η2(δ + |∇εu
ε|2)β/2Xε

ℓu
ε(3.9)

= 2
2n
∑

ℓ=1

ˆ t2

t1

ˆ

Ω
Aℓ+sℓn(x,∇εu

ε)ηZη(δ + |∇εu
ε|2)β/2Xε

ℓ u
ε

+ β

2n
∑

ℓ=1

2n+1
∑

j=1

ˆ t2

t1

ˆ

Ω
Aℓ+sℓn(x,∇εu

ε)η2(δ + |∇εu
ε|2)

β−2
2 Xju

εXjZuεXε
ℓu

ε

+
2n
∑

ℓ=1

ˆ t2

t1

ˆ

Ω
Aℓ+sℓn(x,∇εu

ε)η2(δ + |∇εu
ε|2)β/2Xε

ℓZuε

= 2

2n
∑

ℓ=1

ˆ t2

t1

ˆ

Ω
Aℓ+sℓn(x,∇εu

ε)ηZη(δ + |∇εu
ε|2)β/2Xε

ℓ u
ε

− β

2n
∑

ℓ=1

2n+1
∑

j=1

ˆ t2

t1

ˆ

Ω
Xj

(

Aℓ+sℓn(x,∇εu
ε)η2(δ + |∇εu

ε|2)
β−2
2 Xju

εXε
ℓu

ε

)

Zuε

−

2n
∑

ℓ=1

ˆ t2

t1

ˆ

Ω
Xε

ℓ

(

Aℓ+sℓn(x,∇εu
ε)η2(δ + |∇εu

ε|2)β/2
)

Zuε

≤ α

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p+β−2)/2|Xε
i X

ε
ju

ε|2η2

+C(β + 1)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p+β)/2
(

η2 + |∇εη|
2 + |ηZη|

)
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+Cα(β + 1)4
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p+β−2)/2|Zuε|2.

Combining (3.6)-(3.9) with (3.5), we reach the desired conclusion (3.3).
�

In the case β = 0 we obtain the following stronger estimate, which we will need in the sequel.
We denote by || · || the L∞ norm of a function on the parabolic cylinder Q.

Lemma 3.6. Let uε be a weak solution of (1.8) in Q, let t2 ≥ t1 ≥ 0, and η ∈ C1([0, T ], C∞

0 (Ω))
be such that 0 ≤ η ≤ 1, and for which ||∂tη|| ≤ C||∇εη||

2, where C > 0 is a universal constant. For

every α > 0 there exists Cα > 0 such that

1

2

ˆ

Ω
((δ + |∇εu

ε|2)η2)
∣

∣

∣

t2

t1
+ λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2η2

≤ α

ˆ t2

t1

ˆ

Ω
|Zuε|2η3 + Cα

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p/2
(

η2 + |∇εη|
2 + |ηZη|

)

.

Proof. In view of Lemma 3.2 we notice that, if uε ∈ C∞(Q) is a solution of ∂tu
ε =

∑2n+1
i=1 Xε

i A
ε
i (x,∇εu

ε),
then vεℓ = Xε

ℓ u
ε solves

∂tv
ε
ℓ =

2n+1
∑

i,j=1

Xε
i

(

Xε
ℓ (A

ε
i (x,∇εu

ε))
)

+

2n+1
∑

i=1

Xε
i

(

Aε
i,xℓ

(x,∇εu
ε)−

sℓxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε)
)

(3.10)

+ sℓZ(Aε
ℓ+sℓn

(x,∇εu
ε)).

With η as in the statement of the lemma, we take φ = η2Xε
ℓu

ε as a test function in the weak form
of (3.10). Integrating by parts the terms in divergence form, one has

1

2

ˆ t2

t1

ˆ

Ω
η2∂t(X

ε
ℓ u

ε)2 +

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Xℓ(A

ε
i (x,∇εu

ε))Xε
i

(

η2Xε
ℓu

ε

)

=

ˆ t2

t1

ˆ

Ω
η2

2n+1
∑

i=1

Xε
i

(

Aε
i,xℓ

(x,∇εu
ε)−

sℓxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε)
)

Xε
ℓu

ε

+ sℓ

ˆ t2

t1

ˆ

Ω
η2Z(Aε

ℓ+sℓn
(x,∇εu

ε))Xε
ℓ u

ε.
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The gives

1

2

ˆ t2

t1

ˆ

Ω
η2∂t(X

ε
ℓ u

ε)2 +

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
η2Aε

i,ξj(x,∇εu
ε)Xε

ℓX
ε
ju

εXε
ℓX

ε
i u

ε

= −

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
η2Xℓ(A

ε
i (x,∇εu

ε))Zuε −

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Xℓ(A

ε
i (x,∇εu

ε))ηXε
i ηX

ε
ℓ u

ε

−

ˆ t2

t1

ˆ

Ω

2n+1
∑

i=1

(

Aε
i,xℓ

(x,∇εu
ε)−

sℓxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε)
)

Xε
i

(

η2Xε
ℓu

ε
)

+ sℓ

2n+1
∑

j=1

ˆ t2

t1

ˆ

Ω
η2Z(Aε

ℓ+sℓn
(x,∇εu

ε))Xε
ℓ u

ε = I1ℓ + I2ℓ + I3ℓ + I4ℓ .

Summing over ℓ = 1, ..., 2n, in view of the structural hypothesis (1.7), after an integration by parts
in the first term in the left-hand side we obtain the following bound

1

2

ˆ

Ω
(δ + |∇εu

ε|2)η2
∣

∣

∣

t2

t1
+ λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2η2

≤ I1ℓ + I2ℓ + I3ℓ + I4ℓ +

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)η∂tη.

Next, we estimate each of the terms in the right-hand side separately. Recalling that |Aε
iξj

(x, η)| ≤

C(δ + |η|2)
p−2
2 , we find that for any α1, α2 > 0 there exist Cα1 , Cα2 > 0, depending only on

α1, α2, p, n and the structure constants, such that

2n
∑

ℓ=1

I1ℓ =

2n
∑

ℓ=1

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
η2Xℓ(A

ε
i (x,∇εu

ε))Zuε

= −2

2n
∑

ℓ=1

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Aε

i (x,∇εu
ε)ηXℓηZuε −

2n
∑

ℓ=1

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
η2Aε

i (x,∇εu
ε)Xε

ℓZuε

= −2

2n
∑

ℓ=1

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Aε

i (x,∇εu
ε)ηXℓηZuε

+

2n
∑

ℓ=1

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Aε

i (x,∇εu
ε)2ηZηXε

ℓ u
ε +

2n
∑

ℓ=1

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
η2Aε

iξj (x,∇εu
ε)Xε

jZuεXε
ℓu

ε

≤

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p−1η|∇εη||Zuε|+

2n
∑

ℓ=1

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p|2ηZη|

+
2n
∑

ℓ=1

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)(p−1)/2|∇εZuε|
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≤ α1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p−2)/2η2|Zuε|2 + Cα1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p/2|∇εη|
2

+

2n
∑

ℓ=1

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p/2|2ηZη|

+
α2

||∇εη||2

2n
∑

ℓ=1

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
η4(δ + |∇εu

ε|2)(p−2)/2|∇εZuε|2 +Cα2 ||∇εη||
2

ˆ t2

t1

ˆ

supp(η)
(δ + |∇εu

ε|2)p/2.

Now, we apply Lemma 3.4 to find, for any α > 0,

α

||∇εη||2

2n
∑

ℓ=1

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p−2)/2|∇εZuε|2η4

≤ αC

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |Zuε|2η2 +

α||∂tη||

||∇εη||2

ˆ t2

t1

ˆ

Ω
|Zuε|2η3

+ α

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 η4.

Analogously,

2n
∑

ℓ=1

I2ℓ +
2n
∑

ℓ=1

I3ℓ ≤ α
2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p−2)/2|Xε
i X

ε
j u

ε|2η2

+ C

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p/2|∇εη|
2.

Using the structure conditions, one has

2n
∑

ℓ=1

I4ℓ ≤

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p−1)/2|∇εZuε|η2

≤ α
2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p−2)/2|∇εZuε|2η2

+ Cα

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p/2
(

η2 + |∇εη|
2 + |ηZη|

)

,

thus concluding the proof.
�

Next, we need to establish mixed type Caccioppoli inequalities, where the left-hand side includes
terms with both horizontal derivatives and derivatives along the second layer of the stratified Lie
algebra of Hn.

Lemma 3.7. Set T > t2 > t1 > 0. Let uε be a weak solution of (1.8) in Q = Ω × (0, T ). Let

β ≥ 2 and let η ∈ C1((0, T ), C∞

0 (Ω)), with 0 ≤ η ≤ 1. For all α ≤ 1 there exist constants CΛ,
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Cα = C(α, λ,Λ) > 0 such that

ˆ t2

t1

ˆ

Ω
ηβ+2(δ + |∇εu

ε|2)
p−2
2 |Zuε|β

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2(3.11)

+

ˆ

Ω
ηβ+2|Zuε|β|∇εu

ε|2
∣

∣

∣

∣

t2

t1

+ (β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εZuε|2|Zuε|β−2ηβ+2|∇εu

ε|2

≤ Cα(β + 1)2(1 + |∇εη||
2
L∞)

ˆ t2

t1

ˆ

Ω
(ηβ + ηβ+4)(δ + |∇εu

ε|2)
p

2 |Zuε|β−2
2n+1
∑

i,j=1

|Xε
i X

ε
j u

ε|2

+
2α

(1 + ||∇εη||2)(β + 2)

ˆ t2

t1

ˆ

Ω
|Zuε|β+2ηβ+3|∂tη|dx+

α

(β + 2)2

ˆ

Ω
|Zuε|β+2ηβ+4

∣

∣

∣

t=t1

+CΛ(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p+2
2 |Zuε|β−2ηβ+2

+

ˆ t2

t1

ˆ

Ω
|Zuε|β |∇εu

ε|2∂t(η
β+2).

Proof. Let η ∈ C∞

0 (Ω × (0, T )) be a nonnegative cutoff function. Fix β ≥ 2 and ℓ ∈ {1, ..., 2n}.
Note that

∂t(|X
ε
ℓ u

ε|2|Zuε|β) = 2Xε
ℓ u

ε∂tX
ε
ℓ u

ε|Zuε|β + β|Xε
ℓu

ε|2|Zuε|β−2Zuε∂tZuε,

which suggests to use 2Xε
ℓu

ε|Zuε|β as a test function in the equation (3.2) satisfied by Xε
ℓ u

ε and

to choose β|Xε
ℓu

ε|2|Zuε|β−2Zuε as a test function in the equation (3.3) satisfied by Zuε. Equation
(3.2) becomes in weak form

ˆ t2

t1

ˆ

Ω
∂tX

ε
ℓu

εφ = −

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω

(

Aε
i,ξj(x,∇εu

ε)Xε
ℓX

ε
ju

ε
)

Xε
i φ+ sℓZ(Aε

ℓ+sℓn
(x,∇εu

ε))φ

−
2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω

(

Aε
i,xℓ

(x,∇εu
ε)−

sℓxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε)
)

Xε
i φ.

Consequently, if we substitute the test function φ = 2ηβ+2|Zu|βXε
ℓu, we obtain

2

ˆ t2

t1

ˆ

Ω
∂tX

ε
ℓu

εηβ+2|Zuε|βXε
ℓu

ε(3.12)

+ 2
2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aε

i,ξj(x,∇εu
ε)Xε

ℓX
ε
ju

εηβ+2|Zuε|βXε
ℓX

ε
i u

ε

= −
2n+1
∑

i,j=1

2

ˆ t2

t1

ˆ

Ω
Aε

i,ξj(x,∇εu
ε)Xε

ℓX
ε
ju

εXε
i

(

ηβ+2|Zuε|β
)

Xε
ℓu

ε
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− 2
2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aε

i,ξj
(x,∇εu

ε)Xε
ℓX

ε
ju

εηβ+2|Zuε|β [Xε
i ,X

ε
ℓ ]u

ε

− 2sl

ˆ t2

t1

ˆ

Ω
Z(Aℓ+sℓn(x,∇εu

ε))ηβ+2|Zuε|βXε
ℓu

ε

− 2

2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω

(

Aε
i,xℓ

(x,∇εu
ε)−

sℓxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε)
)

Xε
i

(

ηβ+2|Zuε|βXε
ℓu

ε
)

= I1ℓ + I2ℓ + I3ℓ + I4ℓ .

We will show that these terms satisfy the following estimate

4
∑

k=1

2n
∑

ℓ=1

|Ikℓ | ≤ α

ˆ t2

t1

ˆ

Ω
ηβ+2(δ + |∇εu

ε|2)
p−2
2 |Zuε|β

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2(3.13)

+ Cα(β + 1)2(1 + ||∇εη||
2
L∞

ˆ t2

t1

ˆ

Ω
(ηβ + ηβ+4)(δ + |∇εu

ε|2)
p

2 |Zuε|β−2
2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2

+
2α

(1 + ||∇εη||2)(β + 2)

ˆ t2

t1

ˆ

Ω
|Zuε|β+2ηβ+3|∂tη|+

α

(β + 2)2

ˆ

Ω
|Zuε|β+2ηβ+4

∣

∣

∣

t=t1

+ α(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 ηβ+4|Zuε|β−2|∇εZuε|2|∇εu

ε|2.

We first note that

2n
∑

ℓ=1

|I1ℓ | ≤ 2
2n
∑

ℓ=1

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
|Aε

i,ξj
(x,∇εu

ε)Xε
ℓX

ε
ju

εXi

(

ηβ+2|Zuε|β
)

Xε
ℓu

ε|

≤ 2nΛ(β + 2)
2n
∑

ℓ=1

2n+1
∑

j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 |Xε

ℓX
ε
ju

ε|ηβ+1|∇εη||∇εu
ε||Zuε|β

+ 2nβ
2n
∑

ℓ=1

2n+1
∑

j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 |Xε

ℓX
ε
ju

ε|ηβ+2|Zuε|β−1|∇εZuε|

≤ α

ˆ t2

t1

ˆ

Ω
ηβ+2(δ + |∇εu

ε|2)
p−2
2 |Zuε|β

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2

+ Cα(β + 1)2
ˆ t2

t1

ˆ

Ω
ηβ|∇εη|

2(δ + |∇εu
ε|2)

p

2 |Zuε|β

+ Cα(β + 1)2(1 + ||∇εη||
2)

ˆ t2

t1

ˆ

Ω
ηβ(δ + |∇εu

ε|2)
p

2 |Zuε|β−2
2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2
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+
α

1 + ||∇εη||2

ˆ t2

t1

ˆ

Ω
ηβ+4(δ + |∇εu

ε|2)
p−2
2 |Zuε|β|∇εZuε|2.

The last term can be estimated, as follows, using Lemma 3.4:

α

ˆ t2

t1

ˆ

Ω
ηβ+4(δ + |∇εu

ε|2)
p−2
2 |Zuε|β|∇εZuε|2(3.14)

≤ αCΛ,λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εη|

2ηβ+2|Zuε|β+2

+
2α

β + 2

ˆ t2

t1

ˆ

Ω
|Zuε|β+2ηβ+3∂tη

+
α

(β + 1)2

ˆ

Ω
|Zuε|β+2ηβ+4

∣

∣

∣

t=t1
+ αCΛ,λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 ηβ+4|Zuε|β

≤ αCΛ,λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εη|

2ηβ+2|Zuε|β
∑

ij

|XiXju|
2

+
2α

β + 2

ˆ t2

t1

ˆ

Ω
|Zuε|β+2ηβ+3∂tη +

α

(β + 1)2

ˆ

Ω
|Zuε|β+2ηβ+4

∣

∣

∣

t=t1

+ αCΛ,λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 ηβ+4|Zuε|β .

From here estimate (3.13) holds. Integrating by parts we have

2n
∑

ℓ=1

|I2ℓ | = −2

2n
∑

ℓ=1

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aε

i (x,∇εu
ε)Xε

l

(

ηβ+2|Zuε|β [Xε
i ,X

ε
ℓ ]u

ε
)

≤ 2(β + 2)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 ηβ+1|∇εη||Zuε|β+1+

+ 2(β + 1)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 ηβ+2|Zuε|β|∇εZuε|

≤ Cα(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p
2 ηβ|Zuε|β−2

2n+1
∑

i,j=1

|Xε
i X

ε
j u

ε|2

+ α

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 ηβ+2|Zuε|β

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2

+ α

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 ηβ+4|Zuε|β |∇εZuε|2

+ Cα(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p
2 ηβ|Zuε|β−2

2n+1
∑

i,j=1

|Xε
i X

ε
j u

ε|2.
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From here, using inequality (3.14), we deduce that I2ℓ satisfies inequality (3.13). The estimate of
I3ℓ can be made as follows:

|I3ℓ | ≤ α

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 ηβ+4|Zuε|β|∇εZuε|2

+ Cα

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 ηβ|Zuε|β−2
2n+1
∑

i,j=1

|Xε
i X

ε
j u

ε|2

+ Λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 ηβ+2|Zuε|β.

From here and (3.14) the inequality (3.13) follows. The estimate of I4ℓ is analogous:

|I4ℓ | ≤ 2(β + 1)Λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 ηβ+1|∇εη||Zuε|β |∇εu

ε|

+ 2(β + 1)Λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 ηβ+2|Zuε|β−1|∇εZuε||∇εu

ε|

+ Λ

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 ηβ+2|Zuε|β|Xε

i X
ε
ju

ε|

≤ α(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 ηβ+4|Zuε|β−2|∇εZuε|2|∇εu

ε|2

+ α

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 ηβ+2|Zuε|β |Xε

i X
ε
ju

ε|2

+ Cα(β + 1)(1 + ||∇εη||
2
L∞)

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 |Zuε|β(ηβ + ηβ+2).

We now recall the following pde from Lemma 3.3

∂tZuε =

2n+1
∑

i,j=1

Xε
i (A

ε
i,ξj (x,∇εu

ε)Xε
jZuε) +

2n+1
∑

i=1

Xε
i (A

ε
i,x2n+1

(x,∇εu
ε)).

Substituting in this equation the test function φ = β|Zu|β−2Zuηβ+2|∇εu
ε|2, one obtains

β

ˆ t2

t1

ˆ

Ω
∂tZuε|Zuε|β−2Zuεηβ+2|∇εu

ε|2(3.15)

+ β(β − 1)
2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aiξj (x,∇εu

ε)Xε
jZuεXε

i Zuε|Zuε|β−2ηβ+2|∇εu
ε|2

= −β
2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aiξj (x,∇εu

ε)Xε
jZuε|Zuε|β−2ZuεXε

i

(

ηβ+2|∇εu
ε|2
)
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− β
2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Aε

i,x2n+1
(x,∇εu

ε)Xε
i

(

|Zuε|β−2Zuεηβ+2|∇εu
ε|2
)

= −β(β + 2)
2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aiξj (x,∇εu

ε)Xε
jZuε|Zuε|β−2ZuεXε

i ηη
β+1|∇εu

ε|2

− 2β
2n+1
∑

ℓ,i,j=1

ˆ t2

t1

ˆ

Ω
Aiξj (x,∇εu

ε)Xε
jZuε|Zuε|β−2Zuεηβ+2Xε

ℓu
εXε

i X
ε
ℓ u

ε

− β(β − 1)
2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Aε

i,x2n+1
(x,∇εu

ε)|Zuε|β−2Xε
i Zuεηβ+2|∇εu

ε|2

− β(β + 1)
2n+1
∑

i=1

ˆ t2

t1

ˆ

Ω
Aε

i,x2n+1
(x,∇εu

ε)|Zuε|β−2Zuεηβ+1Xε
i η|∇εu

ε|2

− β
2n+1
∑

i,ℓ=1

ˆ t2

t1

ˆ

Ω
Aε

i,x2n+1
(x,∇εu

ε)|Zuε|β−2Zuεηβ+2Xε
ℓu

εXε
i X

ε
ℓu

ε

= I5 + · · · + I9.

We observe that the ellipticity condition yields

β(β − 1)

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aiξj (∇εu

ε)Xε
jZuXε

i Zuε|Zuε|β−2ηβ+2|∇εu
ε|2

≥ (β + 1)2Cλ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇ǫZuε|2|Zuε|β−2ηβ+2|∇εu

ε|2.

Let us now consider I5:

I5 = −β(β + 2)

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
Aiξj (x,∇εu

ε)Xε
jZuε|Zuε|β−2ZuεXε

i ηη
β+1|∇εu

ε|2

≤ 2(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 |∇εZuε||Zuε|β−1|∇εη|η

β+1|∇εu
ε|2

≤ α(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εZuε|2|Zuε|β−2ηβ+2|∇εu

ε|2

+ Cα(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 |Zuε|β |∇εη|η
β .

The estimate of I6 is identical to that I1ℓ and we thus omit it. Let us consider I7. One has

I7 ≤ (β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 |Zuε|β−2|∇εZuε|ηβ+2|∇εu

ε|2
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≤ α(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |Zuε|β−2|∇εZuε|2ηβ+2|∇εu

ε|2

+ Cα(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 |Zuε|β−2ηβ+2|∇εu
ε|2.

Similar consideration holds for I8

I8 ≤ (β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 |Zuε|β−1ηβ+1|∇εη||∇εu

ε|2

≤ CΛ(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 |Zuε|βηβ |∇εη|
2

+ CΛ(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p+2
2 |Zuε|β−2ηβ+2.

Finally, we estimate I9.

I9 ≤ CΛ(β + 1)

2n+1
∑

ℓ,i=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−1
2 |Zuε|β−1ηβ+2|∇εu

ε||Xε
i X

ε
ℓu

ε|

≤ CΛ(β + 1)
2n+1
∑

ℓ,i=1

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 |Zuε|β−2ηβ+2|Xε
i X

ε
ℓu

ε|2.

It follows that
4
∑

k=1

2n
∑

ℓ=1

Ikℓ +
9
∑

k=5

Ik ≤ α

ˆ t2

t1

ˆ

Ω
ηβ+2(δ + |∇εu

ε|2)
p−2
2 |Zuε|β

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2(3.16)

+ Cα(β + 1)2(1 + |∇εη||
2
L∞)

ˆ t2

t1

ˆ

Ω
(ηβ + ηβ+4)(δ + |∇εu

ε|2)
p

2 |Zuε|β−2
2n+1
∑

i,j=1

|Xε
i X

ε
j u

ε|2

+
2α

(1 + ||∇εη||2)(β + 2)

ˆ t2

t1

ˆ

Ω
|Zuε|β+2ηβ+3|∂tη|dx+

α

(β + 2)2

ˆ

Ω
|Zuε|β+2ηβ+4

∣

∣

∣

t=t1

+ α(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εZuε|2|Zuε|β−2(ηβ+2 + ηβ+4)|∇εu

ε|2

+ CΛ(β + 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p+2
2 |Zuε|β−2ηβ+2.

Summing up equations (3.12) and (3.15), we obtain

2n+1
∑

i,j=1

ˆ t2

t1

ˆ

Ω
ηβ+2(δ + |∇εu

ε|2)
p−2
2 |Zuε|β|Xε

i X
ε
ju

ε|2 +

ˆ

Ω
(ηβ+2|Zuε|β|∇εu

ε|2)

∣

∣

∣

∣

t2

t1

+

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εZuε|2|Zuε|β−2ηβ+2|∇εu

ε|2
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=

ˆ t2

t1

ˆ

Ω
|Zuε|β|∇εu

ε|2∂t(η
β+2) +

4
∑

k=1

2n
∑

ℓ=1

Ikℓ +
9
∑

k=5

Ik.

Applying (3.16), the proof is completed.
�

At this point we make use of the non-degeneracy condition δ > 0, and recalling that Z is obtained
as a commutator of the horizontal vector fields and that η ≤ 1, we estimate

(3.17)

ˆ t2

t1

ˆ

Ω
|Zuε|2η3dxdt ≤ Cδ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2η2dxdt.

Lemma 3.6 and (3.17) yield the following

Corollary 3.8. Let uε be a weak solution of (1.8) in Q. For any t2 ≥ t1 ≥ 0, and all η ∈ C∞

0 (Ω),
such that η ≤ 1, ||∂tη|| ≤ C||∇εη||

2. For every fixed value of δ there exists Cδ depending on δ, p, n
and on the structure constants, such that

1

2

ˆ

Ω
((δ + |∇εu

ε|2)η2)
∣

∣

∣

t2

t1
+ λ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2η2

≤ Cδ

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p/2
(

η2 + |∇εη|
2 + |ηZη|

)

.

Corollary 3.9. Let uε be a solution of (1.8) in Ω× (0, T ) and Bε(x0, r)× (t0 − r2, t0) a parabolic

cylinder. Let η ∈ C∞(Bε(x0, r)× (t0−r2, t0)) be a non-negative test function η ≤ 1, which vanishes

on the parabolic boundary and such that there exists a constant Cλ,Λ > 1 for which ||∂tη||L∞ ≤
Cλ,Λ(1+ ||∇εη||

2
L∞). Set t1 = t0− r2. There exists a constant Cδ,λ,Λ, also depending on δ, such that

for all β ≥ 2 one has

ˆ t0

t0−r2

ˆ

Ω
ηβ+2(δ + |∇εu

ε|2)
p−2
2 |Zuε|β

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2 + max
t∈(t0−r2,t0]

ˆ

Ω
ηβ+2|Zuε|β|∇εu

ε|2(3.18)

+ (β + 1)2
ˆ t0

t0−r2

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εZuε|2|Zuε|β−2ηβ+2|∇εu

ε|2

≤ Cλ,Λ(β + 1)2(1 + |∇εη||
2
L∞)

ˆ t0

t0−r2

ˆ

Ω
ηβ(δ + |∇εu

ε|2)
p

2 |Zuε|β−2
2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2

+ Cλ,Λ(β + 1)2
ˆ t0

t0−r2

ˆ

Ω
(δ + |∇εu

ε|2)
p+2
2 |Zuε|β−2ηβ+2.

Proof. The statement follows at once by standard parabolic pde arguments, after choosing α ap-
propriately small in (3.11) and applying (3.17), once one notes that |Zuε| ≤

∑2n+1
i,j=1 |X

ε
i X

ε
ju

ε|.
�
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Corollary 3.10. In the hypotheses of the previous corollary we have

2n+1
∑

i,j=1

ˆ t0−r2

t0

ˆ

Ω
ηβ+2(δ + |∇εu

ε|2)
p−2
2 |Zuε|β|Xε

i X
ε
ju

ε|2 + max
t∈(t0−r2,t0]

ˆ

Ω
ηβ+2|Zuε|β |∇εu

ε|2

+ (β + 1)2
ˆ t0−r2

t0

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2 |∇εu

ε|2|Zuε|β−2ηβ+2(Xε
l u

ε)2

≤ Cβ/2(β + 1)β(||∇εη||
2
L∞ + 1))β/2

2n+1
∑

i,j=1

ˆ t0−r2

t0

ˆ

Ω
ηβ
(

δ + |∇εu
ε|2
)

p−2+β

2
|Xε

i X
ε
ju

ε|2,

where c = c(n, p, L) > 0.

Proof. In order to handle the first term in the right-hand side of the sought for conclusion, it suffices
to observe that

C(β + 1)2(||∇εη||
2
L∞ + 1)ηβ

(

δ + |∇εu
ε|2
)p/2

|Zu|β−2
2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2 =

= ηβ−2
(

δ + |∇εu|
2
)(p−2)(β−2)/2β

|Zu|β−2(|

2n+1
∑

i,j=1

Xε
i X

ε
j u

ε|2)(β−2)/β

+ η2
(

δ + |∇εu
ε|2
)(p+β−2)/β

(

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2)2/βC(β + 1)2(||∇εη||
2
L∞ + 1).

The conclusion then follows from Hölder’s inequality. We can handle the second term in the same
way

C(β + 1)2(||∇εη||
2
L∞)ηβ

(

δ + |∇εu
ε|2
)(p+2)/2

|Zu|β−4
2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2

= ηβ−2
(

δ + |∇εu|
2
)

(p−2)(β−4)
2β

|Zu|β−4(|

2n+1
∑

i,j=1

Xε
i X

ε
ju

ε|2)(β−4)/β

× η2
(

δ + |∇εu
ε|2
)2(p+β−2)/β

(

2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2)4/βC(β + 1)2(||∇εη||
2
L∞ + 1).

�

The key step in the proof of the Lipschitz regularity of solutions is the following Caccioppoli
type inequality which is a parabolic analogue of [36, Theorem 3.1].

Theorem 3.11. Let uε be a solution of (1.8) in Ω× (0, T ) and Bε(x0, r)× (t0 − r2, t0) a parabolic

cylinder. Let η ∈ C∞(Bε(x0, r)× (t0− r2, t0]) be a non-negative test function η ≤ 1, which vanishes

on the parabolic boundary such that there exists a constant Cλ,Λ > 1 for which ||∂tη||L∞ ≤ Cλ,Λ(1+
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||∇εη||
2
L∞). Set t1 = t0 − r2, t2 = t0. There exist constants C,K > 0 depending on δ such that for

all β ≥ 2 one has

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)(p−2+β)/2
2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2dxdt+
1

β + 2
max

t∈(t0−r2,t0]

ˆ

Ω
(δ + |∇εu

ε|2)
β

2
+1η2

≤ C(β + 1)5(||∇εη||
2
L∞ + ||ηZη||L∞ + 1)

ˆ t2

t1

ˆ

spt(η)
(δ + |∇εu

ε|2)(p+β)/2.

Here, C depends only on p, and Λ.

Proof. In view of Lemma 3.6, the conclusion will follow once we provide an appropriate estimate
of the term

ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)(p−2+β)/2|Zuε|2.

The first step is to apply Hölder’s inequality to obtain
ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)(p−2+β)/2|Zuε|2

≤
(

ˆ t2

t1

ˆ

ηβ+2(δ + |∇εu
ε|2)

p−2
2 |Zuε|β+2dxdt

)
2

β+2
(

ˆ t2

t1

ˆ

spt(η)
(δ + |∇εu

ε|2)
p+β

2

)
β

β+2

(since |Zuε| ≤
n
∑

i,j=1

|Xε
i X

ε
ju

ε|)

≤
(

ˆ t2

t1

ˆ

ηβ+2(δ + |∇εu
ε|2)

p−2
2 |Zuε|β

n
∑

i,j=1

|Xε
i X

ε
ju

ε|2
)

2
β+2
(

ˆ t2

t1

ˆ

spt(η)
(δ + |∇εu

ε|2)
p+β

2

)
β

β+2

(the first integral in the right-hand side can be bounded by applying Corollary 3.10, resulting in the estimate)

≤ C
β

β+2 (β + 1)
2β
β+2 (||∇εη||

2
L∞ + 1)

β
β+2

(

ˆ t2

t1

ˆ

Ω
ηβ
(

δ + |∇εu
ε|2
)

p−2+β

2
2n+1
∑

i,j=1

|Xε
i X

ε
ju|

2
)

2
β+2

×
(

ˆ t2

t1

ˆ

spt(η)
(δ + |∇εu

ε|2)
p+β
2

)
β

β+2

(by Young’ s inequality, recalling C0 from the statement of Lemma 3.6)

≤ C
β

β + 2

(4C0(β + 1)4

(β + 2)

)
2
β
(β + 1)2(||∇εη||

2
L∞ + 1)

ˆ t2

t1

ˆ

spt(η)
(δ + |∇εu

ε|2)
p+β

2

+
1

2C0(β + 1)4

ˆ t2

t1

ˆ

Ω
ηβ
(

δ + |∇εu
ε|2
)

p−2+β

2
2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2.

Now we note that
β

β + 2

(4C0(β + 1)4

(β + 2)

)
2
β
(β + 1)2 ≤ Cλ,Λ(β + 1)5.
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Substituting the previous estimate in Lemma 3.6, we conclude
ˆ t2

t1

ˆ

Ω
η2(δ + |∇εu

ε|2)
p−2+β

2 |Xε
i X

ε
ju

ε|2

≤ Cλ,Λ(β + 1)5(||∇εη||
2
L∞ + ||ηZη||L∞ + 1)

ˆ t2

t1

ˆ

spt(η)
(δ + |∇εu

ε|2)
p+β
2 .

This completes the proof of the theorem.
�

In the next result, from Lemma 2.4 and Theorem 3.11 we will establish local integrability of
∇εu

ε in Lq for every q ≥ p.

Lemma 3.12. Let uε be a solution of (1.8) in Q. For any open ball B ⊂⊂ Ω and T > t2 ≥ t1 ≥ 0,
consider a test function η ∈ C

∞

([0, T ]×B), vanishing on the parabolic boundary, such that η ≤ 1,
||∂tη|| ≤ C||∇εη||

2. For every β ≥ 0, there exists a constant C = C(n, p, λ,Λ, d(B, ∂Ω), T − t2, δ) >
0, such that

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p+2)/2|η|β+2 ≤ Cβ(β + 1)β
ˆ t2

t1

ˆ

B
(δ + |∇εu

ε|2)p/2.

Proof. We begin by examining the case β = 0. Applying Lemma 2.4 and Corollary 3.8 one can find
positive constants C1, C2, C3, depending on n, p, λ,Λ, d(B, ∂Ω), T − t2, δ, such that
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p+2)/2|η|2 ≤ C1(p+ 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p−2
2

∑

i,j

|Xε
jX

ε
i u

ε|2|η|2

+ C2β
2

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p/2(|η|2 + |∇εη|
2) ≤ C3

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)p/2
(

η2 + |∇εη|
2 + |ηZη|

)

,

concluding the proof in the case β = 0. Next, we consider the range β ≥ 2. The interpola-
tion inequality Lemma 2.4 and Theorem 3.11 imply the existence of positive constants C4, ..., C7,
depending on n, p, λ,Λ, d(B, ∂Ω), T − t2, and δ, such that

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p+2)/2|η|β+2(3.19)

≤ C4(β + p+ 1)2
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)
p+β−2

2

∑

i,j

|Xε
jX

ε
i u

ε|2|η|β+2

+ C5β
2

ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(β+p)/2|η|β(|η|2 + |∇εη|
2)

≤ C6(β + p+ 1)7
ˆ t2

t1

ˆ

Ω
(δ + |∇εu

ε|2)(p+β)/2
(

η2 + |∇εη|
2 + |ηZη|

)

≤ C7(β + 1)7(||∇εη||
2
L∞ + ||ηZη||L∞ + 1)

ˆ

B
(δ + |∇εu

ε|2)(p+β)/2.

Iterating the latter [β]/2 times, the conclusion follows.
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�

In the next result we establish Lipschitz bounds that are uniform in ε. The argument consists
in implementing Moser iterations, and rests on the observation that the quantity δ + |∇εu

ε|2 is
bounded from below by δ > 0, and that for every β ≥ 0 it is bounded in Lp+β in a parabolic
cylinder, uniformly in ε.

In the iteration itself, we will consider metric balls Bε defined through the Carnot-Caratheodory
metric associated to the Riemannian structure gε defined by the orthonormal frame Xε

1 , ...,X
ε
2n+1.

We recall here that gε converges to the sub-Riemannian structure of the Heisenberg group in the
Gromov-Hausdorff sense [24], and in particular Bε → B0 in terms of Hausdorff distance. These
considerations should make it clear that the estimates in the following theorem are stable as ε → 0.

Theorem 3.13. Let uε be a solution of (1.8) in Ω × (0, T ) and Qε
0 = Bε(x0, r) × (t0 − r2, t0)

a parabolic cylinder contained in Ω × (0, T ). For given σ ∈ (0, 1), there exists a constant C =
C(p, σ, β0, λ,Λ, δ) > 0 such that

(3.20) sup
B(x0,σr)×(t0−(σr)2,t0)

(δ + |∇εu
ε|2)

p
2 ≤ C

 t0

t0−r2

 

B(x0,r)
(δ + |∇εu

ε|2)
p
2 .

Proof. We recall the main steps. Let us consider a family of cylinders Qε
i = Bε(x0, ri) × (t0 −

r2i , t0) ⊂⊂ Qε
0 and with ri < ri−1. Applying (ii) in Lemma 2.3 to the function wβ = (δ+|∇εu

ε|2)
β+2
4 ,

one obtains

(

ˆ t0

t0−r2i

ˆ

Bε(x0,ri)
(δ + |∇εu

ε|2)
(β+2)N1
2(N1−2)

)

N1−2
N1

= ||wβ ||
2
2N1
N1−2

,
2N1
N1−2

,Qε
i

≤ ||wβ ||
2
2,∞,Qε

i
+ ||∇εwβ||

2
2,2,Qε

i

≤

ˆ t0

t0−r2i

ˆ

Bε(x0,ri)
η2(δ + |∇εu

ε|2)β/2
2n+1
∑

i,j=1

|Xε
i X

ε
ju

ε|2 +
1

β + 2
max

t∈(t0−r2,t0]

ˆ

Bε(x0,ri)
(δ + |∇εu

ε|2)
β+2
2 η2.

Next, we set g = (δ+ |∇εu
ε|2)(p−2)/2. Using Theorem 3.11, along with the fact that (δ+ |∇εu

ε|) ≥
δ > 0, we obtain

(

ˆ t0

t0−r2i

ˆ

Bε(x0,ri)
(δ + |∇εu

ε|2)
(β+2)N1
2(N1−2)

)

N1−2
N1

≤
C(β + p)6

(ri − ri−1)2

ˆ t0

t0−r2i

ˆ

Bε(x0,ri)
g(δ + |∇εu

ε|2)(β+2)/2.
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Setting q = (β+2)N1

N1−1 and k = N1−1
N1−2 in the latter inequality, we deduce

(

 t0

t0−r2
i

 

B(x0,ri)
(
√

δ + |∇εuε|2)
qk

)
1
q k

≤ C
1

β+2 (β + p)
6

β+2

(

r2+N
i−1

rNi (ri − ri−1)2

)
1

2+β
(

 t0

t0−r2
i−1

 

B(x0,ri−1)
g(
√

δ + |∇εuε|2)
β+2

)
1

β+2

≤ C
1

β+2 (β + p)
6

β+2

(

r2+N
i−1

rNi (ri − ri−1)2

)
1

2+β
(

 t0

t0−r2
i−1

 

B(x0,ri−1)
(
√

δ + |∇εuε|2)
q

)
1
q

.

The classical Moser iteration scheme in see [29] now applies, leading to the sought for conclusion.
�

4. Hölder regularity of derivatives of uε.

This section focuses on the proof of the second part of Theorem 1.2. I.e., we want to show that
for each δ, ε > 0 a weak solution

uε ∈ Lp((0, T ),W 1,p,ε(Ω)) ∩ C2(Q)

of the approximating PDE (1.8) in Q = Ω× (0, T ) satisfies the Hölder estimates

||∇εu
ε||Cα(B×(t1 ,t2)) + ||Zuε||Cα(B×(t1,t2)) ≤ C

(
ˆ T

0

ˆ

Ω
(δ + |∇εu

ε|2)
p

2 dxdt

)
1
p

,

for any open ball B ⊂⊂ Ω and T > t2 ≥ t1 ≥ 0, and for some constants C = C(n, p, λ,Λ, d(B, ∂Ω), T−
t2, δ) > 0 and α = α(n, p, λ,Λ, d(B, ∂Ω), T − t2, δ) ∈ (0, 1) independent of ε. It is clear that the
above estimate represents the ε-version of (1.11).

We begin by studying the regularity of the derivatives of uε along the second layer of the Lie
algebra of Hn. First of all, we observe that since δ > 0 is fixed, Lemma 3.12 and Theorem 3.11
imply that for all i, j = 1, ..., 2n, one has |XiXju

ε| is bounded in L2 uniformly in ε > 0. It follows
that Zuε ∈ L2

loc(Q) uniformily in ε > 0. In view of Lemma 3.3 we can actually obtain more.

Proposition 4.1. Let uε be a solution of (1.8) in Ω × (0, T ) and Q = B(x0, r) × (t0 − r2, t0) a

parabolic cylinder contained in Ω × (0, T ). There exists constants C = C(p, σ, β0, λ,Λ, δ) > 0 and

α = α(p, σ, β0, λ,Λ, δ) ∈ (0, 1) such that

||Zuε||Cα(Q) + ||XZuε||L2(Q) ≤ C

(

||uε||Lp(2Q) + ||∇εu
ε||Lp(2Q)

)

.

Proof. In view of Theorem 3.13, we observe that |∇εu
ε| is bounded and recalling 3.3, one deduces

that for each ε > 0 the smooth function wε = Zuε satisfies the PDE

(4.1) ∂tw
ε =

2n+1
∑

i=1

Xε
i

( 2n+1
∑

j=1

aεij(x, t)X
ε
jw

ε + f ε
i (x, t)

)

,
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where

aεij(x, t) = Aε
i,ξj (x,∇εu

ε) and f ε
i (x, t) = Aε

i,x2n+1
(x,∇εu

ε),

are locally bounded in Q, unformly in ε > 0, and for every η ∈ R
2n+1 and for a.e. x ∈ Ω satisfy

λ|η|2 ≤

2n+1
∑

i,j=1

aεij(x, t)ηiηj ≤ Λ|η|2.

Thanks to Theorems 3.11 and 3.13, and observing that δ > 0, one immediately infers that w0 = Zu
is locally in L2. But then, the Caccioppoli inequality implies that ∇εZuε is in L2

loc(Q), uniformly
in ε > 0. The Harnack inequality established in [9] and [2] yields interior Hölder estimates for wε

in Q, which are stable as ε → 0. �

Remark 4.2. Actually, a stronger result holds. Let α ∈ (0, 1) denote the Hölder exponent of Zuε

(which is uniform in ε > 0). By observing that wε − wε(x0, t0) is also a solution of (4.1), then a
standard Caccioppoli type argument yields

(4.2)

ˆ t0

t0−r2

ˆ

B
|∇εZu|2dxdt ≤ C

1

r2

ˆ t0

t0−(2r)2

ˆ

2B
|wε − wε(x0, t0)|

2dxdt ≤ Crα−2r2n+2+2.

This shows, in particular, that |∇εZu| belongs to the parabolic Morrey class M2,α/2(Q), where for
λ ∈ (0, 1) and q ≥ 1 we have indicated with M q,λ(Q) the space of all functions f ∈ Lq(Q) such
that for all B ⊂ Ω, and 0 < t0 < T , one has

(4.3) sup
r>0

r−(2n+4)

ˆ t0

min(t0−r2,0)

ˆ

B∩Ω
|f |qdxdt ≤ Crq(λ−1).

We also recall that the parabolic Campanato spaces L q,λ(Q) is the collection of all f ∈ Lq(Q)
such that for all B = B(x0, r) ⊂ Ω, and 0 < t0 < T , one has

(4.4) sup
r>0

r−(2n+4)

ˆ t0

min(t0−r2,0)

ˆ

B∩Ω
|f − f(x0,t0),r|

qdxdt ≤ Crq(λ−1).

Here, we have set

f(x0,t0) = r−(2n+4)

ˆ t0

min(t0−r2,0)

ˆ

B∩Ω
f(x, t)dxdt.

A standard argument, see for instance [13], shows that the Campanato space is isomorphic to the
space of Hölder continuous functions. In particular, we rely on the following instance of this general
result.

Lemma 4.3. Let K ⊂⊂ Q. There exists M, r0 > 0 such that for any (x0, t0) ∈ K and 0 < r < r0,
if f ∈ L q,λ(B(x0, r)× (t0 − r2, t0)) then f ∈ Cλ

ε (B(x0, r/M)× (t0 − r2/M2, t0)).

Next, we return to the study of the regularity of horizontal derivatives of solutions. By virtue
of Lemma 3.2 we recall that if uε is a solution of (1.8) in Q, if for a fixed ℓ = 1, ..., 2n we set
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vε = Xε
ℓ u

ε, and sℓ = (−1)[ℓ/n], then the function vε is a solution in Q of

(4.5) ∂tv
ε =

2n+1
∑

i=1

Xε
i

(

2n+1
∑

j=1

aεij(x, t)X
ε
j v

ε + aεi (x, t)
)

+ aε(x, t),

where

aεij(x, t) = Aε
i,ξj (x,∇εu

ε) ∈ L∞

loc(Q),

aεi (x, t) = Aε
i,xℓ

(x,∇εu
ε)−

sℓxℓ+sℓn

2
Aε

i,x2n+1
(x,∇εu

ε) ∈ L∞

loc(Q),

and

aε(x, t) = sℓZ(Aε
ℓ+sℓn

(x,∇εu
ε)),

with

|aε(x, t)| ≤ C|∇εZuε| ∈ L2
loc(Q) ∩M2,α(Q)

for some constant C > 0 depending only on the structure constants and on ||u||Lp,p(Q). We need
to invoke a standard result from the theory of Morrey-Campanato which adapts immediately to
the Heisenberg group setting, see [28], [6]. In the statement of the next lemma we assume that
Q = Ω× (0, T ) is a given cylinder, and that [bij ]

2n+1
i,j=1 is a uniformly elliptic matrix-valued function

in Q, with coefficients in L∞(Q). We also suppose that for some λ ∈ (0, 1) we are given functions
bi ∈ M2,λ(Q), and a function b such that for each 2B ⊂ Ω and r > 0 sufficiently small,

(4.6) r−N1

ˆ t0

min(t0−r2,0)

ˆ

B∩Ω
|b|dxdt ≤ Crλ−2

with b ∈ L
2N1/(N1+2)
loc (Q), where we recall that N1 = N + 2 = 2n + 4 is the parabolic dimension

with respect to the dilations (x, t) → (δλx, λ
2t).

Lemma 4.4. For each ε ≥ 0, let w ∈ Lp((0, T ),W 1,p
0 (Ω)) be a weak solution in Q to the equation

∂tw =
2n+1
∑

i=1

Xε
i

( 2n+1
∑

j=1

bij(x, t)X
ε
jw + bi(x, t)

)

+ b(x, t).

Then, |∇εw| ∈ M2,λ

(

1
2B × (t0 − ( r2 )

2, t0)

)

.

We can now conclude the proof of the second part of Theorem 1.2. To begin, as we need to
apply Lemma 4.4 to the linear equation (4.5), we observe that (4.2) and Hölder inequality yield
the needed hypothesis (4.6). At this point one can invoke Lemma 4.4 to conclude that for every
ℓ = 1, ..., 2n the function ∇εX

ε
l u

ε belongs locally to M2,λ. In view of the Poincaré inequality, one

then has that ∇εu
ε belongs to the Campanato spaces L 2,λ and hence by virtue of Lemma 4.3 it is

Hölder continuous, concluding the proof.
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5. Proof of Theorem 1.1

We will need a simple form of the comparison principle, see [3] and [4].

Lemma 5.1. Let u,w be weak solutions of (1.1) in a cylinder B × (t1, t2). If on the parabolic

boundary B × {t1} ∪ ∂B × (t1, t2) one has that u ≥ w, then u ≥ w in B × (t1, t2).

We now show how Theorem 1.1 follows from the comparison principle and from Theorem 1.2.

of Theorem 1.1. Recall from Lemma 2.1 that u is Hölder continuous in any compact subdomain
of Q, in particular in the closure of B × (t1, t2). For each ε > 0 consider uε, the unique smooth
solution of the quasilinear parabolic problem

(5.1)

{

∂tu
ε =

∑2n+1
i=1 Xε

i A
ε
i (x,∇εu

ε), in B × (t1, t2)
uε = u in B × {t1} ∪ ∂B × (t1, t2),

where Aε
i (x, ξ) satisfies the structure conditions (1.7). By virtue of Theorem 3.1 and of the Hölder

regularity from Theorem 1.2, one has that for every K ⊂⊂ Q, and q ≥ 1, there exist M =
M(p, q, λ,Λ, n, δ) > 0 and α = α(p, q, λ,Λ, n, δ) ∈ (0, 1), such that for every ε > 0, (x0, t0) ∈ K and
B(x0, r)× (t0 − r2, t0) ⊂ Q,

||∇ε|∇eu
ε|q||L2(B(x0,r)×(t0−r2,t0)) ≤ M,

||Z|∇εu
ε|q||L2(B(x0,r)×(t0−r2,t0)) ≤ M

||∇εu
ε||Cα

ε (B(x0,r)×(t0−r2,t0)) + ||Zuε||Cα
ε (B(x0,r)×(t0−r2,t0)) ≤ M.

By the theorem of Ascoli-Arzelà, one can find u0 ∈ C1,α
loc (Q) and a sequence εk → 0 such that

uεk → u0 and ∇εku
εk → ∇0u0 uniformly on compact subsets of Q.

The latter implies that u0 is a weak solution of (1.1), in B(x0, r) × (t0 − r2, t0), which agrees
with the function u on the parabolic boundary of B(x0, r) × (t0 − r2, t0). By the comparison
principle, the solution to this boundary values problem is unique, and hence we conclude that
u ∈ C1,α

loc (B(x0, r)× (t0 − r2, t0)).
�
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